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Abstract

This study describes a new Hidden Markov Model (HMM) system for seg-
menting uncharacterized human genomic DNA into exons, introns, and intergenic
regions. Three separate models were designed for each of the three types of human
DNA (exons, introns, and intergenic), and training was performed on a corpus col-
lected specifically for this project. The model was then augmented using biological
knowledge about splice junction consensus sites, which were used to tie together
the separately trained models. The resulting integrated model was then used to
segment a test set of human DNA sequences that were not used during training.
The initial results are highly encouraging and indicate that an HMM can form the
basis of an effective gene-finding system.

1 Introduction

Robust computational solutions to the gene-finding problem are a valuable resource for
the Human Genome Program and for the molecular biology community at large. Soft-
ware that can reliably identify putative genes in DNA sequence can significantly speed
discovery in the age of high throughput genomic sequencing. A number of gene-finding
systems have been developed in the past few years, with varying degrees of success, but
the problem still does not have a satisfactory solution. Most of these systems are still
under development, though, and improvements continue to appear. Some of the leading
systems are GRAIL [21], GenelD [9], GeneParser [17], and FGENEH [18], among others.
These systems use a variety of comptuational techniques including neural network algo-
rithms, dynamic programming, rule-based methods, and probabilistic reasoning. Even

*Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218. Email:
(jhndrsn salzberg)@cs.jhu.edu. Telephone: 410-516-8438. Fax: 410-516-6134.

tGenome Data Base, Johns Hopkins University School of Medicine, 2024 E. Monument St., Baltimore
MD 21205. Email: ken@gdb.org. Phone: 410-955-9705.



though they are not perfect, the information they provide is valuable enough that some
of these systems, which are available via the Internet, are already being widely used.

One technique that seems a natural fit to the gene-finding problem is that of Hidden
Markov Models, a probabilistic method designed for sequences of discrete data. HMMs
have been used to find genes in F. coli [14], but no one has previously used them to find
genes in eukaryotic DNA, which presents a more difficult problem. HMMs provide an
elegant mechanism to capture information about splice junctions and other signals, as
we shall illustrate below.

2 The design of an HMM for finding genes

Hidden Markov Models are noted for their success in the field of speech recognition
[1, 15]. Because they are designed to process sequences of information, researchers in
computational biology have recently begun to use them for analysis of DNA and pro-
tein sequences. For example, they have been used for finding periodicities in DNA [2],
for exploring structural similarities of families of genes [6], for producing multiple se-
quence alignments [13, 3], for finding palindromic repeats [11], and for protein secondary
structure prediction [8, 4]. Most of the models produced have been relatively small (in
comparison to speech recognition systems), in part because of the limited amount of data
available but also to reduce the number of free parameters of the system. In an HMM,
larger models tend to have many more free parameters and therefore require much more
data for accurate training.

At the present time, there is no publicly available HMM system (either commercial
or public domain) that can handle the size and topological complexity of the model
we have built for gene finding. Therefore we implemented our own HMM system, and
developed our models using it. We needed a system in which we could implement HMMs
that could handle arbitrary models (any topology is permitted, not just chains) and that
could process sequences of tens of thousands of bases reasonably fast. We plan to release
our code and data in the near future.

2.1 HMM basics

Although HMMs cannot be covered in detail here, a brief introduction will be useful.
An HMM models a process in which some of the details are unknown, or hidden. Typ-
ically this process is stochastic in nature. Most commonly, HMMs are used to model
a sequence of events, which could be a sequence of nucleotides (for DNA), sounds (for
speech processing), or any other sequence. We will speak of the HMM as producing a
sequence as output; however, it is just as easy to treat a sequence as input to an HMM.
One main assumption is required for an HMM: the events that follow any state v in the
model depend only on v, not on any state preceding v. This independence assumption



is essential for the computations that we use.

An HMM is defined by a set of states and transitions, often represented as a graph
where states correspond to vertices and transitions to edges. Each state v is associated
with a discrete output probability distribution, P(b); for DNA, this output distribution is
simply the probability of producing each base b € {A, C, G, T'}. These probabilities must
sum to 1 for each state. Similarly, each transition has a probability, which represents the
probability that a generating process makes that transition. Thus the probabilities of
all the transitions out of a given state v must also sum to 1. As a very simple example,
consider the “coin flipping” model in Figure 1. This model only has one state, which

P(E|S)=1.0

P(H|9)=0.5
P(T|S)=0.5

Figure 1: A Markov model for flipping an unbiased coin.

outputs either heads (H) or tails (T) with equal probability. After each output, it makes
a transition back to itself with probability 1. If we just “run” this model, it will generate
a sequence of characters from the alphabet (H,T).

2.2 HMM algorithms

What makes HMMs useful is the existence of three distinct efficient algorithms for com-
puting with them. These algorithms are called the forward, Viterbi, and Expectation
Mazimization (E-M) algorithms. For our experiments, we only needed Viterbi and E-M
(sometimes called the Forward-Backward algorithm), so we will briefly describe these
algorithms here. Space constraints prevent us from explaining the algorithms fully; the
interested reader should see Lee [15] for details.

