

i

“It Went ‘BOING’ !”

by

Andy Johnson

version 1.3

Textbook for
CSC101 - Introduction to Computers
Wayne State University
Detroit Michigan.

Copyright ©1990 by Andrew Johnson.

Disclaimer: The author disclaims any damages caused by the use or mis-

use of information contained in this text.

Cover art by Gary Thomas Washington.

Lots of thanks to Jason Leigh, who deserves half the credit (or blame) for

the ideas expressed in this text.

I would also like to thank Preston Nevins and Raymond Pelzer for their

help in reviewing this text, and Wayne Brillhart for some of his thoughts that

found a home here.

This book was prepared using Textures 1.2 and LATEX.

ii

Contents

0.1 Preface . xiii

1 What is a Computer? 1
1.1 Information Age . 2
1.2 Personal Computer . 3
1.3 Hardware . 5
1.4 Software . 5
1.5 Personal Computers and You 6
1.6 Questions . 6

2 Hardware 7
2.1 Monitor . 7
2.2 Speaker . 9
2.3 Printer . 9

2.3.1 Letter Quality Printers 9
2.3.2 Dot Matrix Printers 9
2.3.3 Ink-jet Printers . 10
2.3.4 Laser Printers . 10
2.3.5 Resolution . 11

2.4 Keyboard . 11
2.5 Mouse . 13
2.6 Main Unit . 13

2.6.1 Motherboard . 13
2.6.2 CPU . 14
2.6.3 Chip . 14
2.6.4 Card . 14

2.7 0s and 1s . 15
2.8 Bits & Bytes . 17
2.9 ROM & RAM . 19

iii

iv CONTENTS

2.10 Floppy Discs . 21

2.11 Hard Drives . 24

2.12 Modem . 25

2.13 Back to Bytes . 25

2.14 Variety . 26

2.15 Brief History . 26

2.16 Comparison . 28

2.17 Clones . 30

2.18 Hardware and You . 31

2.19 Questions . 32

3 Software 35

3.1 Programs . 35

3.2 Piracy . 37

3.3 Public Domain Software . 38

3.4 Emulators . 39

3.5 Software and You . 39

4 Communicating with the Computer 41

4.1 I/O . 41

4.2 Command Line Interface . 43

4.3 Input Devices . 43

4.4 Graphical User Interface . 45

4.5 Comparison . 50

4.6 Multitasking . 50

4.7 Ergonomics . 51

4.8 The Interface and You . 51

4.9 Questions . 52

5 DOS 53

5.1 Formatting . 53

5.2 Files . 54

5.3 Hierarchical File Structure . 56

5.3.1 Directories . 56

5.4 DOS Commands . 57

5.5 DOS and You . 58

5.6 Questions . 60

CONTENTS v

6 Word Processors 61
6.1 Typing VS Word Processing 61
6.2 Features . 62
6.3 Options . 63
6.4 Desktop Publishing . 64
6.5 Text Editors . 66
6.6 Document Processors . 66
6.7 Comparison . 67
6.8 Word Processors and You . 67
6.9 Questions . 69

7 Telecommunications 71
7.1 Protocol . 71
7.2 BBSs . 72
7.3 BBS Lingo . 74
7.4 Terminal Program . 74
7.5 Passwords . 76
7.6 Information Services . 76
7.7 E-Mail . 77
7.8 Uploading & Downloading . 77
7.9 Hackers . 78
7.10 Fone Phreaks . 79
7.11 Security . 80
7.12 Viruses . 80
7.13 Worms . 81
7.14 Logic Bombs . 82
7.15 Trojan Horses . 82
7.16 Telecommunications and You 82
7.17 Questions . 83

8 Databases 85
8.1 Terminology . 86
8.2 Example . 87
8.3 Another Example . 89
8.4 Query Language . 91
8.5 Key . 91
8.6 Databases and You . 92
8.7 Questions . 92

vi CONTENTS

9 Spreadsheets 93

9.1 Terminology . 93

9.2 Example . 94

9.3 Circular Reference . 95

9.4 Relative Referencing . 96

9.5 Absolute Referencing . 97

9.6 Spreadsheets and You . 99

9.7 Questions . 99

10 Graphics 101

10.1 Painting Programs . 101

10.2 Digitizing . 102

10.3 Drawing Programs . 104

10.4 Desktop Video . 105

10.5 Rendering . 106

10.6 The Making of George . 106

10.7 VideoGames . 111

10.8 Graphics and You . 114

10.9 Questions . 115

11 Hypertext 117

11.1 Hypertext . 117

11.2 Hypermedia . 120

11.3 Memex . 121

11.4 Hypertext and You . 122

11.5 Questions . 122

12 Programming 123

12.1 Algorithm . 124

12.2 Stepwise Refinement . 124

12.3 Portability . 129

12.4 Pascal . 129

12.5 Literate Programming . 134

12.6 Types of Errors . 137

12.7 Programming and You . 137

12.8 Questions . 138

CONTENTS vii

13 Some Pascal 139

13.1 Line by Line . 139

13.2 Trace . 144

13.3 Semi-Colons . 144

13.4 Style . 146

13.5 Variables . 147

13.5.1 Integer . 148

13.5.2 Real . 148

13.5.3 Char . 148

13.5.4 Boolean . 149

13.6 Reserved Words . 149

13.7 Arithmetic . 149

13.8 Write/Writeln . 151

13.9 Some Pascal and You . 151

13.10Questions . 151

14 More Pascal 153

14.1 If . 153

14.2 If Then Else . 156

14.3 Loops . 156

14.3.1 For loop . 156

14.3.2 While loop . 161

14.3.3 Logic . 165

14.3.4 Precedence . 167

14.4 GOTO . 168

14.5 Procedures . 168

14.6 Numbers . 172

14.7 Even More Pascal . 172

14.8 Questions . 173

15 Programming Languages 175

15.1 Pascal Version . 176

15.2 BASIC Version . 177

15.3 LISP version . 178

15.4 C version . 179

15.5 Compiling vs Interpreting . 180

15.6 Questions . 181

viii CONTENTS

16 Neat Stuff 183
16.1 Artificial Intelligence . 184
16.2 Neural Networks . 185
16.3 Intelligence . 185
16.4 The Future . 186

A Other Books 189

B Other Periodicals 191

C Professional Societies 193

D Acronyms 195

E Glossary 197

List of Figures

1 Andy Johnson and Jason Leigh xiv

2.1 A Typical Personal Computer 8
2.2 Dot Matrix ‘A’ VS Letter Quality ‘A’ 10
2.3 Comparison of Printer Types 11
2.4 9 DPI 18DPI 36DPI 72DPI 11
2.5 IBM-PC(top), and Mac II(bottom) keyboards 12
2.6 A Chip . 15
2.7 A Card . 15
2.8 Morse Code . 16
2.9 ASCII . 16
2.10 Conversion . 17
2.11 Place Values for Decimal and Binary 18
2.12 1 - 12 in Decimal and Binary 19
2.13 Types of Memory . 21
2.14 3&1/2” disc (top view) . 22
2.15 5&1/4” disc (top view) . 23
2.16 Comparison of Computer Types 27
2.17 15 Years of Personal Computers 29
2.18 Improvements over 15 Years 30

3.1 Software . 36
3.2 Ten years of Software . 38

4.1 Interface . 42
4.2 Input and Output . 42
4.3 Command Line Interface . 43
4.4 Graphical User Interface . 46
4.5 The Mac’s GUI . 48

ix

x LIST OF FIGURES

4.6 The Amiga’s GUI . 49
4.7 The Sparcstation’s GUI . 49

5.1 Tracks and Sectors on a disc 54
5.2 Formatting a Piece of Paper 55
5.3 Without a Hierarchical File Structure 56
5.4 With a Hierarchical File Structure 57
5.5 Boot Up Screens . 59

6.1 Typical Word Processor . 63
6.2 Options . 64
6.3 70s memo VS 90s memo . 65
6.4 Comparison of Text Manipulation Programs 66
6.5 Comparison . 68

7.1 Telecommunications . 72
7.2 Terminals . 75
7.3 Uploading and Downloading 78

8.1 Comparison of Data Storage Devices 86
8.2 Information in Three Tables 87
8.3 Information in One Table . 88
8.4 Tables for Video Store . 89
8.5 Database for Video Store . 90

9.1 Student Grade Spreadsheet 94
9.2 Standard Deviation Needed 98
9.3 Standard Deviation Obtained 98
9.4 Spreadsheet Functions . 98

10.1 Paint Patterns and Tools . 102
10.2 Digitized Image . 103
10.3 Modified Digitized Image . 103
10.4 Painted Line VS Drawn Line 104
10.5 Ray Traced Desktop . 107
10.6 Simple George . 108
10.7 George with Eyeballs . 109
10.8 Top View Showing the Positions of the Light and Camera . . 109
10.9 Wireframe Version of George 110

LIST OF FIGURES xi

10.10George with Pupils . 111

10.11Setting up George’s Attributes 112

10.12Ray Traced Version of George 113

10.13Ye Olde Video Game . 114

11.1 Card Catalogue . 118

11.2 Text of the Book . 119

11.3 The Author . 119

12.1 Portability of Pascal to different CPUs 130

12.2 Pascal Program . 135

12.3 Complete Pascal Program . 136

13.1 Complete Pascal Program . 140

13.2 Complete Pascal Program with Line Numbers 145

13.3 Tracing the Program . 146

13.4 Bad Style . 147

14.1 Different Statement Orders . 153

14.2 Complete Pascal Exercise Program 157

14.3 Complete Pascal Exercise Program w/ IF-THEN-ELSE 158

14.4 Simple Hello Program . 160

14.5 Better Hello Program . 160

14.6 Counting from 5 to 10 Program 161

14.7 Counting from 10 to 5 Program 162

14.8 Hello Program Using WHILE Loop 162

14.9 Counting from 5 to 10 using a WHILE Loop 163

14.10Infinite Loop Program . 164

14.11WHILE Loop Under User Control 165

14.12Rules of Logic . 166

14.13Mathematics VS Pascal . 166

14.14Order of Precedence . 168

14.15ADDEMUP Pascal Program 169

14.16ADDEMUP Pascal Program with Procedures 171

xii LIST OF FIGURES

.

0.1. PREFACE xiii

0.1 Preface

Every ‘real’ textbook has a section called “the Preface.” Of course no one
actually reads the preface except for those people who helped the author while
he was writing it. They read the preface to see if their name is mentioned in
the acknowledgements.

Since you took the time to read this, I’ll explain why you are holding
a course-pak in your hands and not a ‘real’ textbook. To do this we must
go back a few years to the summer of 1989. OK, so that’s not so far back.
Dinosaurs didn’t roam freely on the planet surface then, and Ike wasn’t in
the White House, and bell-bottoms weren’t the fashion of the day . . . but
its still a few years ago. The summer of 1989 was the first time that I
taught CSC101 at Wayne State University. There were two instructors for
this particular class: Jason Leigh and myself - See Figure 1. It was summer
and we were quite bored. We decided to teach this class a little differently.
We came up with a technique which we called ‘stereo teaching.’ Basically, we
both showed up for lecture and we both taught the class, though usually not
at the same time. This kept the students awake, kept us awake, and made
for some rather entertaining classes.

We quickly found that the students were not satisfied with the textbook
and workbook that we were using. Since we could not find a better one,
we gathered our handouts together and created our own workbook for the
Fall Term of 1989. By the Summer Term of 1990 I compiled our lectures
into the first version of this textbook and made it available to the students.
Both books have gone through several revisions since then as students made
comments and suggestions.

CSC101 at Wayne State University serves two purposes. It is the first
class in the Computer Science Curriculum as well as one of the primary was
for Liberal Arts students to satisfy the university’s computer literacy require-
ment. Students come into this class, and begin reading this text, knowing

xiv LIST OF FIGURES

Figure 1: Andy Johnson and Jason Leigh

nothing about computers. By the end of the class most are confidently using
computers.

Having taken more university classes than I care to remember, and having
suffered through many truly dreadful textbooks; I tried to write this text for
the student as well as the instructor. This book ‘sounds’ more like a lecture
than it ‘reads’ like a textbook, and I think you will find it entertaining. I
hope you enjoy it.

Chapter 1

What is a Computer?

It went zip when it moved,

and ptht when it stopped,

and whrr when it stood still.

I never knew just what it was,

and I guess I never will.
– Peter, Paul and Mary.

Computers have always enjoyed a certain popularity in the movies. From
the “electronic brains” of the 50’s with the technicians in white lab coats
turning dials and pulling big iron levers, through the blinky-light panels and
punch-card readers of the 60’s that would spark and spew out smoke at the
slightest trouble. In the 70’s theatrical computers moved beyond blinking
lights to swirling colour patterns where technicians wore bell-bottoms and
instructed their machines in English. Invariably, all these machines tried
to take over the world and would do very well until the hero asked them
to calculate the value of π. The computer would then explode in a blaze of
cheap special effects. In real life computers are about as exciting as a toaster,
and are becoming nearly as common. You don’t need a fancy degree or a

1

2 CHAPTER 1. WHAT IS A COMPUTER?

white lab coat to work with one, and they are usually used for much more
mundane purposes than conquering the world. Very simply, a computer is a
device used to store, process, and retrieve information.

A computer is a tool. As human civilization has advanced we have created
the tools that we needed to survive and prosper. As times change, our needs
change, and the tools we require change. New tools are invented, improved,
and eventually discarded. Instead of weaving textiles, or forging metals, we
are now manipulating information.

1.1 Information Age

When computers were first being built during World War II,there was a belief
that only a handful would be needed around the world. At the time it was
true. But information has become more and more important to our society.
We are now in the midst of the information age - where information itself
is an important raw material to be processed. There is now a vast amount of
raw information to sift through, calculate with, and transform into a finished
product. Computers are well suited to this task.

Today computers are everywhere. Banks use computers to run their ATM
machines. Grocery stores use them to price your food. Wayne State uses
them to register you for classes. Other students are using them to type
up term papers and do calculations for their lab reports. Learning to use a
computer can make your life as a student much easier, but taking those initial
first steps are difficult. Computers can be imposing. This class is designed
to help you take those first steps and acquire the skills to use a computer
productively.

Computers come in a variety of shapes and sizes, perform a variety of
features, and have a correspondingly wide range in the sticker price. Different
computers have strengths in different areas so there is no such thing as a ‘best’
computer. Unfortunately there are a lot of people out there who earn their
living by telling you that there is a ‘best’ computer, and that their company
builds it. The ‘best’ computer depends on the jobs that you need the machine
to perform, how easily you want to perform them, and the amount of money
you are willing to spend. The quality of a particular machine depends on the
person using it. Like automobile manufacturers, computer manufacturers
tend to release different models of their machines depending on the features
the user needs. Ford manufactures automobiles with 2 doors, 3 doors, and

1.2. PERSONAL COMPUTER 3

4 doors. They manufacture sports cars and delivery vans. So does GM and
Toyota. There is no ‘best’ car, but there can be a ‘best’ car for a given job,
and price range.

1.2 Personal Computer

When we talk about a computer in this class, we will usually be talking
about a Personal Computer. Large businesses and government agencies
have been using computers for 40 years, but it is only within the last decade
that the ‘average person’ has gotten access to this powerful tool. It was not
until the mid to late 70’s that the technology became available to the people
in boxes with names like the TRS-80 Model I, and the Apple][. Of course, at
the time, people didn’t know what to do with them. Personal computers were
like ham radios - neat for tinkering with, and a diverting hobby. But now
we have entered the 90’s, and personal computers are becoming as common
as microwave ovens and VCRs.

As an undergraduate, most of the computers that you will encounter on
campus are personal computers. A personal computer will sit comfortably
on a desk, and is used by a single person (which is why it’s called a personal
computer.) There are many popular brands of personal computers being
produced, and you will find several different types on campus: IBM-PCs,
Apple Macintoshes, and Commodore Amigas to name a few. While these
machines may look slightly different, they all operate on the same basic
principles, and have the same basic parts. Once you have learned to use one
personal computer, you have learned about all computers.

Of course, this may not sound very ‘personal,’ and you may not want
to get on intimate terms with a computer. But some of them can be quite
friendly and patient. Douglas Adams came up with the most ‘personal’
personal computer in the Hitchhiker’s Guide to the Galaxy and described it
as:

. . . a device that looked like a largish electronic calculator.
This had about a hundred tiny flat press buttons and a screen
about four inches square on which any one of a million “pages”
could be summoned at a moment’s notice. It looked insanely
complicated, and this was one of the reasons why the snug plastic
cover it fitted into had the words DON’T PANIC printed on it in
large friendly letters.

4 CHAPTER 1. WHAT IS A COMPUTER?

Now the phrase “Don’t Panic” will be very useful in this class, even
though it is not written in large friendly letters on any of the major computer
brands. We are going to cover a lot of material, and you are going to see a lot
of new terms. You may feel rather confused at times (as the student saying
goes - “speed kills!”) but computing has its own language, and you need to
know the lingo. A good way to unconfuse yourself is to sit down and work
with a personal computer. Let the words become objects, and actions in the
real world. Reading about how to drive a car is very confusing until you get
out there on the road . . . and then it all seems to make sense . . . either that,
or you drive off a bridge. That’s one advantage you have learning about
computers . . . the computer labs have a very low mortality rate.

That brings us to a topic that is not often addressed . . . fear. We are
afraid of the unknown. We are afraid of doing something wrong. We might
get hurt, or even worse . . . we might look foolish. Computers are scary. They
sit smugly on the desk waiting for you to make the slightest mistake. You
touch a key and then “whoop whoop whoop” . . . sirens, alarms, bells, and
everyone turns around to stare at you. Then you start babbling like an
idiot, trying to explain yourself to the heavily armed “computer police” as
the computer chalks up another victory. Now think about this. Would a
company that builds a computer like that actually stay in business for long?
No. Computer companies do not want to scare off prospective customers.
They want customers that will be happy and feel comfortable with their
computer. Would a computer company build a personal computer that could
only be used by college graduates? No. That would tend to limit sales as well.
Would a computer company build a personal computer that falls apart at
the slightest touch? No. That would tend to decrease customer satisfaction.
Would a computer company build a personal computer that explodes when
you touch it? No. That would be very bad for business. So there really isn’t
anything to fear, except perhaps that you will find the machine so useful that
you can’t live without it.

So what really is a computer? Computers are made up of two main
parts. One is hardware - the physical parts of the computer. The other
is software - the instructions that control the hardware. Its customary in
texts like this to use a lot of similes and say “a computer is like this,” and “a
computer is like that.” I would hate to break with tradition at this time, so
I will say that a computer is like a stereo system. A stereo system is made
up of components such as a tuner, an amplifier, a CD player or turntable, a
cassette deck, and some speakers. These are hardware. They are physical.

1.3. HARDWARE 5

You can touch them. A compact disc and a cassette tape are also pieces
of hardware, and they contain music on them. This music is the software.
Without the software, the hardware can’t do anything productive. Without
the hardware, the software can’t do anything productive. I started out by
saying a computer is a device to store, process, and retrieve information.
A stereo system is a device used to store, process, and retrieve information
in the form of music. A stereo stores music on cassette tape. It retrieves
music from a cassette or CD. It probably has a volume control, and possibly
a graphic equalizer to process the music.

1.3 Hardware

Computers are also made up of different components that are connected
together. I’m sure you’ve seen stereo systems where the amplifier is built
in with the tuner, or the cassette deck. Different brands of stereos look
different and have different types of controls. The same is true of computers.
Most modern personal computers have the following parts: Main Unit,
Disc Drive, Monitor, Keyboard, and a Mouse. The main unit holds
the guts of the computer . . . its like the amplifier. The disc drive is used to
store information for long periods of time . . . its like the cassette deck. The
monitor is just a fancy name for the thing that looks like a TV screen. It is
where we get the main output from the computer. It is like the speakers.
The keyboard and mouse allow us to give commands to the computer . . . the
input. They’re like the buttons and dials on the components.

1.4 Software

Computers require software to run. Software supplies the instructions for
the computer to follow. The most important piece of software a computer
has is called its operating system. This is software that allows the com-
puter to go about its business (it allows the system to operate) and lets it
talk to all of its components. The operating system usually comes with the
computer, but you will soon need other software. Just like your stereo can
be used to play different kinds of music, a computer can run various different
types of software. A Word Processor turns your computer into a very fancy
typewriter. A Spreadsheet turns your computer into a very fancy calculator.

6 CHAPTER 1. WHAT IS A COMPUTER?

A Database turns your computer into a very fancy rolodex.

1.5 Personal Computers and You

The first popular personal computers of the mid 70’s were very primitive by
today’s standards. These had simple keyboards and black& white screens
that could only display letters or numbers. The software was stored on
cassette tapes. These machines were very slow, very expensive, and very hard
to operate by today’s standards. Within the last 15 years personal computers
have become much more powerful, much faster, much easier to use . . . and
the price has actually stayed about the same. One of the main reasons for
this is that more people have found ways to use personal computers to help
them with their work. Personal computers moved beyond hobbyists and into
the mainstream. They moved out of the basement, put on a dull grey suit,
and headed off into the business world.

The question you need to answer is “Why do I need to learn how to use
a personal computer?” One answer comes from Arno Penzias who wrote in
his book Ideas and Information “Success usually comes to those who apply
technology to their best advantage.” My answer is “Because its interesting,
and because its fun.”

1.6 Questions

1. What is the difference between hardware and software?

2. Which of your daily activities are affected by computers?

Chapter 2

Hardware

When you go to sit down in front of a computer, it is a good idea to know
what each of the parts is called. This way you can sound cool if you need to
ask for help. It is much ‘cooler’ and much more helpful to say “my floppy
disc will not initialize” rather than “it doesn’t work.” So we are going to
take a look at each of the components of a computer. Figure 2.1 shows a
typical personal computer.

2.1 Monitor

The monitor is the part of a computer that looks like a TV screen. The mon-
itor has a screen just like a TV does. It is used to display visual information
to the user. Computer monitors usually sit on top of the main unit of the
computer, though most can be positioned wherever the user pleases. Moni-
tors look a lot like TV sets on the inside as well. All use the same “cathode
ray-tube” technology that TVs use. Like TV sets, monitors tend to get hot
so they have ventilation slots on top to let heat out. Its a good idea to keep
these slots clear (i.e., don’t put your papers on top of the monitor.)

Some monitors are colour and some are monochrome (single coloured.)
Monochrome monitors are usually coloured either green (because that’s how
computers are supposed to look) or amber (because people were going blind
staring at their green screens.) RGBmonitors are high-grade colour monitors.
RGB stands for Red Green Blue (the three primary colors for light), and
the intensity of each color can be set independently for each pixel on the
screen. A pixel is a picture element (or ‘dot’ on the screen.) Pixels are lit

7

8 CHAPTER 2. HARDWARE

Mouse

Monitor

Main

Unit
Disc Drives

Keyboard

Figure 2.1: A Typical Personal Computer

up in patterns to form characters and pictures. If you stare real close at the
monitor screen (and ruin your eyes) you can see the individual pixels. A
typical computer monitor is 640 pixels wide by 480 pixels tall, meaning there
is a total of 307,200 pixels on the screen. These monitors usually have a
resolution of 72 pixels per inch. Some computers allow you to use your TV
as a computer monitor, though the picture is not as sharp as a real monitor
since TVs do not have as good a resolution as monitors do.

Today the monitor is the biggest, heaviest, and most power draining part
of a personal computer system. This should change within five years as
low power flat screen displays become better, and replace the current CRT
technology. As the name suggests, flat screens are flat. They do not use the
bulky picture tube of current televisions, but more exotic technologies such
as liquid crystal or gas-plasma displays. Currently these types of displays
are in use with lap-top computers. Monochrome flat screen displays are now
quite cheap, and colour flat screen displays are expensive but available.

When you were a kid your mother probably yelled at you not to sit so close
to the TV set because it would ruin your eyes. Well, moms are always rather
paranoid, but in this case she might have been right. The electromagnetic
emissions from CRTs may be dangerous. Ever since the mid 70’s this has
been debated, and we will probably not know for sure for several more years.
Just to be safe you should sit a discrete distance away from the monitor.
Keeping your head at least 2 - 3 feet away from the screen is a good idea.

2.2. SPEAKER 9

2.2 Speaker

Since you have video, it seems obvious that you should also have audio. All
personal computers have a built in speaker, and most have multi- voice stereo
sound, along with the ability to play the sound through an amplifier.

2.3 Printer

If you wrote your term paper on a computer, it would be very inconvenient
for you to bring your computer to your Professor so he could read the monitor
screen. You may need to get a hard copy or printout of your work onto
paper. A printer is a device that does this. It prints characters, numbers,
or graphics onto paper. Printers do not come with the computer, but are
a necessary addition. There are several different types of printers available
including (in ascending order of spiffiness) letter-quality, dot-matrix, ink-jet
and laser printers. Figure 2.3 gives a summary.

2.3.1 Letter Quality Printers

Letter-Quality printers print just like typewriters do with a special print
head for each character. They print text as well as a typewriter, but can not
do graphics or special characters. While these printers were popular in the
early 80’s, their inability to print graphics or special characters is a very big
limitation today. They usually cost around $150.

2.3.2 Dot Matrix Printers

The most common type of printer is a dot matrix printer. Unlike a typewriter
which has an individual print head for each character, a dot matrix printer
has a single print head made up of a matrix (or array) of pins. Depending
on what is to be printed, different pins are pressed into the ribbon creating
a pattern of dots on the paper. The pins can be set to represent a letter,
or print out graphics. Common dot matrix printers are 144 DPI (dots per
inch). This is twice as many as the monitor, but not enough to give really
good output as the individual dots are quite visible. The difference between
dot matrix and letter quality letters is shown in Figure 2.2 Colour ribbons are

10 CHAPTER 2. HARDWARE

Figure 2.2: Dot Matrix ‘A’ VS Letter Quality ‘A’

now becoming quite popular allowing dot matrix printers to produce multi-
colour printouts. Dot matrix printers are very good for general purpose work,
and are fairly inexpensive - around $300.

2.3.3 Ink-jet Printers

Ink-Jet printers do not have print heads. Instead they direct a stream of ink
at the page. This allows them to print very fine text or graphics. These are
typically 200 dots per inch, so they are better than dot matrix printers for
general work. They also cost slightly more - $900.

2.3.4 Laser Printers

Dot-Matrix, letter quality, and ink-jet printers print one line at a time. Laser
Printers are the newest form of printer and they print one page at a time
like a xerox machine. Laser Printers have their own computer on board to
direct the laser which “draws” on a photosensitive drum giving the drum
a static charge. Particles from a toner cartridge are attracted to the drum
which is then pressed onto the paper. Technically they are still dot matrix
printers but they have a resolution of 300 dots per inch, so the characters
are almost indistinguishable from letter-quality. Since laser printers are dot
matrix, they can print graphics as well as special characters with extreme
precision. Laser printers are very advanced and so they cost quite a bit -
$1500. Color laser printers can cost $5000.

2.4. KEYBOARD 11

Printer Type Text Graphics DPI Cost
Letter-Quality Y N n/a $150
Dot Matrix Y Y 144 $300
Ink-Jet Y Y 200 $900
Laser Y Y 300 $1500

Figure 2.3: Comparison of Printer Types

Figure 2.4: 9 DPI 18DPI 36DPI 72DPI

2.3.5 Resolution

The quality of both monitors and printers is partially measured in terms of
their resolution. A monitor has a certain number of pixels per inch, and a
dot-matrix printer can print a certain number of dots per inch. To show you
how important resolution is, Figure 2.4 shows the same image viewed with
an increasing degree of resolution.

2.4 Keyboard

The keyboard of a computer looks a lot like the typical “QWERTY” keyboard
of a typewriter, except with a few extra keys around the sides. The keyboard

12 CHAPTER 2. HARDWARE

Figure 2.5: IBM-PC(top), and Mac II(bottom) keyboards

allows the user to type commands, or a term paper into the computer. Most
keyboards are detachable. Detachable keyboards are connected to the main
unit by a cable so you can pull the keyboard away from the main unit and
use it in a more relaxed position.

Larger keyboards as shown in Figure 2.5 come with function keys, arrow
keys, and numeric keypads as well as the standard typewriter keys.

Function keys are aptly named as each of these keys is set so that press-
ing it causes some function to be performed, rather than some character to
appear. Arrow keys allow the user to move up, down, left, and right around
the screen. Numeric keypads put the number keys, and keys needed for
simple arithmetic into a convenient pattern. Standard typewriter keyboards
have the numbers across the top in a row which is very inconvenient if you
need to type in a lot of numbers. Now you might expect that the numeric
keypad arranges the number keys in the most intuitive pattern. It doesn’t.
The phone company found the most intuitive way of placing the numeric
keys, and patented it. This left the computer companies to use the second
most intuitive way of placing the keys.

2.5. MOUSE 13

2.5 Mouse

A mouse looks very little like its mammalian namesake. It doesn’t have a
face, or legs, or fur, but it does have a tail. It looks much more like a bar of
soap with one or more buttons on top, and a ball on the bottom. One assumes
that the person who named the little critter had been working just a little
too hard that day. Mice are used for drawing and making selections from
alternatives displayed on the monitor screen, by moving the beast around
and clicking the button(s). The number of buttons on the top of the mouse
varies with the brand of computer. Some mice have one button (such as the
Macintosh,) some have two buttons (such as the Amiga, and the IBM-PS/2)
and some have three buttons (such as the Apollo, and the Sun.) One mouse
has been released with 40 buttons on it. Since mice are relatively new, there
has not been enough research done to really say how many buttons is “best”,
so different companies have chosen to use different numbers of buttons. The
question is not likely to be resolved soon. After all, automobile manufactures
still can’t agree where to put reverse in a manual transmission.

2.6 Main Unit

The monitor, printer, keyboard, and mouse are all attached by cables to the
Main Unit of the computer. This is the expensive box that contains the guts
of the machine. Most importantly, this box contains the CPU, the RAM, and
the ROM. Since the computer does a lot of heavy thinking in here, the main
unit gets quite hot. Most have a fan inside to keep air circulating around the
box.

2.6.1 Motherboard

When we open up the main unit (and possibly void the warranty on our
machine) we see one large green printed circuit board with chips, and
possibly some cards, plugged in to it. The main board is called the mother-
board. This is where the actual computing is done by the machine. Looking
down on a motherboard one is reminded of looking down on a small city from
an airplane. The chips are arranged in neat rows, like buildings on grassy
streets. Information in the form of electrical impulses moves through these
“streets,” into, and out of the various chips like so many little delivery vans.

14 CHAPTER 2. HARDWARE

2.6.2 CPU

In the center of our grassy town lies one big important building - the CPU.
CPU stands for “Central Processing Unit.” The CPU is what controls the
operation of the computer. In the 50’s terminology it would have been called
the “electronic brain.” The two most common CPUs today are made by
Intel Corp. and Motorolla Corp. Intel makes CPUs for IBM machines and
gives them wonderfully descriptive names like 8088 (“eighty eightyeight”),
80286 (“eighty two eightysix”), 80386, and 80486. Motorolla makes CPUs
for machines like the Macintosh and gives them equally memorable names
like 68000 (“sixtyeight thousand”), 68020 (“sixtyeight thousand twenty”),
and 68030.

