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Web as a Graph

|
e Web <-> Directed Graph

e static pages <-> nodes
e links <-> arcs
e in-degree, out-degree, distance

e strongly connected component (SCC), weak
component (WC)

e diameter, average distance



Study of Web Graph
c__

e Observations of the power law distributions
on the web

e Applying graph theoretic methods to the web

e Purpose:
— Design crawl strategies
- Analyze the behavior of web algorithms
— Predict the evolution of web structure
— Predict the emergence of new phenomena



Infrastructure [BKO0O]
o]

e Connectivity Server 2 Software
e AltaVista Crawl

e Database

— 203 million URLs and 1466 million links, May,
1999

— 271 million URLs and 2130 million links, October,
1999



Degree Distribution
c--

e The power law for in-degree

the probability that a node has in-degree i is
proportional to 7//* , for some x > 1.
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Degree Distribution (cont.)
-
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Connected Components
—

WCC distribution SCC distribution
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Connected Components (cont.)
—

e the connectivity is extremely resilient and
does not depend on the existence of nodes
of high in-degree.

e such nodes, with high PageRank or

considered good hubs, are embedded in a
graph that is well connected without them.



Random-start BFS
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Connectivity of the Web
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Region SCC IN ouT TENDRILS  DISC. Total
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Diameter
« ]

Measure Minimum depth Average depth Maximum depth
In-links 475 482 503
Out-links 430 434 444

e Directed diameter of SCC is at least 28
e Diameter of the graph as a whole is over 500



Path

Starting Point OUT IN
Exploring outwards -- all nodes 3093 171
Exploring inwards -- unexpected nodes 3367 173

e The probability that a directed path exists from u to v
is only 24%.

e The probability that a non-directed path exists from u
to vis only 28%.

Edge type In-links (directed) Out-links (directed) Undirected
Average connected distance 16.12 16.18 6.83



Local Connectivity [AJB99]

e The data was obtained from nd.edu domain, that contains
325,729 pages and 1,469, 680 links.
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e Both P.u(k) and Pin(k) follow a power-law distribution



Shortest Path
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e Average distance <d> = 0.35+2.06log(N)
® <dndedw>=11.2



Topology of WWW Model

.
e Using N =8x10° , <dwww>=18.59

e N increases 1000%, <dwww> changes from 19
to 21

e WWW — a highly connected graph



Intelligent agent vs robot
.

e Intelligent agent

— interpret the links and follow only relevant one
— In a short time find desired info by WWW

e Robot

- Locate the info based on matching strings

- Need M((d)) ~ 0.53N"2 search, to find a page at
distance <d>
N =8x10° [l] leads to M =8 x 107



Stochastic process [LFLWO02]

e Simon’s stochastic process — a birth process

- There is a constant probability p that the next
word is a new word

- Given that the next word has already appeared,
its probability of occurrence is proportional to the
previous number of occurrences of that word.

e Rich get richer



Previous Work
]

e A power-law distribution is a function of the

form
f=Ci
e Albert et al. predict =3
e Dorogovtsev et al. predict- t=2+A/m



An Urn Transfer Model
G

e Extension of Simon’s stochastic process
® UIni

e balls — web pages

e pins — links

e Fi(k) — # of balls in urni after k steps

® (k) =Y, Fi(k)-- total # of balls in all urns.



An Urn Transfer Model (cont.)

« .
e At step k+1, either:

— A new ball is added to urn+ with
(1—p) % (i + a)Filk)

. l — . (1)
P41 (1 4 ap)+all —p)

— Anurn is selected with 1-pk+1,

urni is chosen with
(1 —p)(e+ a)Fi(k)

L1 ap) -+ all —/;).
Then one ball from urni is transferred to urni+1.



An Urn Transfer Model (cont.)
-

e To make pk+1 well defined, we must have

(] —;':H:]f FalB () < E(1 A ap) +all —p).

e Then
- Pk+1 is always well defined, when p>=1/2
— Pk+1is well defined only if ., - _* when p<1/2

— 1—-2p



An Urn Transfer Model (cont.)
-

e Expected # of balls in urni is stated as
Ep(Fi(k + 1)) = Fi(k) + Af/‘-((f' —L+a)F (k) —(i+ H?'Fi(fff'> for i>1,

and
Ep(Fi(k+ 1)) = Fi(k) 4 ppot — Bi(1 +a)Fy(k), fori=1

Where i Il —p
ok E(14+ap)+a(l —p)

is the normalising constant used in (2).



An Urn Transfer Model (cont.)
-

e Assume k tends to infinity,
E(Fi(k+1))— E(F;(k)) tends to f; and 3, E(F;(k)) tends to /3f;;
e Then
fi = .'f((/ —1l+a)fi1—{ita )f/)
e for recurrence equation
Bl -1+ a)
LB ta) T

with ¢ _ p
‘ 1+ 3(1+a)

1

Ji




An Urn Transfer Model (cont.)
-

e Using Stirling’s approximation, we have
fi o C iR

e A general power-law distribution for fi, with exponent
1+ p.