The E-M algorithm is used to solve the learning problem, i.e., to learn good values
for all the probabilities in an HMM. The model topology must be fixed by the developer,
and all of the output probabilities and transition probabilities are initialized to random
values. By presenting the model with a set of DNA sequences, the E-M algorithm can
re-estimate all of these probabilities. The data are then run through the model again
and the probabilities are further refined. The process is iterated until the probability
of the data given the model is maximized. In our experiments, E-M always converged
in under six iterations. Each iteration of E-M algorithm runs in O(ne) where n is the



length of the dataset and e is the number of edges in the model. Our code allows smaller
models to be constructed using null states, which are states that output no characters.

2.3 Parsing with the Viterbi algorithm

After training, the model is ready to be used in a gene-finding system. For this purpose,
we use the Viterbi algorithm, a dynamic programming algorithm that efficiently aligns
any sequence to an HMM. The idea is that, given a sequence and a trained HMM, the
Viterbi algorithm will find the most likely sequence of states through the model for that
particular sequence. Although there are an exponential number of such paths through
the model, the Viterbi algorithm finds the best one in time that is proportional to ne,
where n is the length of the sequence and e is the number of edges (transitions) in the
model.

Essentially, then, the Viterbi algorithm aligns the sequence to the model. Since our
model contains explicit states representing the start codons, splice junctions, and stop
codons, this alignment tells us directly where the first exon begins and where each of
the subsequent exon-intron transitions occurs.

2.4 HMM implementation difficulties

Actually, the Viterbi algorithm computes something more precise than the most likely
path through the model. It also computes the probability of the sequence given that it
took a particular path. With long sequences, however, this number can be vanishingly
small, since every transition in the path has a probability of less than 1.
Real numbers with magnitudes larger than 10°%° or smaller than 107%%° cannot be
used in computations even on today’s modern workstation without special numerical
packages. Consider the simple Markov model in Figure 1 evaluating the Viterbi al-
gorithm on any sequence in {H, T} The probability of any such sequence being
produced by the model is P(s|M) = 2719 Running this example with standard math
packages causes underflow. Replacing the probabilities by their logs to some small base
is an obvious answer to this problem. The problem one confronts in implementing this
trick is how to compute log(a +b) given log a and log b. We use the method described by
Lee [15]. That method replaces additions on logarithmic representations of the rational

numbers greater than zero by a comparison, two additions and a table lookup.

2.5 A monolithic model

A macroscopic view of our model’s topology is shown in Figure 2. This model contains
some states that are labeled with specific nucleotides; this points out a nice feature of
HMMs that we exploited in our system. Namely, during training we can specify that
certain states and transitions are fixed, i.e., not subject to re-estimation. In this way
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Figure 2: A monolithic model of human genomic DNA. Noncircular nodes indicate
regions of more detail which have been omitted. GTG is an extremely rare start codon.

we loaded certain parts of the model with biological knowledge. In particular, the start
and stop codons were explicitly coded as sequences of three states each, and the 5 and
3’ splice junctions were coded as chains of states that captured the consensus for those
regions. The probabilities in the splice junctions were based on the consensus splice
site summaries given in [16], except that a provision was made for nonconsensus splice
sites by changing zero probability base-site occurances to a very small probability. Even
though the splice junctions were encoded explicitly, it is possible for any region to be
labeled as a splice site if the sequence fits the rest of the model well enough.

To train our HMM, we separated out the exons, introns, and other non-coding regions
in the training set, and trained three smaller models separately. Two of these three
models are represented schematically in Figure 2, which only shows them as large ovals,
omitting details. The intergenic model was very simple, containing two disconnected 10
state chains (representing the upstream and downstream intergenic pieces) with loops
on the ends to absorb extra bases. The exon model contained 89 states and the intron
model contained only 10. A more detailed view of the exon and intron models is provided
in Fig. 3. Triangles provide a collapsed view of subtrees. Nodes that are labelled can
output only the symbol shown in the label, except ¢ which is a null state. Outputs of
other nodes are trained. The E-M algorithm was only run on these sub-models, not on
the entire combined model.

When we combined the models, we had to add 18 edges. The probabilities on six of
those edges were estimated by hand. Another round of training on the combined model
would probably help to estimate those edges even better, and this is one of our next
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Figure 3: Topologies of the exon (left) and intron models.
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steps in this project. The hand-estimated edges are critical, since they are used every
time the model switches between the various segment submodels.

2.6 Assumptions used in gene parsing

As stated above, we designed separate HMMs and trained them on exons, introns, and
intergenic DNA respectively. Each of these models can then give the probability that
a given sequence is entirely of that type (using the Viterbi algorithm). To process
anonymous DNA, these models must be glued together using additional states that
detect segment boundaries.