CPUs are rated by how fast they can do their work. There are several
ways to measure the speed of a CPU chip, but most of them are useless since
it is not just the brand of CPU that determines the speed of a computer.
However, when you look at ads for computers they will usually say the com-
puter runs at 8 Mhz or 15 Mhz or 40 Mhz. This is the clock rate of the
CPU. The larger the number of Megahertz, the faster the machine should be
able to do its work. Other companies rate their machines in some number
of MIPS, meaning “ Millions of Instructions Per Second.” A more realistic
definition of MIPS is “ Meaningless Indication of Processor Speed.”

2.6.3 Chip

The CPU is a chip. Chip is short for DIP chip, and DIP stands for “Dual
In-Line Package.” These are the things that look like boxy black centipedes.
They have a thin rectangular body, and two rows of legs on their sides (i.e.
each chip is a package with a “dual” set of legs that are “inline.”) This
strange insect has a plastic body, metal legs and silicon innards. The actual
guts of the chip is a very small wafer of silicon, smaller than your fingernail.
Something this small is hard to work with, so the silicon wafer is encased in
this large plastic body. The metal legs connect the chip to the motherboard
so electricity can flow into the wafer. A chip is shown in Figure 2.6.

2.6.4 Card

Most motherboards have slots in them. These slots allow you to plug cards
into the motherboard. A card is another printed circuit board containing

2.7. 0S AND 1S 15

Figure 2.6: A Chip

Figure 2.7: A Card

chips which expand the capabilities of your machine. Expandability is a
good feature to look for in a computer. By the time you buy a personal
computer it is already years out of date. There is always something new and
better coming out, and its nice to be able to plug some of these new and
better things into your machine instead of buying a whole new computer
every six months. A card is shown in Figure 2.7.

2.7 0s and 1s

At this point we need to have a brief but painful discussion as to how comput-
ers actually work. Computers run on electricity. A computer can be thought
of as a large number of switches that are either set to on or off. Because
of this, computers work in this world of 0s (off) and 1s (on). That is all
that they know. All the CPU does is work with these 0s and 1s. Combining
strings of 0s and 1s together allows computers to manipulate a vast amount

16 CHAPTER 2. HARDWARE

a= • - j= • - - - s= • • •
b= - • • • k= - • - t= -
c= - • - • l= • - • • u= • • -
d= - • • m= - - v= • • • -
e= • n= - • w= • - -
f= • • - • o= - - - x= - • • -
g= - - • p= • - - • y= - • - -
h= • • • • q= - - • - z= - - • •
i= • • r= • - •

Figure 2.8: Morse Code

a= 01100001 j= 01101010 s= 01110011
b= 01100010 k= 01101011 t= 01110100
c= 01100011 l= 01101100 u= 01110101
d= 01100100 m= 01101101 v= 01110110
e= 01100101 n= 01101110 w= 01110111
f= 01100110 o= 01101111 x= 01111000
g= 01100111 p= 01110000 y= 01111001
h= 01101000 q= 01110001 z= 01111010
i= 01101001 r= 01110010

Figure 2.9: ASCII

of information. For example: Morse Code conveys a lot of information by
stringing together 0s and 1s in the form of dots and dashes as shown in Figure
2.8.

Morse code was designed so the more commonly used letters have fewer
0s and 1s than less frequently used letters so the overall transmission speed
is faster. With a computer, the number of 0s and 1s for all the typeable
characters is 8, so we can arrange the letters in alphabetical order. One
such standard ordering is called ASCII (“askey.” short for American Stan-
dard Code for Information Interchange) Figure 2.9 shows only the lower case
letters. The full ASCII table has 128 entries (from 00000000 to 01111111)
containing upper-case letters, lower case letters, numbers, punctuation, and
more.

2.8. BITS & BYTES 17

1 bit = 0 or 1
8 bits = 1 byte
1024 bytes = 1 K (kilobyte)
1024 K = 1 M (megabyte)
12 inches = 1 foot
3 feet = 1 yard
1760 yards = 1 mile

Figure 2.10: Conversion

2.8 Bits & Bytes

In a computer, a single 0 or 1 is called a bit. Bit is short for Binary digIT. Like
inches, bits are a little small if we want to measure something large; so we can
convert bits into larger units of measure. A string of 8 bits (such as 01100101)
is called 1 byte. In order to represent a character such as “e” the computer
needs 1 byte. When we measure the length of a paper, we do not count
letters. We need larger units of measure such as words, or pages. A string
of 1024 bytes is called 1 kilobyte (which you would think means 1000 bytes,
but computer science people are a little weird so 1 kilobyte is 1024 bytes.)
1024 K (or 1024 x 1024 bytes) is called 1 M (megabyte.) As the technology
improves every year, larger units of measure become commonplace, and new
even-larger units of measure are then needed. Figure 2.10 summarizes.

So lets do a sample conversion. Lets say we want to find out how many
bits are in 20M. Here’s how we do it:

20M × 1024K
1M

× 1024bytes
1K

× 8bits
1byte

= 167, 772, 160bits

Now I should briefly say where the number 1024 comes from. Given that
we have ten fingers and ten toes we commonly work with a number system
that is base 10 (decimal.) We have the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. If
we need to represent a number larger than 9 we have a problem. We do not
have a symbol for ten. To solve this problem we need to assign a value to
each position in the number. The decimal system has the ones place, then
the tens place, then the hundreds place, then the thousands place, etc. We
can then reuse the symbols 0-9. For example:

18 CHAPTER 2. HARDWARE

decimal binary
100 = 1 20 = 1
101 = 10 21 = 2
102 = 100 22 = 4
103 = 1000 23 = 8
104 = 10000 24 = 16
105 = 100000 25 = 32
106 = 1000000 26 = 64
107 = 10000000 27 = 128
108 = 100000000 28 = 256
109 = 1000000000 29 = 512
1010 = 10000000000 210 = 1024

Figure 2.11: Place Values for Decimal and Binary

The decimal number 809 is 8 hundreds and 0 tens and 9 ones, or
8× 102 + 0× 101 + 9× 100 = 800 + 0 + 9 = 809

Each position is ten times greater than the position immediately to its
right, and ten times less than the position immediately to its left.

Computers only have 0 and 1 so they work with a number system that
is base 2 (binary.) In a base 2 system there is no symbol for two. Again we
need to assign a value to each position in the number. Just as the number
10 is very important in our number system, the number 2 is very important
in the computer’s number system. The binary system has the ones place,
then the twos place, then the fours place, then the eighths place, then the
sixteenths place, etc. For example:

The binary number 1011 can be thought of as:
1× 23 + 0× 22 + 1× 21 + 1× 20 = 8 + 0 + 2 + 1 = 11

Each position is twice as great as the position immediately to its right,
and twice as small as the position immediately to its left.

Figure 2.11 shows the different places for the decimal and binary number
systems:

2.9. ROM & RAM 19

decimal binary
01 = 0× 101 + 1× 100 = 0001 = 0× 23 + 0× 22 + 0× 21 + 1× 20

02 = 0× 101 + 2× 100 = 0010 = 0× 23 + 0× 22 + 1× 21 + 0× 20

03 = 0× 101 + 3× 100 = 0011 = 0× 23 + 0× 22 + 1× 21 + 1× 20

04 = 0× 101 + 4× 100 = 0100 = 0× 23 + 1× 22 + 0× 21 + 0× 20

05 = 0× 101 + 5× 100 = 0101 = 0× 23 + 1× 22 + 0× 21 + 1× 20

06 = 0× 101 + 6× 100 = 0110 = 0× 23 + 1× 22 + 1× 21 + 0× 20

07 = 0× 101 + 7× 100 = 0111 = 0× 23 + 1× 22 + 1× 21 + 1× 20

08 = 0× 101 + 8× 100 = 1000 = 1× 23 + 0× 22 + 0× 21 + 0× 20

09 = 0× 101 + 9× 100 = 1001 = 1× 23 + 0× 22 + 0× 21 + 1× 20

10 = 1× 101 + 0× 100 = 1010 = 1× 23 + 0× 22 + 1× 21 + 0× 20

11 = 1× 101 + 1× 100 = 1011 = 1× 23 + 0× 22 + 1× 21 + 1× 20

12 = 1× 101 + 2× 100 = 1100 = 1× 23 + 1× 22 + 0× 21 + 0× 20

Figure 2.12: 1 - 12 in Decimal and Binary

This explains why humans commonly use numbers like 10, 100, and 1000,
while computers commonly use numbers like 64, 512, and 1024. 1024 is 210

or 2 multiplied by itself 10 times (2× 2× 2× 2× 2× 2× 2× 2× 2× 2.) Now
the numbers in Figure 2.11 got rather large. Figure 2.12 shows the numbers
1-12 represented in both decimal and binary.

Now it is not necessary to remember these numbers beyond the ability
to convert between bits and bytes and K and M, but it is important to
realize that computers do not work with the same number system that we
do. Computers do not do math the same way that we do. In the past, the
user of a computer needed to know these other number systems to operate the
computer. Today you can use normal decimal arithmetic and the computer
will worry about doing all the work of translating it to binary. If you decide to
continue with computer science courses there are two MORE number systems
you have to learn - base 8 (octal) and base 16 (hexadecimal.)

2.9 ROM & RAM

Computers have two kinds of memory stored in chips on the motherboard.
ROM stands for Read Only Memory. RAM stands for Random Access Mem-
ory (though you should remember it as Read And write Memory.) ROM is

20 CHAPTER 2. HARDWARE

used by the computer to store things that it doesn’t want to forget . . . things
like what to do when the power switch is turned on. ROM contains a lot
of very basic information that the computer needs everyday. As people we
have information on tasks like breathing, and pumping blood that we need
every day. It would be very bad if we went to Math class and by learning
2+2=4 we wrote over the part of our memory that told us how to pump
blood. Similarly, in a computer we don’t want the user to be able to acci-
dentally destroy important information. The ROM is there only for the use
of the computer. It can only be read from. The RAM, on the other hand, is
there to be used by the user. (In computer jargon, the person who uses the
computer is known as . . . Ôthe user’) As you type your term paper into the
computer, the words are stored in RAM. The word processing program you
are using to write the term paper is also temporarily stored in RAM giving
the computer instructions. RAM can be modified by the computer. It can
be read from or written to. Both types of memory are measured in bytes.
Personal computers today have about 128K of ROM and 1M of RAM.

There is one big difference between ROM and RAM, and that is what
happens after you turn the power off. The information stored in the ROM
chips will still be there. ROM is involatile. The information on the RAM
chips will disappear. RAM is volatile. The electrical power supplied to
the computer keeps the information in RAM. When that power is cut off,
the computer “forgets” everything that was in the RAM. ROM is like your
textbook. Information has been stored in there permanently by the publisher.
You can not alter it. RAM is like the blackboard. A blackboard is written
on, modified . . . and eventually the janitor comes in and washes all the chalk
off of it. The blackboard is there for temporary storage while the ideas are
being discussed. The textbook is there for permanent storage.

RAM is also referred to as Primary Storage or Main Memory, since
it is the place where the computer does most of its processing. We use our
brains as primary storage, to hold things we are working on and thinking
about. You can think of turning the computer off in the same way that we
go to sleep. Some of the information we had before went to bed is gone
. . . forgotten. When we wake up we can still remember basic important
things, but we occasionally forget about appointments or phone numbers.
What do we do about this? We write those things down in a more perma-
nent form on a piece of paper, or in an address book. We use Secondary
Storage. Computers also make use of secondary storage in the form of disc
drives.

2.10. FLOPPY DISCS 21

ROM read only permanent
RAM (PRIMARY STORAGE) read/write temporary
SECONDARY STORAGE read/write permanent

Figure 2.13: Types of Memory

So let’s expand our classroom analogy a bit. We have the textbook as
ROM (assume that you are a good boy or girl who does not write in your
textbooks so you can get high resale value.) We have the blackboard as RAM.
We have our notebook as secondary storage. While we are sitting in class we
can “read” information from the textbook, the notebook, or the blackboard.
We can “write” information on the blackboard or in our notebook. Both
the textbook and the notebook are permanent forms of storage. After we
leave the classroom we can still “read” information from the textbook or the
notebook. The blackboard is only used for temporary storage, while we are
discussing something. When we leave the class or the board is erased, we can
no longer “read” that information. Now your notebook has a big advantage
over your textbook in that you can erase your old notes, and write new ones
in their place. You can “read” from and “write” to your notebook, where
you can only “read” from your textbook. Figure 2.13 shows the same thing
in computer science terms.

2.10 Floppy Discs

When we buy a record album it comes on a compact disc. We put this disc
into our CD Player to listen to it. When we obtain a piece of software, it
usually comes on a floppy disc. Floppy discs come in two popular sizes.
They are called 5&1/4” (“Five and a quarter inch”) and 3&1/2” (“Three
and a half inch.”) They are appropriately named since the 5&1/4” disc
is 5&1/4 inches on each side and the 3&1/2” disc is 3&1/2 inches on each
side. 5&1/4” floppy discs were the standard in the early 80’s, but the 3&1/2”
became the new standard in the late 80’s since they are smaller, more durable,
and hold MORE information than their 5&1/4” siblings. Figures 2.14 and
2.15 show what they look like.

All personal computers come with at least one built in Floppy Disc
Drive (or Floppy Drive for short.) Usually this drive is built into the main

22 CHAPTER 2. HARDWARE

Figure 2.14: 3&1/2” disc (top view)

unit so only a small slot is visible for inserting the disc into. This is an
internal drive. You can also buy floppy drives that sit outside of the main
unit. One of these is called an external drive. As with the floppy discs, the
drives come in 5&1/4” and 3&1/2”. You then go out and buy floppy discs
that you can insert into the drive. Computer users often have hundreds of
floppy discs laying around in shoeboxes and scattered in drawers with various
information stored on them, but only one at a time can be used in the floppy
disc drive. Floppy discs allow you to “write” information onto them, and
“read” information off of them. You can also write over any information
currently on the disc with new information. They are a lot like cassette tapes
in this regard, and early personal computers used cassette tapes instead of
floppy discs because they were cheaper.

The price of floppy discs has also dropped dramatically over the last
decade. In 1981 a box of ten 5&1/4” discs would cost $50. Today a box of
ten 5&1/4” discs costs $2.50 (unless you buy them at the bookstore where
you can expect to pay $1.50 per disc. Ain’t capitalism wonderful) In 1984 a
box of ten 3&1/2” discs would cost $50. Today a box of ten 3&1/2” discs
costs $4.50 (unless you buy them at the bookstore where you can expect to
pay $2.00 per disc.)

Like record albums or cassette tapes, floppy discs must be handled with
a certain amount of care. Each floppy disc contains a circular piece of mylar
coated with magnetic oxide. With a 5&1/4” disc this magnetic media is
encased in a flexible plastic sleeve with openings so the disc drive can read
from, and write to the disc. These openings also allow you to touch the

2.10. FLOPPY DISCS 23

Figure 2.15: 5&1/4” disc (top view)

magnetic media. Do not touch the magnetic media. 3&1/2” discs are an
improvement on this since the plastic sleeve isn’t as flexible as the 5&1/4”
variety, so the disc is harder to bend. In fact a 3&1/2” “floppy” disc is not
floppy at all. The slots for reading and writing are covered by metal covers
to keep out the dust and your fingers.

We need to keep discs away from static electricity, magnetic fields, and
dust. So don’t rub your cat with a disc, don’t put it next to the television,
and don’t use it as a dust-pan. You also shouldn’t set it next to the phone
if you think it might ring. Don’t do anything with a floppy disc that you
wouldn’t do with a record album or a cassette tape. Don’t leave it in the
sun, don’t bend it, and don’t use it as a frisbee on the beach (at least until
the class is over.)

Cassette tapes and video tapes have write-protect notches. This is a
small piece of plastic that allows you to write on the tape. When the notch
is popped out you can no longer write information on to the tape. The tape
is “write protected” so you do not accidentally erase the information that
is stored on it. Floppy discs have a similar feature. The 5&1/4” disc has a
square notch cut in its side. When this notch is visible you can write on the
disc. When the notch is covered up you can not write on the disc. The notch
is usually covered using a small piece of adhesive tape, so it can be removed
at a later time. 3&1/2” discs have a similar, but slightly more convenient
approach. They have a slot on the back with a small slider. When this slider

24 CHAPTER 2. HARDWARE

is moved so that the write-protect hole is covered, the disc can be written
on. When the slider is moved so that the hole is open, the disc can not be
written on.

2.11 Hard Drives

One floppy disc can store approximately one Megabyte of information de-
pending on the drive that it is used in. This may seem like a lot of space,
and it was only a few years ago . . . but not now. Now most personal comput-
ers come with Hard Drives (or Hard Disc Drives.) Like floppy drives, hard
drives can either be internal or external. Hard drives for computers com-
monly hold 40 to 100 Megabytes of information. Hard drives are about the
same size as floppy disc drives, so how come they hold so much more infor-
mation? The aluminum platters that hold the information are not removable
from a hard drive. The platters are held within a sealed environment so no
dust can get onto them. This allows the Hard Drive to spin the disc much
faster (floppy drives spin at 300 RPM, hard drives spin at 3000 RPM, where
as old 33&1/3 LPs spun at 33&1/3 RPM.) The information can be packed
much more densely on the solid platters so they can store more information.
Floppy discs are carried around in your pocket, bumped and scraped during
normal use, and rubbed against cats by gullible first year students. Hard
discs are kept safe within their drive. This means that Hard discs have faster
access, longer lifetimes, and lower failure rates than floppy discs.

You may be wondering why are floppy discs called floppy discs and hard
discs called hard discs. Floppy discs have a piece of mylar inside. Hard discs
have an aluminum platter inside. The mylar is floppy. The aluminum is
hard.

Both floppy discs and hard discs have their advantages. Floppy discs
don’t hold as much information, and are not as fast, but they are portable,
and are cheaper. Hard discs are not as portable, and cost more, but they
store a lot of information, and are very fast. As with the cost of floppy discs,
the cost of hard drives is decreasing rapidly Ten years ago a 10 megabyte
hard drive would have cost $5,000. Today you can get a 40 megabyte hard
drive for $400. Most serious personal computer users use both a floppy drive
and a hard drive. This allows them to have the advantages of both kinds of
drives, with the only disadvantage being felt in the pocketbook.

The future of disc drives for computers lies with technology closer to

2.12. MODEM 25

that of a compact disc. Compact discs, and their larger siblings Laser discs
can store a phenomenal amount of information. One compact disc can hold a
gigabyte of information. One gigabyte is 1024 megabytes. That’s a lot. Most
personal computers today have a CD ROM drive as an optional accessory.
This drive reads programs (and music) stored on compact discs. They are
called CD ROM because, like musical compact discs, the ability to write on
them is reserved for companies. This should soon change. 3&1/2” optical
discs that you can read from and write to are already on the market and can
store 128 Megabytes on a single disc. The big disadvantage of this system
right now is that the Disc Drive costs $3000, and each individual disc costs
$130. But as we have seen, prices have a tendency to drop very quickly.

2.12 Modem

Personal computers do not come with a built in modem, but it is one of
the more useful pieces of hardware you can add to a computer system. A
modem is a piece of hardware that allows your computer to “talk” to other
computers. The modem is used to convert the information in the computer
into sounds that can be sent over the phone line. The person on the other end
of the phone line needs a modem to convert the sound back into information
for her computer to understand. Fax machines are currently becoming very
popular, and they work on a similar principle. Some modems sit inside the
main unit on cards, while others are boxes that sit next to the phone and
are attached to the computer with a cable.

Memory and discs are measured in bytes, but modems are measured in
terms of their Baud Rate. A typical modem in the early to mid 80’s was
300 (“three hundred baud”), in the mid to late 80’s was 1200 (“twelve hun-
dred baud”), and in the late 80’s and early 90’s 2400 (“twenty-four hundred
baud”). The higher the baud rate the faster the modem can send information
across the phone line.

2.13 Back to Bytes

You may think that all this bits and bytes and K and M talk is just here so
we can ask exam questions. Its not. If you open up the Detroit News or Free
Press you will see ads for computers, and they will all say how many K of this

26 CHAPTER 2. HARDWARE

or how many Megs of that their computers have. Obviously each company is
going to try to make their computer look better by picking the best unit of
measure. Its good to be able to compare these machines on common ground.
The machine with 512K of main memory may sound better than the one
with 2M of main memory. After all, 512 is a much bigger number than 2,
but the 2M computer has four times as much memory as the 512K computer.

Today, the number of colours a computer can display on its monitor is
usually described in terms of bits. Some computers have “8 bit colour” which
means they can display 28 colours simultaneously. That is 2×2×2×2×2×
2× 2× 2 = 256 colours on the screen at one time. More expensive personal
computers can display “24 bit colour” which means they can display 224

colours simultaneously. That is 2× 2× 2× 2× 2× 2× 2× 2× 2× 2× 2× 2×
2×2×2×2×2×2×2×2×2×2×2×2 = 16,777,216 colours on the screen
at one time. Do you really need 16 million colours? Probably not, but they
sure look pretty.

2.14 Variety

So far we have talked only about personal computers. Computers range
in power, size, and price from MicroComputers to MiniComputers to
Mainframes and up to SuperComputers. Personal computers are usu-
ally Microcomputers but some are getting near the power of MiniComputers.
Personal computers are designed to be friendly. Mainframes and Super com-
puters are designed for raw computing power. While you can sit down in
front of a Microcomputer or a minicomputer and bang on the keyboard, you
can only talk to Mainframes and Supercomputers through other smaller com-
puters. Complex calculations and sophisticated graphics require the use of a
lot more computing power than a personal computer can offer. A personal
computer could do the same job, but it would take much longer to do it.
Figure 2.16 compares these different types of computers.

2.15 Brief History

The first big computers were built in the early 30’s, but were mostly cu-
riosities until World War II. The US Army wanted a device to perform tra-
jectory calculations. In 1946 the ENIAC was completed. ENIAC stood for

2.15. BRIEF HISTORY 27

Criteria Micro Mini Mainframe Super
Price $2,500 $100,000 $1 million $10 million
Users 1 10 500 ?
Power 1 ×10 ×100 ×1000
Made by Apple Apollo IBM Cray

IBM Sun
Commodore DEC

Used By anyone CS students Wayne State Pentagon
Ford IRS NASA

Comerica

Used For Writing Research Databases weather prediction
Budgeting CAD/CAM big calculations large simulations

Figure 2.16: Comparison of Computer Types

‘Electronic Numerical Integrator And Calculator.’ It weighed 30 tons and
occupied 1500 square feet. It was programmed by moving wires and throw-
ing switches. John vonNeumann improved on this design with the EDSAC
in 1949. EDSAC stood for Electronic Delay Storage Automatic Calculator
and was the first computer to use a program stored in memory. Since then
the government, universities, and big businesses have used computers and
big companies such as IBM have supplied them. The first experience most
people had with computers in their home came when Atari began making the
“Pong” game in 1971. None of the companies making large computers at the
time thought there was any market for a personal computer. Personal com-
puting was a hobby. You bought the kit and tinkered the machine together
and then you tried to figure out some use for the thing. The first machine to
actually be called a “personal computer” was the MITS (Model Instrumen-
tation Telemetry Systems) Altair 8800. It was released in January 1975 and
it sold for $400. It had a whopping 256 BYTES of memory, no monitor, no
keyboard, no secondary storage. The machine was sold by mail-order and
you could buy the kit like most other “micro computers” of the time, or, and
here was the new concept, you could buy it pre-assembled. It did cause a bit
of a stir among hobbyists.

28 CHAPTER 2. HARDWARE

The industry really didn’t get started until 1977 (the year “Star Wars”
was released,) with the introduction of the Apple][, and a few months later
the TRS-80 Model I (TRS standing for Tandy Radio Shack) and the Com-
modore PET (PET standing for Personal Electronic Transactor.) These com-
puters had the advantage of being sold in stores. Imagine that - a personal
computer sold in stores. IBM entered the market four years later and almost
immediately became the de-facto standard (the “big blue” light blinds many
businessmen.) With the introduction of the IBM-PC, businesses began to
take personal computers seriously, and by 1983 IBM practically owned the
market. In 1984 the Macintosh arrived and computers became ‘intuitive’ to
computer illiterates. In 1985 the Amiga came on the scene with enhanced
graphics, sound and the ability to run more than one program at the same
time. Since then, improvements in personal computers have come at a slow
and steady pace. In 1990 there were 9 million personal computers sold in the
United States. 18/Apple, 6/

The last 15 years have seen a huge number of personal computers being
released. Some would rapidly fade into obscurity (the Apple III, the Osborne,
the Adam, and the PCJr), and some would hit the big time (the Apple II,
the TRS-80, the Atari 800, the VIC-20, the IBM-PC, the Macintosh, and the
Amiga). Figure 2.17 lists many of the personal computers that have been
released over the last fifteen with the more important machines are shown in
bold-face. Figure 2.17 also lists some popular theatrical released in the same
years to give you some bearings.

2.16 Comparison

To give you some idea of how fast computers are improving we will compare
a few different models. Figure 2.18 shows the features of several “low end”
(i.e. under $2000) personal computers which were released at approximately
three year intervals. Computers are one of the few areas where you get
more features year after year and the price continues coming DOWN as the
machines become more popular. Figure 2.18 shows the features at the time
of initial release, although all of these machines have gone through various
upgrades.

2.16. COMPARISON 29

Year Movie Apple Commodore IBM Tandy
76 Robin & Marian Apple I

77 Star Wars Apple][PET Model I

78 Animal House

79 Alien][plus Model II

80 Blues Brothers Apple III Model III
Color Comp.

81 On Golden Pond VIC-20 IBM-PC

82 Poltergeist C-64

83 Right Stuff Lisa PC XT Model IV
][e PCjr. Tandy 2000

84 Buckaroo Banzai Macintosh PC AT Tandy 1000
][c Tandy 1200

85 Fright Night C-128
Amiga 1000

86 Top Gun Mac Plus Tandy 3000
][gs

87 Princess Bride Mac II Amiga 500 PS/2 Tandy 4000
Mac se Amiga 2000

88 Die Hard Mac IIcx Amiga 2500
Mac se/30

89 Glory Mac IIci

90 Ghost Mac IIfx Amiga 3000 PS/1
Mac IIsi

91 Mac lc

Figure 2.17: 15 Years of Personal Computers

30 CHAPTER 2. HARDWARE

Release Clock Secondary
Date Speed RAM ROM Storage Price

Altair 8800 Jan ’75 ? 1/4K 0K none $400
Apple][Apr ’77 1 MHz 16K 8K Cassette $1,200
IBM-PC Aug ’81 5 MHz 64K 40K 5&1/4” 160K $2,500
Macintosh Jan ’84 8 MHz 128K 64K 3&1/2” 400K $1,800
Amiga 500 Feb ’87 8 MHz 512K 128K 3&1/2” 880K $1,400
IBM PS/1 Jul ’90 16 MHz 1M 256K 3&1/2” 1.44M $1,600

Figure 2.18: Improvements over 15 Years

2.17 Clones

You may have heard of clones. While the ability to clone human beings is
still a “few” years off, clones of computers have been among us for almost a
decade. There have been Apple][clones and IBM-PC clones. A clone is a
computer built by company X that runs just like a machine built by company
Y. Usually the clones run even better than the original, and cost less as well.
Is company Y upset about this? Damn right they are, and out comes their
legal department. Unfortunately for company Y, most clones are perfectly
legal. The IBM-PC has many, many, many clones out there, and they sell
extremely well.

Most computer companies do not build their own hardware, but buy it
from other companies that specialize in a certain product (such as a CPU
or a monitor, or a disc drive.) The computer company puts all these parts
together, writes the operating system, and then announces to the world what
they have created. A company that manufactures clones can buy the same
parts from the same companies, write their own operating system (throwing
in a few new features,) and they have a ready made market for their machine.

Clone manufacturers can charge less because they do not have to support
the research and development costs to actually design the machine. They
know that the machine works because it has already been built by someone
else. Now all they have to do is build their own.

Now there are several drawbacks to buying a clone. The first is that you
do not get the support that a big company can offer. Companies like IBM,
Apple, Tandy, Compaq, and Commodore have large networks of dealers to

2.18. HARDWARE AND YOU 31

service their products. The clones do not have this kind of support. The
companies that build clones are also much more likely to disappear than the
major personal computer manufactures. Upgrades are harder to come by for
clones as well. Clones can be cheaper in the short run, but possibly more
expensive in the long run.

2.18 Hardware and You

So what have we learned so far. We now know that mice do not have legs,
but chips do; that floppy discs are not necessarily floppy; and that personal
computers are sold in stores. We also suspect that computer scientists spend
most of their time thinking up acronyms so no one will know what they’re
talking about. Who says computer scientists don’t live in the real world?

Around this time, computer science students begin to ask me what kind of
computer I think they should buy. This is actually a very difficult question
because it goes far beyond tables of numbers and lists of features. The
following are a list of questions in descending order of most importance in
choosing a personal computer.

1. Can I afford it? - Don’t let anyone kid you. Price is the most important
thing to keep in mind when buying anything.

2. Will I be compatible? - If the place where you work or go to school
uses mostly one type of computer, and you want to work at home, that
is the brand you will probably have to buy.

3. Can it do what I need it to do? - You are buying a personal computer
to help you in some way. Be sure that it has the hardware and the
software (coming next chapter) necessary to do what you need it to
do. Are you buying the machine to do word processing, or graphics, or
to run business applications? Each personal computer has strengths in
different areas.

4. Is it easy to use? - You want to spend time doing your work not figuring
out how to do your work

5. Do I have a friend with this kind of computer? - You usually end up
buying a computer because you know someone else who has one. Asking
your friends is the best way to get good advice about a particular

32 CHAPTER 2. HARDWARE

machine before and after you buy one. Friends are also good sources
for “borrowing programs to try them out.”

6. Is it expandable? - This will be more important in the long-term, than
the short but you should look for machines with expansion slots, and
other ways you can upgrade in the future. This way you can buy only
what you need now, and expand later.

You should try a computer out before you buy it, preferably not with
a salesperson lurking over your shoulder. This is where having friends with
computers really helps because you can go over and bang on their machine for
a while. The important thing is to keep an open mind . . . look around . . . see
for yourself. We all have different tastes in movies and music. Computers
are no different. You should buy the computer that will help YOU the most.
Keep in mind that this may not turn out to be a computer at all. Maybe
all you need is a typewriter, or a address book, or a big pad of paper and a
handful of coloured markers.

