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This report examines the role of a powerful statistical model called Hidden Markov Models (HMM) in the 

area of computational biology. We will start with an overview of HMMs and some concepts in biology. Next, 

we will discuss the use of HMMs for biological sequences and finally conclude with a discussion on the 

advantages and limitations of HMMs and possible future work. 
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1. Biological Background 

1.1. DNA  - Deoxyribonucleic Acid 

 

 

In humans, as in other higher organisms, a DNA molecule consists of two strands that wrap around each 

other to resemble a twisted ladder whose sides, made of sugar and phosphate molecules, are connected by 

rungs of nitrogen containing chemicals called bases. Four different bases are present in DNA: adenine (A), 

thymine (T), cytosine (C), and guanine (G). The particular order of the bases arranged along the sugar- 

phosphate backbone is called the DNA sequence; the sequence specifies the exact genetic instructions 

required to create a particular organism with its own unique traits. The two DNA strands are held together by 

weak bonds between the bases on each strand, forming base pairs (bp). Genome size is usually stated as the 

total number of base pairs; the human genome contains roughly 3 billion bp. A gene is a segment of a DNA 

molecule (ranging from fewer than 1 thousand bases to several million), located in a particular position on a 

specific chromosome, whose base sequence contains the information necessary for protein synthesis. 

 

1.2. RNA 

RNA has the same structure as DNA. The primary differences between RNA and DNA are: 

RNA has a hydroxyl group on the second carbon of the sugar and instead of using nucleotide thymine, RNA 

uses another nucleotide called uracil (U). Since RNA has extra hydroxyl group on it's sugar strand, RNA is 

too bulky to form a stable double helix therefore it exists as a single-stranded molecule. In addition to that, 

because the RNA molecule is not restricted to a rigid double helix, it can form many different structures. 

There are several different kinds of RNA made by the cell. They are mRNA, tRNA, rRNA and snRNA. 
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1.3. Proteins 

Proteins are involved in almost all biological activities, structural or enzymatic. A protein is made by arranging 

amino acids together in a specific sequence (the sequence of every protein is different).  These amino acids 

are held together by a special bond called a peptide bond. There are altogether 20 different amino acids.  

 

1.4. The Central Dogma Of Molecular Biology 

How does the sequence of a strand of DNA correspond to the amino acid sequence of a protein? This 

concept is explained by the central dogma of molecular biology, according to which  

§ The DNA replicates its information in a process called replication that involves many enzymes. 

§ The DNA codes for the production of messenger RNA (mRNA) during transcription. In 

eukaryotic cells, the mRNA is processed (essentially by splicing) and migrates from the nucleus to 

the cytoplasm. 

§ Messenger RNA carries coded information to ribosomes. The ribosomes "read" this information and 

use it for protein synthesis. This process is called translation. 

Diagrammatically, 

Protein 

mRNA 

DNA 

transcription 

translation 

CCTGAGCCAACTATTGATG

PEPTIDE 

CCUGAGCCAACUAUUGAUG
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1.5. Protein structure 

A striking characteristic of proteins is that they have very well defined 3-D structures. A stretched-out 

polypeptide chain has no biological activity, and protein function arises from the conformation of the protein, 

which is the 3-D arrangement or shape of the molecules in the protein. The native conformation of a protein 

is determined by a number of factors, and the most important are the 4 levels of structure found in proteins. 

Primary, secondary and tertiary refer to the molecules in a single polypeptide chain, and the fourth 

(quaternary) refers to the interaction of several polypeptide chains to form a multi-chained protein. In this 

paper, we limit our discussion to just the primary and secondary structure. 

 

Primary Structure 

 The primary structure of a protein is determined by the number and order 

of amino acids within a polypeptide chain.  A polypeptide is a sequence of 

two or more amino acids joined together by peptide bonds. 

Determination of primary structure is an essential step in the 

characterization of a protein. 