There are a number of inter-region constraints and assumptions that can be made
for the gene-finding problem. Some of the ones we considered were as follows.

1. The first exon of every gene must begin with a start codon.

2. A gene can have only one stop codon in the same reading frame as the start codon,
and that stop codon must appear as the last codon in the gene.

3. Each non-initial exon must be in phase (in a compatible reading frame) with the
previous exon. Given that the last base in the exon e, is at position ¢, the reading
frame for e, is f (f € {0,1,2}), and the first base in the exon e, following e, is at



position j, reading frame (j — ¢ — 1 4+ f) mod 3 must be an open reading frame in
the current exon [21]. Note that our HMM system does not use this assumption.

4. Noncoding regions and introns are flanked by exons.

5. Each piece of DNA presented for analysis will start and end with a noncoding
region and contain a single gene.

6. There are a number of signals which denote boundaries between exons and introns[18,
16]. We can find all boundary candidates, giving us a superset of the true bound-
aries, by looking for these signals.

These assumptions have a number of shortcomings, most of which are minor. There are
genes in which the stop codon appears in the middle of the last exon. In other genes, the
start codon appears after the start of transcription, and thus occurs in the middle of the
first exon. There is some inconsistency in the definition of “gene” and “exon” that has
been reflected in the DNA sequence database (GenBank, GSDB) entries; for example,
some entries use the stop codon to define the end of the final exon, while others use the
location of the end of the spliced mRNA transcript. Assumption number 5 is the only
difference between the general gene-finding problem and our problem; we assume that
exactly one gene exists in the data, which of course is not necessarily true. However,
other benchmark experiments to date have also relied on this assumption [5].

Finally, the assumption that exons are in consistent reading frames is important
to other dynamic programming systems such as GRAIL [21], because it significantly
reduces the number of alternative parses. It leads to two problems, however: (1) it
explicitly prohibits the correct characterization of genes that are alternatively spliced,
and (2) it makes an algorithm very sensitive to frame shift errors, which occur wherever
there are indels in the exon regions. Because an HMM only uses local information,
it is difficult to adjust it to keep track of frame shifts; essentially, one would have to
duplicate large pieces of the model to represent different frames and phases. We made
a conscious decision to ignore frame information, which makes the HMM simpler and
avoids problems (1) and (2) above.

2.7 Finding more than one parse

By default, the Viterbi algorithm gives us the single best alignment of a sequence to
our model. It is straightforward to modify this to determine the top k& best parses by
keeping the best k in each state in the Viterbi trellis. (For details of how the trellis
is constructed, see [15].) This requires an additional factor of k space, and a factor of
O(klog k) additional time. We have implemented these modifications in our system;
however, the results below only include the single best alignment. A more detailed
discussion comparing the correct parse to the £ best will appear in a forthcoming paper.



3 Assembling a collection of DNA sequences

The training process involves the adjustment of model parameters and adjustment of
the model topologies. The final accuracy of these methods depends to a large extent on
the quality and quantity of data used to train them. We therefore placed considerable
emphasis on the development of a reliable training set. Ad hoc query access to scientific
databases via a standard query mechanism is essential for a study of this kind [19]. The
Genome Sequence Data Base [7] was therefore the clear choice as our primary source of
human DNA sequences. Among the major public nucleotide sequence databases (includ-
ing Genbank, EMBL Data Library, and DDBJ), GSDB is the only one that supports
publicly accessible SQL queries. This feature is of critical importance in obtaining a
well-defined set of sequences from the database, and easily updating that set as new
data becomes available.
The defining features of all sequences in our data set are as follows:

obtained from human genomic DNA

greater than 500 nucleotides in length

contain a complete coding sequence (CDS), including both 5 and 3’ ends
contain at least one exon

Because of GSDB’s implementation in a relational database management system (Sybase),
pointers to the basic data set can be obtained with a single query. The sequences used
in our study were retrieved in August 1995.

In our results below, we always assume that “truth” is given by the annotation from
the original GSDB entry. Of course, it is well known that the quality of the entries in
the DNA sequence databases varies dramatically (e.g, [12, 20]). Poor quality sequence
data can be caused by everything from vector contamination to erroneous annotation
of sequence features. Although each of the contributing databases has its own quality
control checks, they are not uniformly applied at all sites.

Once our initial data set was obtained, a number of quality controls had to be applied
to remove entries which did not meet our standards. We applied filters to the raw data
set to check for overlapping exon and intron ranges as well as exons defined out of the
range of the coding region. We also manually removed the entry for the human germline
T-cell receptor beta chain gene ([10]; accession L36092) from our data set. Although
this entry is the largest single human sequence currently in the database, and it is a
model for careful, dense annotation, it represents a somewhat atypical sequence because
of the V., D, and J segment structure. This, combined with its very large size made it
very difficult to process, and ultimately easier to leave out of our data set.