2.19 Questions

1. What is the difference between RAM and ROM? What is each used
for?

2. Why is it necessary to have part of memory be ‘read only’?

3. How can a dot matrix printer print out both text and graphics?

4. How many bits are in 40M?

5. What do we measure in bytes?

(a) the speed of the computer

(b) the amount of memory in the computer

(c) the weight of the computer

(d) the number of CPUs in the computer

6. What is secondary storage?

(a) RAM

2.19. QUESTIONS 33

(b) ROM

(c) where you put your computer when you are done using it

(d) floppy discs

7. What does the RGB in RGB monitor stand for?

(a) Randomly Generated Bandwidth

(b) Raymond Gerald Brown (the inventor)

(c) Red Green Blue

(d) Rotating Gauss Band

8. A 3&1/2” disc is called a 3&1/2” disc because

(a) it holds 3.5 times as much information as a 5&1/4” disc

(b) its length and width is 3&1/2 inches

(c) you can fit 3&1/2 of them into a single drive at the same time

(d) it spins 3.5 times faster than a 5&1/4” disc

9. Which of the following is volatile?

(a) RAM

(b) ROM

(c) Floppy Disc

(d) Hard Disc

10. Why are floppy drives better than hard drives?

(a) floppy discs are made of aluminum

(b) floppy discs can be removed from the drive

(c) floppy discs can store more information

(d) floppy discs are faster

11. What does a MODEM allow your computer to do?

(a) access hard drives larger than 1024M

(b) display colour graphics on your monitor

(c) print out graphics

(d) talk to other computers over telephone lines

34 CHAPTER 2. HARDWARE

Chapter 3

Software

Software is information. It is words and numbers. Like music on a cassette
tape, it is invisible. So far we have been a little vague on how the software
connects to the hardware. The computer’s operating system is a piece of
software. This set of instructions is stored in the ROM chips. When the
computer is turned on, the computer knows to look at the ROM chips for
instructions as to what to do first. It then follows these instructions. The
computer is now ready for you to give it some specific job to do. To give it
these new instructions, we need to supply it with more software.

3.1 Programs

When you get a piece of software, it will usually come on a floppy disc. You
put this floppy disc into your disc drive. The computer’s operating system
will allow the computer to read the program on the floppy disc and put the
copy of it into the RAM. This program could be a word processor. It could
be a spreadsheet. It could be “Space Invaders.” Whatever the program is, it
needs to be in RAM for the computer to execute the instructions contained
in it. Now we have the ROM controlling the basic, “lower level” functions -
and the RAM containing a program to do some “higher level” functions - like
writing a term paper. The program (in RAM) talks to the operating system
(in ROM) when it needs to, so you do not have to. Figure 3.1 illustrates.

Why are things set up this way? The answer is generality. We could
have one computer specializing in word processing, another specializing in
spreadsheets, and another specializing in database where all the necessary

35

36 CHAPTER 3. SOFTWARE

ROM

RAMWord

Processor

Operating System

Term

Paper

Figure 3.1: Software

information is stored in the ROM. Machines such as these do exist, but
it would be expensive to buy all three. What we want is one all purpose
computer that can do all of the above and more. Think about your stereo
system. When you buy your components they do not come with built in
music. You don’t have a rock stereo, and a classical stereo, and a rap stereo.
You have one stereo that can be used to play all different kinds of music.
This gives you the added advantage of being able to play new music just by
buying the CD and popping it into your player. When we want to run a new
piece of software we buy the floppy disc, pop it into our disc drive, and run
the program.

The computer’s ROM contains instructions that all programs need to run
. . . instructions like how to run the disc drive, monitor and keyboard. The
RAM is used to store the specific program that is being used. We can put
a word processor into the RAM, or a database, or a spreadsheet or “Space
Invaders.” You need to open this Course-Pak and read the words into your
brain before you can think about them. Once you have read the words in
you can process what you have read. The computer must read the program
off the disc and store it in it’s RAM so it can process it.

The size of software programs has grown dramatically in the last decade.
Ten years ago a good word processor might take up 100K. Today a good
word processor takes up 700K. Since we need to be able to load the program
into memory it is important that we have enough RAM to store it. But when

3.2. PIRACY 37

we are writing a term paper with our word processor, the word processor is
not the only thing in the RAM. The term paper is stored in the RAM as
well while we are working on it. The RAM holds the data being processed
- the term paper, as well as the program doing the processing - the word
processor.

More and more features are added to programs each year to attract new
buyers. Usually a software company will continue to offer new versions of
their program for several years. People who bought the early older version
are usually given the opportunity to upgrade their program (for a small fee,
of course) to give them access to all of the new features. Software companies
tend to work very closely with the computer manufacturers since the software
company wants to be ready when a new model arrives.

Usually a specific piece of software is written for one specific machine, and
if the product does well, the program will be rewritten for another machine.
For example, Microsoft wrote Excel for the Macintosh. It was a big hit.
Then they wrote Excel for the IBM-PC. Conversely Word Perfect was a
big hit on the IBM-PC, so a version was written for the Macintosh. While
these programs look similar to the user, they are running on computers with
different CPUs.

People use personal computers for many different reasons so there is a
wide variety of software available. Some programs are business oriented such
as Word Processors, Spreadsheets, and Databases. Some are creativity ori-
ented such as Paint Programs, Animation Programs, and Music Programs.
Some help you write programs yourself such as Compilers and Interpreters.
Some help you communicate with other computers such as Terminal Pro-
grams and BBS Programs. Some help you to relax such as videogames.

Figure 3.2 lists some of the more important pieces of software that have
been released within the last ten years. These programs were either the first
of their kind, or the standard that was followed for similar programs.

3.2 Piracy

Piracy has been a problem for the computer industry since the first programs
came out. A pirate is someone who illegally copies a piece of software. Soft-
ware companies charge hundreds or thousands of dollars for their programs,
and there are people who do not feel like paying that much. In fact they do
not want to pay anything. It is easy to make an exact copy of a program

38 CHAPTER 3. SOFTWARE

Year Word Proc. Database Spreadsheet Graphics Hypertext
79 Word Star VisiCalc
80
81 DBase II
82 Lotus 1-2-3
83
84 MacWrite MacPaint
85 Excel
86 HyperCard
87
88

Figure 3.2: Ten years of Software

stored on disc, all you need is a copy program and a blank disc. Of course you
would have to go and photocopy the instruction manual, but that doesn’t
slow the pirates down much.

The software companies and the pirates were soon locked into a vicious
circle. The companies would add better copy protection to their programs
to make the programs harder to copy. They would then charge more for the
program to pay for this new protection. The pirates would soon find a way
around the new protection. Users felt less inclined to pay the higher price -
so more people pirated the software. Eventually the copy protection schemes
got to be intolerably annoying to every user, including those who payed for
the program. Most users make a backup copy of the discs they buy, or move
the programs onto their hard drive. Many copy protection schemes made this
impossible. The companies came up with a new strategy: sell the program
cheaply without any protection and people will be more inclined to pay for
it. This new strategy has worked very well.

3.3 Public Domain Software

One of the reasons that the software companies decided to drop their expen-
sive protection schemes was that public domain programs were taking their
business. A public domain program is free for you to use, copy, and give to
anyone you know. The program is literally in the public domain. There is a

3.4. EMULATORS 39

large amount of public domain software out there, and some of it is as good
or better than professional programs. Public domain programs are most of-
ten written by “average” people who need a program for a certain task, and
then allow others with the same need to use it.

3.4 Emulators

We said before that the computer’s operating system handles all the nitty
gritty, low-level work while the programs you buy deal with more high- level
work. One interesting program you can buy is called an emulator. An emu-
lator is a program that converts your brand of computer into another brand
of computer. You do not need any extra hardware, because the software
is fooling the programs into thinking that they are running on the machine
they are supposed to be running on. In effect you get two computers in one.
You can run software for your machine, and software for the machine you are
emulating. Software emulators usually run slower than the machine they are
emulating, but the emulator software is much cheaper than the corresponding
amount of hardware.

Another type of emulator requires hardware from the computer that you
are emulating. Commonly the CPU and the ROMs from the machine you
wish to emulate are put on a card that you can plug into your computer.
These emulators work much faster than the plain software emulators, but
you have to pay more to get the necessary hardware.

3.5 Software and You

Software is just as important as hardware. One of the reasons that there
is no such thing as a ‘best’ personal computer is that they all run different
software. It is the combination of hardware and software that is important
when selecting what computer to use for a specific job.

40 CHAPTER 3. SOFTWARE

Chapter 4

Communicating with the
Computer

We said before that computers operate in a world of 1 and 0, true and
false, yes and no, on and off. Human beings operate in a world of “maybe”
and “kind of.” The computer is digital. We are analogue. In order to
communicate with the computer and tell it what to do we use what is called
an interface. The interface “sits” between us and the machine as show
in Figure 4.1. The keyboard and monitor are the most common interface.
Information passes through this interface between us and the machine. In
the past this interface has been very close to the machine’s way of working,
and very far from the way human beings work. Graphical User Interfaces,
and alternate input devices were created to move the interface closer to us,
to make the machine easier to use.

4.1 I/O

I/O is short for Input/Output. We give input to the computer and it responds
by giving us some output. This is pretty straight-forward since input goes
INto the computer and output comes OUT of the computer. The keyboard is
the most common input device, and the monitor is the most common output
device. Modems and Disc Drives are used for both input and output. Figure
4.2 lists several others.

41

42 CHAPTER 4. COMMUNICATING WITH THE COMPUTER

INTERFACE

Output

Input

Figure 4.1: Interface

Hardware Input Output
Keyboard yes
Mouse yes
Joystick yes
Monitor yes
Speaker yes
Printer yes
Modem yes yes
Disc Drive yes yes
Tape Drive yes yes

Figure 4.2: Input and Output

4.2. COMMAND LINE INTERFACE 43

Figure 4.3: Command Line Interface

4.2 Command Line Interface

The personal computers of the 70’s and early 80’s used the keyboard as the
main way for the user to tell the computer what he wanted to do next. The
computer displayed a blank screen with a small prompt and a flashing cursor.
The prompt prompts you for a command and the cursor sits there blinking,
telling you that the computer is waiting for you to type something in, as
shown in Figure 4.3.

The user types in some command and the computer then goes off and
executes it. There is a big problem with this method - the user must either
memorize the command or constantly be looking through the manuals that
came with the machine. This saved the computer a lot of work since the
user was forced to be very exact and very specific. Computers are very fast,
but they are not very “smart.” They must be told exactly what to do.
Typing commands at a prompt is called a Command Line Interface (CLI),
and remains very popular today with operating systems such as UNIX and
MS-DOS. Once you have learned all the commands you can work very
quickly, but it is very frustrating for beginners.

4.3 Input Devices

The standard alphanumeric keys on the keyboard are just one way of telling
the computer what to do. They are very good for typing in papers. They are
not very good for drawing artwork or playing games. There was soon a need
for devices beyond the standard keyboard. Some of these devices included
Arrow Keys, the Joystick, the Light Pen, the Graphics Tablet, the
Touch Sensitive Screen, the Mouse, and the Trackball. Each of these

44 CHAPTER 4. COMMUNICATING WITH THE COMPUTER

devices has its own advantages and disadvantages depending on what job
they are asked to perform. Currently most personal computers on the market
make use of arrow keys, joysticks, and mice as well as the standard keyboard.
Eventually we will be able to add speech and writing recognition to this list,
but those are some years away.

Videogames are generally best played with a joystick or a trackball. These
devices allow rapid, if imprecise, movement.

Drawing artwork is generally best done using a graphics tablet. A graph-
ics tablet is a board that sits on your desk, and drawing on the board causes
a similar event to appear on the computer screen. For example, if you pick up
the stylus for the graphics tablet and draw a line, a similar line will appear
on the computer screen. Graphics tablets allow very fine control since we are
physically drawing using a pencil-like object.

Selecting objects on the screen is best done with a light pen, a touch
sensitive screen or a mouse. A light pen is a pen-shaped object that is held
up to the screen. The light pen reads signals sent out by the monitor and
tells the main unit, based on the signal it is receiving, what option is being
selected. Light pens do not work very well in bright rooms, and need to be
held at specific angles to the screen.

A touch sensitive screen looks just like a regular monitor, except that it
is sensitive to pressure. If you press on the screen, the screen can locate the
point you pressed and relay this information back to the main unit. If you
saw “Die Hard,” you might remember that the Nakatomi Plaza complex had
a touch sensitive screen in the lobby that Bruce Willis used to locate his
wife. Touch sensitive screens have the problem that you really don’t want
people touching the monitor. Fingers tend to be greasy so the screen must
be cleaned more often. Someone may press a little too hard. Fingers are also
fairly bulky, so they are not good for very fine work on the screen.

One of the most recent attempts at a friendlier interface is a combination
of the light pen and the touch sensitive screen. These new pen interfaces
use handwriting recognition and gestures with the pen to interact with the
computer.

The mouse is currently the best compromise device for doing general
work. Along with the mouse on your desk there is a small pointer on the
monitor screen. This pointer moves on the screen as you move the mouse
on your desk. You move the mouse to the left, the pointer moves to the
left. This pointer acts like your surrogate hand on the desktop. Pressing the
button(s) on the mouse is like using your hand to select, or grasp something

4.4. GRAPHICAL USER INTERFACE 45

on the monitor screen.
Say you wanted to draw a circle on the screen. With only a command

line interface this would probably involve typing a cryptic command such as
DRCIRC(214, 56, 7) giving the center points coordinates and the radius we
desire. Well, that’s not really very intuitive. This is not the way that we
draw circles. It makes things very easy on the computer, but not easy on us.

Some improvement can be obtained using arrow keys. Arrow keys would
allow us to draw a circle made up of horizontal and vertical lines on the
screen. This is much closer to what we think of when someone asks us to
draw a circle. Even though we are still typing keys on the keyboard. It is
much more analogue.

The mouse, or a graphics tablet makes the job even more intuitive. With
these tools we actually draw a circle - we move the mouse on the table or the
stylus on the graphics tablet in a circular motion as if we are drawing with a
real pencil. There is no longer a difference between drawing on the computer
screen and drawing on a piece of paper. The computer is now “letting us”
do things the way that is easy for us.

Very slowly the interface has been moving away from the computer and
closer to the user. The computer becomes easier to use, because now the
computer expects us to do things the human way. Learning how to use
a computer is easier now because we do not have to learn very many new
things. As with hardware and software there is no ‘best’ interface. The ‘best’
interface depends on the job being done and the person doing it.

4.4 Graphical User Interface

The most noticeable improvement in user interfaces for personal computers
came in 1984 when Apple introduced the first Macintosh. The Macintosh
was the first successful personal computer with a mouse, and a Graphical
User Interface instead of the then standard Command Line Interface. The
Graphical User Interface (GUI for short) concepts were developed in the 70’s
at Xerox’s Palo Alto Research Center. Xerox released the Star Information
System with a GUI in 1981 and charged $30,000 for it. It didn’t sell. Apple
released the Lisa in 1983 and charged $10,000 for it. It didn’t sell. Finally, in
1984, Apple released the Macintosh at $2000. It sold. It sold very well. More
importantly, it influenced other personal computers. Today, all personal
computers offer a graphical user interface as an option. This type of interface

46 CHAPTER 4. COMMUNICATING WITH THE COMPUTER

Window Pointer Menu Icon

Figure 4.4: Graphical User Interface

has many advantages, all designed to make the act of computing easier and
more obvious.

Instead of a prompt and a cursor, a GUI gives you a small pointer which
mimics the motions you make with the mouse. This is used to make selections
from the menus or move “objects” around the screen as shown in Figure 4.4.
These GUI systems are occasionally called WIMPs (Windows, Icons, Menus,
and a Pointer.) This term was probably coined by someone who thinks ‘real’
computer users only use command line interfaces.

What are some of the advantages of a GUI?

• Pictures (called icons) replace words for representing ideas.

• Different programs have similar controls.

• Options are presented, and the user chooses from those options

4.4. GRAPHICAL USER INTERFACE 47

• The user is less aware of the computer’s existence.

Companies have used icons for many years, except they call them logos.
These pictures represent a product or a company. The benefit of pictures for
representing ideas has been shown for years on America’s roads. A stop sign
has a distinctive shape and colour, as does a yield sign. We do not need to
read the words on the sign, because they are not necessary. The picture says
it all. Similarly for a traffic signal. We see the colours red, yellow, and green.
These coloured lights have a meaning to us, yet no words are there. Imagine
if all the road signs were white square signs with black letters . . . some say
“stop”, some say “yield”, and some say “Danger! Blasting Ahead!”. We
would have to actually read all the signs. People find icons easy to work
with on a computer. GUIs have icons. CLIs do not.

There is consistency among stop signs and traffic lights. When you go
to another state, stop signs still look the same; a green light still means go.
This makes the “rules of the road” much easier to learn. Imagine if we had to
learn a whole new set of rules when we cross a state line. That is why having
a consistent set of controls in different computer programs makes learning
to use the programs easier. GUIs have much more consistent controls than
CLIs.

Along with the consistent controls came consistent formats for storing
data. This allowed the user to move information between programs, such as
copying a picture she drew in a paint program and pasting it into a paper
written with a word processor. GUIs make moving information between
programs much easier.

When we go into a restaurant we are given a menu listing what is avail-
able. We then make selections from that menu. Imagine entering a restaurant
for the first time and being forced to blindly guess what they are offering.
We might get very hungry before we actually found an item that was avail-
able. Allowing the user to choose from options makes learning how to use a
computer easier. GUIs have much better menus than CLIs. The menus of a
GUI are more consistent than those of a CLI as well.

The user usually doesn’t care how the computer does its job just as long
as he can get his job done using it. The user wants to feel comfortable
interacting with the machine. The user wants to feel like he is on familiar
ground, doing familiar things. Most GUIs make use of a desktop. This
desktop is designed to look like a real desktop with icons representing physical
objects on the real desktop. Icons representing discs and documents have

48 CHAPTER 4. COMMUNICATING WITH THE COMPUTER

Figure 4.5: The Mac’s GUI

similar looking counterparts in the real world. To throw away a piece of
paper in the real world you pick it up, and throw it in the trash can. To
throw a document away with a GUI you often move your surrogate hand
over the document on the desktop, click the mouse button to grab it, drag
over to the trash can, and release the mouse button to let go of it. The
actions are familiar. The user doesn’t care that the computer is deleting the
file from the directory on the disc, he just knows that he has thrown away
that document. The user is less aware of the computers existence allowing
him to concentrate on the work he wants to do, rather than the fact that he
is doing the work on a computer.

Now you may have noticed that many of the advantages of a GUI have
little to do with graphics, but graphical user interfaces are much more than
icons and menus. This is why they have become so popular recently. Figures
4.5, 4.6, 4.7 show several different graphical user interfaces in use today.

4.4. GRAPHICAL USER INTERFACE 49

Figure 4.6: The Amiga’s GUI

Figure 4.7: The Sparcstation’s GUI

50 CHAPTER 4. COMMUNICATING WITH THE COMPUTER

4.5 Comparison

There are some people out there who like command line interfaces. There
are some people out there who like bell-bottoms, disco, wide collars, and
other dated relics of the 70’s as well. I am a great believer in graphical user
interfaces, but I must admit that there are times when a GUI is a little too
helpful and makes my job more time consuming. A graphical user interface
acts like an automatic transmission on a car. It allows you to forget about
the details of switching gears, and makes a car easier to drive. You may
become an expert at driving and decide you would rather have a stick-shift
and do the shifting manually. You can do things a little faster, and probably
increase your performance.

Each person has the choice of which kind of operating system they prefer.
Most students find the graphical user interface much easier, and faster to use.
If at a later date, you become more comfortable with computers, you may
want to switch over to a command line interface.

4.6 Multitasking

Another improvement in interacting with the computer is a feature called
multitasking. Multitasking allows the computer to run several programs (or
tasks) at the same time. As human beings, we tend to be working on more
than one thing at a time. We may be writing a term paper and doing some
calculations for a lab report. With a multitasking computer we can have the
computer calculating the results for our lab report in the background at the
same time we type in our term paper in the foreground. This allows for a
more efficient use of the machine.

Now “officially” you can not multi-task without having more than one
CPU, where each CPU runs a different task. The term has come to include
computers which give each task a share of the CPU in turn. The programs
are not actually running at the same time, they are taking turns using the
CPU. But these turns each last a fraction of a second, so from the users point
of view the programs are running at the same time. Since the CPU is being
shared, each task will run slightly slower than it would if it were alone. The
more tasks you ask the computer to do at once, the slower they will be done,
since each will get less time with the CPU.

There are two different types of this ‘fake multitasking’ in use on personal

4.7. ERGONOMICS 51

computers today. The Amiga uses Preemptive Multitasking where the
operating system assigns how much priority each process will receive. The
Macintosh uses Cooperative Multitasking where the foreground process
decides how much time it will give to the background processes.

4.7 Ergonomics

Of course the purpose of all of this is to make you want to use the computer.
This brings up the topic of ergonomics, or human engineering. Human beings
design things to be easy for human beings to use. Think about door-knobs,
and telephones, automobiles, and a mouse. These devices are designed to
be easily used by the average person. The computer manufacturers can not
deal with everything however, and there are some simple things you can do
to improve your relationship with your computer.

Eye strain and muscle strain can both cause problems. All monitors have
controls so that you can adjust their brightness. The “correct” brightness
depends on the individual user, and how bright her room is. You should also
adjust the monitor so that you don’t have a bright light either in front of you
or behind you. This causes glare which in turn causes headaches. Another
problem comes from sitting, and staring at the screen too long. At least once
an hour you should stand up, and walk around a little. This will help your
muscles and your eyes. It can also help relax you. These suggestions should
sound familiar if you have ever driven a car for long distances at a time -
which brings up another important suggestion. If you get tired - get off the
computer, rest, have something to eat, and come back later. This way you
won’t hurt yourself or your project.

4.8 The Interface and You

Using a computer should not be a painful experience, either mentally or
physically. Learning how to use the machine may challenge your mind and
your muscles for a short time but there is no substitute for experience, and
experience only comes with practice. Newer and more intuitive interfaces
should continue to decrease the time it takes for you to become proficient
with a new machine, or a new piece of software.

The interface is where we can expect to see the biggest improvements in

52 CHAPTER 4. COMMUNICATING WITH THE COMPUTER

the near future. Three-D displays are already being demonstrated. Primitive
handwriting and voice recognition systems are in use today. While the hard-
ware is constantly being upgraded, most of these improvements are invisible
to the user. Improvements to the user interface are immediately apparent to
the user, and the easier a machine is to control - the more likely a novice will
want to use it.

A new buzzword is ‘virtual reality’ where the computer generates and
manages a nonexistent world that we can interact with. In most videogames,
the player has a persona on the screen that we move around and control. We
are moving this character through a virtual world, but its not very impressive
because the only contact we have with that world is through the monitor
screen and possibly some speakers. Enhancements such as the ‘power glove’
bring us further into that imaginary world, allowing us to interact at a much
finer level. The ultimate realization of virtual reality would be something
like the holodeck on “Star Trek.” Of course that kind of system is a ways
off, but important steps are being made in that direction. Computers are
become more interactive every day.

4.9 Questions

1. What are two differences between a command line interface and a
graphical user interface?

2. What are two similarities between a command line interface and a
graphical user interface?

3. What are the benefits of being able to move information between dif-
ferent programs? Can you give an example of where this would be
helpful?

4. What is the pointer used for?

Chapter 5

DOS

Given that we have some information stored on the disc, it would be helpful
if the computer could access it for us. We need the computer to be able to
read from the disc and write to the disc. The physical part of this reading
and writing is done by the disc drive, but the CPU must give the disk drive
instructions as to what to store and where on the disc to store it. We said
that a computer has an operating system. Well, every computer has another
operating system to manage information stored on discs. This is called the
DOS (rhymes with boss), which is short for Disc Operating System.

5.1 Formatting

While the types of discs used by different companies are the same, each
brand of computer stores data on disc in a unique way. Imagine if each
VCR manufacturer had their own speed. One company uses SP, one uses
LP, and a third uses SLP(EP), but none of the machines can read the other’s
format. You can use the same blank videotape in each of the machines,
but once you have recorded on it you can not play it back on one of the
other machines. This is true for floppy discs and hard discs. Each brand of
computer “Formats” its discs in a special way. Formatting a disc sets it up to
receive information. Information on discs is stored in concentric rings called
tracks. Each track is divided up into several sectors as shown in Figure 5.1.
Formatting a disc sets up these tracks and sectors. Once a disc has been
formatted for a certain brand of computers, it can not be used in a different
brand until it has been formatted for this new machine. Formatting the disc

53

54 CHAPTER 5. DOS

Sector

Track

Figure 5.1: Tracks and Sectors on a disc

erases all the information that is currently stored there.
You can think of formatting (or Initializing) a disc as drawing lines on

a blank sheet of paper to act as guides for the writing that will come later.
For English we write the lines horizontally, and expect to write on each page
left to right and then down to the next line. For Japanese we write the lines
vertically, and expect to write on each page top to bottom and then left to
the next line. It would be very difficult to write on the wrong style of paper
as Figure 5.2 shows.

Some companies are currently manufacturing drives that will read discs
initialized for many brands of computers, so the problem of discs only being
readable on certain machines should soon disappear.

5.2 Files

When we store information onto a floppy disc we store it in files which take
up a certain number of bytes on the disc. When we store music on a cassette
tape, we store sounds in songs which take up a certain number of minutes.
There are two main types of files. Files can be applications, or they can be
documents. Applications are programs like a word processor or a spread-
sheet. They do things. Documents are files that are created by programs.
You may create a psychology term paper (document) with your word pro-

5.2. FILES 55

The beginning of The ending of
A Connecticut Yankee Maison Ikkoku
in King Arthur’s Court by Rumiko Takahashi
by Mark Twain

Figure 5.2: Formatting a Piece of Paper

56 CHAPTER 5. DOS

Humanities Term Paper Math Homework #1

Math Homework #2

Math Homework #3

Picture of Dog Map of Campus

Figure 5.3: Without a Hierarchical File Structure

cessor (application.) You can store several applications and documents on a
floppy disc, and a lot of applications and documents on a hard drive. What
is needed is a convenient way to organize these files.

5.3 Hierarchical File Structure

The current way of organizing files on a disc is through the use of a hierarchi-
cal file structure. When you use a file cabinet, you tend to group like papers
together in a folder. You may have a folder called “tax info” or “Winter ’90
papers.” These folders allow you to organize your file cabinet. If you really
get into the organization you can put folders inside other folders to further
subdivide your categories. This same system is used by computers.

5.3.1 Directories

Computers store files in a cluster within a directory. A directory stored
within another directory is called a subdirectory. A directory performs the
same function as a folder in a file cabinet. For example, Figure 5.3 shows
how files would be stored without a hierarchical file structure.

Instead of keeping these all in one directory it would be better to di-
vide them up according to their subject matter. In this case we create two
subdirectories called “Graphics” and “Text.” In this case we put another

5.4. DOS COMMANDS 57

Graphics
Text

Picture of Dog Map of Campus
Math Humanities Term Paper

Math Homework #2 Math Homework #3Math Homework #1

Figure 5.4: With a Hierarchical File Structure

subdirectory within the text-subdirectory to divide the text files into those
for our Math class and those for our Humanities class. Figure 5.4 shows how
the files would be grouped.

If you have ever tried to find something in someone else’s file cabinet, you
know that each person has a unique way of organizing information. Directo-
ries allow each person to organize their files in a way that is most comfortable
to them.

5.4 DOS Commands

Currently there are two major types of DOS available. One kind uses a
command line interface (UNIX, and MS-DOS) while others use a graphical

58 CHAPTER 5. DOS

user interface (Finder, OS-2, Workbench, and Windows.) Both types have
their advantages, but the graphical versions are becoming much more popular
as files are displayed using icons, and you do not have to remember what
commands you need to type to manipulate the files. Whichever type of DOS
we use, there are certain commands that we are likely to need.

For most purposes we will need only need the following:

• Run an application

• Copy a file

• Rename a file

• Delete a file

• Create a directory

• Delete a directory

• Display a directory

• Go to another directory

5.5 DOS and You

Now that we have talked about hardware and software, the interface and
DOS, we can finally describe what happens when you turn on a computer.
This process is referred to as “booting up” the machine. This phrase comes
from “pulling yourself up by your own bootstraps” since the computer is able
to start itself up after you turn on the power switch.

As soon as you turn on the power switch the personal computer will look
in its ROM to see what it is supposed to do first. Usually the machine will
do a quick diagnostic check to make sure all its systems are in working order.
Then it will look for a hard disc and if it can’t find one it will look for a floppy
disc in the disc drive and read some of the DOS into RAM. The screen will
then show you that the machine awaits your command. At this point you
can go about your business.

Now lets say we put a floppy disc into a Macintosh running the Finder (the
Mac’s graphical interface,) and put a floppy disc into an IBM-pc running MS-

5.5. DOS AND YOU 59

Figure 5.5: Boot Up Screens

60 CHAPTER 5. DOS

DOS (the IBM’s command line interface.) When we boot-up the machines
(turn the machines on) we see Figure 5.5:

Both of the machines are currently waiting for instructions, but I think
you will agree that the graphical user interface shown on top looks much more
friendly than the command line interface shown beneath it. Up until 1984
all personal computers looked like the bottom screen when you booted them
up. A lot of black screen, a small prompt, and a blinking cursor. You can
see why all newer personal computers come with a graphical user interface.

The DOS is simply a large program that helps us manage the files (both
applications and documents) on our discs. It acts as our home base when we
use the computer. This is where we start after we boot the computer, and it
is where we will return to after we have finished running an application.

5.6 Questions

1. What happens when you format a disc?

2. What is the difference between an application and a document?

3. Hierarchical file structures are used to organize:

(a) your computer hardware

(b) files on a disc

(c) ’c’ is for Cookie. That’s good enough for me.

(d) the RAM and ROM

4. What does formatting/initializing a disc NOT do?

(a) Erase the disk

(b) Rename all previous directories to ‘untitled’

(c) Make all previous files on the disc inaccesable

(d) Reorganize the entire disc to store information on the disc for the
first time.

5. What is a DOS and what does it do?

Chapter 6

Word Processors

Learning how to use a word processor is the most useful thing you will do
in this class. A word processing program turns your computer into a very
fancy typewriter with a lot of extras. With a typewriter you hit a key, and
a letter appears on your piece of paper. With a word processor you hit a
key and a letter appears on the screen. This allows you to go back later and
make changes on the screen. Only when you have the paper exactly the way
you want it do you send it to the printer to get a copy of it on paper.

6.1 Typing VS Word Processing

As the pen before it, the typewriter allows us to convert our thoughts into
printed material for others to read. The typewriter is a general improvement
over the pen as readable text can be created much faster. One of the major
problems human beings have with typewriters is that we make make mistakes
or we change our minds frequenty. Many of us prefer to use pencils over pens
because we can erase our mistakes and correct them. With a typewriter it is
not so easy to correct mistakes.

When we type a paper we tap away on the keyboard until a little bell
sounds telling us that we are running out of space on the current line. We
then must hit the carriage return key to tell the platen to rotate and move us
back to the left margin on the next line down. We then repeat this procedure
until we are finished. If we want to move back up the page we need to turn
the knob on the side of the platen. If we need to work on a different page we
must take out the current page and put in the one we want to work on, and

61

62 CHAPTER 6. WORD PROCESSORS

hope we line up the page correctly.