 

Secondary Structure 

Protein secondary structure refers to regular, repeated patters of folding of the protein backbone. The two 

most common folding patterns are the alpha helix and the beta sheet. Patterns result from regular hydrogen 

bond patterns of backbone atoms.  

 

 

 

 

 

In the alpha helix, the polypeptide folds by twisting into a right handed 

screw so that all the amino acids can form hydrogen bonds with each other. 

This high amount of hydrogen bonding stabilizes the structure so that it 

forms a very strong rod-like structure.  
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The beta-pleated sheet is substantially different from the alpha-helix in that 

it is a sheet rather than a rod and polypeptide chain is fully stretched rather 

than tightly coiled as in helix. It is called a beta-pleated sheet because of zig 

zag appearance when viewed from the side.  

 

The tertiary structure of a protein is formed when the attractions of side chains and those of the secondary 

structure combine and cause the amino acid chain to form a distinct and unique 3-dimensional structure.  It is 

this unique structure that gives a protein its specific function. 

 

1.6. Multiple Sequence Alignment  

Multiple alignment is the process of aligning two or more sequences with 

each other in order to determine any evolutionary relationships. For 

aligning two sequences the dynamic programming approach is the most 

suitable. This approach can be generalized for multiple sequence 

alignment also. But for a large number of sequences this approach 

becomes impractical.  There are heuristic methods available to speed up 

the dynamic programming approach like the local multiple alignment using the Sum of Pairs scoring function. 

In our treatise, we will show how HMMs can be effective in solving this problem. 
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Sunny 

Rain 

Cloudy 

2. Hidden Markov Model (HMM) Architecture 

2.1. Markov Chains 

Let the three states of weather be Sunny, Cloudy and Rainy. We cannot expect these three weather states to 

follow each other deterministically, but we might still hope to model the system that generates a weather 

pattern. One way to do this is to assume that the state of the model depends only upon the previous states of 

the model. This is called the Markov assumption and simplifies problems greatly. When considering the 

weather, the Markov assumption presumes that today's weather can always be predicted solely given 

knowledge of the weather of the past few days. 

 A Markov process is a process, which moves from state 

to state depending (only) on the previous n states. The 

process is called an order n model where n is the number of 

states affecting the choice of next state. The simplest 

Markov process is a first order process, where the choice 

of state is made purely on the basis of the previous state. 

This figure shows all possible first order transitions 

between the states of the weather example. 

 

The state transition matrix below shows possible transition probabilities for the weather example; 

 

that is, if it was sunny yesterday, there is a probability of 0.5 that it will be sunny today, and 0.25 that it will be 

cloudy or rainy. 
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To initialize such a system, we need to state what the weather was (or probably was) on the day after creation; 

we define this in a vector of initial probabilities, called the  vector. 

 

So, we know it was sunny on day 1.  

 

We have now defined a first order Markov process consisting of :  

§ states : Three states - sunny, cloudy, rainy.  

§ vector : Defining the probability of the system being in each of the states at time 0.  

§ state transition matrix : The probability of the weather given the previous day's weather.  

Any system that can be described in this manner is a Markov process. 

 

2.2. Hidden Markov Models 

In some cases the patterns that we wish to find are not described sufficiently by a Markov process. Returning 

to the weather example, a hermit for instance may not have access to direct weather observations, but does 

have a piece of seaweed. Folklore tells us that the state of the seaweed is probabilistically related to the state 

of the weather - the weather and seaweed states are closely linked. In this case we have two sets of states 

§ observable states (the state of the seaweed) and  

§ hidden states (the state of the weather).  

We wish to devise an algorithm for the hermit to forecast weather from the seaweed and the Markov 

assumption without actually ever seeing the weather. The diagram below shows the hidden and observable 

states in the weather example. It is assumed that the hidden states (the true weather) are modeled by a simple 

first order Markov process, and so they are all connected to each other. 
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The connections between the hidden states and the 

observable states represent the probability of 

generating a particular observed state given that the 

Markov process is in a particular hidden state. It 

should thus be clear that all probabilities `entering' 

an observable state will sum to 1, since in the above 

case it would be the sum of Pr(Obs|Sun), 

Pr(Obs|Cloud) and Pr(Obs|Rain). 