After these quality checks, we were left with 435 complete coding sequences from
the GSDB database[7]. A set of 100 sequences was randomly selected and held out
for testing. The remaining 335 sequences became our training set, and were used for
all training and tuning of the HMM parameters. When all parameters and system



Data set | Num. of sequences | Length in base pairs | Total exon length
Training 335 2440619 543535
Test 100 656803 135258

Table 1: Characterization of the human DNA data.

architecture issues were fixed, the system was used to parse the test set. We report
below our results on both the training sequences and the test set.

The final data set is described in Table 1, and a complete list of the sequences used
in this study can be found in appendix A.

4 Results

We built our HMM parser as described in section 2.5, and trained it on the 335 human
DNA sequences in our training set. As explained above, the training was conducted
separately for the exon, intron, and intergenic DNA models, then the models were com-
bined. We plan to train the full model on complete sequences in a followup study, which
should give improved results. After training, we applied the HMM to 100 test sequences
that we had reserved as a test set from the beginning. The results are summarized in

Tables 2 and 3.

Set, Size TrCDS | PrCDS TP TN TEx | PEx | OvEx | IMEx | Exact
Train | 2440954 | 543566 | 554068 | 274183 | 1617503 | 2564 | 2491 1519 1010 419
Test 656903 | 135267 | 179985 | 78398 | 420049 | 633 | 778 426 292 111

Table 2: Overall results of gene parsing.

In Table 2, CDS refers to the coding regions of the data; i.e., the exons. TrCDS
is the sum of the true CDS lengths, PrCDS is the sum of the predicted CDS lengths,
TP is the total length (in base pairs) of correctly predicted coding (exonic) regions,
TN is the tototal length (in base pairs) of correctly predicted noncoding (intronic or
intergenic) regions, TEx is the total number of true exons, PEx is the total number of
predicted exons, OVEx is the number of true exons that are overlapped by a predicted
exon, IMEx is the number of exons for which we predicted one of the edges exactly,
and Exact is the number of exons that were exactly predicted.

In Table 3, we summarize the accuracy of the HMM system on the training set and
the test set. These numbers are all based on the number of bases correctly predicted.



Set | Sn | Sp | CC | P(I) | P(AIl)
Train | 0.57 | 0.55 | 0.36 | 0.91 | 0.85
Test | 0.66 | 0.45 | 0.35 | 0.84 | 0.81

Table 3: Per-basepair results of gene parsing.

In Table 3, Sn is the sensitivity of the parse: the number of true exon bases in the truth
that were correctly predicted divided by the length of the true CDS (computed over the
entire set), Sp is the sensitivity of the parse: the number of true exon bases that were
correctly predicted divided by the length of the predicted CDS, CC is the correlation
coefficient, P(I) is the probability that if a given base is truly an intron we will mark it
correctly, P(All) is the probability that we will mark a base correctly.

The choice of evaluation measures reported in these tables is based on the excel-
lent comparative study of Burset and Guigo [5], who reported similar measures in a
comparison of gene-finding systems on vertebrate DNA sequences.

4.1 A detailed example

We consider a complex gene from the test set, HUMG6PDG (human glucose-6-phosphate
dehydrogenase). It is 3262 basepairs long with 2224 coding bases spread across 13 exons.
The HMM system parsed the gene into 14 exons, 7 of which matched the true exons and
6 of which overlapped the correct exons. Below is how our system’s output.

Truth System Comment
473 b34 265 534 3’ end correct
605 732 605 732 Exact
776 813 776 813 Exact
847 955 847 969 5’ end correct
999 1216 999 1216 Exact

1260 1418 1260 1418 Exact

1462 1587 1462 ...

1618 1711 oo 1711 Missed an Intron

1755 1941 1755 1933 5’ end correct

1985 2220 1985 2220 Exact

2264 2340 2264 2340 Exact

2385 2477 2385 2477 Exact

2522 ... 2522 2587
e 2877 2933  Split one exon into three
3218 3152 3204

10



5 Conclusions

The overall goal of this project is to provide a new, HMM-based tool for finding genes
in eukaryotic DNA. This initial study shows that on a large set of human DNA, HMMs
perform well. The HMM system is most accurate at finding regions that substantially
overlap true exons, and it also does very well at pinpointing at least one end of each
exon. It definitely needs improvement in finding both ends more precisely, and we
noticed in some cases (which become apparent when one looks at the details of all 100
test sequences) that some genes are just completely missed. We need to characterize
those complete misses (which bring down the overall accuracies substantially) and find
ways to avoid them. We have already begun work on several steps in this direction.

There are other signals associated with genes that we have not attempted to utilize.
Upstream of the 5” end of the gene there are various promoter sequences whose positions
are highly conserved. We can use these signals to locate the start of transcription better.
Our current intergenic model is too simple to capture all of this information.