Typewriters enjoyed a century without competition until word processors
appeared on the scene. Today its almost impossible to find a typewriter
without some features of a word processor built into it. Word processors
allow us to have more more control over the document that we are preparing.
As we type on the keyboard letters are displayed on the screen. The entire
’paper’ is stored in memory. The computer allows us to scroll through the
pages of this document on the screen and make changes to it: adding in a
paragraph here, taking out a word there, and these changes are immediately
reflected in the ’paper’ shown on the screen. Being able to make changes
before you get a print out is a tremendous advantage. If you find you have
made a spelling mistake, you only need to go back and retype that word, not
the entire page. Word processors allow you to move blocks of text from one
place to another. If you think a paragraph would be better if it was moved
back a couple of pages, you can easily move it without retyping it. I’m sure
you’ve been asked to type a paper that’s 5 pages long, and when you are
finished typing it is only 4 and a half pages long. With a word processor you
can go back and push the margins in until the paper becomes 5 pages long.

Most word processors today areWYSIWYG (“Wizzywig”) which stands
for “What You See Is What You Get.” That means that what you see on the
monitor screen is ‘exactly’ the way the text will look on the page when you
finally print it out. There is no guesswork involved so word processors save
you time and paper. You also have the ability to store your paper on disc.
No need to make carbon copies anymore. You can print out another copy
any time you want to.Figure 6.1 shows the screen of a typical word processor.

6.2 Features

Word Processors offer you a lot of extra features. Most people are very bad
at spelling, but computers are pretty good at it, so most word processing
programs have a spell checker built in. You tell the computer to check your
paper and it will go through the paper comparing each word in your paper
to the words in its built in dictionary. If it can’t find a word it will ask you if
that word is spelled correctly, and possibly give you some alternate (correct)
spellings for the word. More advanced word processors have thesauri which
will allow you to pick more impressive sounding words. Others have grammar
checkers to make sure that your grammar is correct. Some Word processors

6.3. OPTIONS 63

Figure 6.1: Typical Word Processor

come with special legal or medical dictionaries as well as those words for
everyday use. A common computerized dictionary will have 50,000 words in
it, and most let you add your own words.

6.3 Options

With a typewriter you can make words all capitals, or go back and underline,
or type them again for emphasis. A word processor gives you these options
and more. They allow you to type in different colours, fonts, font sizes, and
styles. They allow you to set the spacing between the lines and what kind
of justification the paragraphs will have. You can type in a header once
and have it automatically put on top of every page. You can have indices
and tables of contents generated automatically. All of these are shown on the
screen of a WYSIWYG system. All of these options can be changed whenever
you ask for them to be changed, even after you have finished typing. The
combined effect of all these options allows you to create documents like this
text. Several of these options are shown in Figure 6.2

64 CHAPTER 6. WORD PROCESSORS

left centered right
justified text justified
text text

Different Styles Different Sizes

Different Styles Different Sizes

Different Styles Different Sizes

Different Styles Different Sizes
Different Styles Different Sizes

Different Styles Different Sizes

Figure 6.2: Options

6.4 Desktop Publishing

A “buzzword” of the late 80’s was Desktop Publishing. Desktop Publishing
is the use of a personal computer to produce professional looking documents.
With this in mind, most word processors allow you to insert illustrations or
diagrams into your text, giving you the power of a small print shop. Many
magazines, newspapers, and publishing houses now use computers to do their
layout work, and in some cases to print out the final product. The desktop
publishing market was given a great boost by the introduction of low-cost
Laser Printers in 1985.

In ‘ye olden days’ if you wanted to combine some printed material and a
diagram you would use a typewriter to type up your words on one sheet of
paper (where you hope tyou don’t mistype anything) and draw your diagram
on another sheet of paper. Then you cut out the diagram with a pair of
scissors, and get some celophane tape and tape the diagram onto the page
with the text. You try to align it correctly and tape it down flat. You
then feed this Frankenstein’s monster of a document into the photocopier
and hope it doesn’t jam. Finally you receive a page with blurry text and
celophane tape marks clearly visible around the diagram. O well, you were
living in the 70s, so you didn’t expect much. Today you can produce this
entire document on a personal computer. You type in the text using a word
processor, and draw the diagram with a drawing program. You use the

6.4. DESKTOP PUBLISHING 65

Spiffo Sprockets Co.

Hey boss, I have a reelly

great idea for a new

project.

Spiffo Sprockets Co.

Hey boss, I have a
really great idea for
a new project.

Figure 6.3: 70s memo VS 90s memo

computer to merge the two documents and print out the final document on
a laser printer. Figure 6.3 shows the difference.

As you can see, there are a lot of bonuses with word processors. The
fancier you need to get, the more useful a word processor is to you, but the
converse is also true. If you are going to write a grocery list, then you should
use a pencil and a piece of paper. If you are going to fill out a tax form, then
use a pen or a typewriter. Again, it is important to use the correct tool for
the job.

A Word Processor is not the only tool available on a computer for manip-
ulating text. There is also the Text Editor and theDocument Processor.
A text editor is a word processor without a lot of the special features. Text
editors are mostly used to write computer programs and create files for use
with document processors. While word processors are good for writing pa-
pers, they do not have enough features for writing long papers or textbooks.
Document processors are good for writing long papers and textbooks. The
names of the three products suggest their power: Text Editor, Word Pro-
cessor, Document Processor. A processor is more powerful than an editor
and processing a document takes more power than processing a few words.
Figure 6.4 shows this in a pictorial form.

66 CHAPTER 6. WORD PROCESSORS

Term

Paper

Word

Processor

Text

Book

Document

Processor

Computer

Program

Typesetting

Instructions

Text

Editor

Figure 6.4: Comparison of Text Manipulation Programs

6.5 Text Editors

Text editors are usually used for writing computer programs. Computer
programs do not require fancy fonts, or fancy page layout options. The word
processors of the early 80’s had the same power as today’s text editors. Text
editors are somewhere in between typewriters and word processors.

6.6 Document Processors

Document processors are different from text editors and word processors
in that the user does not use a document processor directly. A document
processor acts like a human typesetter. You tell him what you want typeset,
and you give him instructions as to how it should look, and then you leave
him alone to do the job. That is how document processors work. The user
will commonly use a text editor to type in a file of information containing
the words to be typeset as well as instructions as to how to typeset them.
This file is then sent through the document processor which returns to you
the typeset version ready for printing.

Why would we want to use a document processor over a word processor?
The key is generality. With a word processor you must manually set up

6.7. COMPARISON 67

the style for your paper. If you need to change that style you must go in
and change it yourself. With a document processor you simply change the
command that set up the style. For example, lets say you want to submit your
article on Elvis being a Martian to Scientific American. Scientific American
expects a very specific style. After they reject your article, you may want
to try the Weekly World News. You will have to change the article to fit
the new style. With a word processor you may have to go in and adjust
the style of each paragraph independently. With a document processor it
can be as simple as changing the command {.style “SCIAMER”} to {.style
“WWNEWS”} and that’s it. The document processor will change all the
paragraphs for you. The big trend today is to enhance word processors to give
them the flexibility of document processors, but keeping their WYSIWYG
interface.

6.7 Comparison

Figure 6.5 compares some of the basic features of Word Processors, Text
Editors and Document Processors. The availability of some of the features
depend on the specific software being used, so this table should only be used
as a general guide.

6.8 Word Processors and You

So what can you really do with a word processor?

• Write term papers and lab reports

• Write letters (especially form letters)

• Write your resume

• Write notices with huge letters

How about a text editor or a document processor? Well, if you are a CS
major you will use a text editor a lot when you write computer programs. You
will probably use a document processor to write your thesis or dissertation,
or any textbooks you feel inspired to write. If you are not a CS major, and
do not plan on being a published author, then you will probably not have a
need to use these other two products.

68 CHAPTER 6. WORD PROCESSORS

Criteria Word Proc. Text Editor Document Proc.
Cut, Copy, Paste Yes Yes No
Search, Replace Yes Yes No
Center, Justify Yes No Yes
Indent, Tab Yes Yes Yes
Bold, Underline Yes No Yes
Italics, Subscript,
Superscript
Print previewing Yes No Yes
Thesaurus Yes No No
Spell Check
Footnote Yes No Yes
Endnote
Inclusion of Yes No Yes
lllustrations
Programming No Yes Yes
language
formatting
Consistent Some No Yes
and automatic
formatting
WYSIWYG Mostly No No
Programmable Macros Macros, limited Completely

only editor commands programmable
Good uses Composing Writing Composing

letters, short programs long term
term papers papers,

textbooks
Popular titles Word Star, VI, NROFF,

Word Perfect, Emacs Scribe,
MacWrite, TEX,

Microsoft Word LATEX

Figure 6.5: Comparison

6.9. QUESTIONS 69

After all this hype you might be ready to chuck the ol’ typewriter right
out the window. Well don’t. First of all it might hit somebody on the head
and injure them severely, and second of all you will still need it. When you
learned to type you didn’t throw away your pencil. It is still a very useful
device. The same is true with a typewriter. You will still need a typewriter
to do the following things:

• Type an address on an envelope

• Type information into forms

6.9 Questions

1. What does WYSIWYG stand for?

2. What are the different primary uses for a word processor, a text editor,
and a document processor? Be specific.

3. Desktop Publishing is:

(a) running a word processor on a GUI computer

(b) posting messages from your computer to a BBS

(c) using a personal computer to produce professional looking docu-
ments

(d) not possible using a personal computer

4. Why is WYSIWYG good to have in a word processor?

(a) It allows you to see what will be printed before we actually print

(b) It allows full justification of paragraphs

(c) It ensures correct spelling in a document

(d) It ensures you always have a backup copy of your document

70 CHAPTER 6. WORD PROCESSORS

Chapter 7

Telecommunications

We have said before that different brands of computers have different CPU
chips and different ways of storing information on disc. This makes it diffi-
cult for different brands of computers to exchange information. One of the
ways computers can exchange information is over the telephone lines using
a modem (short for MODulator DEModulator.) Since the information is
encoded into sounds for transmission over the phone lines, different brands of
computers can ‘listen’ to that sound and translate it into their own format.
This allows users of different computers to send each other electronic mail.
Computer users can also use electronic bulletin board systems to talk
with people all over the world.

If you want your computer to be able to talk to other machines, you
need a modem. The modem attaches to your computer, and to a standard
phone line. The modem gives the computer the same ability you get with a
telephone. The computer can dial phone numbers, it can send information,
or it can receive information. Your computer can then talk to anyone else’s
computer which is also hooked up to a phone line as shown in Figure 7.1.

7.1 Protocol

Different computers have different CPUs and different operating systems etc.
They are like people. We could just walk around grunting and growling at
each other, but that would not help us advance civilization. We are able to
convey ideas to each other because we have settled upon certain conventions.
We call them languages. Computers call them Protocol. In order for you to

71

72 CHAPTER 7. TELECOMMUNICATIONS

Figure 7.1: Telecommunications

communicate with a friend you must decide on a common language. In order
for your computer to communicate with another computer, you must decide
on a common protocol that their modems will use. This way the computer
receiving the information knows how the sending computer converted the
information into sounds, so it can be converted back. Without a common
protocol the computers will simply be sending meaningless sounds back and
forth.

7.2 BBSs

When you walk through the halls of Wayne State, or walk into a grocery
store you will see bulletin boards on the walls. People use these bulletin to
post announcements or leave messages for people. The telecommunications
equivalent is called, surprisingly enough, a “bulletin board.” Using your
modem, you call up a bulletin board system, or BBS for short. There you
can read public messages left by other people, leave public messages of your
own, send private mail to other users, and hold conversations with people
you have never seen nor heard. The first personal computer BBS was written
in 1978 by Ward Christensen and Randy Suess, and was called CBBS.

You would actually be surprised to know how many small bulletin boards
are out there today. Its really incredible. Within the Detroit area there are
almost 400, and some of them have been running for almost a decade. Most
of these are free to use, except you have to pay the phone bill if its not a
local call. Calling BBSs can be very addictive. I have known people who ran
up $500 phone bills calling different BBSs all over the country. There are a
lot of people out there to talk to, and a lot of topics to talk about.

BBSs are usually divided into three areas: Public Messages, Private Mail,

7.2. BBSS 73

and a File Section. In the public message areas people leave messages for
others to read. This is where all the discussions go on. You can leave a
message, or respond to someone else’s message publicly. All of the other
readers can read your message when they call the BBS again. You may want
to leave another user private mail, so only she can read it. You would leave
private mail in the private mail section. Most BBSs also allow their users
to leave messages anonymously. The File Sections contain various programs
and BBS phone numbers. The bulletin board program keeps track of the
messages and the users. All of this information is stored on disc at the BBS
computer, so usually the BBS computer has a large hard drive.

The owner, and manager of the bulletin board is called the sysop, short
for system operator. The sysop decides what kind of system to run and what
rules the users will have to obey. Many small BBSs are computer specific,
that is only Amiga users would find things of interest on an Amiga bulletin
board. Users of these systems talk about new software and hardware that
is available for their machines. Used software and hardware is bought and
sold. These computer specific boards are also good places to get hold of
(free) public domain software for your computer. Many small BBSs are not
computer specific. Their users discuss a wide range of topics not necessarily
computer related (e.g. Star Trek, politics, books, ham radio etc.) These
BBSs tend to be much more interesting. Very little actual “computing” is
done on either type of BBS.

All you need to set up and run a small bulletin board is a personal com-
puter, a modem, a phone line, and bulletin board program. The computer
running the BBS will be running its BBS program all the time, waiting for
someone to call. As soon as the phone rings, the computer will answer the
phone and begin talking with the computer on the other end. If a human
being attempts to call a BBS, he will hear a very loud beeeeeeeeep and that’s
about all. Usually people put in a second phone line for the BBS, so they
have one phone line for the BBS users to use and one for their human friends
to use. As with a regular phone, only one person can call at a time.

Now BBSs aren’t listed in the phone book, so how do you find out what
their phone numbers are? Well, you could just randomly call phone numbers
and see if a computer answers the phone, but that’s not very polite. A better
way is to ask at a local computer store. The people there can usually give
you a couple of numbers. Each BBS will usually list the numbers for several
other BBSs, and very soon you will find a BBS with a very large list of other
BBS phone numbers, and then you’re all set.

74 CHAPTER 7. TELECOMMUNICATIONS

7.3 BBS Lingo

Like CB radio users (remember them from the late 70’s?) BBS users have
their own lingo that they use to enhance conversation.

For example a normal conversation on a BBS would look this this. BUT
IF YOUWERE REALLY, REALLY ANGRY YOUWOULD TYPE IN ALL
CAPS LIKE THIS TO SIMULATE SHOUTING! You often find people typ-
ing in all caps when they are ‘flaming’ another user of the BBS. When you
‘flame’ someone, you insult them.
Of course there are more acronyms to ‘simplify’ conversation:
BTW - By the way
IMHO - In My Humble Opinion
IOTTMCO - Intuitively Obvious To The Most Casual Observer
RSN - Real Soon Now
RTFM - Read the F*ck*ng Manual
WRT - With Respect To

There is also a large menagerie of faces that you can make. Faces are used
because typed words have no tone of voice, so others may not be able to tell
whether you are being sarcastic, or serious. Faces help clarify your feelings
on the subject.

:) - happy face, or smiley. Used to indicate humour.

:(- frowning face. Used to indicate sadness or displeasure.

;) - winking face.

etc.

BTW, the Japanese draw their faces this way:

^_^

7.4 Terminal Program

In order to communicate with these electronic bulletin boards you need four
things: A phone line, a computer, a modem, and a terminal program. The
first three are the necessary hardware, and the terminal program is the nec-
essary software. Just as a word processor turns your computer into a fancy

7.4. TERMINAL PROGRAM 75

Figure 7.2: Terminals

typewriter, a terminal program turns your computer into a fancy telephone.
Using the terminal program you give commands to your modem. You set the
protocol you need, and the phone number you want to call and the modem
will make the connection. Usually when you buy a modem it comes with a
free terminal program.

Back when the only computers were mainframes, the mainframe would be
locked away in a special room. The users communicated with the mainframe
using a terminal as shown in Figure 7.2. A typical terminal would have a
keyboard and a monitor, and a small circuit board, but no disc drives. Its
only function was to allow a person to communicate with the mainframe.
The name has stayed with us, so now when you call a BBS, you are turning
your personal computer into a terminal. You use it only as a gateway to
this other computer. Just as there are many different brands and models
of personal computers there were/are many different brands and models of
terminals. A terminal program allows you to choose which type of terminal
you wish to emulate.

As well as calling BBS systems, you can also use your modem to call some
Mainframe computers. Wayne State is part of MTS (the Michigan Terminal
System.) You can call up Wayne State and access computer accounts on
the local Amdahl mainframe, or the mainframe computers at other Michigan
universities. Where BBSs are usually used for BS’ing, mainframe computers
are used for computing. Mainframes will typically have several hundred users
calling in and working at the same time. To each user, it seems that he is
alone on the machine. The mainframe gives each user in rotation a small
slice of time working with the CPU, but mainframes are so fast that you can
not notice any delay.

76 CHAPTER 7. TELECOMMUNICATIONS

7.5 Passwords

Bulletin boards have more than one user (or it would get pretty lonely,) so
each user has her own mailbox for receiving private messages. It would not be
good for other people to be able to read your mail without your approval. For
this reason each user is assigned a unique identification code, and a secret
password. Your identification code is public knowledge . . . like your name
and phone number are listed in the phone book. The password allows you to
verify your identity. Each computer system you belong to will assign you an
identification for that system. Each user is given an identification code for
the same reason the government gives you a social security number. There
may be two users of this BBS with the same name, but each will have his
own unique identification code.

Mainframes also make use of identification codes and passwords. Each
of the mainframe’s many users is allocated a certain amount of disc space
to use. It would be rather annoying to have other people reading your files
without your permission. Like a BBS, a mainframe provides the capability
for the various users to send messages to each other. Mainframes also allow
many users to have access to a very large, fast, and powerful computer to do
their work on.

Personal computers do not usually employ a system of passwords. It is
assumed that either only one person uses the computer, or that each person
keeps his own files on his own floppy disc. Some public personal computers
do have security measures so that only appropriate users can access certain
files on the Hard Drive.

7.6 Information Services

As well as thousands of small bulletin boards spread across the country,
there are a few large national bulletin boards, though they tend to give
themselves more impressive sounding names such as information services.
These larger bulletin boards tend to charge you a certain amount of money
per hour you use them, in addition to the money you pay your local phone
company for the call. They are usually divided into sections for various
computers, and various general topics of discussion. Small bulletin boards
are usually run on personal computers and can usually only handle one caller
at a time. The larger systems run on mainframes and can handle hundreds of

7.7. E-MAIL 77

users simultaneously. One of the oldest services, CompuServe (CIS), started
operation in August of 1979 and now has 500,000 users. GEnie started up in
October of 1985 and now has 200,000 users. Recently IBM’s Prodigy system
has been getting a lot of hype. It is one of the newer information systems to
appear.

7.7 E-Mail

Electronic mail (E-mail) is a lot like regular US-Mail. You type in your
message, address it to a certain other user, and then send it off. Everything
is electronic . . . there is no paperwork. Some computers are connected via
phone networks so that you can send mail to other computer systems in
other states and other countries. These networks allow you to send E-mail to
a local computer but address the message to a user of a computer far away.
The computer will then send your message through the network of other
machines until it reaches its destination. The response time for electronic
mail is substantially faster than that for the US Mail (actually the response
time for an armadillo with a backpack is faster than the US Mail.) Electronic
mail can usually be delivered within minutes.

Each time a user calls (or “logs in”) to a BBS or a mainframe, he is told
whether there is any new mail waiting for him. He can then choose to read
this mail, or read it later. When he does finally read it he may want to store
the message on his disc, or reply to the person who sent the message. In
effect, its just like regular paper mail being sent to a post office box, except
that the computer handles all the work.

7.8 Uploading & Downloading

Just as we can move messages from place to place without using paper, we
can move programs from place to place without using discs. Usually we get
a new program by buying it on disc at a store that sells software. Public
Domain software is not sold in stores. It is usually distributed electronically.
Most BBSs have file sections where you can download or upload programs.
When you download a program you make a copy of the program that is stored
on disc at the BBS, and put it on one of your floppy discs. The program is
sent through the phone lines from the BBS to your computer. Uploading is

78 CHAPTER 7. TELECOMMUNICATIONS

BBS

Uploading

Downloading

Terminal

Program

Figure 7.3: Uploading and Downloading

just the opposite. You take a program stored on one of your floppy discs and
put a copy of it on the BBS’s disc, so others will have access to it. Figure
7.3 illustrates.

7.9 Hackers

As with all things there is a good side and a bad side. Allowing people to
communicate freely with these systems on a wide range of topics is certainly
good. Of course there are some people who wish to take advantage of this.
Over the last few years there has been an interest in “hacking” in the media.
A hacker is someone who really gets to know the nitty-gritty details of a
system and pushes it to its limits (for an excellent discussion of hackers see
Hackers - Heroes of the Computer Revolution by Steven Levy.) Now this
term has gotten a very bad connotation. Today hackers are people (usually
around 13 years old) who gain unauthorized access to computer systems
(usually by pretending to be one of its users.) Some hackers are benign and
only want to look around. Some are clumsy and destroy data by accident.
Some are malicious and intentionally destroy information. While this is not
a big deal with a local BBS, it can be if the computer system is for a hospital,
or NASA.

Mainframe computers are like apartment buildings. Each tenant leases
some space to use. Each tenant has their own space which is separate from
everyone else’s. Each tenant has a key (password) which allows him to get

7.10. FONE PHREAKS 79

into his space, and prevents others from getting into his space. Now each
apartment building (mainframe) also has a manager (system operator). This
manager is responsible for keeping the tenants (users) happy, and keeping
the apartment secure. Someone could walk into your apartment building
and go to various apartments twisting the doorknobs to see if the rooms are
locked. If the door is unlocked, he could go in and look around . . .maybe
search through some closets and drawers and then leave. Now this person
hasn’t done any damage, but I don’t think you would be too happy if you
were the tenant. The word ‘trespassing’ comes to mind. That is what most
hackers are doing. Now there are some that go even further. Why go around
rattling doorknobs when you could steal the managers master keyring. Then
you could go into any room you wanted for whatever reason. If a hacker
can get a hold of the mainframe’s master password list he would have that
ability.

Currently most computer systems are very open. Their purpose is to allow
people to share information easily. In his book “The Cuckoo’s Egg” Clifford
Stohl compares them to a small town where everybody still leaves their door’s
unlocked at night. It is perhaps a little naive in this day and age. Adding on
massive security systems makes it harder for people to communicate and in
many ways defeats the purpose of these systems. What hackers do is betray
the level of trust that keeps the systems running smoothly.

Of course the government has become interested in hacking with the large
numbers of computers that the military uses. The FBI and the Secret Service
take a great interest in hackers. Unfortunately these agencies have a tendency
to overreact quite a bit on their seizures . . . entering with an abundance of
firepower and few warrants, and then proceeding to carry off everything in
sight. There are stories, not necessarily apocryphal, about police agencies
dusting floppy discs for fingerprints. Complicating the matter is that there
are very few legal rulings concerning E-mail, and bulletin boards and how
they relate to Amendments 1, 4, and 14 of the Constitution.

7.10 Fone Phreaks

Another group of people you might have heard about are Fone Phreaks. Just
as hackers are interested in computer systems, fone phreaks are interested in
communications systems. Unfortunately, many are also interested in credit
card fraud and other nasty things. Ma Bell was the obvious target in the

80 CHAPTER 7. TELECOMMUNICATIONS

mid 70’s. Even Steve Jobs and Steve Wozniak - future founders of Apple
Computer Corp. huckstered equipment to make free long distance phone
calls. When other long distance phone companies were becoming popular in
the 80’s each user was given an identification code to use when making calls.
If someone else got your code they could make calls to anywhere they wanted
and charge them to you. Typically fone phreaks would charge their calls to
large corporations, and play tag with the FCC, much as the software pirates
play tag with the FBI.

7.11 Security

You can never be completely secure, but you can be safer if you choose a good
password. Bad passwords include your name, or HELP, or SAMPLE, or 123.
Your password should be something that you can remember without writing
down, but something that would not be obvious to a casual acquaintance.
Other passwords to avoid are names of girlfriends/boyfriends, unless the
relationship is really stable. Often couples will break up and then you want
to change your password, or your former companion will try to get back at
you by erasing all your files.

There are several ways that computers can be made more secure. One
way is to have a call-back modem. In this case, you call the computer, hang
up, and then the computer calls you back at a preassigned phone number.
Its even safer if you do not allow people to call into your computer from
outside your building. This way you only have direct connections between
computers. The highest level comes from forcing the person to go to the
computer itself, and not connecting the computer up to anything else. The
trade off is security versus convenience. The more convenient something is,
the less secure it is.

7.12 Viruses

We said that you can often download software from BBSs. It would be nice
to assume that this software is safe to download. Unfortunately this is not
true. Some software contains computer viruses. A computer virus is like a
molecular virus in real life - it spreads and infects others. Computer viruses
are small programs hidden within an application such as a word processor.

7.13. WORMS 81

Running an application infected with a virus first activates the virus and
it looks around for other programs to infect on other discs currently in the
computer. Then the ‘real’ program runs so you are unaware that anything
else has happened. The virus then spreads from disc to disc. As in real life
some viruses are harmless, others can cause great damage. Some times the
person who wrote the virus was clumsy and his poorly written virus causes
unintentional side effects.

Now you might think you would be safe if you only use store-bought soft-
ware, but its not true. Even computer companies can get viruses, and then
an official packaged product sent out by the manufacturer can inadvertently
contain a virus. You could protect yourself from viruses by never downing
software from a BBS, and never copying any programs from your friends, and
never exchanging any data with anyone else . . . but then your computer loses
a lot of its worth. Just as hackers have interfered with the trust that main-
frame users had, viruses have made personal computer users less trusting,
less open, less willing to share information.

Viruses tend to act in predictable ways, so there are software products
out there to make sure that your software doesn’t do anything suspicious.
These programs stop viruses from spreading. Another group of disinfectant
programs will search through the applications on your disc looking for hidden
viruses. If a virus is found it is removed, and then the application will work
normally again. With software available on worldwide computer networks,
it is possible for a computer virus to spread around the world within hours.
Updated disinfectant programs to handle this new virus appear about a week
later.

7.13 Worms

Worms are to networks of computers what viruses are to personal computers.
A worm is a piece of software designed to spread through telecommunication
networks, reproducing itself as it goes. Worms do not hide within other
programs to sneak in to your computer, they just crash through the front
door, or the back door, or through the cracks in the floor. As soon as they
get in, they try to spread to as many other computers as possible.

82 CHAPTER 7. TELECOMMUNICATIONS

7.14 Logic Bombs

A logic bomb is like a timed explosive device hidden within a program. When
a certain date rolls around or a certain program is run “something” will
happen. This something may be a message printed on the screen saying
“Dukakis for president”, or it may be your hard drive erasing itself. Logic
bombs are usually spread by viruses so they can annoy the greatest number
of people possible.

7.15 Trojan Horses

A Trojan horse is a program written so that it appears to do one thing while
secretly designed to do something else. A common Trojan horse program in
a university setting will look like a terminal program. When you go to the
lab and use this terminal program to call a BBS or log in to a mainframe,
the terminal program will appear to run normally. Secretly, the ‘terminal
program’ is keeping track of your ID#, and password as you type them in.
This way the author of the ‘terminal program’ can come by ocassionally and
get a listing of valid ID#s and passwords to use in unscrupulous ways.

Are all these bad things worth worrying about? Yes and No. They are
good to be aware of, but they are not worth losing any sleep over. Its like
the threat of someone scraping their keys down the side of my car. I realize
that it can happen, and I can protect myself a little, but there’s not a whole
lot I can do about it.

7.16 Telecommunications and You

Telecommunications technology has greatly improved the speed and amount
of communication. The modem, like the telephone before it, gives you instant
access to people around the world. BBS systems lets you talk with people
about topics ranging from neural networks to last week’s episode of “Twin
Peaks.” Important things get discussed as well as popular culture. It is no
longer a secret and privileged medium. It has become simply another means
for “average” people to communicate their ideas and opinions freely . . . which
is perhaps the greatest benefit that technology gives us.

7.17. QUESTIONS 83

7.17 Questions

1. What does a modem do?

2. What are passwords used for?

(a) to identify yourself to a computer system

(b) to verify your identity to a computer system

(c) to read your mail on a computer system

(d) to send mail on a computer system

3. A computer virus is a:

(a) small program that hides within other programs

(b) small program that hides within a computer’s ROM

(c) small program that spreads itself over computer networks

(d) small program that alters the tracks and sectors of a hard disc

4. What is a BBS, and what is it used for?

5. What equipment is needed to communicate with another computer
using the telephone lines?

6. How can a mainframe allow many users on the system at one time?

(a) a mainframe is actually many separate personal computers

(b) each user is given a small ‘slice’ of time in rotation

(c) all the others must wait until the first person signs off

(d) no one uses mainframes anymore so only one person is on at a
given time

84 CHAPTER 7. TELECOMMUNICATIONS

Chapter 8

Databases

Computers are very good at storing information, and when you have a lot
of information to store you should use a database. A database provides
convenient and efficient ways for the user to access, add, modify, and remove
information stored within it. The key words here are convenient and efficient.
Depending on the amount and type of information you want stored a database
may not be convenient or efficient. Your brain, or a piece of paper may be
more convenient and efficient.

When personal computers were new, companies were trying to figure out
why you “needed” to own one. One suggestion was that you “needed” a
computer to store your recipes on. You could then throw away the cookbooks
and life would be wonderful. Unfortunately this was not thought through
very well. First of all you needed to have the computer in the kitchen,
preferably near the oven and the sink - near hot sauces and free flowing water.
Whenever you wanted to cook something you would have to go and turn the
machine on, load up your recipe program, find the recipe and display it on
the screen. While cooking you would need to run back and forth between
the computer and your pots and pans, being VERY careful not to drop some
egg-yolks into the keyboard, or smear flour onto the monitor screen. This
was not convenient, not efficient, and not very smart.

Figure 8.1 compares three of the more popular ways of storing informa-
tion. The human brain is a marvelous piece of equipment, but it has some
limitations. When the brain could no longer store all the information we
needed to know we began to store information on paper. When the piles of
paper began to fill entire rooms we began to use computers. Each of the three
ways of storing information has some advantages and some disadvantages.

85

86 CHAPTER 8. DATABASES

Criteria Brain Paper Computer
Amount of info a few some a lot
(phone numbers) 10-20 50-100 thousands

Recall speed fast good fast
if organized

Reliability low high high

Convenience right there good you go to it
with you if small

Update terrible fair good

Figure 8.1: Comparison of Data Storage Devices

Databases are good when you have a lot of data and it does not have to
be portable. This means that a database is not very useful for the average
person, unless you happen to be a serious collector of stamps or squished
bugs and need to store a lot of data. Databases are useful for companies
with lots of data to keep track of such as airlines, universities, hospitals,
banks, and the IRS.