 

In addition to the probabilities defining the Markov process, we therefore have another matrix, termed the 

output matrix, which contains the probabilities of the observable states given a particular hidden state. For 

the weather example the output matrix might be;  

 

 

So, this is a model containing three sets of probabilities in addition to the two sets of states 

§ vector : contains the probability of the hidden model being in a particular hidden state at time t= 1.  

§ state transition matrix : holding the probability of a hidden state given the previous hidden state.  

§ output matrix : containing the probability of observing a particular observable state given that the 

hidden model is in a particular hidden state.  

 

Thus a hidden Markov model is a standard Markov process augmented by a set of observable states, and 

some probabilistic relations between them and the hidden states. 
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2.3. An example of a HMM for Protein Sequences 

This is a possible hidden Markov model for the protein ACCY. The protein is represented as a sequence of 

probabilities. The numbers in the boxes show the probability that an amino acid occurs in a particular state, 

and the numbers next to the directed arcs show probabilities, which connect the states. The probability of 

ACCY is shown as a highlighted path through the model. There are three kinds of states represented by three 

different shapes. The squares are called match states, and the amino acids emitted from them form the 

conserved primary structure of a protein. These amino acids are the same as those in the common ancestor 

or, if not, are the result of substitutions. The diamond shapes are insert states and emit amino acids that 

result from insertions. The circles are special, silent states known as delete states and model deletions. These 

type of HMMs are called Protein Profile-HMMs and will be covered in more depth in the later sections. 

 

Scoring a Sequence with an HMM  

Any sequence can be represented by a path through the model. The probability of any sequence, given the 

model, is computed by multiplying the emission and transition probabilities along the path. A path through 

the model represented by ACCY is highlighted. For example, the probability of A being emitted in position 1 

is 0.3, and the probability of C being emitted in position 2 is 0.6. The probability of ACCY along this path is  

.4*.3*.46*.6*.97*.5*.015*.73*.01*1 = 1.76x10-6. 

 

Transition 

Prob. 

Output Prob.
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2.4. Three Problems Of Hidden Markov Models 

1) Scoring Problem 

We want to find the probability of an observed sequence given an HMM. It can be seen that one method of 

calculating the probability of the observed sequence would be to find each possible sequence of the hidden 

states, and sum these probabilities. We use the Forward Algorithm for this. 

 

Consider the HMM shown above. In this figure several paths exist for the protein sequence ACCY. 

The Forward algorithm employs a matrix, shown below. The columns of the matrix are indexed by the 

states in the model, and the rows are indexed by the sequence. The elements of the matrix are initialized to 

zero and then computed with these steps: 

1. The probability that the amino acid A was generated by state I0 is computed and entered as the first 

element of the matrix. This is .4*.3 = .12 

2. The probabilities that C is emitted in state M1 (multiplied by the probability of the most likely transition 

to state M1 from state I0) and in state I1 (multiplied by the most likely transition to state I1 from state I0) 

are entered into the matrix element indexed by C and I1/M1. 

3. The sum of the two probabilities, sum(I1, M1), is calculated. 

4. A pointer is set from the winner back to state I0. 

5. Steps 2-4 are repeated until the matrix is filled. 

The probability of the sequence is found by summing the probabilities in the last column. 

M1

M2
M3

I0

I1
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Matrix for the Forward algorithm 

 

2) Alignment Problem 

We often wish to take a particular HMM, and determine from an observation sequence the most likely 

sequence of underlying hidden states that might have generated it. This is the alignment problem and the 

Viterbi Algorithm is used to solve this problem. 