An obvious improvement in an entirely computational method for finding genes is to
use the megabases of genes that have already been sequenced. High-scoring homologies
to DNA in databases can help pin down the exons in a gene. We can run a local
alignment search algorithm against known genes and use the results to restrict the
resulting segments from aligning with the intronic or intergenic parts of the monolithic
model.

With a simple modification, the HMM architecture can be used to perform whole
genome and arbitrary sequence parsing. As stated in section 2.6, our current implemen-
tation requires the sequence to begin and end its alignment in the intergenic region. By
allowing any state to be a valid initial and final state, and connecting the intergenic
region, we can permit the sequence to align to multiple copies of the HMM. This is
equivalent to allowing the model to find as many (or as few) genes as are needed.

Finally, there are many technical issues which need to be dealt with when using
larger HMMs, which tend to take a very long time to train and which are difficult to
modify. We plan to work on parallel implementations to speed up training, and to work
on better user interfaces so that the models can be built and modified easily.
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A Genes Used in this study

The sequences are referenced by accession number, except when the CDS spanned mul-
tiple entries. For those sequences we list the segment name which is shared by the
entries.

The following sequences were in the training set for this study:
HUM2C18X, HUM2C9X, HUM3BHSD, HUM4F2HG, HUMA1AR, HUMADH, HUMADH2S, HUMADPRT,
HUMADRDO, HUMALAD, HUMALDC, HUMALIDN, HUMALRED, HUMAMYB, HUMANFZ, HUMAPB,
HUMAPOAI, HUMAS, HUMATCT, HUMATPK, HUMATPSY, HUMB7AN, HUMBAT2B, HUMBAT3B,
HUMBHA, HUMBHSD, HUMBNSP, HUMBPGM, HUMBTF, HUMBTKB, HUMC, HUMCA, HUMCALCR,
HUMCANP, HUMCAVII, HUMCCK, HUMCD19W, HUMCD3E, HUMCETP, HUMCFCGR, HUMCFTRA,
HUMCFXII, HUMCLG4Q, HUMCR1SF, HUMCRABP, HUMCRP, HUMCSF1M, HUMCYAR, HUMCYPBX,
HUMCYPX, HUMDCN, HUMDHLP, HUMDSF, HUMEBI, HUMELAM, HUMETN, HUMFERHC, HUMFIXG,
HUMFSHBQ, HUMFUCAS, HUMGALC, HUMGCB, HUMGFI, HUMGFIAB, HUMGHRA, HUMGOAQ, HUMHD,

13



HUMHOX, HUMHPARS, HUMIDSGE, HUMIGFBP, HUMIGHBP, HUMITILC, HUMKALR, HUMLACI,
HUMLAM, HUMLB2A, HUMLBR, HUMLCA, HUMLCT, HUMLDLR, HUMLI2D, HUMLPACI, HUMMANR,
HUMMAOB, HUMMCCPA, HUMMHB51, HUMMHCD1, HUMMHCP, HUMMHDB, HUMMHDQA, HUMMHDXA,
HUMMHSXB, HUMMSX, HUMNADHC, HUMNITOX, HUMNPYY1, HUMNQO, HUMPALF, HUMPDS, HUMPECAM,
HUMPOMC, HUMPPTRH, HUMPRC, HUMPS, HUMPSPS, HUMRASFA, HUMRASK, HUMRBS, HUMS100B,
HUMSCN4A, HUMSCNA, HUMSGLT, HUMSGP, HUMSIALP, HUMSPARC, HUMSPD, HUMSTATH,
HUMTCGVA, HUMTGASI, HUMTOP, HUMTPA, HUMTRPM2, HUMTSHBA, HUMTYR, HUMU1RNP,
HUMUKI, J00238, J00250, J00271, JO0277, JO0306, J00315, J02698, J02758, J02843,
J02846, J02907, J02933, JO3071, JO3072, J03252, J03474, JO03589, J03756, J03826,
J03910, J03930, J04038, J04444, J04469, J04617, J04809, J04982, J04990, J05096,
J05253, K00470, K00650, K01884, K02043, K02212, K02401, K02402, K03021, L01665,
L03378, L04132, L05072, LO7772, LO7899, L09190, L10038, L10343, L10347, L10641,
L10820, L10822, L12691, L12760, L13391, L13470, L14075, L14565, L14778, L15440,
L15533, L17131, L18920, L19546, L19686, L22206, 123982, L24498, L25444, L25597,
L27587, L29472, L32754, 133842, L34219, L35485, L36861, L39064, M10277, M11166,
M11228, M11319, M11725, M11749, M11880, M12605, M13057, M13058, M13207, M13438,
M13792, M14642, M15895, M15958, M16110, M16441, M16446, M16714, M17500, M18000,
M18079, M19283, M19364, M19806, M20902, M20903, M21540, M22877, M23091, M23442,
M23595, M24097, M24415, M24461, M24689, M26167, M26331, M26434, M26679, M26856,
M27132, M27138, M27274, M28130, M28548, M28650, M30135, M30142, M31061, M31303,
M31776, M31944, M31951, M32405, M33027, M33189, M33387, M33388, M34046, M34356,
M34462, M34482, M35093, M35878, M36121, M36640, M38180, M55270, M57678, M57965,
M58050, M58569, M58600, MB59316, M59924, M60331, M60332, M60858, M61108, M61170,
M61827, M62420, M63420, M63454, M63967, M64269, M64554, M64982, M68516, M68895,
M69051, M69137, M72150, M72885, M74179, M74587, M77232, M77481, M79462, M79463,
M80468, M80469, M80478, M81651, M81806, M83363, M83665, M84332, M84349, M84472,
M84757, M89796, M91036, M91037, M91555, M92444, M92844, M94077, M94250, M94556,
M95623, M96233, M96264, M96326, M96759, M9I7925, MI7943, M98447, and M99412.
These sequences appeared in the test set:
HUMADPRF, HUMAGT, HUMALDB, HUMCAIII, HUMCATD, HUMCD, HUMCKMM, HUMCNFAR, HUMCTSE,
HUMCYPB, HUMEL, HUMENK, HUMENKB, HUMF13A, HUMFLAP, HUMFOL, HUMFOLLI, HUMG6PDG,
HUMGA7A, HUMHBA, HUMHBB, HUMHIS, HUMIRBPG, HUMKERP, HUMMCAD, HUMMUT, HUMP53A,
HUMPGAMM, HUMRASR, HUMINC, HUMINFR, HUMTPO, HUMUQCR, J00314, J02763, J02986,
J05008, J05412, LO7287, L08010, L11016, L12690, L23210, L25648, L26261, L28101,
L29766, L32831, M11726, M12523, M12967, M15205, M15894, M19159, M20543, M22403,
M23178, M24110, M24485, M26857, M27024, M28638, M28879, M30838, M31651, M33494,
M33764, M37271, M37818, M37984, M38193, M54883, M55913, M57424, M57506, M57888,
M59199, M60830, M61829, M61831, M63391, M63871, M63962, M64231, M68519, M69197,
M73255, M77144, M79464, M80185, M81740, M83094, M85276, M86593, M89914, M91463,
M94579, M95529, M96955, and M98776.
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B Complete test set results