An Evolution Model of Web

]
e Web is a directed graph G=(N,E)
e Fi(k), i>=1, is the number of nodes in the Web graph
having | incoming links;
e Initially G contains just a single node,
e At each step, either:

— With probability p a new node is added to G having one
iIncoming link.
-~ With probability 1-p a node is chosen with probability

proportional to (i+), and then an additional incoming link is
added to this node.



Simulation Results
]

) Interpretation | Empirical | pp-model | p-model
imlinks 2.09 2.096 2.094
outlinks 2.72 2.714 2.675
webpages 2.2 2.122 2.208
VISIEOT'S 2.07 2.13 2.179

Table 1: Power law exponents of simulation results



Conclusion
oo

e From the equations of extended stochastic process
they derived an asymptotic formula for the exponent
of the resulting power-law distribution.

e In order to explain the evolution of the Web graph
both preferential and non-preferential processes are
at work.



PageRank and BlockRank
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Outline

o]
e \What is PageRank

e Exploit web block structure, BlockRank
e Applications



What is PageRank

e \Web Link Structure

- Forward/Back links
e Authority Matter! A
e Random Surfer model —_— T

Fozure 1: A and B are Dackimks of



In the Old Days
S

e All backlinks created equal

Important Page Joker Page
Raii =1 Rank = 2
Yahoo! ‘ Some

Some
2hoo other
Y yahoo




Link Structure
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Simple PageRank Definition
-

R(u)=c E R]\(fv)

v

Fu: Set of links from u
Bu: Set of links to u
Nu: |Ful

c. constant®

R(u): Rank of u



Rank Sink
I
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e The loop keeps accumulate rank, but never
distribute any rank outside!



R(u)=c z RE) +cE(u)
Escape Term

e Solution: Rank source

e E(u) is a vector over web pages(for example,
uniform or favorite page) that corresponds to
a source of rank

e E(u) is a user designed parameter



Random Surfer Model

+ Jumping out of loop

e Probability distribution of a random walk on the web graphs

e E(u) can be thought as the random surfer gets bored
periodically and jumps to a different page and not kept in a loop
forever



Markov Chain
G

e Discrete-time stochastic process
e Memory-less, based solely on present decision

e Random walks
— Discrete-time stochastic process over a graph G=(V, E) with
a transition probability matrix P
e Need to be aperiodic and irreducible*
- Web graph is not strongly connected graph!

— Add a new transition term to create a strongly connected
transition graph

PageRank(p) = é +(1-4d) E PageRank(q)/outdegree(q)

n (¢.p)EE



Markov Chain(cont.)
-

e According Markov theory, the PageRank(u) becomes
the probability of being at ‘u’ page after a lot of clicks

e R is the solution to:

[(1—¢q)/N| C(p1,p1)  O(p1,p2) - ((p1,pn) |
(1—q)/N
R DN L {(p2,p1) - n
N : ¢(pi, ;)
_( 1 - q\/*\_ _(,(p\»pl\ ('(‘PN,PN \_

e Solution to eigensystem
e Empirical results implies q = 0.85



Matrix Notation R=c(4" + Exe )R

v —
. v ]

/N, P

e Write to matrix form: R=cATR+cE
e R is the dominant eigenvector and c is the dominant
eigenvalue of (4 + E xe™)because c is maximized

e Broken down to Eigenvalue problem, can be solved
efficiently

— Characteristic polynomial: not scalable
-~ Power iterative method

| S




Compute PageRank
c__

Ry <« S
loop :
Riy1 + AR;

d « |[Ril|l1 = [|Rigills
Riy1 « Riy+dE

§ + ||Riy1— Rilly

while § > ¢



Implementation
S

e 24 million pages
e /5 million URLs
e Memory and disk storage
- Mem: weight vector: 4 bytes float
— Disk: Matrix A: linear disk access
e /5000000%4/1000000 = 300MB/75million URLS

— Fit into memory or multiple passes
e 6 minutes/iteration per machine



Back to 1998...

e In 1998, it took 5 days to index on 24 million
page database
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Now...
1

e Today: Google cluster and Google File
system
—~ 719 racks, 63,272 machines, 126,544 CPUs
- 126,544 Gb RAM, 5,062Tb of disk space

- http://www.tnl.net/blog/entry/How many Google machines




Convergence
S

Convergence of PageRank Computation
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e O(log|V]) due to rapidly mixi‘ng web graph G
e Good initial ranking -> quick convergence*®



Personalized PageRank
S

e Rank source E can be initialized:

— Uniformly

e All pages are treated the same, not good
— Copyright, mailing list archives

- Total weigh on a single page
e Bad too

- Everything in-between
e About News, sports, etc



Issues - Quality
o000 |

e Users are no random walkers

e Reinforcing effects/bias towards main
pages/sites

e Linkage spam
e Manipulation by commercial interests

- Cost to buy 1 link from an important page
or a link from many non-important pages