8.1 Terminology

There are three main types of databases: Relational, Network and Hierar-
chical. We will be concentrating on the Relational Model since it is very
popular currently. The relational database stores its information in one or
more relations. Another name for a relation is a table. There are several
“database” products on the market for personal computers that are not really
databases at all. The reason for this is that most personal computer users do
not need a real database. Hence they give you a watered down database that
fills your nonexistent needs. Here, we are going to talk about real databases
since you may encounter them if you go to work where there is a lot of data
being stored.

8.2. EXAMPLE 87

Teacher table

OH OH OH
Name Bldg Room Time
Biasu Mack 123 11
Leigh Main 106 10
Jekyll North 234 3
Phibes State 234 2
Johnson State 405 4

Teaches table

Class Name
671 Biasu
511 Jekyll
680 Phibes
441 Leigh
101 Johnson
871 Biasu
880 Phibes

Course table

Class Class Class
Class Bldg Room Time
680 State 129 4
511 North 102 3
671 Mack 123 11
441 Main 211 12
101 State 312 8
871 Mack 450 10
880 State 129 6

Figure 8.2: Information in Three Tables

8.2 Example

The database shown in Figure 8.2 contains three tables. Each table contains
different types of information or fields. Another name for field is attribute
or column. The Teacher Table has 4 fields: Name, OH Bldg, OH Room,
and OH Time. Each table also contains records, or sets of data with values
for the fields. Another name for record is row or tuple. The Teacher Table
has five records - one for Professor Biasu, one for Mr. Leigh, one for Dr.
Jekyll, one for Dr. Phibes, and one for Mr. Johnson.

Why do we have three tables, when we can combine all the information
into one table as shown in Figure 8.3? Having three tables is better for the
following reasons:

• reduces duplication

• increases security

• decreases search time

88 CHAPTER 8. DATABASES

Combined table

Class Name OH OH OH Class Class Class
Bldg Room Time Bldg Room Time

671 Biasu Mack 123 11 Mack 123 11
511 Jekyll North 234 3 North 102 3
680 Phibes State 234 2 State 129 4
441 Leigh Main 106 10 Main 211 12
101 Johnson State 405 4 State 312 8
871 Biasu Mack 123 11 Mack 450 10
880 Phibes State 234 2 State 129 6

Figure 8.3: Information in One Table

• simplifies updates

Each separate table hold some specific information. The Teacher table
holds information about certain teachers, their office, and their office hours.
It only contains information about the teachers. The Course table holds
information about certain courses, and where and when they meet. It only
contains information about courses. The Teaches table allows the information
in the other two tables to be combined. When we combine the information
into one table we see things like Professor Biasu’s and Dr. Phibes’ office
information is written twice. A teacher’s office has nothing to do with what
class(es) he is teaching.

It is faster to look through a smaller table than a larger one. It is also
generally faster to combine a few small tables than to look through one big
one.

What happens if Professor Biasu decides to move his office from one
building to another. With the three separate tables we only need to look
through the teacher table until we find Professor Biasu and change one entry.
With the combined table we need to look through the entire table because
we do not know how many times Professor Biasu’s name will appear. This
would be very wasteful in a big database, and could lead to errors if we forget
to change one of the entries.

Security is very important with databases. With one big table either a
person has access to all the information, or to none of it. With separate
tables you can give certain people access to certain tables. This increases the
security of the data. When looking at classes in the schedule of classes at

8.3. ANOTHER EXAMPLE 89

Customer-table SS# Name City Phone-number

Movie-table Title Year Length Rating Director

Stock-table Title Format Number Rental-table SS# Title Format

Figure 8.4: Tables for Video Store

Wayne State you only get to see information from the course table. You do
not know the teachers name or office.

8.3 Another Example

Here is another situation where a database would come in handy. What
if you were to open up a video rental store. You would certainly need a
computer to keep track of all the customers, and videos. Before you read on,
take a couple of minutes and think about the kind of information that you
will need to store.

We are certainly going to need a relation that stores information about
each customer. We will also need a relation to store information about each
movie we have in stock. We will need a third relation to keep track of how
many tapes we have in each format and a fourth to tell us who rented what.
That’s right . . . four tables. Figure 8.4 shows what we get.

The customer table holds all the information about a particular customer.
the movie table holds all the information about a particular movie. The stock
table tells us how many copies of each film we have in each format (LD, VHS,
S-VHS, Beta, ED-Beta, Hi-8, etc.) The rental table tells us which customer
rented which film in which format. Now you can see that the customer can be
given access to the Movie and Stock table to help him make his selections.
The Customer and Rental tables contain information that only the store
owner should know. We could have entries like those in Figure 8.5.

Each customer is only listed once in the customer table. Each movie
is only listed once in the movie table. The stock table has one tuple for
each Format of each title in stock. The Rental table has one tuple for each
video that has been rented. Each table is devoted to holding a specific type
of information. We have security, we have convenience, and we have easy
update.

90 CHAPTER 8. DATABASES

Customer-table

SS# Name City Phone-number
453-87-6553 Hamner Detroit 332-4378
346-84-5456 Jellison Clinton 548-6562
235-63-7526 Czescu Ann Arbor 878-8230
548-64-2315 Baker Hamtramck 843-4105

Movie-table

Title Year Length Rating Director
Maltese Falcon 1941 102 n/a Huston
Yellow Submarine 1968 87 G Dunning
This is Spinal Tap 1984 82 R Reiner
Die Hard 1988 127 R McTiernan

Stock-table

Title Format Number
Die Hard Beta 10
Die Hard VHS 12
Die Hard LD 2
Die Hard S-VHS 5
Maltese Falcon VHS 2
Maltese Falcon LD 1
This is Spinal Tap LD 1
This is Spinal Tap Hi-8 2
Yellow Submarine VHS 1

Rental-table

SS# Title Format
235-63-7526 Die Hard LD
235-63-7526 Maltese Falcon LD
548-64-2315 This is Spinal Tap Hi-8
453-87-6553 This is Spinal Tap Hi-8

Figure 8.5: Database for Video Store

8.4. QUERY LANGUAGE 91

8.4 Query Language

Given that we have a database set up, we need some way to access and mod-
ify the information that it contains. To do this we use a query language. It is
the language in which we express our commands to the database. While the
languages look fairly English-like, they are very strict. One of the current
popular query languages is SQL (“sequel.”) Let us say we were using the
SQL language to talk to our video database.

Say we wanted to know the names of all the movies we have:

SELECT Title
FROM Movie-table

Say we wanted to know the names of all the R rated movies we have:

SELECT Title
FROM Movie-table
WHERE Rating = “R”

The query language allows us to communicate our request to the com-
puter, but we must follow the format that the computer expects. Query
languages have a very specific syntax that must be followed, so there is no
ambiguity in your request.

8.5 Key

What is a key? A key is a column or set of columns that allows us to
uniquely identify each row in a table. When the IRS processes your report,
they are not going to use your name. With 250 million people in the US,
it is likely that your name is not unique. Instead they will use your social
security number. Your social security number uniquely identifies you. Keys
are important in databases since they allow the computer to search through
a table very quickly. For keeping your student records, Wayne State uses
your social security number too.

92 CHAPTER 8. DATABASES

8.6 Databases and You

As we find we need to manage more and more information, we will have a
greater need for database programs. Currently the average person does not
need a database. Large business have used databases for years, and smaller
businesses are also seeing their benefits. As databases become simpler to use,
and the hardware necessary to run them becomes less expensive more and
more people will find a use for them.

8.7 Questions

1. Give two situations where it would be good to use a database, and
why?

2. What are databases best used for?

(a) drawing pictures with awesome graphics

(b) efficiently storing and retrieving large amounts of information

(c) storing small amounts of information for quick access

(d) writing term papers with lots of tables

3. Give three reasons why having many small tables is better than one
large one?

4. What is a query language?

5. What does a key of a table allow us to do?

(a) uniquely identify a column

(b) uniquely identify a database

(c) uniquely identify a field

(d) uniquely identify a row

Chapter 9

Spreadsheets

While you will probably find that word processors are the most useful kind of
application, spreadsheets can also be very useful. Spreadsheets allow you to
do work with numbers in a very comfortable way. They allow you to do com-
plex calculations simply, and quickly (after all, everyone knows computers
are good at math.)

The first spreadsheet program, called Visicalc, was written by Dan Brick-
lin and Robert Frankston. Visicalc was short for VISIble CALCulator. It
was released for the Apple][in May 1979. This program was a top selling
program for years, and was the biggest reason that businesses began to take
a serious look at personal computers. The current standard in spreadsheets,
called Lotus 1-2-3 was released three years later. Within this chapter we
will be using the conventions of the Microsoft Excel spreadsheet which is
probably the best spreadsheet currently on the market. Visicalc was so well
thought out that all of its successors, including Lotus, and Excel, have almost
identical commands.

9.1 Terminology

A spreadsheet looks like an accountant’s ledger pad. It is made up of a grid
of cells. Each cell can be uniquely identified by its row and column, and
each cell contains either text, numbers or a formula. Numbers and text
we have seen before. A formula is used to make calculations.

93

94 CHAPTER 9. SPREADSHEETS

Figure 9.1: Student Grade Spreadsheet

9.2 Example

Let us say we wanted to set up a spreadsheet to figure out the grades for a
class. We assume that each student has three exam grades and we need to
find out what the average score is. We could set up data in a spreadsheet as
shown in Figure 9.1.

As you can see, each cell has a specific address given by its row and
column. Cell A1 in Figure 9.1 has the text “Student’s Name” stored in it.
Cell D8 has the number 95 stored in it.

Typing information into a cell is simple. You select the cell you want
(using either the arrow keys or a mouse) and then type what you want the
contents to be using the keyboard. When you are done typing you hit the
enter or return key. We can set up the simple table shown in Figure 9.1 this
way.

Now we need to find the average score for each student. For Jervas we
need to take 78 + 76 + 86 and then divide by 3. We could do this on a
calculator and then type the number 80 into cell E3.

But we can do it easier than that. We could type a formula into cell
E3 that says “=(78+76+86) / 3” and it would calculate the average for us.
Then we could do the same for the other five students.

Well, we can do it even easier than that. Instead of typing numbers into
the formula we can type the cell locations into the formula. We could type a
formula into cell E3 that says “=(B3 + C3 + D3) / 3” and it will calculate
the average for us. Cell B3 contains the number 78. Cell C3 contains the
number 76. Cell D3 contains the number 86. This way has a big advantage

9.3. CIRCULAR REFERENCE 95

over the other two methods. What happens if Jervas’ score on Exam #3 is
wrong and he actually deserves 90 points. We need to change the value in
cell D3 to 90. That’s simple. We select cell D3 and type 90. What about cell
E3 - do we need to change the formula? Not if the formula is “=(B3 + C3
+ D3) / 3” because this formula has no numbers in it . . . only cell locations.
Since the value in location D3 has changed, the spreadsheet automatically
recalculates all the formulas. If we used the other methods we would need
to retype the formula in cell E3.

Now you may be wondering what appears in cell E3. We have typed in a
formula, but we expect it to calculate a number for us. The number is what
appears in the cell, but when you select the cell you have the opportunity to
modify the formula. You can think of the formula as a third dimension to
the two-dimensional spreadsheet.

This is the big advantage spreadsheets have over calculators and ledger
pads. You can very easily vary the numbers and see how the results of the
formulas change. You can find out what would happen if this or that hap-
pened. So, what would the formula be that we type into cell E4 to calculate
the average of Basil’s exam scores? I hope you guessed:

=(B4 + C4 + D4) /3

That’s the correct answer. We can write similar formulas for the other
four students.

You might have noticed that the formulas all have “=” signs out in front.
That is how the spreadsheet differentiates a formula from text. All formulas
must start with an “=” sign.

9.3 Circular Reference

What if we have the following situation:
Cell A1 contains “=B1 + 2”
Cell B1 contains “= A1 - 1”

The computer can not calculate the value for cell A1 without the value
for cell B1. It can not calculate the value for cell B1 without the value for cell
A1. This is called a circular reference. It is bad. It will cause the computer to
give you an error message because it can not complete its calculations. This

96 CHAPTER 9. SPREADSHEETS

brings up the question of how does the spreadsheet know what to calculate
first. The spreadsheet looks through all the calculations that it must do and
does all the ones it can do, then it looks back at the calculations it couldn’t
do before to see if there are any that it can do now, having done the previous
batch. It keeps on going until it has done all the calculations.

9.4 Relative Referencing

Now we have to talk about absolute referencing and relative referencing.
These are the two ways to refer to a cell in the spreadsheet. What we have
shown so far is relative referencing. Let us look at the first formula we wrote.
We put a formula in cell E3 that said:

=(B3 + C3 + D3) / 3

Now the spreadsheet interprets this formula to mean:

take the value in the cell three to my left and zero above me
and
add it to the cell that is two to my left and zero above me
and
add it to the cell that is one to my left and zero above me
and
divide the total by three.

The locations of the other cells (cell B3, cell C3 and cell D3) are shown
relative to the cell the formula is written in (cell E3). Now you may think
that this seems needlessly complicated. The advantage comes with the abil-
ity to copy and paste formulas from one cell to another. What happens if we
copy the contents of cell E3 into cell E4. Well now cell E4 contains:

take the value in the cell three to my left and zero above me
and
add it to the cell that is two to my left and zero above me
and
add it to the cell that is one to my left and zero above me
and

9.5. ABSOLUTE REFERENCING 97

divide the total by three.

That gives the correct answer for the second student without us having
to retype anything. If we click on cell E4 to look at the formula we see that
it is

=(B4 + C4 + D4) / 3

So for our grades table all we have to do is type in one formula and copy
it into the other five cells, and the formulas will automatically change to fit
their new location.

9.5 Absolute Referencing

But what happens if we do not want a formula to change when we move it?
What if we do not want to refer to the cell three to my left and zero above
me, but we really want to refer specifically to cell A3? In this case we would
write the row and column with “$” signs. For example the formula in cell
E3 could have been written:

=(B3 + C3 + D3) / 3

and it would have given the correct answer. But what if we copied that
formula into cell E4. The formula in cell E4 becomes:

=(B3 + C3 + D3) / 3

This is the same as the formula in cell E3. We are referring to the row
and column absolutely so there is no automatic changing of the formula.

Spreadsheets can go beyond simple arithmetic because they have built in
functions. This makes them very useful for college students with lab courses.
In Physics labs there is very often a need to take the standard deviation of
a set of numbers. Now the standard deviation is a nasty formula which I
will not reproduce here for fear that some students will suffer an immediate
panic attack. With a spreadsheet you don’t have to worry about how to
calculate the standard deviation . . . let the computer do it for you. Lets say
we have the situation shown in Figure 9.2. and we want to have the standard

98 CHAPTER 9. SPREADSHEETS

Figure 9.2: Standard Deviation Needed

Figure 9.3: Standard Deviation Obtained

deviation of the three numbers in cell D1. This is really simple. We type
“=STDEV(A1, B1, C1)” into cell D1 and we get our answer as shown in
Figure 9.3.

STDEV is the name of the function that calculates standard deviations.
There is another function we could have used back with the grades example.
In cell E3 we could have typed:

=AVERAGE(B3, C3, D3)

instead of

=(B3 + C3 + D3) / 3

and we would have gotten the same answer. Spreadsheets have many
built in functions to make calculating easier. Some of these functions are
shown in Figure 9.4.

average sin
absolute value cos
exponents tan
logarithms
maximum standard deviation
minimum variance

Figure 9.4: Spreadsheet Functions

9.6. SPREADSHEETS AND YOU 99

9.6 Spreadsheets and You

So what can you really do with a spreadsheet?

• Balance your monthly finances

• Calculate data for your lab report

• Figure out your taxes

Spreadsheets conveniently organize numerical information and allow us
to “play” with it. They allow us to ask questions like “What happens if . . . ”
and get immediate feedback. Anyone who deals with numbers on a regular
basis should think about investing the time to learn how to use a spreadsheet
program. The time you save, will be your own.

9.7 Questions

1. What is the difference between relative referencing and absolute refer-
encing?

2. What are the three different things that a cell can contain?

3. Which of the following does NOT calculate the average of A1, B1 and
C1

(a) =A1 + B1 + C1 / 3

(b) =AVERAGE (A1, B1, C1)

(c) =SUM (A1, B1, C1) / 3

(d) =SUM (A1:C1) / 3

4. What is the difference between the name of a cell and its value?

5. A circular reference

(a) is used to calculate the area of circles

(b) is used to calculate the radius of circles

(c) is used to calculate the geodetic prime arc of a circle

(d) will cause a spreadsheet to print an error message

100 CHAPTER 9. SPREADSHEETS

6. Which of the following types of referencing should be avoided?

(a) Absolute

(b) Relative

(c) Circular

(d) Absolute and Relative

Chapter 10

Graphics

In the 60’s Ivan Sutherland created Sketchpad - the ancestor of all our modern
graphics programs. When personal computers came along, the ability to draw
shapes with pretty colours on the monitor screen became a great selling point.
Unfortunately the early programs were very primitive, and the early monitors
did not have the resolution to produce anything beyond blocky drawings in
a handful of colours.

10.1 Painting Programs

The first really useful, and popular, painting program for personal computers
was MacPaint, released with the Macintosh in January 1984. This program
was the easiest computer program to use at the time, and was capable of pro-
ducing some very nice artwork. This program was soon imitated, and today
there are several similar painting programs for every personal computer. The
problem with MacPaint (and the early Macintoshes) was the lack of colour.
You could only paint with black and white patterns. This left the door open
for a big improvement which came one year later with the release of the
Amiga. The Amiga ran colour painting programs, with many sophisticated
painting options.

Paint programs work by allowing you to set the colour of each pixel on
the screen. They also allow you to draw lines and curves, and fill areas with
a certain colour. They give you several shapes and sizes of “brushes.” They
let you move and rotate parts of your picture. These pictures can then be
printed out or, more importantly, copied into other documents such as a

101

102 CHAPTER 10. GRAPHICS

Figure 10.1: Paint Patterns and Tools

report you are typing with a word processor.

Figure 10.1 shows the set of tools you get with MacPaint, along with some
of the sample black and white patterns. When we create artwork in the real
world we have several tools available to us: paint brush, pencil, eraser etc. On
the computer we usually have a mouse. By selecting a tool you “transform”
the mouse into a pencil or a paint brush or an eraser, depending on the work
you need to do.

10.2 Digitizing

Now having this painting program is very nice, but no matter how friendly
the program is, you still need artistic talent. But what about those of us
who have very little artistic talent? A digitizer allows us to take a picture
and convert it into a paint file. The analogue picture (say a photograph, or a
picture out of a newspaper) is converted into a digital one for the computer.
The picture will be a bit grainier than the original, but now it can be modified
using all of the tools the paint program gives us. The higher the resolution
of the screen and the more colours that are available - the closer the digitized
image will be to the original. Since the picture is now in a digital form, we
can move it into word processing documents, or upload it to a BBS. Figure
10.2 shows an example of a digitized image. Figure 10.3 shows that same
image after it has been modified using a paint program.

Officially, digitizing is the conversion of anything to a digital form. Most

10.2. DIGITIZING 103

Figure 10.2: Digitized Image

Figure 10.3: Modified Digitized Image

104 CHAPTER 10. GRAPHICS

Figure 10.4: Painted Line VS Drawn Line

commonly this is a picture, but it can also be sound. Most personal comput-
ers can play digitized sounds, as well as display digitized pictures.

10.3 Drawing Programs

There is another type of graphical program called drawing programs. Draw-
ing programs became very popular with the arrival of Laser Printers, and
the first popular one was called MacDraw. Along with Word Processors and
Laser Printers, Drawing programs are the three integral parts of Desktop
Publishing. Unlike Paint programs, drawing programs do not alter individ-
ual pixels. Instead drawings are held in terms of their mathematics. This
allows the drawing to have as much resolution as the printer can supply.
Where painting programs work well on a monitor with its 72 dots per inch
resolution, these images do not look very good on a printer with 300 dots per
inch resolution. Paint files tend to look grainy when printed on Laser Print-
ers. Draw files look very fine. The difference is shown in Figure 10.4. The
line on the left was created with a paint program. The line on the right was
created with a draw program. On the computer screen they look identical,
but when printed onto paper there is a big difference.

Back in school you did many different things in art class. You could
make a picture with a paint brush and several bottles of paint. You could
also make a picture by cutting shapes out of coloured construction paper and
then arranging these pieces of paper. This is the difference between a paint
program and a drawing program. The paint programs puts colours onto a
canvas. The drawing program moves objects around on the canvas. With a
drawing program you can draw a box and a triangle. You can then grab the

10.4. DESKTOP VIDEO 105

box and move the box under the triangle to create a house - just like you
did back in art class. If you don’t like the way it looks the drawing program
lets you stretch the box, or move it somewhere else. Like using construction
paper you can put one object on top of another, and move them around till
they look the way you want them to. The advantage of a drawing program
over using construction paper is that you never have to glue the paper down
- you can always come back later and move the pieces around.

Artistic drawings tend to be done with paint programs since paint pro-
grams give more kinds of tools for putting colour onto the screen. Technical
drawings tend to be done with drawing programs since they give more kinds
of tools for moving and modifying objects.

10.4 Desktop Video

Now the usefulness of painting programs extends beyond printing out dia-
grams. Paper is not enough to keep people’s attention today. People want
colour and movement and sound. They want animation. The personal com-
puter can be an excellent tool for creating exciting presentations. As the
Macintosh made “desktop publishing” possible, the Amiga made “desktop
video” possible. Computer animation is done in the same way that anima-
tion has always been done, except that all of the cells are created with a
computer and stored on disc. Rapidly showing these cells in order on the
monitor screen gives the illusion of movement. The computer can then be
connected to a VCR to record the animation.

You have probably all seen the computer generated intros that all the
major television networks have. You might have even seen theatrical films
such as “Tron” or “the Last Starfighter” which both made extensive use
of computer graphics. Big computers can truly produce some “awesome
graphics” (as a former CSC 101 student put it.) You may be surprised
to learn that some personal computers can produce some pretty awesome
graphics of their own. Local TV stations have found personal computers
(especially the Amiga) to be very useful in generating professional looking
animation at a fraction of the cost for the professional studio.

106 CHAPTER 10. GRAPHICS

10.5 Rendering

Rendering is a general term used to describe the process of creating a graph-
ical image on the computer screen. Artists consider using a paint program to
be rendering where computer scientists use the word to describe the process
of generating images by some computational method such as ray tracing.

Ray tracing is the process of realistically (and mathematically) rendering
an image using a geometric 3-D model. Typically a 3-D model is created
out of polygons which are “glued together” to form “solid” objects. The
ray tracer then “fires” rays of light into the scene and traces the path each
ray takes as it reflects off or refracts through the various objects. This way
the computer can create much more realistic looking scenes than a human
artist can. Ray tracing is particularly good at rendering glass and metallic
objects. Combining these rendered images with animation can create some
very impressive presentations. Figure 10.5 shows a computer generated image
of a desktop complete with desklamp, books, and bouncing-silver-ball-thing.
Note the reflections in the silver balls. The actual image is in colour and has
been reduced to black and white for inclusion in this text.

Rudimentary rendering is possible on IBM-PCs with more advanced ren-
dering possible through TrueVision’s TARGA boards. High quality rendering
is possible on the Mac II, but at a somewhat inflated prices. High quality
rendering is also possible on the Amiga at more reasonable prices. Produc-
tion quality animation is done on $20,000 systems such as Silicon Graphics’
Iris.

10.6 The Making of George

The following is a description of how a cartoon character is designed and
generated using the computer.

First of all a special program called a modeller is needed. A modeller
is a program that allows the user to create three-dimensional objects that
resemble objects in real life. Modellers are commonly used today to design
cars because it allows the user to visualize the finished product before it is
built.

In our example we have built a cartoon character called George who is
nothing more than a blue ball with bulging eyes. Using the modeller, we first
build George’s body. Modellers typically have a built in library of objects

10.6. THE MAKING OF GEORGE 107

Building Palette

Figure 10.5: Ray Traced Desktop

108 CHAPTER 10. GRAPHICS

Figure 10.6: Simple George

that can be loaded at any time. Since George is shaped like a ball, the
modeller can simulate that shape using a sphere as shown in Figure 10.6.

Notice that the sphere is not perfectly smooth, but instead is composed
of facets. These facets are called polygons. All three-dimensional com-
puter generated objects are created using polygons. When there are enough
polygons strung together the final object will look smooth, like the sphere.

Next we will create George’s eye balls. George is actually a very simple
cartoon character to build with a modeller. His eye balls are simply two more
spheres which will be attached to his body (the larger sphere we created
earlier) at the appropriate points. Figure 10.7 shows this new version of
George.

Now would be a good time to have a look at how George looks before we
put any more work into him. First of all we need to tell the modeller where
we would like to put our camera (to “take the photo”) and where we would
put the lamps to light up the scene. The camera is placed directly in front of
George and the light source is placed to the left and above the camera. This
is shown in Figure 10.8. Having done this we can get a quick preview of how
George looks in 3D. This is done using a wireframe model. A wireframe
model is like the skeleton of a large ocean liner before sheets of metal are
bolted to its sides. The wireframe version of George is shown in Figure 10.9.

So far George looks pretty good so we can proceed by putting George’s

10.6. THE MAKING OF GEORGE 109

Figure 10.7: George with Eyeballs

Figure 10.8: Top View Showing the Positions of the Light and Camera

110 CHAPTER 10. GRAPHICS

Figure 10.9: Wireframe Version of George

pupils in. These are nothing more than two disks; one for each eye as shown
in Figure 10.10.

We are almost ready to take George’s photo (which is called rendering in
computer lingo); but before we can do that we must assign colors to George.
George’s body will be blue, his eye balls will be white and his pupils will be
black. These kinds of attributes are assigned using a control panel as shown
in Figure 10.11. In this case the panel is showing the settings for George’s
body which is a smooth glossy blue ball.

Finally we are ready to render George. We are going to render him using
a technique called ray tracing, which is the most time consuming process in
computer graphics. Where a wire frame can be generated in seconds, a ray
traced image can take days to generate. This is because in order to simulate
what you see in the real world the computer has to simulate each point of
light that leaves your TV screen and hits the three-dimensional object that
you have designed. If the object itself is reflective then the ray tracer must
continue by further tracing the path of the reflected light. A lot of Physics,
Mathematics and Fudging is involved in successfully ray tracing a truely
photo-realistic scene. Because George is a relatively simple object, he only
takes 1 minute to ray trace on an Amiga with a Motorolla 68030 CPU and
68882 Floating Point processor. Our final version of George (reduced to black
and white for this text) is shown in Figure 10.12. On the computer screen
George is a shiny blue ball with bulging white eyes.

10.7. VIDEOGAMES 111

Figure 10.10: George with Pupils

In order to create animation, the camera and/or objects must be care-
fully moved in the three-dimensional world. After each movement has been
established, the ray tracer can then render each individual frame of the im-
age. If a frame takes 24 hours to render, it would mean that it would take
about 30 days to simply generate 1 seconds worth of animation (assuming
30 frames a second - full movie speed). And a full length movie that lasts
about 2 hours would take about 216000 days to create ;which is about 592
years! That is why for the most part you will see computer graphics and
animation as something that enhances a live-action movie (like The Abyss)
rather than becoming the entire movie. The computers we use today for
computer graphics are very fast; but still not fast enough...

10.7 VideoGames

Now we certainly couldn’t have a section on graphics and not talk about
videogames. The current generation of home videogame machines have the
same CPUs as personal computers do. In fact, all they need is a keyboard
and a disc drive to really be considered a personal computer that specializes
in graphics and sound.

Videogames require a lot of computing power, as they typically involve
fast multi-colour animation along with multi-voice stereo sound. Remember

112 CHAPTER 10. GRAPHICS

Figure 10.11: Setting up George’s Attributes

10.7. VIDEOGAMES 113

Figure 10.12: Ray Traced Version of George

114 CHAPTER 10. GRAPHICS

Figure 10.13: Ye Olde Video Game

that back in the mid 70’s Pong was cutting-edge videogame technology. For
those of you that missed the 70’s, a typical “table tennis” video game is
shown in Figure 10.13. Today one of every four homes in America has a
videogame system. This is where microcomputers have really found a home
. . . in your home.

10.8 Graphics and You

Good graphics require a lot of computing power, and as machines become
faster, graphics quality will continue to improve. As desktop publishing
brought the power of a small printshop to your desk, desktop video now
brings the power of a small video production facility. The creativity and
talent still rest with the individual artist. The computer simply gives you
another medium to work in and another set of tools to help you express
yourself.

10.9. QUESTIONS 115

10.9 Questions

1. What is rendering?

2. How does a drawing program differ from a painting program?

3. What is digitizing?

(a) converting audio or video into a form the computer can understand

(b) multiplication using binary numbers

(c) the act of typing numbers into the computer

(d) the method Ted Turner uses to ‘improve’ old movies

116 CHAPTER 10. GRAPHICS

Chapter 11

Hypertext

We have said that computers are good at managing information, and there is
a lot of information out there to manage. We can use a computer to help us
get to important information quickly. A book is divided into chapters with
a table of contents at the front. Why? It lets us find the information we
are searching for quickly. Textbooks have indices in the back. Why? It lets
us find the information we are searching for quickly. It would be very time
consuming to have to start at the beginning of a book and keep reading until
we found what we are looking for. Tables of Contents and Indices allow us
to take shortcuts, and go directly to the piece of information we want to look
at. It would be nice if we could take even more shortcuts.

Even in 1945 the need for a system that cross referenced information was
apparent. Vannevar Bush came up with the idea for a system called Memex.
This system would allow the linking of pictures and text. Unfortunately the
technology of 1945 would not allow this system to be built. The first working
hypertext system was created in 1967 at Brown University.

11.1 Hypertext

In many papers we make use of footnotes. We put a number into our text and
the reader can use that number to find the corresponding footnote reference.
The footnote number acts like a link between the main body of the text
and the additional information stored in the footnote itself. Encyclopedias
work on this same principle. They list related topics that you can look at
for further information. The limitation of printed material is that you must

117

118 CHAPTER 11. HYPERTEXT

Figure 11.1: Card Catalogue

go to the related piece of information. Hypertext is a generalization of these
concepts.

Ted Nelson coined the term “Hypertext Systems” and it was appropriate
for the early systems that were developed since they could only link text.
Officially hypertext is non-sequentially linked pieces of text or other infor-
mation. Hypertext systems consist of information and links that link related
pieces of information together. A person does not have to start at the begin-
ning and read through to the end. He can start at the beginning and then
go in the direction that interests him. Using a hypertext system is often
known as “navigating through an information space.” Information is linked
together, and the links allow the user to move through the sea of information,
only looking at those pieces of information that are of interest, and moving
quickly between related interesting topics.