These are the details of the results for the 100 test
of the field headings are the same as those in Tables 2 and 3.

Locus SqLen  TrCDS PrCDS
HUMADPRF 6789 3595 1308
HUMAGT 2595 1156 1307
HUMALDB 14893 999 9
HUMCAIII 2927 445 859
HUMCATD 7193 1920 3854
HUMCD 4463 1318 608
HUMCKMM 5321 1013 1585
HUMCNFAR 3510 1566 1778
HUMCTSE 3030 958 1090
HUMCYPB 5267 1512 3345
HUMEL 5140 674 3597
HUMENK 2068 666 888
HUMENKB 4324 3575 1097
HUMF13A 7141 2199 2337
HUMFLAP 3683 397 191
HUMFOL 5861 437 354
HUMFOLLI 5966 1035 1136
HUMG6PDG 3262 2224 2007
HUMGA7A 4218 1274 291
HUMHBA 19858 584 8165
HUMHBB 4253 528 336
HUMHIS 6669 470 51
HUMIRBPG 4476 4289 3693
HUMKERP 5063 1421 1910
HUMMCAD 3616 2192 96
HUMMUT 5878 2798 38
HUMP53A 3116 2625 963
HUMPGAMM 4363 839 2727
HUMRASR 5684 657 2035
HUMTHNC 2856 678 973
HUMTNFR 4013 2120 1995
HUMTPO 30926 2708 9475
HUMUQCR 1726 1203 273
Joo314 5117 1335 2121
Jo2763 3671 273 1251
J02986 6616 621 2134
JO5008 12461 2033 804
Jo5412 4251 501 66
LO7287 2704 173 438
L08010 3411 769 433
L11016 6305 894 1258
L12690 3710 452 15
L23210 2200 179 891
L25648 2378 601 1004
L26261 12120 1288 1902
L28101 9618 1284 3655
L29766 24790 1856 4717
L32831 1262 1075 993
M11726 2775 288 1039
M12523 19002 1860 6
M12967 4016 1089 1841
M15205 13500 705 2843
M15894 2740 651 1399

TP

1166
1080

444
1638
364
1009
931
791
1398
595
666
1097
1828
74
44
701
1755

355
315

3693
1072
75
23
952
799
504
534
1356
2019
214
1335
267
555

168
257
679

103
332

1260
986
993
263

1089
492
531

TH

3052
1212
13885
2067
3057
2901
3732
1097
1773
1808
1464
1180
749
4433
3169
5114
4496
786
2653
11464
3704
6148
187
2804
1403
3065
480
1596
3496
1739
1254
20762
464
2996
2414
4416
9624
3684
2261
2466
4832
3243
1233
1105
9189
5939
19203
187
1711
17136
2175
10444
1221

FP

142
227

415
2216
244
576
847
299
1947
3002
222

509
117
310
435
252
291
7810
21
51

838
21
15
11

1928
1531
439
639
7456
59
786
984
1579

804
66

270

176

579
15

788

672

1643
2395
3731

776
752

2351
868

15

FN

2429
76
999

282
954

635
167
114

79

2478
371
323
393
334
469

1274

213
470
596
349
2117
2775
1673
40
153
144
764
689
989

66
2033
501

512
215
452
76
269
1029
24
870
82
25
1860

213
120
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sequences.