— Hilltop, only trust experts



Issues - Speed
—

e Argue: Time is insignificant compared to building full
text index, but...

e Re-compute ranks every few months
- Web changes faster!

e WWW conference 2003: Google becoming up to 5
times faster
- BlockRank: 3X the current calculation speed!
-~ Extrapolation
- Adaptive PageRank



BlockRank
]

e Observations: web link graph is nested block
structure

- Pages under the same domain/host link to pages
under the same domain/host

- Internal links: 80% of all links per page

e EXxploit this structure to speedup PageRank
computation

e 3-stage algorithm



Block Structure

3 “ . 7

(c¢) Stanford-50 (d) Stanford/Berkeley Host Graph



Experiment Setup & Observations
c__

Domain Host

Full Intra | 953M links 83.9% | 899M links 79.1%
Inter | 183M links 16.1% | 237M links 20.9%

DNR Intra | 578M links 95.2% | 568M links 93.6%
Inter 29M links 4 8% 39M links 6.4%

Table 2: Hyperlink statistics on LARGEWEB for the full graph

(Full: 291M nodes, 1.137B links) and for the graph with dangling
nodes removed (DNR: 64.7M nodes, 607M links).



3 Stage Algorithm
—

e 1. Local PageRanks of pages for each host
are computed independently

e 2. Calculate BlockRanks of hosts in Block
Graph

e 3. Local PageRanks are weighted by the
‘importance’ of the corresponding host

e 4. Standard PageRank algorithm using 2.
Weighted aggregates as starting vector



0. Sort the web graph lexicographically as described
in Section 3, exposing the nested block structure of the
web.

1. Compute the local PageRank vector [y for each
block J.

FOI'm u Iations foreach block J do

lr = pageRank{G 17,57,¥r);
G

2. Compute block transition matrix B and Block-
Ranks b.

B =LTAS
b= pageRank{ B, ¥}, T} )

3. Find an approximation 9 to the global PageRank
vector & by weighting the local PageRanks of pages in
block J by the BlockRank of J.

#O =L}

4. Use this approximation as a start vector for a standard
PageRank iteration.

#9 = pageRank(G, &, 7)

Algorithm 3: BlockRank Algorithm



BlockRank Advantages
S

e Speedup due to caching effects”
- Now CPU cache and Memory

e Converge quickly

e 1st step can be done completely parallel or
distributed fashion

e Results of 1st step can be reused



Experiment Results
S

Algorithm Wallclock time
Standard 180m 36s
Standard (using url-sorted links) 87m 44s
BlockRank (no pipelining) 81m 19s
BlockRank (w/ pipelining) 57m 06s

Table 6: Wallclock running times for 4 algorithms for computing
PageRank with ¢ = 0.85 to a residual of less than 1072,

PageRank BlockRank
STANFORD/BERKELEY 50 27
LARGEWEB 28 18

Table 7: Number of iterations needed to converge for standard
PageRank and for BlockRank (to a tolerance of 10~ for STAN-
FORD/BERKELEY,and 102 for LARGEWEB).



Experiment Results(cont.)
c__

2

Standard PageRank
0 BlockRank

-12}

-14
0 10 20 30 40 50

Figure 5: Convergence rates for standard PageRank (solid line)
vs. BlockRank (dotted line). The x-axis is the number of itera-
tions, and the #-axis is the log of the Ly-residual. STANFORD/
BERKELEY data set; ¢ = (.85.



Applications - PageRank

Estimate web traffic
Backlink predictor
Better search engine quality
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Applications - BlockRank




PageRank/BlockRank Highlights
S

e PageRank is a global ranking based on the
web’s graph structure

e PageRank uses backlink information

e PageRank can be thought as random surfer
model

e BlockRank: exploit block structure to
speedup and advantages

e Various applications



Thank you for your attention!

Questions?



Backup Notes
c--



More Implementations

]
e Unique integer ID for each URL

e Sort and Remove dangling Links
e |terating until converge
e Add back dangling links and re-compute



Convergence

e G(V,E) is an expander with factor alpha if for
all subsets S:|As| >= alphals|

e Eigenvalue separation: largest eigenvalue is
sufficiently larger than the second-largest
eigenvalue

e Random walk converges fast to a limiting

probability distribution on a set of nodes in
the graph



Google File System
S

e Performance, scalability, reliability and
availability

e |t's normal to have hardware component
failures

e Huge number of huge files
e Mutations
e Constraint specific file system



Google File System(cont.)
—

e Master: Handle meta-data

e Chunk server: Hold chunked data
- 64MB per chunk

e Clients: Access to tera-bytes of data



Google File System(cont.)
—

e Reduce master workload
-~ Reduce interaction with master

e Keep metadata in memory
e Availability!
e Replication!
- Multiple replicated data chunks
- Master state replication, and shadow master

e Fast recovery
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