evl logo
evl YouTube evl Facebook evl Twitter
Distributed Volume Rendering of Very Large Data on High-Resolution Scalable Displays

developers: Nicholas Schwarz

Scientific instruments increasing collect higher spatial resolution samples providing scientists with larger volumetric datasets.

For example, bioscientists at the National Center for Microscopy and Imaging Research (NCMIR) at the University of California, San Diego (UCSD) regularly collect high-resolution data from high-powered multi-photon microscopes. Geologists at the University of Minnesota (UMN) often collect high-resolution CT scans of geologic samples.

Scalable high-resolution tiled-displays allow scientists to visualize this large data at or closer to its native resolution and are seeing an increasing rate of adoption by the scientific community. Currently, no solution exists that allows scientists to visualize this large data and view it at its full spatial resolution.

This project provides a volume visualization solution that allows scientists to render very large volumetric datasets on scalable high-resolution displays. It uses a methodology that employs a multi-resolution octree, an image-order data distribution method, a distributed shared-memory data management system, a multi-level cache, and hardware accelerated rendering techniques to produce a solution that is scalable in terms of input data size and output resolution.

An analytical cost model validated by experimental results predicts the system's behavior. The methodology's usefulness is demonstrated with a number of domain specific datasets.

start date: 01/01/2006
end date: 12/31/2007

contact:

A volume visualization of a Purkinje neuron on the LambdaTable.

image provided by Lance Long, EVL
related projects:
none listed
related info:
2 associated papers
no associated events
 
related categories:
applications
software
visualization
MS/PhD thesis