COFRPR OOCOO0OO0OCO0OO0OOCOCO0OOCOO0OO0COORROOOOODOOCOOOCOO0OOCOOOCOOOCOORHROOOORHROOROOO

Sn

.32
.93
.00
.00
.85
.28
.00
.59
.83
.92
.88
.00
.31
.83
.19
.10
.68
.79
.00
.61
.60
.00
.86
.75
.03
.01
.36
.95
77
.79
.64
.75
.18
.00
.98
.89
.00
.00
.97
.33
.76
.00
.58
.55
.20
.98
.53
.92
.91
.00
.00
.70
.82

C OO OO R OOOOCOO0OOCOO0OO0OO0OO0OOO0OOCOO0OOCOO0OO0OO0CO0OOHOOOODOOOOORH,HOOCODOODOOOOOOCO

Sp

.89
.83
.00
.52
.43
.60
.64
.52
.73
.42

17

.75
.00
.78
.39
.12
.62
.87
.00
.04
.94
.00
.00
.56
.78
.61
.99
.29
.25
.55
.68

21

.78
.63
.21
.26
.00
.00
.38
.59
.54
.00
.12
.33
.14
.34
.21
.00
.25
.00
.59

17

.38

C OO O OC OO OO0 OCOO0OCOO0OO0CO0OO0OO0CO0CO0OO0CO0OO0OO0OO0CO0OO0COCOO0OO0CO0OO0OO0COOOCOO0O0OCOOOCOOOCOOOCOCOCO0O

cC

.35
77
.01
.65
.38
.26
.74
.16
.66
.38
.16
.79
.27
.72
.21
.05
.57
.52
.18
.07
.72
.02
.45
.49
.06
.02
.27
.33
.31
.53
.30
.30
.08
.71
.38
.39
.12
.05
.57
.34
.57
.02
.10
.15
.04
.49
.25
.80
.38
.01
.66
.28
.34

The meanings

OVE 1ME P(I) P(ALL)

5 3 0.96 0.62
9 7 0.84 0.88
0 0 1.00 0.93
4 3 0.83 0.86
8 5 0.58 0.65
2 0 0.92 0.73
6 5 0.87 0.89
7 5 0.56 0.58
6 5 0.86 0.85
8 3 0.48 0.61
10 7 0.33 0.40
1 1 0.84 0.89
3 1 1.00 0.43
12 10 0.90 0.88
1 0 0.96 0.88
1 0 0.94 0.88
4 4 0.91 0.87
13 13 0.76 0.78
0 0 0.90 0.63
2 1 0.59 0.60
2 2 0.99 0.94
0 0 0.99 0.92
3 2 1.00 0.87
5 4 0.77 0.77
2 0 0.99 0.41
1 0 1.00 0.53
7 6 0.98 0.46
3 1 0.45 0.55
5 4 0.70 0.70
6 3 0.80 0.80
10 8 0.66 0.65
12 6 0.74 0.74
1 0 0.89 0.39
4 4 0.79 0.85
2 2 0.71 0.73
3 2 0.74 0.75
0 0 0.92 0.77
0 0 0.98 0.87
1 0 0.89 0.90
2 2 0.93 0.80
3 2 0.89 0.87
0 0 1.00 0.87
1 0 0.61 0.61
3 1 0.62 0.60
3 1 0.85 0.78
4 4 0.71 0.75
6 5 0.84 0.81
1 0 1.00 0.94
2 1 0.69 0.71
0 0 1.00 0.90
7 6 0.74 0.81
4 2 0.82 0.81
4 4 0.58 0.64