 

The Viterbi algorithm is similar to the forward algorithm. However in step 3, maximum rather than a sum is 

calculated. The most likely path through the model can now be found by following the back-pointers. 

 

 

Matrix for the Viterbi algorithm 

 

Once the most probable path through the model is known, the probability of a sequence given the model can 

be computed by multiplying all probabilities along the path.  
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3) Training Problem 

Another tricky problem is how to create an HMM in the first place, given a particular set of related training 

sequences. It is necessary to estimate the amino acid emission distributions in each state and all state-to-state 

transition probabilities from a set of related training sequences. This is done by using the Baum-Welch 

Algorithm or the Forward Backward Algorithm. 

 

The algorithm proceeds by making an initial guess of the parameters (which may well be entirely wrong) and 

then refining it by assessing its worth, and attempting to reduce the errors it provokes when fitted to the 

given data. In this sense, it is performing a form of gradient descent, looking for a minimum of an error 

measure. 
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3. Applications of HMM’s 

In this section, we will delve into greater depth at specific problems in the area of computational biology and 

examine the role of HMM's.  

 

3.1. Gene finding and prediction 

We introduce here the gene-prediction HMMs that can be used to predict the structure of the gene. Our 

objective is to find the coding and non-coding regions of an unlabeled string of DNA nucleotides. 

The motivation behind this is to  

§ assist in the annotation of genomic data produced by genome sequencing methods 

§ gain insight into the mechanisms involved in transcription, splicing and other processes 

 

As shown in the diagram above, a string of DNA nucleotides containing a gene will have separate regions  

§ Introns – non-coding regions within a gene 



 

14

§ Exons – coding regions  

These regions are separated by functional sites 

§ Start and stop codons 

§ Splice sites – acceptors and donors 

In the process of transcription, only the exons are left to form the protein sequence as depicted below. 

 

Many problems in biological sequence analysis have a grammatical structure . HMMs are very useful in 

modeling grammar. The input to such a HMM is the genomic DNA sequence and the output, in the simplest 

case is a parse tree of exons and introns on the DNA sequence. 

 
Shown below is a simple model for unspliced genes that recognizes the start codon, stop codon (only one of 

the three possible stop codons are shown) and the coding/non-coding regions. This model has been trained 

with a test set of gene data. 

 

 

Having such a model, how can we predict genes in a sequence of anonymous DNA ? We simply use the Viterbi 

algorithm to find the most probable path through the model 
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3.2. Protein- Profile HMMs 

As we have seen earlier, protein structural similarities make it possible to create a statistical model of a protein 

family which is called a profile. The idea is, given a single amino acid target sequence of unknown structure, 

we want to infer the structure of the resulting protein. The profile HMM is built by analyzing the distribution 

of amino-acids in a training set of related proteins. This HMM in a natural way can model positional 

dependant gap penalties.  

The basic topology of a profile HMM is shown above. Each position, or module, in the model has three 

states. A state shown as a rectangular box is a match state that models the distribution of letters in the 

corresponding column of an alignment. A state shown by a diamond-shaped box models insertions of 

random letters between two alignment positions, and a state shown by a circle models a deletion, 

corresponding to a gap in an alignment. States of neighboring positions are connected, as shown by lines. For 

each of these lines there is an associated `transition probability', which is the probability of going from one 

state to the other.  

 

The match state represents a consensus amino acid for this position in the protein family. The delete state is a 

non-emitting state, and represents skipping this consensus position in the multiple alignment. Finally, the 

insert state models the insertion of any number of residues after this consensus position. 

Matching 

Insertion 
Deletion 
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A repository of protein profile HMMs can be found in the PFAM Database (http://pfam.wustl.edu). 

Building profiles from a family of proteins(or DNA) a profile HMM can be made for searching a database for 

other members of the family. As we have seen before in the section on HMM problems, profile HMM’s can 

also be used for the following  

 

Scoring a sequence 

We are calculating the probability of a sequence given a profile by simply multiplying emmision and transition 

probabilities along the path.   