Hypertext systems display their information on the monitor screen so
the user does not have to go searching for the related information. The
computer does the searching and displays the requested information. Most
of the monitor screen for a hypertext system is devoted to displaying the
requested information, and the rest contains buttons allowing the user to
choose what to look at next. Since it is easy to get lost in a large hypertext
document maps are often provided on the screen to show you where you are
and where you can go from here.

For example, we could have a hypertext card catalogue for a library. The
information about each book is displayed on the monitor screen in the form
of a card as shown in Figure 11.1.

11.1. HYPERTEXT 119

Figure 11.2: Text of the Book

Figure 11.3: The Author

As well as having the standard card catalogue information which would
allow the user to search for books based on various criteria, this system may
have links allowing you to read an abstract from the text stored electronically.
At the push of a button you would have the opening chapter of the book
displayed on the screen in front of you as shown in Figure 11.2.

The names of important people and events in this book would be linked
to information about them. This is where the original concept of hypertext
comes in. Certain important words have links to additional information, or
other sections of the text.

Another button could bring up biographical information about the author
as shown in Figure 11.3.

Of course, a system like this is still a few years off, but primitive versions

120 CHAPTER 11. HYPERTEXT

are currently in operation.

Each user charts her own course through the information. We said be-
fore how modern computers allow us to work in ways that are intuitive to
us. Hypertext systems allow us to search for information in a more nat-
ural way. Hypertext systems also put a “friendly” face on the monstrous
amount of information that is accessible. With computers becoming faster,
storage devices becoming cheaper, and interfaces being easier to use, we can
look forward to seeing more and more of these hypertext systems becoming
available.

One the new “buzzwords” of the 90’s is multimedia. Why not allow the
computer access to information from different media. For example connect
the computer to a compact disc player, or a laser disc player. Let’s use
the computer to manage other types of information aside from plain text.
Multimedia applications are supposed to be the hot computer area of the
90’s and Commodore is already pushing their newest Amiga as a “Multimedia
platform.” Computers will be managing larger, and more varied amounts of
information in the coming years. The more information available, the more
useful a hypertext system will be to help you search through it.

11.2 Hypermedia

Apple’s Hypercard was the first really popular hypertext program and the
first program to successfully expand the idea of Hypertext into Hypermedia.
The information that a hypertext system moves through does not have to
be stored within the computer. Hypermedia is a combination of hypertext
systems to a multimedia computer. Hypermedia allows the user to easily
access information from many different forms of media. Hypercard allowed
computer users to run Compact Disc players and their larger siblings Laser
Disc Players from a Macintosh. A laser disc can hold 50,000 full colour still
pictures on a single side. Trying to look up a certain frame on a printed
index would be very difficult by hand, but a hypermedia system would make
it simple.

The Voyager Company has had some HyperCard hypermedia products
on the market since 1988. One of their discs contains everything you ever
wanted to know (and much, much more) about Beethoven’s 9th Symphony.
Other currently available products include a complete dictionary on CD-
ROM. Not only does this dictionary give you the standard definitions and

11.3. MEMEX 121

origins for a word, it also gives you an audible pronunciation. You don’t have
to translate the pronunciation symbols anymore because the dictionary will
“speak” the word for you. An entire encyclopedia can be stored on disc along
with full colour pictures. Since the computer can access this information for
you, you can search much more quickly. And they have the advantage of
being portable. Why lug around a 2000 page dictionary or a 15 volume
encyclopedia when you can carry around a compact disc?

11.3 Memex

It seems hard to picture how a hypertext system could have been thought up
in the 40’s by Vannevar Bush. Computers were very rare and very expensive
things and had nowhere near the capabilities of today’s desktop personal
computers. Vannevar Bush’s system was designed based on the technology
of the times. Memex was a desk that the user would sit at. Information
in the form of pages would be stored on microfilm. Using a lever you could
show one of these pages on one of the translucent screens of the memex. The
machine you use at the library to look at microfilm works just this way. But
how do you get information into the machine? Through photography. The
memex would be able to take a photograph of any piece of paper and store
it on a new piece of microfilm. You could bring up a page onto one of the
screens, add some new notations, and then take a new picture of the changed
page.

The hypertext links were kept through coded numbers. A book on the
desk would contain the numbers of different pieces of microfilm. Each piece
of microfilm would have its own numebr as well as the numbers of related
pieces of microfilm. If you were interested in ’following the links’ you would
then look up that piece of microfilm.

I find the ideas behind the memex interesting because it would have been
an information processor that didn’t not rely on digital processing or even
anything remotely similar to a computer of today. Today however you could
make a much more powerful memex system. Microfilm would be replaced
by hard discs and CD-ROM. Photography would be replaced by digiters.
Output could be onto full colour monitor screens or hardcopy onto a laser
printer. The built in computer could access and display this information
quickly. Changes could be made to the documents using the keboard, an
optical pen or a mouse. And, of course, the ’desk’ could be compacted down

122 CHAPTER 11. HYPERTEXT

to the size of a briefcase for portability.

11.4 Hypertext and You

Hypertext products also offer the promise of allowing people to create mul-
timedia presentations with very little programming knowledge. Hypertext
systems come with their own programming languages to allow their users to
create new hypertext documents. This is good for non computer science peo-
ple who want to create hypertext information systems. Hypertext systems
have found their first niche in museums, where the museum can set up hy-
pertext systems for their patrons to use. Each visitor to a specific exhibit can
use the system to look for more information in specific areas she is interested
in.

Unfortunately all the hype surrounding hypertext and multimedia ob-
scures the fact that there really is a need for systems such as these. Their
usefulness in teaching could be astounding, but like every other tool they
must be used appropriately. Hypertext and multimedia systems will give
people easy access to vast amounts of information, but correlating these
facts and learning from them will still be up to the individual.

11.5 Questions

1. What is hypertext?

(a) an automatic linking of related pieces of information

(b) the way text wraps around the screen when you use a word pro-
cessor

(c) sending information over phone lines

(d) typing text into a paint program

Chapter 12

Programming

Computers are like an Old Testament God; A lot of rules and no
mercy.

– Joseph Campbell.

One of the questions posed when the topic of programming crops-up is:
Why do I need to learn how to program a computer when I can just buy
any program that I need? Programming is much more than learning a set
of “incantations” that tell the computer what to do. Being able to write
a program, even a very simple one, allows you to take full control over the
computer and make it do what you want it to do, rather than just making do
with what others have already written. Programming will give you a better
feeling for why programs work the way they do, and how much work goes
into creating them. Programming also teaches the very important skill of
breaking a problem down into subproblems - stepwise refinement. This skill
comes in handy in all kinds of ways, as it forces you to think in a very logical
and step by step manner. You will find that the more specialized your need,
the less likely that a program exists to fulfill that need. Being able to write
a program will allow you to create the program that you need, rather than
waiting for it to be written by someone else. There is also a great market for
programs written by people in specialized fields.

123

124 CHAPTER 12. PROGRAMMING

Programming is the art of writing computer programs. Programming is
truly an art as well as a skill. When we write a program we are not only
interested in solving the current problem. We want to write a program that
is easy to read, easy to understand, and easy to modify if the need arises. We
want an elegant solution to the problem. We are not just painting the garage
to hide the cracks, we are painting a picture to hang on the dining room wall.
We will not take the “Cliff Notes” approach to programming here.

12.1 Algorithm

Given a problem there are usually many methods that will solve it. Each
person sees a problem in a different way, and will come up with a unique
solution. When we are given a problem we try to decide on a sequence of
steps that will solve it. In computer science this sequence of steps is called
an algorithm. In the real world it is called a recipe. Computer scientists
use the word algorithm because it makes them feel important. A program is
the translation of this sequence of steps into a form that the computer can
understand and perform.

Algorithms have existed for more than 2000 years. The first nontriv-
ial algorithm was developed around 350BC by Euclid (remember him from
Geometry?) when he invented a procedure to find the greatest common di-
visor of two positive numbers. The word ‘algorithm’ comes from the name
of a 9th century Persian mathematician named Mohammed-al-Khowârizmı̂
which was translated into Latin as ‘algorismus.’ Mohammed-al-Khowârizmı̂
created step by step rules for doing basic math on decimal numbers.

Now, typically we aren’t confronted by problems like those of Euclid or
Mohammed-al-Khowâizmı̂ but as human beings going about our business we
often come up against new situations: How do I make chocolate chip cookies?
How do I change the oil in my car? How do I register for classes?

12.2 Stepwise Refinement

The best way to solve these problems (and in fact the way humans generally
DO solve problems) is to use a process called stepwise refinement, which is
also known as “divide and conquer.” We break down a large problem into
smaller and simpler problems until we have solved all the small problems,

12.2. STEPWISE REFINEMENT 125

and then we have (magically) solved the larger problem. In effect we create
a recipe, or algorithm, for solving this large problem - we find a sequence of
steps that will solve it. We will be able to use this recipe again in the future
if we come across a similar problem.

Imagine you have a friend who has never been to a movie theatre, and
you want to tell her how to go about seeing a movie.

As in a recipe, there are certain ‘ingredients’:

• you need a movie that she wants to see

• she must be able to get to the theatre at the correct time

• she must have enough money

• she must be able to get home from the theatre

Assuming all these ingredients are available we can think about the steps
involved. first we start off with something very general:

1)See a movie

Well, lets break (1) down into several sub-problems. First we need to go
into the theatre, then buy a ticket, then go into the ‘viewing room’, then
watch the movie, and finally we leave. Now we can write these down a little
better as follows. What we are building up looks suspiciously like an outline.

refinement of see a movie
1.1)enter theatre
1.2)buy ticket
1.3)enter viewing room
1.4)watch movie
1.5)leave theatre

(1.1), (1.2), (1.3), (1.4), and (1.5) all refine step 1. We like to number
the steps as in an outline so we don’t get confused. We started with one
problem, and now we have five problems - but they are five simpler and more
specific problems.

126 CHAPTER 12. PROGRAMMING

Now we will need to break each of these five steps into smaller parts. Lets
break (1.1) down into several sub-problems. In order to enter a theatre we
have to walk up to the theatre, then find the door, then wait in line to get
in, then go through the door. We can write these a little better as:

refinement of enter theatre
1.1.1)walk up to theatre
1.1.2)find entrance doorway
1.1.3)wait in line to get to doorway
1.1.4)go through doorway

Now you may not agree with these latest steps. What if the box-office is
outside the door? What if the people line up inside the theatre? The recipe
has gotten more detailed and more specific. Try to refine the other four steps
for yourself and see how they compare to mine. They probably don’t match
exactly and that’s fine. Everyone breaks down a problem in a different way,
and comes up with a different recipe to solve it. Programming is a truly
creative process.

Here is my complete refinement for going to the movies:

1) See a movie

refinement of see a movie
1.1)enter theatre
1.2)buy ticket
1.3)enter viewing room
1.4)watch movie
1.5)leave theatre

refinement of enter theatre
1.1.1)walk up to theatre
1.1.2)find entrance doorway
1.1.3)wait in line to get to doorway
1.1.4)go through doorway

12.2. STEPWISE REFINEMENT 127

refinement of buy ticket
1.2.1)walk up to ticket counter
1.2.2)take out money ($3.50 tops)
1.2.3)state movie name (e.g. Hunt for Red October)
1.2.4)slide money through slot
1.2.5)receive ticket and change
1.2.6)get ticket ripped in half by the ticket-in-half-ripper person

refinement of enter viewing room
1.3.1)find correct viewing room within the cinerama quintaplex
1.3.2)find row where screen fills vision, no exit signs visible
1.3.3)move across row until within centre of viewing room
1.3.4)find closest empty chair
1.3.5)sit down

refinement of watch movie
1.4.1)talk with friends until projector turns on
1.4.2)watch previews
1.4.3)shut up
1.4.4)watch movie
1.4.5)wait for credits to finish and music to stop

refinement of leave theatre
1.5.1)stand up
1.5.2)unstick feet from floor
1.5.3)go outside through exit door

You could break each of these steps into several substeps. You could
break step 1.1.4 “go through doorway” down into several motions. We will
stop at three levels for this problem. We have broken down the problem to
basic human conscious actions. The final number of refinements will depend
on how complex the problem is. The more complex the problem is, the more
steps it will take to break the problem into sufficiently simple steps that your
audience can perform them.

You may have noticed at final registration for classes they now have a
little chart that you follow along step by step as you go through the process.
They have broken the big and general problem of “final registration” into a
set of simpler steps for you to follow in order that will solve the problem of

128 CHAPTER 12. PROGRAMMING

getting you registered for classes. Even the university administration can see
the advantages inherent in this process.

Programming a computer to solve a problem involves a similar process,
except that the computer is the dumbest friend you have ever known. It will
do exactly what you tell it, so you can not be ambiguous in your directions.
You also must break down your problem to a level that the computer can
handle on its own. This is when most people stop viewing computers as
mysterious and unknowable, and start complaining about how ‘stupid’ they
really are.

This ability to break down a problem statement down into steps is prob-
ably the most important thing to be learned in this class. Breaking down
the problem forces you to understand the problem before you try to solve it.
It is very tempting to just go right at the problem and start trying to fight
the problem without thinking first, but it is always faster to slow down, sit
back and think before you type.

We are going to start with a very simple problem expressed in English.
We are going to break that problem down into a step by step English al-
gorithm. We will then write these steps in the Pascal language so that the
computer can understand them. When we have finished we will have a com-
plete Pascal program.

Problem −→ Algorithm −→ Program

In everyday life we speak to each other in the language we are most
familiar. For the sake of argument lets say it’s English. When we speak
English to one another we usually understand what each other is saying
and if the sentences are ideas, orders or requests, we usually understand
what it means and how to go about fulfilling the request. Unfortunately
there are also instances when we do not communicate our orders effectively,
perhaps because of a lack in the ability to speak the language or a lack in the
specificity of the orders. For example in a recipe to bake a cake you may be
asked to put in two eggs. Two people may interpret that in different ways.
The obvious interpretation would be to crack the egg and empty its contents
into the mixing bowl; an alternate interpretation is that we throw in the two
eggs, shell and all. Speaking in a computer language so that the computer
understands your intentions presents the same problems.

You have to treat the computer as a 3 year old child to get it to perform
the tasks exactly as you intended. You must first be able to speak the com-

12.3. PORTABILITY 129

puter language accurately because the computer is absolutely intolerant of
incorrect grammar. And you must be able to break up the descriptions of a
task you wish to perform into small enough parts so that the computer will
understand without ambiguity. The rule to remember is: Computers never
do what you WANT them to do; only what you TELL them to do. As
Aldous Huxley said:

People always get what they ask for; the only trouble is that they
never know, until they get it, what it actually is that they have
asked for.

We have said that computers only know 0s and 1s. It would be rather
tedious and very error-prone if we had to write programs with only 0s and
1s in this binary language. Fortunately each CPU on the market has its
own assembly language which makes things a little better . . . a little closer
to English. Pascal and other high level languages such as C, BASIC,
and Lisp make computer programs look even more like English. This makes
the programs much easier to write, and much easier to understand. Even
so, computer programming languages have a very precise grammar, and any
deviation from it will cause the computer to reject what you write.

12.3 Portability

Programs written in high level languages such as Pascal are portable. I
can write the same Pascal program on an IBM-PC or a Macintosh even
though they have different CPUs. The code within the Pascal program does
not depend on the brand of machine it is running on. Pascal programs
must be translated into assembly language before they can be run. When
this translation is performed they are translated into the specific assembly
language of the CPU that will be used. This assembly language (low level
language) version is no longer portable. It can only be used with that same
type of CPU. Figure 12.1 illustrates.

12.4 Pascal

We are going to be using the computer language called Pascal in this class,
which was named after the French mathematician Blaise Pascal. We are

130 CHAPTER 12. PROGRAMMING

Compiler

Compiler

Pascal
Computer
Program

Text
Editor

Figure 12.1: Portability of Pascal to different CPUs

using it because it is a popular language at the moment in computer science
curriculums, and it is very similar to most other computer languages you
may encounter. It is also the language used in CSC 102, and this class is a
prerequisite for that class.

We begin with a simple problem of teaching the computer how to add
two numbers together and display the answer. This is a classic program as
we all know that computers are good at arithmetic.

In plain English how is this problem expressed?

We may write:

I need to teach the computer how to add two numbers together and I would
like to see the answer that the computer gets.

This is a clear and simple problem statement. It is important that you
understand the problem before you attempt to solve it. Unless you fully
understand the problem, you will never really know that what you are doing
will solve it. This is a fact that applies to problem solving in general and
not just computers. In Software Engineering, defining the problem occupies
30% of the effort of solving the problem.

The problem statement we have written above is fine for humans but far
too imprecise for computers.Let us break the statement into smaller parts
such as:

1. Give me two numbers.

12.4. PASCAL 131

2. Add them together.
3. Show the answer.

These smaller parts indicate a stepwise refinement of the problem
statement. We should now attempt to exercise stepwise refinement to make
the algorithm above more precise until finally we reach a stage where we can
convert the idea directly into Pascal. A refinement to the above algorithm
is:

1a. Give me a number.
1b. Give me another number.
2. Add them together.
3. Show the answer.

We break step 1 into two parts 1a, and 1b. You will notice that this looks
a bit like an outline. We use letters and numbers to identify each step so
we can see the refinement process. At this point, Step 2 is still somewhat
imprecise. What do we mean by, Add THEM together? We therefore revise
step 2 with a new refinement as follows:

1a. Give me a number.
1b. Give me another number.
2. Add the first number and second number together.
3. Show the answer.

Now, Step 3 seems a little imprecise. What do we mean by SHOW the
answer? Let us rewrite the above as:

1a. Give me a number.
1b. Give me another number.
2. Add the first number and second number together.
3. Print the answer in step 2 onto the computer screen.

Since computers tend to be mathematical machines that often deal with
symbols let us try to gradually move toward using symbols in our algorithm.

For example instead of saying: 1a. Give me a number. Let us say,
Give me a number and call it NUMBERONE. Likewise we can call the sec-
ond number NUMBERTWO. NUMBERONE and NUMBERTWO are good

132 CHAPTER 12. PROGRAMMING

names for these symbols since we know that they are going to be numbers.
Other good names could be FirstNumber and SecondNumber, or Number1
and Number2. So the algorithm now becomes:

1a. Give me a number and call it: NUMBERONE.
1b. Give me a number and call it: NUMBERTWO.
2. Add NUMBERONE and NUMBERTWO together.
3. Print the answer in step 2 onto the computer screen.

Let us also try to elaborate on step 2 and re-write it using another symbol
THESUM. THESUM is a good name since we want to compute the sum of
the two numbers. We could have called this NUMBERTHREE, or ANSWER
but THESUM is much more specific. Let us use THESUM to contain the
results of adding NUMBERONE and NUMBERTWO.

1a. Give me a number and call it: NUMBERONE.
1b. Give me a number and call it: NUMBERTWO.
2. Let THESUM = NUMBERONE + NUMBERTWO.
3. Print the answer in step 2 onto the computer screen.

Now we can rewrite step 3 so that our algorithm becomes:

1a. Give me a number and call it: NUMBERONE.
1b. Give me a number and call it: NUMBERTWO.
2. Let THESUM = NUMBERONE + NUMBERTWO.
3. Print the answer, THESUM, onto the computer screen.

At this point we can see that certain steps are becoming more precise
while others are still somewhat vague. For example, step 1a and 1b says:
Give ME a number and call it . . .We don’t want to use the word ME when
we talk about computers so we use a term that sounds more like a computer
term: READ. We want to read in values for these two numbers. But instead
of just reading in the number, we should ask the user to give us a number.
This is slightly more polite. So we can rewrite the steps as:

1ai. Ask user for NUMBERONE.
1aii. Read NUMBERONE.
1bi. Ask user for NUMBERTWO.

12.4. PASCAL 133

1bii Read NUMBERTWO.
2. THESUM = NUMBERONE + NUMBERTWO.
3. Print the answer, THESUM, onto the computer screen.

Similarly the third step: Print the answer . . . can be more tersely ex-
pressed if we used WRITE. We want to write out the answer.We should also
write out an appropriate message telling what this answer represents. The
new refinement becomes:

1ai. Ask user for NUMBERONE.
1aii. Read NUMBERONE.
1bi. Ask user for NUMBERTWO.
1bii Read NUMBERTWO.
2. THESUM = NUMBERONE + NUMBERTWO.
3a. Write explanation.
3b. Write THESUM.

At this point our instructions are beginning to look more like a Pascal
program. In fact in Pascal there are commands: READ and WRITE that
does exactly what we want: to READ-in information (from the keyboard)
and to WRITE-out information to the screen. With what we have developed
so far, the grammar is still not quite correct Pascal so we need to re-write our
steps using the Pascal grammar. Steps 1aii, 1bii and 3b may be re-written
as follows:

1ai. Ask user for NUMBERONE.
1aii. Read (NUMBERONE);
1bi. Ask user for NUMBERTWO.
1bii Read (NUMBERTWO);
2. THESUM = NUMBERONE + NUMBERTWO.
3a. Write explanation.
3b. Write (THESUM);

Now we have to deal with writing out some explanatory text. Similar
to the way we can Write (THESUM) we can just write out some plain text.
Steps 1ai, 1bi, and 3a are re-written as follows:

1ai. Write (’Please enter the first number’);

134 CHAPTER 12. PROGRAMMING

1aii. Read (NUMBERONE);
1bi. Write (’Please enter the second number’);
1bii Read (NUMBERTWO);
2. THESUM = NUMBERONE + NUMBERTWO.
3a. Write (’The sum of the two numbers is’);
3b. Write (THESUM);

Note the added parentheses and semi-colons after the instructions. At
this point our problem is almost a Pascal program. It is “almost” a Pascal
program because we need to make some changes to step 2. It is still not
in the correct grammatical form (or syntax). We should rewrite step 2 as
shown below, and at the same time we need to remove the step labels we
have used so far because Pascal does not use them.

Write (’Please enter the first number’);

Read (NUMBERONE);

Write (’Please enter the second number’);

Read (NUMBERTWO);

THESUM = NUMBERONE + NUMBERTWO.

Write (’The sum of the two numbers is’);

Write (THESUM);

Before this becomes a complete Pascal program we need to include some
additional information in the program. These will be explained after we
present the complete program in Figure 12.2.

12.5 Literate Programming

Stepwise Refinement is a technique often used by good Software Engineers.
It has been greatly popularized by a technique called Literate Program-
ming; invented by professor Donald Knuth at Stanford University. It is an
attractive means of programming because it forces the programmer to state
the problem clearly and to concentrate on only one part of the problem at a
time. Literate programming also forces programmers to thoroughly explain
their program rather than just plunge in and write incomprehensible instruc-
tions. In fact a well written Literate Program should be as easy to read and
follow as a good novel. In fact Knuth has published several books which are

12.5. LITERATE PROGRAMMING 135

program AddEmUp;

var

NumberOne, NumberTwo, TheSum: INTEGER;

begin

WRITE(’Please enter the first number’);

READ(NumberOne);

WRITE(’Please enter the second number’);

READ(NumberTwo);

TheSum := NumberOne + NumberTwo;

WRITELN(’The sum of the two numbers is:’, TheSum);

end.

Figure 12.2: Pascal Program

actually programs written in Literate Programming style, but because they
have been written in this style, they have been sold as computer textbooks.

So in the spirit of Literate Programming we should explain (or comment
or document) our program appropriately so that when we read it again at a
later date we can still understand what it was supposed to do. We put a large
comment at the top telling who wrote the program, when it was written, and
what in general it was written to do. Important lines of code have comments
written before them.

The new program with comments included is shown in Figure 12.3. Note:
Text enclosed in {} pairs are recognized by Pascal as comments and not
actual instructions. That is when Pascal works on the program it will ignore
all the text that are enclosed in {}. This gives us a opportunity to insert
“human” information there that makes our program more understandable
without interfering with the normal interpretation of the program by the
computer.

You may have noticed that we have indented the lines of the program.
Along with comments and good variable names, indenting is used to make
the program more readable to humans. When we write a paper in English
we also indent our paragraphs to make them more readable.

136 CHAPTER 12. PROGRAMMING

program AddEmUp;

{***}

{* Authors: Jason Leigh and Andy Johnson *}

{* Date: 6/18/89 (last modification 4/29/90) *}

{***}

{* Description: *}

{* The computer will ask me for two numbers. *}

{* It will then add those *}

{* numbers together and show me the sum *}

{***}

var

NumberOne, NumberTwo, TheSum: INTEGER;

begin

{print out welcoming message}

WRITELN(’Welcome to the number adding program.’);

{prompt the user for the numbers}

WRITE(’Please enter the first number’);

READ(NumberOne);

WRITE(’Please enter the second number’);

READ(NumberTwo);

{calculate the sum of the two numbers}

TheSum := NumberOne + NumberTwo;

{print out the sum of the two numbers}

WRITELN(’The sum of the two numbers is:’, TheSum);

end.

Figure 12.3: Complete Pascal Program

12.6. TYPES OF ERRORS 137

12.6 Types of Errors

There are two different kinds of errors that are possible when writing pro-
grams. One is a syntax error, and the other is a semantic error. These
programming errors are similar to their English equivalents. A syntax error
is an error in grammar. The computer does not understand what you want
it to do. It could be as simple as mistyping a letter, or misspelling a word. A
semantic error is an error in meaning. You have given the computer instruc-
tions with proper grammar, but the machine does not do what you want it
to do. You have told it to do the wrong thing and it is happily doing what
you told it to do. Stepwise refinement can not eliminate syntax errors, but
it can greatly reduce semantic errors, and the earlier you catch an error, the
easier it is to fix it.

In English a sentence that is syntactically incorrect is “Jane the rifle
Dick at shoots.” There are several grammatical errors in that sentence. A
sentence that is syntactically correct but semantically incorrect is “Colourless
green ideas sleep furiously.” Syntactically there is nothing wrong with this
statement, but it doesnt make any sense: How can something be colourless
and green? How can you sleep furiously? How can an idea be green, and
how does it sleep?

12.7 Programming and You

The steps involved in converting our problem statement to a Pascal program
is one of many possible solutions. Depending on the creativity of the pro-
grammer many different programs may appear, all solving the same problem
in unique ways. There are no concrete steps that will always guide you from
a problem statement to a final computer program. Successful translation
requires a lot of practice and the more practice you get the better you will be
able to perform this translation. It is like learning a foreign language. It re-
quires a great deal of practice before you are able to speak the programming
language fluently. But all of you have learned English, and it is far stranger
than any computer language you will encounter.

138 CHAPTER 12. PROGRAMMING

12.8 Questions

1. Use stepwise refinement to refine the idea of going into a fast food
restaurant and having lunch.

2. list 3 reasons why a person would want to write his own program.

3. Stepwise Refinement is used to

(a) Break a problem down into smaller more manageable pieces

(b) Convert a program from Pascal into Assembly Language

(c) Compile a Pascal program

(d) Create an executable version of a Pascal program

4. How does an algorithm relate to a program.?

5. What is the difference between a syntax error and a semantic error?

6. The language Pascal was named after

(a) Bernie Pascal

(b) Jean-Luc Pascal

(c) Blaise Pascal

(d) Luther Pascal

7. Develop an algorithm and a Pascal program for computing the value
of Y in the following equation: Y = MX +B.

8. Develop an algorithm and a Pascal program for computing the average
of your exam grades.

9. Develop an algorithm and a Pascal program to convert Fahrenheit to
Celsius, or vice-versa.

Chapter 13

Some Pascal

We are now ready to actually talk about Pascal programming. You have
used a word processor to type information into the computer. You have
given specific commands to a database to perform specific functions. You
have used formulas in a spreadsheet to do calculations. In the last chapter
you learned how to break a problem down into smaller, simpler problems.
Programming combines all these skills as you take a problem, break it down
into specific instructions the computer understands, and then type it in to
the computer using a text editor.

13.1 Line by Line

First we are going to show you the final version of the program we developed
using stepwise refinement. We are now going to look at the individual lines
of code and actually see what they do. The final version of the program is
shown in figure 13.1.

Now my guess is that you understand what that program does, even if
you do not know any Pascal. That is the kind of program that we want you
to be able to write . . . one that can be read and understood by people who
do not know anything about programming.

Let’s look at this program in a little more detail:

PROGRAM AddEmUp;

Every Pascal program must start with the word “program” and then the
one-word program name and then a semi-colon. In this case the author of

139

140 CHAPTER 13. SOME PASCAL

program AddEmUp;

{***}

{* Authors: Jason Leigh and Andy Johnson *}

{* Date: 6/18/89 (last modification 4/29/90) *}

{***}

{* Description: *}

{* The computer will ask me for two numbers. *}

{* It will then add those *}

{* numbers together and show me the sum *}

{***}

var

NumberOne, NumberTwo, TheSum: INTEGER;

begin

{print out welcoming message}

WRITELN(’Welcome to the number adding program.’);

{prompt the user for the numbers}

WRITE(’Please enter the first number’);

READ(NumberOne);

WRITE(’Please enter the second number’);

READ(NumberTwo);

{calculate the sum of the two numbers}

TheSum := NumberOne + NumberTwo;

{print out the sum of the two numbers}

WRITELN(’The sum of the two numbers is:’, TheSum);

end.

Figure 13.1: Complete Pascal Program

13.1. LINE BY LINE 141

the program named the program AddEmUp.

{***}

{* Authors: Jason Leigh and Andy Johnson *}

{* Date: 6/18/89 (last modification 4/29/90) *}

{***}

{* Description: *}

{* The computer will ask me for two numbers. *}

{* It will then add those *}

{* numbers together and show me the sum *}

{***}

The words on these lines are encased in the squiggly brackets ‘{’ and ‘}’.
Anything enclosed in squiggly brackets is called a comment. Comments are
used to make the program more readable to a human who wants to know
what your program does. The computer ignores all of your comments when
it translates your program. The comment at the top of the program usually
tells who wrote the program, when it was written, and what it does in general.

After the comments comes a blank line. The computer does not need
it but it makes your code much easier to read if important parts of it are
sectioned off using blank lines.

var

NumberOne, NumberTwo, TheSum: INTEGER;

Here is where we declare what type each of our variables will be (var is
short for variables.) A variable is a location in memory that is going to be
used to store a value while the program is running. This place in memory is
given a name (such as NumberOne.) We also give this location in memory
a type (such as integer) which tells that location what kinds of things it can
expect to be put there. In this program we set aside three memory locations
and all of them will hold integers. We do not give any values to the variables
at this point, we only declare their existence. It is important to give the
variables appropriate names to make the program easier to read.

begin

end.

142 CHAPTER 13. SOME PASCAL

The ‘main body’ of the program, where the actual computing goes on, is
contained between the words ‘begin’ and ‘end.’ It is important to note that
after the end there is a period. Just as a Pascal program begins with the
word ‘program’ it also must end with ‘end.’ You may notice that the text
within the begin/end block is indented, as were the variables we declared.
The computer also ignores all the indenting and all the white space you put
into your program. When writing a paper we use paragraphs to break up our
writing. We indent the first line of our paragraphs, and indent quotations
even more. This indenting does not change the meaning of the words that
we have written. It makes them easier to read. That is why we use indenting
and white space in our Pascal programs. We want to make them easier to
read.