M19159 4268 1608 2113
M20543 3778 1134 1344
M22403 6062 2389 2832
M23178 4102 279 403
M24110 4788 282 447
124485 4261 722 1295
M26857 4034 1471 2007
M27024 7393 2922 2303
M28638 4206 528 174
M28879 4751 744 1483
M30838 4778 747 1559
M31651 6087 1156 1211
M33494 2609 828 1767
M33764 8841 1386 33
M37271 3280 723 2357
M37818 9697 1862 4328
M37984 4567 686 2207
M38193 4528 890 1587
M54883 3649 1089 1723
M55913 2140 788 767
M57424 4982 1225 819
M57506 3709 542 153
M57888 4452 288 1702
M59199 13662 3598 4220
M60830 2158 2078 588
M61829 4705 2537 1850
M61831 2211 1299 1299
M63391 11990 2220 3622
M63871 8673 1527 2824
M63962 17201 3556 6980
M64231 7623 1649 2511
M68519 4732 2139 2033
M69197 38542 2268 132
M73255 5607 3103 2105
M77144 9127 1673 9
M79464 2946 144 2475
M80185 3044 144 2545
M81740 9373 2028 33
183094 4452 609 438
M85276 6746 738 2295
M86593 4663 484 162
189914 9026 63 8520
M91463 8402 3193 2908
M94579 11502 2347 5495
M95529 3401 496 604
M96955 7355 2014 366
M98776 6005 2369 2176
Average 6569 1352 1799
Summary 656903 135267 179985
Locus SqLen  TrCDS PrCDS

1608
1134
1889
91
91
494
1225
2030
123
744
651
792
742
0
614
1440
649
689
1072
552
598
153
638
1635
588
1625
1299
1733
1328
3341
1274
999
0
1694
0
144
144
0
438
610
114
63
1886
2228
331
0
1844

783

2155
2434
2730
3511
4150
2738
1781
4198
3627
3268
3123
4512
756
7422
814
4947
2323
2740
1909
1137
3536
3167
2400
7479
80
1943
912
7881
5650
10006
4737
1559
36142
2093
7445
471
499
7312
3843
4323
4131
506
4187
5888
2632
4975
3304

4200

505
210
943
312
356
801
782
273
51
739
9208
419
1025
33
1743
2888
1558
898
651
215
221

1064
2585

225

1889
1496
3639
1237
1034

132

411

2331
2401
33

0
1685
48
8457
1022
3267
273
366
332

1015

500
188
191

246
892
405

96
364
86
1386
109
422
37
201
17
236
627
389
350
1963
1490
912

487
199
215
375
1140
2268
1409
1673

2028
171
128
370

1307
119
165

2014
525

568

78398 420049 101587 56869

TP
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111

TPE

C O OO O OO0OO0OOFRHR PR OOODOODOOOR,ROOOOCOOOOOOOOCOOOOFHOOOOOOO R

.00
.00
.79
.33
.32
.68
.83
.69
.23
.00
.87
.69
.90
.00
.85
77
.95
77
.98
.70
.49
.28
.65
.45
.28
.64
.00
.78
.87
.94
77
.47
.00
.55
.00
.00
.00
.00
.72
.83
.24
.00
.59
.95
.67
.00
.78

.61

.58

Sn

C O OO OO OO OOOOOOOOO0OOOFHHROR,ROOROODOODOOOCOOODOODOOOOOOCO OO

.76
.84
.67
.23
.20
.38
.61
.88
.71
.50
.42
.65
.42
.00
.26
.33
.29
.43
.62
.72
.73
.00
.37
.39
.00
.88
.00
.48
.47
.48

51

.49
.00
.80
.00
.06
.06
.00
.00
.27
.70
.01
.65
.41
.55
.00
.85

.47

.44

Sp

C OO0 OO OCOO0OO0COO0OO0OO0OCO0OOCO0CO0OO0OOCOHOOOOOOOOOOOCOOOOCOOCOOOCOOOCCOCOCO

.79
.88
.52
.21
.20
.37
.51
.67
.36
.64
.50
.59
.32
.03
.15
.32
.39
.44
.67
.54
.50
.50
.29
.19
.12
.55
.00
.50
.54
.55
.50
.07
.01
.39
.01
.10
.10
.03
.83
.36
.37
.02
.40
.48
.53
.14
.70

.36

.35

cC

[y
NONR P OBFEFNWNRORL DO WAR O OB_ERERREROR

N
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426
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-
NO O W UNO O OOOOHROWWONHRONOOOOM®ROFRFFOAORWIAWOWOAR AR ONWRERLOOOO

N

292

1ME

.81
.92
.74
.92
.92
77
.69
.94
.99
.82
77
.92
.42
.00
.32
.63
.60
.75
.75
.84
.94
.00
.69
.74
.00
.90
.00
.81
.79
.73
.79
.60
.00
.84
.00
.17
.17
.00
.00
.72
.99
.06
.80
.64
.91
.93
.91

C OO0 OCO0O OO, OOFROROOOOOFRROFRROOROODOODOOOR,HROODOODOOOOOOO OO

CO OO OO OCOO0OOCO0OO0OO0OO0OCO0OO0COCOO0COHFHOOOOOCOOOOOOCOOOOCOOOOOCOOOCOCOCO

.88
.94
.76
.88
.89
.76
.75
.84
.89
.84
.79
.87
.57
.84
.44
.66
.65
.76
.82
.79
.83
.90
.68
.67
.31
.76
.00
.80
.80
.78
.79
.54
.94
.68
.82
.21
.21
.78
.96
.73
.91
.06
.72

71

.87
.68
.86

P(I) P(ALL)