 

Classifying sequences in a database 

Given a HMM for a protein family and some unknown sequences, we are trying to find a path through the 

model where the new sequence fits in or we are tying to ‘align’ the sequence to the model. Alignment to the 

model is an assignment of states to each residue in the sequence. There are many such alignments and the 

Vitterbi’s algorithm is used to give the probability of the sequence for that alignment.  

 

Creating Multiple sequence alignment 

HMMs can be used to automatically create a multiple alignment from a group of unaligned sequences. By 

taking a close look at the alignment, we can see the history of evolution. One great advantage of HMMs is 

that they can be estimated from sequences, without having to align the sequences first. The sequences used to 

estimate or train the model are called the training sequences, and any reserved sequences used to evaluate the 

model are called the test sequences. The model estimation is done with the forward-backward algorithm, also 

known as the Baum-Welch algorithm. It is an iterative algorithm that maximizes the likelihood of the training 

sequences.  
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3.3. Prediction of protein secondary structure using HMM’s 

Prediction of secondary structures is need for the prediction of protein function. As an alternative method to 

direct X-ray analysis, a HMM is used to  

§ Analyze the amino-acid sequences of proteins  

§ Learn secondary structures such as helix, sheet and turn 

§ Predict the secondary structures of sequences 

The method is to train the four HMMs of secondary structure – helix, sheet, turn and other – by training 

sequences. The Baum-Welch method is used to train the HMMs. So, the HMM of helix is able to produce 

helix-like sequences with high probabilities. Now, these HMMs can be used to predict the secondary structure 

of the test sequence. The forward-backward algorithm is used to compute the probabilities of these HMMs 

outputting the test sequence. The sequence has the secondary structure whose HMM showed the highest 

probability to output the sequence. 

 

4. HMM implementation  

These are the two publicly available HMM implementation software. 

HMMER - http://hmmer.wustl.edu/ 

SAM system - http://www.cse.ucsc.edu/research/compbio/sam.html 

 

5. Advantages of HMMs 

§ HMM’s can accommodate variable-length sequence. 

 Because most biological data has variable-length properties, machine learning techniques which require a 

fixed-length input, such as neural networks or support vector machines, are less successful in biological 

sequence analysis 

 

§ Allows position dependant gap penalties.  

HMM’s treat insertions and deletions is a statistical manner that is dependant on position.  
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6. Limitations of HMMs 

§ Linear Model  

So, they are unable to capture higher order correlations among amino-acids. 

 

§ Markov Chain assumption of independent events 

Probabilities of states are supposed to be independent which is not true of biology 

Eg, P(y) must be independent of P(x), and vice versa 

 

 

 

§ Standard Machine Learning Problems 

In the training problem, we need to watch out for local maxima and so model may not converge to a truly 

optimal parameter set for a given training set. Secondly, since the model is only as good as your training set, 

this may lead to over-fitting. 

 

7. Open areas for research in HMMs in biology  

§ Integration of structural information into profile HMMs. 

 Despite the almost obvious application of using structural information on a member protein family when 

one exists to better the parameterization of the HMM, this has been extremely hard to achieve in practice.  

 

§ Model architecture 

The architectures of HMMs have largely been chosen to be the simplest architectures that can fit the 

observed data. Is this the best architecture to use? Can one use protein structure knowledge to make better 

architecture decisions, or, in limited regions, to learn the architecture directly from the data? Will these 

implied architectures have implications for our structural understanding?  

 

P(x) … P(y) 
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§ Biological mechanism 

In gene prediction, the HMM’s may be getting close to replicating the same sort of accuracy as the biological 

machine (the HMM’s have the additional task of finding the gene in the genomic DNA context, which is not 

handled by the biological machine that processes the RNA). What constraints does our statistical model place 

on the biological mechanism— in particular, can we consider a biological mechanism that could use the same 

information as the HMM?  
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