{print out welcoming message}

WRITELN(’Welcome to the number adding program.’);

The first line is contained in squiggly brackets so it is a comment. It
tells us in English what is going to happen next. The second line uses the
word ‘writeln’ and then there is a pair of parentheses, and finally a semi-
colon. Writeln is short for “write line.” Writeln is used to print text onto the
monitor screen. What it prints is contained within the parenthesis. Writeln
can be used to print out the values of variables, or just text. If text is to
be written out it must be contained within single quotes (note not “ [double
quotes] or ‘ [apostrophe].) In this case the program will write out the phrase
Welcome to the number adding program.

{prompt the user for the numbers}

Here we have another comment telling the reader what the program is going
to do next.

WRITE(’Please enter the first number’);

READ(NumberOne);

Above we saw a writeln, and here we have a write. Both of them write
out text onto the screen but the writeln moves down to the next line when
it is finished . . . like hitting the carriage return on a typewriter. The write
writes out text but does not hit the carriage return. This write statement
is acting as a prompt. It is prompting the user of the program to type in

13.1. LINE BY LINE 143

a number. The next line uses the word read, a pair of parenthesis, and a
semi-colon. Where ‘write’ is used to display information to the user, read is
used to get information from the user. In this case we are going to read a
value into the variable named NumberOne.

WRITE(’Please enter the second number’);

READ(NumberTwo);

These two lines behave in a similar way to the two lines above. The user
is prompted to enter a second number, and the value that the user types in
is stored in the variable NumberTwo.

{calculate the sum of the two numbers}

TheSum := NumberOne + NumberTwo;

Now we are going to calculate the sum of the two numbers. The first line
is a comment that tells us this. The second line is an assignment statement.
‘:=’ is the assignment operator. What ‘:=’ does is that it calculates the value
on the right side and assigns that value to the variable on the left side. In
this case the variable TheSum will be assigned to be the sum of NumberOne
and NumberTwo. You can see here that the variable named TheSum is
appropriately named since it is going to contain the sum. Now you can see
why variables are called variables. TheSum, NumberOne, and NumberTwo
do not have any values at this point. The values will be supplied by the user
when the program is run. The contents of these variables will vary depending
on what happens when the program is run.

{print out the sum of the two numbers}

WRITELN(’The sum of the two numbers is:’, TheSum);

The two final lines within the main body are responsible for printing out
the answer. The comment tells us that. Again we use a writeln to write out
some information to the user. In this case we are writing out the text The
sum of the two numbers is: and then we write out the value contained in the
variable called TheSum.

144 CHAPTER 13. SOME PASCAL

13.2 Trace

Now you have seen what each line of the program does, so now lets look
at what the program as a whole does. To do this we are going to use a
technique called tracing. When we trace a program we are “running” it on
a piece of paper in the same way that a computer would run it. In order to
make what’s going on a little clearer we are going to add some line numbers.
These are shown in Figure 13.2

We start “running” the program at line 0. At this point we do not know
what the values of the three variables are, so we mark them with a question
mark. When we get to line 1 an introductory message is printed on the screen
telling the user that the program is running. In line 2 Another message is
printed prompting the user to enter a number. The values of all the variables
are still unknown at this point. In line 3, the computer is waiting for the user
to enter a number. Our imaginary user enters the number 4 in response to
the computer’s prompt. Now the value 4 is stored as the value of the variable
named NumberOne. Line 4 prompts the user for the next number, and line
5 reads in the number that the user types. In this case our imaginary user
types in the number 11. In line 6 the computer calculates the sum of the two
numbers and stores the value 15 in the variable TheSum. Line 7 prints out
the value in the variable TheSum along with an appropriate message. Then
the program is done. See Figure 13.3.

You have now seen two ways to put a value into a variable. You can either
read in a value using a READ statement, or use the assignment statement
:=. The WRITELN statements do not change the value within the variables.

13.3 Semi-Colons

You are probably wondering why there are so many semi-colons in Pascal
when you hardly ever see them in English. Pascal does not look for carriage
returns or white space to end a statement. The semicolon is used to separate
statements. In English we use periods to separate our sentences. We can
write sentences that are longer than one line. We can write short sentences.
The end of a line does not signal the end of an English sentence, a period
does. The same is true for Pascal. The end of a line does not signal the end
of a Pascal Statement, a semi-colon does.

13.3. SEMI-COLONS 145

program AddEmUp;

{***}

{* Authors: Jason Leigh and Andy Johnson *}

{* Date: 6/18/89 (last modification 4/29/90) *}

{***}

{* Description: *}

{* The computer will ask me for two numbers. *}

{* It will then add those *}

{* numbers together and show me the sum *}

{***}

var

NumberOne, NumberTwo, TheSum: INTEGER;

{0} begin

{print out welcoming message}

{1} WRITELN(’Welcome to the number adding program.’);

{prompt the user for the numbers}

{2} WRITE(’Please enter the first number’);

{3} READ(NumberOne);

{4} WRITE(’Please enter the second number’);

{5} READ(NumberTwo);

{calculate the sum of the two numbers}

{6} TheSum := NumberOne + NumberTwo;

{print out the sum of the two numbers}

{7} WRITELN(’The sum of the two numbers is:’, TheSum);

end.

Figure 13.2: Complete Pascal Program with Line Numbers

146 CHAPTER 13. SOME PASCAL

Line Number Number The What is Printed User
One Two Sum On The Screen Types
0 ? ? ?
1 ? ? ? Welcome to the . . . program.
2 ? ? ? Please enter the first number 4
3 4 ? ?
4 4 ? ? Please enter the second number 11
5 4 11 ?
6 4 11 15
7 4 11 15 The sum of the two numbers is: 15

done

Figure 13.3: Tracing the Program

13.4 Style

It is possible to write a very different looking Pascal program that will do
exactly the same job as the program shown in Figure 13.1. This version
is shown in Figure 13.4. As far as the user is concerned the programs are
exactly the same but this program is very unreadable and this style should
not be emulated.

What is so bad about it?

1. meaningless program names

2. meaningless variable names

3. no indenting

4. no white space

5. no comments

6. more than one statement per line

It is very important for you to write readable Pascal programs, if only
for the reason that it makes your teacher happy, and more likely to give you
a good grade. Mostly it is a question of style. We want you have a good

13.5. VARIABLES 147

PROGRAM test; VAR X, Y, Z: INTEGER; BEGIN

WRITELN(’Welcome to the number adding program.’);

WRITE(’Please enter the first number’);

READ(X); WRITE(’Please enter the second number’);

READ(Y); Z := X + Y;

WRITELN(’The sum of the two numbers is:’, Z); END.

Figure 13.4: Bad Style

programming style. Programs should be readable, and easy to follow. Just
getting the program to work is not enough. In fact its only about half the
challenge.

13.5 Variables

In mathematics a variable is something like “X” or “Y” and they are used
in equations such as Y = 5X + 2. “X” and “Y” are variables because they
do not have a set value - they are variable. In computer languages a variable
is the name of a certain location in the RAM that is used to store a value.
The value stored at this location could be 12 or it could be the letter ‘C’
so the contents can vary. Computer memory can be compared to a wall
of mail-boxes. Each one has a unique name, and their purpose is to store
something.

Up in the VAR section is where we declare our variables. We tell the
computer that we need some space reserved in memory, and we are going
to refer to that space by a certain name. We also tell the computer what
kinds of things we are going to put in that space. Declaring a variable is like
writing your name on your mailbox. You have claimed that space and given
it a name.

Within the body of the program is where we use the variable. Declaring
a variable does not give it any specific value. This is why it is a good idea
to initialize your variables to give them a specific starting value. When
you write your name on the mailbox, you will very likely want to open it up
and take out any old mail that has been left over from the previous tenant.
Similarly in a computer program you do not know what’s been left in the
memory that you have just claimed for your variable. Its best to clean it out

148 CHAPTER 13. SOME PASCAL

and set it to a specific value to avoid problems. The first Space Shuttle flight
was delayed several weeks because someone did not initialize their variables.

Like your mailbox there are only a few things you can do with a variable.
You can look and see whats inside, or you can put something new inside. A
variable can only hold one thing so its like a very small mailbox. If you try
to put another value into a variable it replaces the old one. So if the variable
“Temperature” already contains the value 60 and you issue the command
“Temperature := 75;” the variable “Temperature” now contains the value
75. The 60 is gone, replaced, no more. If the letter carrier comes to put a
letter in your box and he finds you already have a letter there he kindly rips
up the old letter and substitutes the new one in its place.

In the first sample program we made all three variables of the type ‘in-
teger.’ There are three other major types of variables you need to be aware
of: real, boolean, char.

13.5.1 Integer

Integers are the whole numbers between 32768 and -32768. Now this might
be a little limiting. Integers do not include fractions, and they do not include
large numbers. integers are good for everyday type calculations where the
numbers do not get very large.

13.5.2 Real

Reals are rational numbers. They have a whole part and a decimal part.
Real numbers have a much wider range than the integers, but real numbers
are not exact. We said before that computers store everything as a sequence
of 0s and 1s. A number such as π or 1/3 can not be represented with a finite
number of 0s and 1s, so the number stored in a real variable is not exact.

13.5.3 Char

Integers and Reals pretty much cover the numbers, but computer programs
can deal with more than numbers. Computers can also deal with letters. A
variable that holds a single letter is of type char (short for character.) A
variable that holds a sequence of letters is a string. Characters include more
than letters, they also include the single digits, and the punctuation marks.

13.6. RESERVED WORDS 149

Any single character that you can type with a typewriter is a character in
Pascal.

13.5.4 Boolean

Since computers deal with 1s and 0s,on and off, yes and no, there is a special
variable type to handle these. It is called Boolean, named after logician
George Boole. Boolean variables are either true or false . . . that’s it.

13.6 Reserved Words

When we declare a variable we give it a name and a type. Now we have said
that we want to give variables good long names, but there are some names
we can not use for variables. Like many programming languages, Pascal has
a set of reserved words. These reserved words have special meanings in the
language so they are not available to the programmer. A listing of Pascal’s
reserved words is given below:
and array begin case const
div do downto else end
file for function goto if
in label mod nil not
of or packed procedure program
record repeat set then to
type until var while with

13.7 Arithmetic

In the first sample program there was a line that read:

{calculate the sum of the two numbers}

TheSum := NumberOne + NumberTwo;

We used the “+” symbol to stand for addition, just like in arithmetic.
We use the “-” (dash) for subtraction. Now computers do not use × and ÷
for multiplication and division. Instead “*” (asterisk) means multiplication
and “/” (slash) means division. All of the standard rules of algebra apply in
Pascal, including the precedence rules, but remember that := (colon equals)

150 CHAPTER 13. SOME PASCAL

is not an equal sign, but an assignment statement.

For example:

ForceObject := MassOfObject * AccelerationOfObject;

is a Pascal statement that takes the value of the variable MassOfObject
and multiplies it by the value of the variable AccelerationOfObject and then
stores the result into the variable ForceObject. Whatever value that was in
ForceObject before is now gone. It has been replaced by the new value.

If we had a variable which stored a length in inches and we wanted to
convert that into the number of centimeters we could do it as follows:

NumberCentimeters := NumberInches * 2.54;

If we wanted to do the reverse calculation and convert the number of
centimeters into the number of inches we could not use this same line of
code. We would need to use the following line of code:

NumberInches := NumberCentimeters / 2.54;

Now here we do have a bit of a problem. You see adding, subtracting, or
multiplying integers will always give you another integer. This is not true of
division. Pascal assumes that the “/” operator will produce a real number
as a result. Now what happens if we try to put a real value such as 12.5 into
an integer variable. It is like trying to put a round peg into a square hole. It
won’t fit, and Pascal will tell you. It will give you an error message. You can
however assign an integer value such as -34 to real variable as it will simply
add on a “.0” to the end of it.

Now how about this one:

Counter := Counter + 1;

This statement is meaningless in arithmetic since X ̸= X + 1. But as
we said before := is an assignment statement. What is on the right side?
“Counter + 1;” OK, we can calculate that value. Then we assign that value
to the variable on the left hand side. In this case that variable also happens
to appear on the right hand side. No problem. This statement increments
the value of Counter by 1.

13.8. WRITE/WRITELN 151

13.8 Write/Writeln

Above we had a brief discussion on the difference between WRITE and
WRITELN. Since this often causes confusion we will give a few examples.
Remember that WRITE prints something onto the screen and then waits
there. Writeln does a write and then appends a carriage return to the end.

WRITELN(’A’, ’B’, ’C’);

WRITE(’d’, ’e’, ’f’);

WRITE(’G’, ’H’, ’I’);

WRITELN(’j’, ’k’, ’l’);

WRITELN(’M’, ’N’, ’O’);

creates the following output:

ABC
defGHIjkl
MNO

As there is a WRITE and WRITELN for outputting information to the user;
there is a READ and READLN for inputting information from the user. Just
as WRITE will print out information and wait on the same line, READ will
read in information and wait on the same line. Just as WRITELN goes to
the beginning of the next line after writing out its information, READLN
will read in information and then go to the beginning of the next line.

13.9 Some Pascal and You

And that is some Pascal. What you have learned so far will allow you to
write some fairly simple, straightforward programs (and those are the best
kind.) As with any language, you do not become fluent unless you practice
it.

13.10 Questions

1. What is the difference between declaring a variable and initializing it?
What will happen if we don’t declare a variable? What will happen if
we don’t initialize it?

152 CHAPTER 13. SOME PASCAL

2. Why is it important for you to put comments into your code?

3. If you try to assign a real value to an integer variable

(a) the fractional part is ignored

(b) the fractional part is rounded to the nearest integer

(c) the integer variable will be converted to a real variable

(d) you will get an error message

4. Writeln is different from Write in that Writeln

(a) goes to the next line then does a write

(b) does a write then goes to the next line

(c) goes to the next line, does a write, then goes to the next line

(d) only prints out integers while write prints out real numbers

5. Why is it important to put comments in your program?

6. An integer is a

(a) any number

(b) positive whole number

(c) positive whole number or zero

(d) positive or negative whole number or zero

7. Indenting is used in a program so that

(a) the computer knows the order to execute the statements

(b) the computer can create an application

(c) the computer can read the program easier

(d) the program is made more readable to a human

8. All Pascal programs end with a

(a) :

(b) ;

(c) .

(d) ..

Chapter 14

More Pascal

There are three different orders in which statements will be executed: Sequen-
tially, Conditionally, and Repititionally (yes, I know there is no such word as
repititionally, but I like it.) You have already seen sequential programs. In
them each line is processed in turn, and then the next line is processed and
so on. When statements are executed Conditionally they may or may not
be executed depending on whether the condition is met. When statements
are executed repititionally they may be executed more than one time. All
three different types of control are necessary to write good programs. Figure
14.1illustrates.

14.1 If

The most common conditional statement in Pascal is the “IF” statement. It
looks like this:

Sequential Conditional Repititional

Figure 14.1: Different Statement Orders

153

154 CHAPTER 14. MORE PASCAL

IF condition THEN

BEGIN

{do if condition is true}

END;

or it can look like this

IF condition THEN

BEGIN

{do if condition is true}

END

ELSE

BEGIN

{do if condition is false}

END;

Within the BEGIN END block of the IF statement we can have any
Pascal statements that we wish. We can do arithmetic, read in values, write
out values, or even have other IF statements.

Let’s say we want to write a Pascal program to help us plan our daily
exercise. We want to give the program the current outside temperature, and
the computer will tell us what we should do. We can set up the following
table:

80 < Temp swimming
60 < Temp ≤ 80 tennis
40 < Temp ≤ 60 baseball
otherwise stay inside

Now assuming we have the outside temperature stored in the variable Temp
we can handle the first case by writing:

IF Temp > 80 THEN

BEGIN

WRITELN(’Go Swimming’);

END;

If Temp is larger than 80 we will get the message Go Swimming. “Temp
> 80” is the condition that is being evaluated. If this is true then the message
Go Swimming is printed. If the condition is not true then the message will
not be printed. Now we need to add in the condition for playing tennis. We
could write the following.

14.1. IF 155

IF Temp > 80 THEN

BEGIN

WRITELN(’Go Swimming’);

END;

IF Temp > 60 THEN

BEGIN

WRITELN(’Play Tennis’);

END;

Unfortunately, this won’t work. If Temp is 75 we get the correct message,
but what happens if the temperature is 90. Then we get BOTH messages
printed. That’s not what we wanted. Here is one way to avoid this problem.

IF Temp > 80 THEN

BEGIN

WRITELN(’Go Swimming’);

END;

IF (Temp > 60) AND (Temp <= 80) THEN

BEGIN

WRITELN(’Play Tennis’);

END;

We have made the second condition more explicit, so the Play Tennis
message will only be printed if Temp is greater than 70 AND less than or equal
to 80. The parentheses are needed now that we have multiple conditions. The
rest of the code looks basically the same:

IF Temp > 80 THEN

BEGIN

WRITELN(’Go Swimming’);

END;

IF (Temp > 60) AND (Temp <= 80) THEN

BEGIN

WRITELN(’Play Tennis’);

END;

IF (Temp > 40) AND (Temp <= 60) THEN

BEGIN

WRITELN(’Play Baseball’);

156 CHAPTER 14. MORE PASCAL

END;

IF Temp < 40 THEN

BEGIN

WRITELN(’Stay home and watch videos’);

END;

The entire program would look something like Figure 14.2.

14.2 If Then Else

Figure 14.3 shows another way to avoid the problem using the IF-THEN-
ELSE version of the IF statement.

Now that probably looks a bit messier to you, but it will do the same
thing. Note that there is never a “;” before an ELSE. Semi-colons are used
to separate one statement from another. The ELSE is still part of the IF-
THEN-ELSE statement. You would not put a semi-colon in the middle of
the word BEGIN(BEG;IN), so you do not put one before an ELSE.

14.3 Loops

There are three different types of repititional statements in Pascal. These
are generally called “loops” since they can loop back and perform the same
job over and over. We will deal with two of the three: the FOR loop and the
WHILE loop.

14.3.1 For loop

The FOR loop looks like this:

FOR Counter-variable := start to finish Do

BEGIN

{do this finish - start + 1 times}

END;

The WHILE loop looks like this:

14.3. LOOPS 157

PROGRAM Exercise;

{ Author: Andy Johnson Date: 4/29/90

The computer will tell me what exercise to perform

depending on the outside temperature }

VAR

Temp : INTEGER; {the outside temperature}

BEGIN

{print out welcoming message}

WRITELN(’Welcome to the exercise decision program.’);

{get the outside temperature}

WRITELN(’What is the temperature in Fahrenheit?:’);

READ(Temp);

{decide on what activity to perform}

IF Temp > 80 THEN

BEGIN

WRITELN(’Go Swimming’);

END;

IF (Temp > 60) AND (Temp <= 80) THEN

BEGIN

WRITELN(’Play Tennis’);

END;

IF (Temp > 40) AND (Temp <= 60) THEN

BEGIN

WRITELN(’Play Baseball’);

END;

IF Temp < 40 THEN

BEGIN

WRITELN(’Stay home and watch videos’);

END;

END.

Figure 14.2: Complete Pascal Exercise Program

158 CHAPTER 14. MORE PASCAL

PROGRAM Exercise2;

{ Author: Andy Johnson Date: 4/29/90

The computer will tell me what exercise to perform

depending on the outside temperature}

VAR

Temp: INTEGER; {the outside temperature}

BEGIN

{print out welcoming message}

WRITELN(’Welcome to the exercise decision program.’);

{get the outside temperature}

WRITELN(’What is the temperature in Fahrenheit?:’);

READ(Temp);

{decide on what activity to perform}

IF Temp > 80 THEN

BEGIN

WRITELN(’Go Swimming’);

END

ELSE

BEGIN

IF Temp > 60 THEN

BEGIN

WRITELN(’Play Tennis’);

END

ELSE

BEGIN

IF Temp > 40 THEN

BEGIN

WRITELN(’Play Baseball’);

END

ELSE

BEGIN

WRITELN(’Stay home and watch videos’);

END;

END;

END;

END.

Figure 14.3: Complete Pascal Exercise Program w/ IF-THEN-ELSE

14.3. LOOPS 159

WHILE condition Do

BEGIN

{do while condition is true}

END;

Let’s say we would like to write the word “hello” on the screen 5 times
like this:

hello
hello
hello
hello
hello

Now we could just write a simple program to do the job as shown in Figure
14.4. But there is a better way, using a FOR loop as shown in Figure 14.5.
Why is this better? Well, what happens if you need a program to print hello
50 times, or 500 times. It is much easier to change the 5 to a 500 in program
HelloFor, than to type in 495 more writelns into program Hello. The program
is much easier to modify. In this program the variable Counter is used as the
index for the FOR loop. Counter is set to 1 the first time through the loop
and then after executing the code within the loop, counter is automatically
incremented by one. This process continues until Counter exceeds the upper
limit of the FOR loop. In this case, Counter takes on values 1, 2, 3, 4, and
5.

There are some restrictions on the FOR loop. The counter-variable must
be an integer as well as the starting value and the ending value. In program
HelloFor we declared Counter to be an integer.

What if we wanted a program to print out the numbers 5 to 10 in a col-
umn like this:

5
6
7
8
9
10

We could certainly write a program with 6 writeln statements to do the job,

160 CHAPTER 14. MORE PASCAL

PROGRAM Hello;

{This program will write out hello 5 times in a column}

BEGIN

WRITELN(’hello’);

WRITELN(’hello’);

WRITELN(’hello’);

WRITELN(’hello’);

WRITELN(’hello’);

END.

Figure 14.4: Simple Hello Program

PROGRAM HelloFor;

{This program will write out hello 5 times in a column}

VAR

Counter: INTEGER; {counter for the FOR loop}

BEGIN

FOR Counter := 1 TO 5 DO

BEGIN

WRITELN(’hello’);

END;

END.

Figure 14.5: Better Hello Program

14.3. LOOPS 161

PROGRAM FiveTen;

{This program will write out the numbers between 5 and 10 inclusive}

VAR

Index : INTEGER; {counter for the FOR loop}

Start, Finish : INTEGER {start and finish for the FOR loop}

BEGIN

Start := 5; {initialize start}

Finish := 10; {initialize finish}

FOR Index := Start TO Finish DO

BEGIN

WRITELN(Index);

END;

END.

Figure 14.6: Counting from 5 to 10 Program

but again, this would be hard to modify. We can use a FOR loop to this as
shown in Figure 14.6.

What if we wanted to print the numbers in the opposite order, that is
start with 10 then 9 then 8 down to 5. Program TenFive in Figure 14.7 shows
you how to do this.

14.3.2 While loop

The WHILE loop is a more general loop that the FOR loop, so any FOR
loop can be expressed as a WHILE loop. Figure 14.8 shows the program
from Figure 14.5 using a WHILE loop. Figure 14.9 shows the program from
Figure 14.6 using a WHILE loop.

A WHILE loop will keep looping as long as the condition remains true.
In program HelloFor the condition is “Counter <= 5” so as long as Counter
is less than or equal to five, the code within the loop will be executed. Before
we get to the loop we set Counter equal to 1. Since 1 is less than 5 we enter
the loop. Within the loop “hello” is printed and Counter is incremented to

162 CHAPTER 14. MORE PASCAL

PROGRAM TenFive;

{This program will write out the numbers between 10 and 5 inclusive}

VAR

Index : INTEGER; {counter for the FOR loop}

Start, Finish : INTEGER {start and finish for the FOR loop}

BEGIN

Start := 10; {initialize start}

Finish := 5; {initialize finish}

FOR Index := Start DOWNTO Finish DO

BEGIN

WRITELN(Index);

END;

END.

Figure 14.7: Counting from 10 to 5 Program

PROGRAM HelloWhile;

{This program will write out hello 5 times in a column}

VAR

Counter : INTEGER; {counter for the WHILE loop}

BEGIN

Counter := 1; {initialize counter}

WHILE Counter <= 5 DO

BEGIN

WRITELN(’hello’);

Counter := Counter + 1; {increment counter}

END;

END.

Figure 14.8: Hello Program Using WHILE Loop

14.3. LOOPS 163

PROGRAM FiveTen2;

{This program will write out the numbers between 5 and 10 inclusive}

VAR

Index : INTEGER; {counter for the WHILE loop}

Start, Finish : INTEGER {start and finish for the WHILE loop}

BEGIN

Start := 5; {initialize start}

Finish := 10; {initialize finish}

Index := Start; {initialize counter}

WHILE Index <= Finish DO

BEGIN

WRITELN(Index);

Index := Index + 1; {increment counter}

END;

END.

Figure 14.9: Counting from 5 to 10 using a WHILE Loop

164 CHAPTER 14. MORE PASCAL

PROGRAM Infinite;

{This program will go into an infinite loop. This is not

a good thing for a program to do}

VAR

Index : INTEGER; {counter for the WHILE loop}

BEGIN

Index := 1; {initialize counter}

WHILE Index <= 10 DO

BEGIN

WRITELN(’hello’);

{forget to increment counter}

END;

END.

Figure 14.10: Infinite Loop Program

2. 2 is less than 5 so we go through the loop again. “hello” is printed and
Counter is incremented to 3. 3 ≤ 5 so we go through the loop again. “hello”
is printed and Counter is incremented to 4. 4 ≤ 5 so we go through the loop
again. “hello” is printed and Counter is incremented to 5. 5 ≤ 5 so we go
through the loop again. “hello” is printed and Counter is incremented to 6.
6 is greater than 5 so we do not repeat the loop again.

The FOR loop automatically incremented Counter and Index. TheWHILE
loop does not. We must increment any counters that we choose to use. One
of the dangers of a WHILE loop is to forget to increment the counter as
shown in the following program. This program will keep printing “hello” on
the screen until the computer is turned off. This is called an infinite loop.
Program Infinite in Figure 14.10 illustrates.

Why does it go into an infinite loop? Because Index is set to one, and
then it is never modified. Since 1 ≤ 10 the program will continue to loop.
The looping condition will never become false.

The condition of the while loop does not have to use integers. It can
involve reals, or characters or booleans, or any combination of them. Any
expression that evaluates to either true or false can be used as the condition

14.3. LOOPS 165

PROGRAM Response;

{This program will ask the user if it should keep going}

VAR

Response: CHAR; {sentinel for the WHILE loop}

BEGIN

Response := ’Y’; {initialize Response}

WHILE (Response = ’Y’) OR (Response = ’y’) DO

BEGIN

WRITELN(’hello’);

WRITE(’Do it again?(Y/N)’);

READLN(Response);

END;

WRITELN(’I am done’);

END.

Figure 14.11: WHILE Loop Under User Control

of a while loop.
Program Response in Figure 14.11 will print “hello” and then ask the

user whether it should do it again. If the user types in a capital Y or a lower
case y the program will do it again. The program will keep going through
this sequence until the user types something other than Y or y.

Note that the condition has = signs not :=. This is because := assigns a
value, where = checks for equality.

In the above program, we have a compound condition for the while state-
ment using the connective OR. The while condition will be true if either the
first condition or the second condition is true or both are true. As well as
OR, you can also use AND and NOT.

14.3.3 Logic

You might remember logical rules in Figure 14.12 from High-school. They
come in rather handy in Pascal. You might have noticed that the preced-
ing programs used ‘<=’ instead of ‘≤.’ Since certain mathematical symbols

166 CHAPTER 14. MORE PASCAL

True AND True → True True OR True → True
True AND False → False True OR False → True
False AND True → False False OR True → True
False AND False → False False OR False → False

NOT True → False
NOT False → True

Figure 14.12: Rules of Logic

= =
̸= <>
≤ <=
≥ >=
< <
> >

Figure 14.13: Mathematics VS Pascal

are not available on the keyboard so Pascal has some substitutes as shown in
Figure 14.13. You could have a complicated while condition like the following:

Counter := 1;

Response := ’Y’;

WHILE (counter <= 5) AND NOT ((Response = ’N’) OR (Response = ’n’)) Do

BEGIN

WRITELN(’hello’);

WRITE(’Do it again?(Y/N)’);

READLN(Response);

Counter := Counter + 1;

END;

In the above program “hello” will be printed at most 5 times, but if the
user does types a “N” or “n” to stop it, it will stop sooner. “hello” will be
printed as long as:

14.3. LOOPS 167

(Counter ≤ 5) AND NOT ((Response = ’N’) OR (Response = ’n’))

This can be seen as a collection of true and false clauses.

True/False AND NOT ((True/False) OR (True/False))

Depending on the values of the individual clauses the overall expression
will be either TRUE or FALSE.

For example, if Counter = 4 and Response = “Y” then we have:

True AND NOT ((False) OR (False))

In order to simplify this we do parenthesis first, then NOT, then AND,
and finally OR. These are the same simple logic rules that you learned about
in high-school. In this case we have parenthesis so we start there:

False OR False −→ False so we simplify to:

True AND NOT (False)

NOT False −→ True so we simplify to:

True AND True

True AND True −→ True so we simply end up with:

True

Since the while condition is true, the while loop would be executed for that
set of values. The while condition can always be simplified down to either
TRUE (the loop will execute again) or FALSE (the loop will not execute
again.)

14.3.4 Precedence

At this point we have introduced several operators, so we should show their
precedence order. You may remember that 5 × 4 + 3 = 23 not 35 because

168 CHAPTER 14. MORE PASCAL

()
not

∗, /, div, mod, and
+, -, or

=, <>,<=, >=, <,>, in

Figure 14.14: Order of Precedence

× has a higher precedence than +. Figure 14.14 shows the complete list in
decreasing order of precedence.

14.4 GOTO

Some computer languages (including Pascal) have another way of ordering
statements. These languages have what is called a GOTO statement. This
statement allows the program to GOTO some other part of the program.
The use of GOTOs is considered very bad programming practice. Programs
with GOTOs are very hard to figure out, because the program is jumping
from place to place. We have said that the goal of literate programming is to
make programs readable to those who know nothing about computers or pro-
gramming. If a program with GOTOs is confusing to someone who KNOWS
about computers and programming, then it will be incomprehensible to peo-
ple who know even less. When a programmer needs to use a GOTO, it shows
that there was not enough work done in the stepwise refinement phase.

14.5 Procedures

Sometimes our programs get very long and it is bothersome to have to read
page after page of code trying to find a certain section. Procedures solve this
problem. Procedures break up the code into segments. Procedures embody
the idea of stepwise refinement as each procedure contains a refinement of
the overall program, and the lines of code within the procedure refine the
idea of the procedure. Figure 14.15 contains the program that we generated
from stepwise refinement.

Here is the initial refinement:

14.5. PROCEDURES 169

program AddEmUp;

{***}

{* Authors: Jason Leigh and Andy Johnson *}

{* Date: 6/18/89 (last modification 4/29/90) *}

{***}

{* Description: *}

{* The computer will ask me for two numbers. *}

{* It will then add those *}

{* numbers together and show me the sum *}

{***}

var

NumberOne, NumberTwo, TheSum: INTEGER;

begin

{print out welcoming message}

WRITELN(’Welcome to the number adding program.’);

{prompt the user for the numbers}

WRITE(’Please enter the first number’);

READ(NumberOne);

WRITE(’Please enter the second number’);

READ(NumberTwo);

{calculate the sum of the two numbers}

TheSum := NumberOne + NumberTwo;

{print out the sum of the two numbers}

WRITELN(’The sum of the two numbers is:’, TheSum);

end.

