This CD-ROM exhibits many families of quaternionic Julia sets in three dimensional space. Here we give the equations and parameterizations for these families.

Our images are produced by choosing a specific value of θ for each family, and then varying a complex constant $c=R+I$. Thus, a given family depends upon a 2-dimensional array of parameters (R, I). The function that is iterated for a fixed θ (and fixed $c=R+i I)$ is

$$
f_{\theta}=e^{-i \theta} z^{2}+e^{i \theta} c
$$

where z is a quaternionic variable.
The Julia set J_{θ} is the set of z in 4 -space that do not escape to infinity under this repeated iteration. The Julia set

$$
\overline{J_{\theta}}=J_{\theta} \cap \mathbf{R}^{3}=\left\{\left(z_{0}, z_{1}, z_{2}\right) \mid\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \leftrightarrow z_{0}+i z_{1}+j z_{2}+k z_{3} \in J_{\theta}\right\}
$$

is the set that is displayed graphically.
For the record, the recursion has the following form when written out in detail:
Let $z=z_{0}+i z_{1}+j z_{2}+k z_{3}$, and let $z^{2}=a+b i+c j+d k$. Thus

$$
\begin{gathered}
a=z_{0}^{2}-z_{1}^{2}-z_{2}^{2}-z_{3}^{2} \\
b=2 z_{0} z_{1} \\
c=2 z_{0} z_{2} \\
d=2 z_{0} z_{3} .
\end{gathered}
$$

Then

$$
f_{\theta}=(\cos (\theta)-i \sin (\theta))(a+b i+c j+d k)+(\cos (\theta)+i \sin (\theta))\left(c_{0}+i c_{1}\right)
$$

Thus

$$
\begin{aligned}
& f_{\theta}=\cos (\theta) a+\sin (\theta) b+\cos (\theta) c_{0}-\sin (\theta) c_{1} \\
& +\left(-\sin (\theta) a+\cos (\theta) b+\cos (\theta) c_{1}+\sin (\theta) c_{0}\right) i \\
& +(\cos (\theta) c+\sin (\theta) d) j+(\cos (\theta) d-\sin (\theta) c) k .
\end{aligned}
$$

The specific distance estimation algorithm is

$$
D \approx \frac{\left|z_{n}\right|}{\left|z_{n}^{\prime}\right|} \ln \left(z_{n}\right)
$$

where $z_{n}=f_{\theta}^{n}\left(z_{\text {initial }}\right)$ and $\left|z_{n+1}^{\prime}\right|=2\left|z_{n}\right|\left|z_{n}^{\prime}\right|$.
Note that since $z_{n+1}=e^{-i \theta} z_{n}^{2}+e^{i \theta} c$, then $z_{n+1}^{\prime}=2 e^{-i \theta} z_{n} z_{n}^{\prime}$ (by the chain rule), and so $\left|z_{n+1}^{\prime}\right|=2\left|z_{n}\right|\left|z_{n}^{\prime}\right|$.