Figure 14.15: ADDEMUP Pascal Program

170 CHAPTER 14. MORE PASCAL

1. Give me two numbers.
2. Add them together.
3. Show the answer.

We will use this initial refinement to break the program into procedures
as shown in Figure 14.16.

Now we have broken the program into three procedures. The procedures
are declared after the variables and look like little programs. The procedures
are called from within the main body by giving the procedure’s name.

PROCEDURE GiveMeTwoNumbers;

{prompt the user for the numbers}

begin

WRITE(’Please enter the first number’);

READ(NumberOne);

WRITE(’Please enter the second number’);

READ(NumberTwo);

end;

Here is the declaration of the GiveMeTwoNumbers procedure. It has an
appropriate name, and a comment to tell us what this procedure does. You
can see the similarities between a program and a procedure. The only dif-
ference is that the word PROGRAM is replaced by the word PROCEDURE
and the “end.” is replaced by an “end;” since there can only be one “end.”
in the program. Within the procedure there is a BEGIN-END block just like
in a program. Anything that can be written in a program can be written in
a procedure.

GiveMeTwoNumbers;

Procedure GiveMeTwoNumbers is activated (or called) by giving its name
followed by a semi-colon. When a procedure is called, its statements are
executed. After the procedure is finished, control is passed to the next line
in the main program.

Procedures help make the code more readable. When you want to find
the main body of the program all you have to do is go to the very end of the
code and there it is. You can then look at the procedure names and go right
to the procedure that you are interested in.

14.5. PROCEDURES 171

program AddEmUp;

{***}

{* Authors: Jason Leigh and Andy Johnson *}

{* Date: 6/18/89 (last modification 4/29/90 *}

{* This version has procedures *}

{***}

var

NumberOne, NumberTwo, TheSum: INTEGER;

PROCEDURE GiveMeTwoNumbers;

{prompt the user for the numbers}

begin

WRITE(’Please enter the first number’);

READ(NumberOne);

WRITE(’Please enter the second number’);

READ(NumberTwo);

end;

PROCEDURE AddThemTogether;

{calculate the sum of the two numbers}

begin

TheSum := NumberOne + NumberTwo;

end;

PROCEDURE ShowTheAnswer;

{print out the sum of the two numbers}

begin

WRITELN(’The sum of the two numbers is:’, TheSum);

end;

begin

{print out welcoming message}

WRITELN(’Welcome to the number adding program.’);

GiveMeTwoNumbers;

AddThemTogether;

ShowTheAnswer;

end.

Figure 14.16: ADDEMUP Pascal Program with Procedures

172 CHAPTER 14. MORE PASCAL

14.6 Numbers

When Pascal prints out a number it will try to print that number out using
the most compact representation possible. This will usually mean scientific
notation where 1200 would be written 1.2E+3. There are times when we
would like to specify how the number will be printed out, especially if we are
trying to set up columns of information. Pascal allows us to do this, though
the format is slightly different for integers and reals.

When we are writing out an integer variable we can write it like this:

Writeln(NumberOne:5);

That is: VARIABLE:NUMBER. The number tells how many places on
the screen to reserve for the value of the variable. The value of the variable
will be right justified within this number of places. If NumberOne contains
the value 13, the following would be printed:

13︸ ︷︷ ︸
5

When we are writing out a real variable we can write it like this:

Writeln(Fraction:8:2);

That is: VARIABLE:TOTAL:FRACTION. The total tells how many
places on the screen to reserve for the value of the variable, and the frac-
tion tells how many places are after the decimal point. The value of the
variable will be right justified within this number of places. If Fraction con-
tains the value 124.6, the following would be printed:

1 2 4 .

2︷︸︸︷
6 0︸ ︷︷ ︸

8

14.7 Even More Pascal

There is much, much more to Pascal than what has been mentioned here, but
a decent discussion of Pascal requires a book in itself. The concepts given
here are valid for almost all higher level languages, and once you understand
one high level language it is very easy to work with any of the others.

14.8. QUESTIONS 173

14.8 Questions

1. What are the advantages of using procedures in a program?

2. Why is a ‘GOTO’ considered bad programming practice?

3. What is an ‘infinite loop’?

4. The code within a WHILE loop will be executed

(a) as long as the while condition is true

(b) as long as the while condition is false

(c) once

(d) never

5. The counter in a FOR loop

(a) must be a character

(b) must be a real number

(c) is automatically incremented by one each time through the loop

(d) must be incremented by the user

174 CHAPTER 14. MORE PASCAL

Chapter 15

Programming Languages

In this class you will only be working with the Pascal language, but there are
many other languages out there that you will encounter if you wish to keep
writing your own programs. Many different “higher-level” (or more English-
like) computer languages have been written since the mid-50’s. Some of the
earliest languages are still widely in use today, as are some of the newer
languages. Here we are going to write the same program in several differ-
ent computer languages so you can see the similarities and the differences
between them.

Each of these programs was written to calculate N! (“N factorial.”)
For some value of N, N! = N × (N − 1)× (N − 2) · · · 3× 2× 1.
For example, if N = 5 then N! = 5× 4× 3× 2× 1 = 120.

175

176 CHAPTER 15. PROGRAMMING LANGUAGES

15.1 Pascal Version

Pascal was developed in the late 60’s by Niklaus Wirth. In the 80’s it has
been the major language used to teach programming skills in universities.
As you have seen in class, many personal computers have a version of Pascal
available for them.

PROGRAM factorial;

{This Pascal program will prompt the user for a positive integer}

{and it will then calculate and return the factorial of that number}

{i.e. given N, the program calculates N!}

VAR

number: integer; {user input number}

counter: integer;

theFactorial: real; {factorial of user number}

BEGIN

{get number from user}

writeln(’Welcome to the factorial calculator’);

write(’Please enter a positive integer number:’);

readln(number);

{calculate the factorial}

theFactorial := 1;

FOR counter := 1 TO number DO

BEGIN

theFactorial := theFactorial * counter;

END;

{return the answer to the user}

writeln(number : 2, ’ factorial is: ’, theFactorial : 6 : 2);

END.

15.2. BASIC VERSION 177

15.2 BASIC Version

I can not think of a personal computer that does not have at least one version
of BASIC (Beginners All-purpose Symbolic Instruction Code) available for
it. It was developed in the mid 60’s by Thomas Kurtz and John Kemeny to
be an easy-to-use language for beginners. In the 70’s when programs came
on cassette tape instead of floppy disc, BASIC was usually the only language
available for use with your personal computer. You will find a plethora of
books available for writing programs in BASIC in any decent bookstore.

10 REM this BASIC program will prompt the user for a positive integer

20 REM and it will then calculate and return the factorial of that number

30 REM i.e. given N, the program calculates N!

40 REM

45 REM get number from user

50 PRINT "Welcome to the factorial calculator"

60 INPUT "Please enter a positive integer number:", NUMBER

70 REM

80 REM calculate the factorial

90 THEFACTORIAL = 1

100 FOR COUNTER = 1 TO NUMBER

110 THEFACTORIAL = THEFACTORIAL * COUNTER

120 NEXT COUNTER

130 REM

140 REM return the answer to the user

150 PRINT NUMBER, " factorial is ", THEFACTORIAL

178 CHAPTER 15. PROGRAMMING LANGUAGES

15.3 LISP version

LISP is a language used in Artificial Intelligence work. Its name is an
acronym that stands for LISt Processing. LISP was developed in the mid
50’s by John McCarthy, and is still the primary language used in artificial
intelligence.

(defun factorial ()

; This Lisp program will prompt the user for a positive integer

; and it will then calculate and return the factorial of that number

; i.e. given N, the program calculates N!

(print "Welcome to the factorial calculator:")

(princ "Please enter a positive integer number:")

(setf Number (read))

; calculate the factorial

(setf TheFactorial 1)

(do ((counter 1))

((> counter Number))

(setf TheFactorial (* TheFactorial Counter))

(setf counter (1+ counter))

)

; return the answer to the user

(princ Number)

(princ " factorial is ")

(princ TheFactorial)

(terpri)

)

15.4. C VERSION 179

15.4 C version

C was developed in the early 70’s by Dennis Ritchie to be part of the UNIX
operating system. As a result many of the features in C allow flexible inter-
facing with UNIX. Originally UNIX was written in PDP-11 assembly code
(very low level computer language) and occupied approximately 64K. The C
version of UNIX turned out to be only 10% larger and hence C has now been
adopted for developing operating systems and programming languages.

main()

{

/* This C program will prompt the user for a positive integer */

/* and it will then calculate and return the factorial of that number */

/* i.e. given N, the program calculates N! */

int number; /* user input number */

int counter;

float theFactorial; /* factorial of user number */

/* Get number from user */

printf("Welcome to the factorial calculator\n");

printf("Please enter a positive integer number:");

scanf("%d",\&number);

/* Calculate the factorial */

theFactorial = 1;

for (counter = 1; counter <= number; counter++)

theFactorial *= counter;

/* Return the answer to the user */

printf("%d factorial is: %f\n",number,theFactorial);

}

180 CHAPTER 15. PROGRAMMING LANGUAGES

15.5 Compiling vs Interpreting

You may hear Pascal referred to as a compiled language. Running your pro-
gram you may see the word “compiling” appear on the screen. Compiling is
the act of translating the computer program into assembly language, so that
the computer can run it. Languages such as Pascal, and C are compiled lan-
guages. Some other languages such as BASIC are interpreted languages. So
now we need to explain the difference between a compiler and an interpreter.

Imagine you have this really neat book written in a foreign language, and
you want to read it. Now you have a friend who can translate the book for
you. The translator can sit down with the book, and you, and possibly some
dictionaries and other helpful reference books. He can read one sentence out
of the book, then tell you what that sentence said. This pattern continues
until the end of the book. Now what happens if you need the book read to
you again a few weeks later. You call up your friend but he isn’t available.
You are stuck. What you could have done when you had your translator
friend available, was to ask him to REWRITE the book in English for you.
He would go through the book sentence by sentence, but instead of reading
you the sentence, he would write it into a new book. When he is finished
you will have an English version of the book, and no need to call your friend
again. This translation would have taken longer to do since the translator
had to rewrite the book, but now that you have the translated copy, you can
read it much quicker than before.

When your friend reads line by line and tells you what it says, he is
interpreting the book for you. When he reads line by line and writes out a
new version that you can understand, he is compiling a new version of the
book for you. An interpreted computer program always needs the interpreter
around to translate it so the computer can understand. A compiled computer
program does not need an interpreter. The program has been compiled into
a form that the computer understands.

If you have a program written in Pascal, you can interpret it from within
any Pascal. Alternatively, you can Compile the program and save the com-
piled version onto a disc. This compiled version can be run separately from
Pascal, and it runs much faster than the interpreted version. The Pascal
program is portable. It can be moved onto different machines. On the other
hand, the compiled (translated) version is not portable, and can only run on
machines of exactly the same type. The compiled code is not as portable as
the uncompiled code.

15.6. QUESTIONS 181

Interpreting is good when you are developing a program. When you have
the program working the way you want it to, then you compile it. When
you compile a Pascal program and save it as an application, that application
will only work on one type of machine, where the Pascal program can run
on several different machines. I can type the factorial program into Turbo
Pascal on an IBM-PC. I can type that same program into Lightspeed Pascal
on the Mac. Once I compile the program and save it, however, it is in a form
that is very specific to the machine that it was compiled on. This is one of
the reasons why the compiled version runs faster.

15.6 Questions

1. Why do we want to compile our programs?

182 CHAPTER 15. PROGRAMMING LANGUAGES

Chapter 16

Neat Stuff

Now that you have seen what you can do with a computer, the computer has
lost a lot of its mystique. We couldn’t let you go thinking that computers
are really just as boring as toasters.

Understanding how our technology works helps us to understand our-
selves. One of the great mysteries of ourselves is how the brain works, and
the simple but hard question “What is intelligence?” It is a simple question
to ask, but a very hard question to answer. Huge sums of money are spent
to try to make computers act in intelligent ways. The trouble in doing this
is that the problem is not well defined. We can not say how the brain works,
so how can we create a device that works in a similar manner.

We do know that there are some things the brain does very well that
computers are very bad at such as vision, and natural language understand-
ing. Both of these are problems for computers because they involve a lot
of noise. Human beings are very good at filtering out what is unimportant,
and making decisions based on incomplete information. Computers are not.
For example: When you are at a party talking with your friends there may
be many other conversations going on in that same room; yet you can pick
out what your friends are saying from all of the other words being spoken.
Another example: When you are driving a car at night in a thunderstorm
there is rain on the windshield, the wipers are swishing back and forth, car
lights are reflecting off the water, yet you are able to keep the car on the
road.

Two major methods have been proposed to make machines “intelligent.”
One is Artificial Intelligence, and the other is Neural Networks. At various
times during the last 40 years both of these methods have been hailed as the

183

184 CHAPTER 16. NEAT STUFF

be all and end all of computing. Of course neither has lived up to its hype,
but each represents a different way of thinking about intelligence.

16.1 Artificial Intelligence

Most “intelligent” systems developed so far have been Artificial Intelligence
systems. AI typically uses rules to guide the computer’s actions. If situation
X then do action Y. This works very well for situations where we can sup-
ply rules to the computer. Many commercial AI systems are called Expert
Systems. In this case an expert (or maybe a handful of experts) has told
the computer all the rules that are used in a given situation. The computer
can store all these rules and quickly access them. As the computer makes
mistakes it can modify these rules. In effect, the computer learns.

These systems have had good success in areas such as medicine and chess.
In both cases, given a certain situation a certain action should be performed.
In medicine a certain set of symptoms may lead the computer to ask for
specific tests to be run to isolate the problem. In chess a certain layout of
pieces will lead the computer to move a specific piece. In both these areas
computers are coming near the level of human practitioners.

Computerized game players have always been a popular area of study.
Imagine a very simple game such as tic-tac-toe. Back when you were very
young you could play this game endlessly with a friend. Then one day you
realized that if you started in the center, you won much more often. In fact,
it was almost impossible to lose if you started in the center.Within a week
you gave up the game. You figured out the basic rules of winning the game.
You could then move onto harder games. AI people have created successful
computerized tic-tac-toe systems and checker players. In chess, computers
are getting very close to knocking off the top human player. Of course then
there are always harder games such as ‘shogi’ or ‘go’ to move onto. These
kinds of programs have become so popular that most personal computers
have a chess program available where the computer will play you.

One of the problems with artificial intelligence is that there are times
when there is not a definite set of rules. Given a problem, human beings do
not tend to follow a strict set of rules. Commonly we use “rules of thumb”
to solve our problems. They do not always guarantee success, but they seem
to work pretty well. Think about driving a stick-shift. You can’t really
explain how you know when to shift gears, you just know when to do it.

16.2. NEURAL NETWORKS 185

It’s a combination of vision, hearing, and feeling that you can’t explain to
someone who only drives an automatic. In computer jargon these “rules of
thumb” are called heuristics. It is difficult to express these heruistics in the
form of rules.

16.2 Neural Networks

Neural Networks take a different approach, which some consider to be much
closer to the way the human brain works. Instead of having a list of rules,
neural networks have layers of cells which are stimulated by other cells, much
as the brain’s neurons are stimulated. As the system “learns” the connections
between the cells are altered. These systems are good at filtering out noise,
and matching patterns, but they are not very good at math.

The HAL 9000 computer from “2001” was supposedly an advanced neural
network computer (Heuristically program ALgorithmic computer.) By the
way if you shift each letter in HAL, to the right one letter, you get IBM!

16.3 Intelligence

Being intelligent is not just being able to recall previous information that you
learned. Given a new situation an intelligent system refers back to similar
previous experiences to help make decisions about what do do in the present
situation. But how do you store those past experiences? How do you know
what are the most important parts of your past experiences? How do you
relate your current experiences to your past experiences? There are a lot of
questions. With the artificial intelligence system one can look at the rules and
see how the computer has modified them. We can see what it has learned. It
is difficult to tell how neural networks are solving a problem, so it is harder
to gauge their progress.

Back in 1950 Alan Turing proposed the ‘Turing Test’ for determining
whether a machine was intelligent. The test works like this. You stand in
front of a locked door, and you do not know who or what is behind the
door. You can communicate with the entity behind the door (perhaps by
typing on a keyboard, or writing on a piece of paper or talking) and have a
conversation. Let’s say there is a computer behind the door. If you can not
tell that it is a computer and not a human being then that computer has

186 CHAPTER 16. NEAT STUFF

passed the Turing test, and must be considered ‘intelligent.’
In 1980 John Searle discussed what he (and many others) consider a flaw

in the ‘Turing Test.’ Searle proposed a similar situation to the Turing Test
and called it the ‘Chinese Room.’ Let’s say we again have a locked door
and the person outside the door will communicate with the person behind
the door in written Chinese - that is, the person outside the door will write
chinese characters onto a piece of paper, pass that piece of paper under the
door, and after a certain amount of time receive another sheet of paper with
Chinese characters written on it in reply. John Searle put himself behind the
locked door. Now Mr. Searle does not know how to read or write Chinese,
but he takes with him a large set of rules written in English which tell him
that whenever he receives a certain set of Chinese characters he should write
the following characters on his sheet of paper in reply and pass that sheet
back out the door. Mr. Searle can now have a meaningful discussion in
Chinese with the person outside of the door without ever understanding a
word of what he is writing. Searle implies that we can program a machine
to mimic human behavior without human understanding.

16.4 The Future

Criswell said it best in the opening of Plan 9 from Outer Space

We are all interested in the future for that is where you and I are
going to spend the rest of our lives.

There is still a lot of room for progress in these systems. No computer
system will ever be the answer to all our problems. The computer is just
another drip in a stream of ever more sophisticated tools. Throughout time
we have created machines to help us solve our physical problems . . .machines
to move the earth, or to help us fly over it. Now we create machines to help
us understand our world and ourselves. As with all our machines, they show
us who we are, and what we are striving to become.

With all of our creations there is the promise and the peril. Computers
give us even more opportunities, but we need to decide how to use this new
freedom. Will it help bring us together, or tear us apart? Will it help expand
our horizons, or close our minds? Will it lead us into a new age, or will it
push us back?
It can do none of these things.

16.4. THE FUTURE 187

Only we can.

We decide.

188 CHAPTER 16. NEAT STUFF

Appendix A

Other Books

If you wish to read further on some of the subjects we have talked about in
this text, you may find the following books to be of interest:

General Information:

• Ditlea,Steve Digital Deli Workman Pub. 1984

• Kiser, Denise Computing Unbound W.W. Norton & Co. 1989

• Levy, Steven. Hackers - Heroes of the Computer Revolution Dell Pub.
1984.

• Penzias, Arno Ideas and Information - Managing in a High-Tech World
W.W. Norton & Co. 1989.

Operating Systems:

• Waite,Mitchell UNIX Primer Plus Howard W Sams & Co. Inc.

Word Processing:

• Erickson,Tim Desktop Publishing with Microsoft Word on the Macin-
tosh SYBEX inc.

Telecommunications:

• Hedtke,John V Using Computer Bulletin Boards MIS: Press. 1990

189

190 APPENDIX A. OTHER BOOKS

• Stoll, Clifford The Cuckoo’s Egg Double-day. 1989

Databases:

• Date, C.J.Introduction to Database Systems. Addison-Wesley. 1987

• Korth, Henry Database System Concepts McGraw-Hill. 1986.

Hypertext:

• Goodman, Danny.The Complete HyperCard Handbook. Bantam. 1987

• Vaughan, Tay. Using Hypercard, from Home to Hypertalk. Que Corp.

Programming:

• Aho, Alfred Data Structures and Algorithms Addison-Wesley. 1985.

• Koffman, Elliot Problem Solving and Structured Programming in Pas-
cal. Addison-Wesley. 1986

• Winston, Patrick Lisp Addison Wesley. 1984.

Neat Stuff:

• Gardner, Howard.The Mind’s New Science. Basic Books. 1987.

• Winston, Patrick Artificial Intelligence Addison-Wesley. 1984.

Appendix B

Other Periodicals

For truly up to date information there are several periodicals that cover the
personal computer area. With the increasing popularity of personal comput-
ers, many of these are available at your local library.

Info World Weekly $2.95 Business software/hardware 12th yr.
ComputerWorld Weekly $2.00 Business software/hardware 24th yr.
Byte Monthly $3.50 General software/hardware 15th yr.
Personal Computing Monthly $3.00 Home software/hardware 14th yr.

AI expert Monthly $3.50 Information on AI for novices 5th yr.

Computer Language Monthly $3.50 Computer Languages 7th yr.

Mac World Monthly $3.95 Mac software/hardware 7th yr.
Mac User Monthly $2.95 Mac software/hardware 6th yr.

Amiga World Monthly Amiga related software/hardware

PC World Monthly $2.95 IBM-pc software/hardware 8th yr.
PC Magazine Monthly $2.95 IBM-pc software/hardware 9th yr.

Incider/A+ Monthly $3.95 Apple][software/hardware

191

192 APPENDIX B. OTHER PERIODICALS

Appendix C

Professional Societies

Anyone who is planning on making a career in computer science should belong
to at least one of the major professional organizations. These organizations
publish periodicals on a wide range of current topics, and hold conferences all
over the world. They have active local chapters at most major universities,
and best of all they offer substantial discounts to student members.

On the engineering side (Electronics Engineer, Computer Engineer) there
is the IEEE, and specifically its computer society.

IEEE

The Institute of Electrical and Electronics Engineers

Founded in 1963

300,000 current members

main publication: IEEE SPECTRUM

IEEE Computer Society

Founded in 1963

100,000 current members

main publication: COMPUTER

On the Computer Science side there is the ACM.

ACM

193

194 APPENDIX C. PROFESSIONAL SOCIETIES

The Association for Computing Machinery

Founded in 1947

80,000 current members

main publication: COMMUNICATIONS OF THE acm

Appendix D

Acronyms

You have probably noticed that there are a lot of acronyms in this book.
Here’s a list of some of the more common ones in computer science:

ACM Association for Computing Machinery
AI Artificial Intelligence
ALGOL language Algorithmic Oriented Language
ALU Arithmetic Logic Unit
ANSI American National Standards Institute
APL language A Programming Language
ASCII American Standard Code for Information Interchange
ATM Automated Teller Machine
BAR see FOOBAR
BASIC language Beginners All-purpose Symbolic Instruction Code
BBS Bulletin Board System
BIT Binary digIT
CAD/CAM Computer Aided Design/ Computer Aided Manufacturing
CAEN Computer Aided ENgineering
CD Compact Disc
CIS Compuserve Information System
CLI Command Line Interface
COBOL language COmmon Business Oriented Language
CPU Central Processing Unit
CRT Cathode-Ray Tube
DB DataBase
DBMS DataBase Management System

195

196 APPENDIX D. ACRONYMS

DIP chip Dual In-line Package
DIY Do It Yourself
DOS Disc Operating System
DPI Dots Per Inch
EBCDIC Extended Binary Coded Decimal Interchange Code
FOO see FOOBAR
FOOBAR (FUBAR)F*ck*d Up Beyond All Recognition
FORTRAN languageFORmula TRANslator
FBI Federal Bureau of Investigation
FCC Federal Communications Commission
GUI Graphical User Interface
IBM International Business Machines
IEEE Institute of Electrical and Electronics Engineers
LAN Local Area Network
LD Laser Disc
LISP language LISt Processing
MIS Management Information Systems
MODEM MOdulator DEModulator
I/O Input/Output
OS Operating System
PC (IBM) Personal Computer
PET computer Personal Electronic Transactor
PL/I language Programming Language I
RAM Random Access Memory
RGB monitor Red Green Blue monitor
ROM Read Only Memory
RPM Revolutions Per Minute
SCSI Small Computer System Interface (“skuzzy”)
SNAFU Situation Normal - All F*ck*d Up
SQL Semantic Query Language (“ sequel”)
SYSOP SYStem OPerator
TRS Tandy Radio Shack
TV TeleVision
VCR Video Casette Recorder
VDT Video Display Terminal
WIMP Windows Icons Menus and a Pointer
WYSIWYG What You See Is What You Get (“wizzywig”)

Appendix E

Glossary

Algorithm A step by step procedure for solving a problem in finite time,
also known as a recipe.

Application A computer program that performs a specific task such as a
Word Processor or a Database.

Baud Rate The speed at which modems communicate. Typical speeds are
1200 baud or 2400 baud.

BBS A computerized Bulletin Board System where users leave messages for
each other.

Bit A Binary digIT (ie a single 0 or 1).

Bug An error in your program.

Byte A string of 8 bits (eg. 11001001).

Card A small printed circuit board that is attached to the motherboard
with a card-edge connector. It is attached to expand the capabilities
of the computer.

Chip A DIP Chip contains a small integrated cicrcuit that processes infor-
mation in the form of electrical signals.

Clone A computer made by company X that runs just like a machine built
by company Y.

197

198 APPENDIX E. GLOSSARY

Command Line Interface A way of communicating instructions to a com-
puter where the user types commands at a prompt.

Comments The part of a computer program that was written for humans
to read, which the computer ignores.

Compiler A program that translates another program from a form that
people can understand to a form a computer can understand.

Computer A programmable electronic device which stores, processes and
retrieves data.

CPU The Central Processing Unit is the most important chip in the com-
puter which does most of the processing.

Database An application used to manage large amounts of data where quick
retrieval and update is necessary.

Desktop Publishing The use of a personal computer to prduce profes-
sional looking documents.

Directory A grouping of related files within a hierarchical file structure that
is pictorially represented by a folder.

Disc A secondary storage medium which uses a thin round disc with a mag-
netic coating to store information. These discs can either be Floppy
Discs used in Floppy Disc Drives or Hard Discs used in Hard Disc
Drives.

Document processor An application used in conjuction with a text editor
to typeset a large document according to a specific style.

DOS The Disc Operating System which handles all the low level interaction
with the disc drives.

E-Mail Messages sent via computer.

Emulator Hardware and/or software that allows one brand of computer to
run software designed for a different brand of computer.

Ergonomics The science of designing equipment so it will be easy to use
by people.

199

File Collection of related data stored on a disc.

Floppy Drive A disc drive which can store small (1 M) amounts of infor-
mation on a small floppy disc which can then be taken with the user
wherever he wishes to take it.

Fone Phreak Someone who is interested in telecommunications systems,
usually so they can make free phone calls.

Formatting Preparing a new disk for storing information.

Graphical User Interface A way of communicating instructions to a com-
puter where the user selects from options displayed on the screen using
a mouse or other device which gives her a surrogate hand on the mon-
itor screen.

Hacker (modern definition) Someone who illegaly enters other people’s com-
puter systems.

Hard Drive A disc drive which can store and retrieve large (50 M) amounts
of information quickly due to the magnetic disc not being removable.

Hardware The physical parts of the computer including the monitor, the
main unit and the printer.

Hierarchical File Structure A way of organizing files on a disc so that
related objects are together within a hierarchy of different subject areas.

High Level Language An ‘English-like’ programming language.

Hypermedia The linking of a hypertext program to multiple media such
as LD players, or CD players to allow the program to manage visual
and audio information.

Hypertext A system which links information together allowing a user to
move quickly between important pieces of related information.

Icon The pictorial representation of an object or idea.

Instruction The smallest unit of control for a computer. A complex pro-
gram is made up of many simple instructions.

200 APPENDIX E. GLOSSARY

Interface the means by which you communicate with the computer. This
usually includes the monitor, the keyboard, and a mouse.

K A string of 1024 bytes.

Key a) The metal device which allows you to enter your apartment or b) a
column (or several columns) that allows you to find a unique row in a
database table.

Keyboard The primary input device for a computer which looks very much
like the keys on a typewriter.

Laptop A small, portable personal computer that use can set on your lap
to use.

Literate Programming A style of writing programs where the program is
readable to non computer-scientists.

Low Level Language A ‘computer like’ programming language which is
easily understood by the computer, but not by humans.

M A string of 1024 K.

Main Memory see RAM.

Main Unit The big box that contains the guts of the computer. It is usually
attached to the monitor and the keyboard by cables.

Modem A device which allows computers to send information over standard
phone lines by converting the information into sound.

Monitor The thing that looks like a TV set, and allows you to get output
from the computer in a visual manner.

Motherboard The main printed circuit board in the computer where all
the important chips are located.

Mouse A hand held input device good for making selections, and doing
crude drawings.

Multitasking The ability of a computer to run more than one application
at the same time.

201

OS The computers Operating System which handles all the low level work
that the computer does.

Password A secret, personal identification code.

Pirate a) Errol Flynn in the movie “Captain Blood” or b)Someone who
illegally copies software.

Pixel An individual ‘dot’ on the screen.

Printed Circuit Board A fiberglass or epoxy sheet which acts as a mount-
ing board for various electronic components. Cards and the Mother-
board are printed circuit boards.

Printer A device used to create a printed version of information stored in
the computer.

Program A sequence of instructions detailing the steps to be performed by
a computer.

Programming language A language used to write computer programs.

Protocol A common language that modems must agree on to allow different
brands of computers to communicate via phone lines.

Pseudo-Code Informal algorithmic notation mixing English and code.

Public Domain Software Software that does not cost any money which
is free for you to copy and distribute.

Query Language The language in which a person communicates with a
database.

RAM The volatile Random Access Memory in a computer.

Recursion See: Recursion.

ROM The involatile Read Only Memory in a computer.

Secondary Storage Permanent storage usually on discs or tape.

Software Programs that tell the hardware what to do.

202 APPENDIX E. GLOSSARY

Source-Code A program in its original form, in the programming language
it was written, before being compiled.

Speaker A device which converts electrical signals into sounds.

Spreadsheet An application which allows you to do mathematical calcula-
tions on a screen which looks like an accountant’s ledger pad.

Stepwise Refinement The process of breaking a task down into smaller
more specific sub tasks.

Symantic Error An error in meaning. You have instructed the computer
to carry out a specific action and the machine has done this, but it is
not the correct action.

Syntax Error An error in grammer where the machine does not understand
what you want it to do.

Sysop The System Operator, and manager of a BBS.

Terminal Program An application that allows your computer to talk with
other computers using a modem.

Text editor A no frills word processor used mainly for writing computer
programs and producing input for document processors.

Trojan Horse An application that does one thing while pretending to do
something else.

User Group A group of users of a certain brand of computer who get to-
gether to discuss new pieces of hardware and software, frequently run
by xenophobic little führers who believe that their chosen computer is
the best computer for everyone.

Virus A small program designed to hide itself within other programs and
spread to as many other programs on as many other discs as possible.
Some are benign and some can cause great hassles, but the media has
blown them way out of proportion.

Word processor An application which turns your computer into a very
sophisticated typewriter with lots of optional goodies.

	Binder1.pdf
	garynew

	It Went Boing.pdf

