
TeraVision: a Distributed, Scalable, High Resolution
Graphics Streaming System

Rajvikram Singh+, Byungil Jeong, Luc Renambot, Andrew Johnson, Jason Leigh
Electronic Visualization Laboratory

University of Illinois at Chicago
http://www.evl.uic.edu/cavern

+rsingh@evl.uic.edu

Abstract

In electronically mediated distance collaborations
involving scientific data, there is often the need to stream
the graphical output of individual computers or entire
visualization clusters to remote displays. This paper
presents TeraVision as a scalable platform-independent
solution which is capable of transmitting multiple
synchronized high-resolution video streams between
single workstations and/or clusters without requiring any
modifications to be made to the source or destination
machines. Issues addressed include: how to synchronize
individual video streams to form a single larger stream;
how to scale and route streams generated by an array of
MxN nodes to fit a XxY display; and how TeraVision
exploits a variety of transport protocols. Results from
experiments conducted over gigabit local-area networks
and wide-area networks (between Chicago and
Amsterdam), are presented. Finally, we propose the
Scalable Adaptive Graphics Environment (SAGE) - an
architecture to support future collaborative visualization
environments with potentially billions of pixels.

1. Introduction

One of the common problems faced in Amplified
Collaboration Environments [5] and scientific
visualization applications is termed as the 'Display
Docking' or the 'Display Pushing' problem. It expresses
the need for distributing visualizations or presentations
generated on one or more computers, to remote sites for
viewing and/or post-processing. A typical source of
graphics or video in such a case could be computers
ranging from laptops showing presentations, to compute
clusters number crunching terabytes of data and
rendering high-resolution visualizations on tiled displays.

A typical scientific visualization pipeline consists of
four stages: storage, computation, rendering and display.
The storage stage would typically store data in the order
of several gigabytes, even terabytes. The computation (or
processing) phase reduces the data to its visual
representations and the rendering phase finally converts
the visual primitives to pixel data, which can be fed to
displays. In distributed environments, where each of
these phases can be processed by a separate cluster (or a
supercomputer), it is definitely economical to transport
the output of the computation or the rendering phase to
remote machines for display.

TeraVision can be envisioned as a hardware-assisted,
network-enabled “PowerPoint” projector for distributing
and displaying scientific visualizations generated on
computers ranging from embedded systems to laptops to
graphics clusters. A user who wants to stream
visualization simply plugs the VGA or DVI output of the
source computer into a TeraVision Box (also called a
VBox) for transmitting it to displays across the network.
Figure 1 below, depicts the system’s capability of taking
video inputs from a wide range of video sources and
streaming them to a wide array of display technologies
over high-speed networks.

In this paper we will first present the main issues
pertinent to high-resolution video streaming and the
related work done in the area. We will discuss the system
architecture in some detail and some important problems
that were addressed. In the following sections, results
from tests done over local and wide area gigabit networks
are presented. Finally, we will talk about SAGE (Scalable
Adaptive Graphics Environment) and the OptIPuter
[4][6] project as architectures for supporting data and
display-rich collaborative visualization environments of
the future. The main contributions of the paper are:

• Scaling and routing of streams generated by an array
of MxN clusters to fit on a display driven by XxY
displays.

http://www.evl.uic.edu/cavern

Figure 1. TeraVision servers can stream video from a variety of video sources and automatically resize
the video stream to fit the client displays.

• Synchronization of the individual video streams that
form a single larger stream.

• Streaming of high-resolution video over LFNs (Long
Fat Networks).

2. Problems Associated with Video Stream-
ing and Related Work

Video streaming for collaborative environments and
scientific visualization applications has to be adaptable to
a wide range of scenarios and faces many problems.

• The video stream may be of the order of multiple
gigabits per second. Scientific visualization
applications are capable of generating high-
resolution video at high frame-rates. For example a
single desktop with a resolution of 1280x1024 pixels
at 24 bits per pixel and 30 frames per second
translates to a network stream of 943 Mbps. Content-
sensitive applications such as medical imaging
cannot withstand artifacts generated from destructive
compression and so in many cases the streams have
to be transmitted raw. Though the system supports
compression, we envision inexpensive dedicated
network connections of multiple gigabits per second
between visualization resources in the near future
which are capable of transmitting real-time high-
resolution uncompressed graphics. However, high
bandwidth streaming puts considerable load on the
sending and receiving machines to handle network

GHz, utilizes 70% of its CPU to stream UDP data at
1 Gbps. Thus there is a need to offload the task of
streaming video to dedicated machines.
The source and display machines ha

traffic. A typical 32-bit Pentium Xeon machine at 1.8

• ve different

• re has to be designed to

• machines are different

• eo streams.

• LFNs.

slower networks [1]. Application writers are

resolutions and configuration, e.g. laptop to tiled
display or vice-versa. In this case, care has to be
taken to appropriately scale the source video to the
display at the viewing end.
The source hardware/softwa
stream graphics. Also the system responsible for
converting the video data to network streams
requires a network interface and should be aware of
the networking protocols.
The source and display
platforms. Platform independence is a desired feature
as distributed and collaborative environments are
inherently heterogeneous in nature.
Ability to synchronize independent vid
When multiple video streams from complex display
systems such as stereoscopic or tiled-display clusters
need to be transmitted, there is a requirement to
synchronize their capture at the video serving end
and their display at the viewing end at every frame
for the video to be displayed effectively [10].
The graphics may have to be streamed over
With the introduction of inexpensive wide area
optical networking solutions it is now possible to
connect remote machines spread over a long distance
using high-speed optical links. However, using these
LFNs require specially tuned transport protocols, as
conventional transport protocols were designed for

Video cameras

Laptops

Supercomputers

Medical, scientific or
legacy hardware

TeraVision
clients

Desktop displays

Tiled displays

Stereoscopic
displays

Graphics Workstations

Laptops

TeraVision
servers

Optical
networks

typically unaware of networking details to handle
this aspect.

omputing platC forms typically provide some notion of
remote desktop access. Tools such as VNC [11] or
M

i

nsists of a
server and a client connected over a gigabit network. The
se

tire tiled-display provided there
are

Figure 2. Typical TeraVision setup

Since the urce is
typically transferred to a TeraVision server using a video

gy

oduce the various
components of the system and their relationships with
ea

set of machines) which transmit the video
str

’s graphics output. The
cli

icrosoft’s Remote Desktop [12] were designed to
transmit screens of single desktops to remote computers
over slow networks. They are designed to operate on
event triggered streaming mechanisms which are not
suitable for real-time streaming of scientific visualization
or collaborative applications. Flexible scalable graphics
systems such as Chromium [8] and Aura [9] are designed
for distributing visualization to and from cluster driven
tiled-displays. Applications have to be specifically
written with the Aura API to enable them to transmit
their graphics and Chromium was not designed to stream
graphics over LFNs. Amongst hardware based
approaches, Sandia National Laboratory’s ‘BeThereNow’
[13] system provides excellent video quality and frame
rates over LFNs using dedicated hardware. However it
cannot be scaled to capture and stream from/to tiled or
stereoscopic displays. IBM’s Scalable Graphics Engine
[17] is also a hardware based approach which allows for
reception of pixels streamed over optical networks and
can drive an array of displays synchronously. Currently it
is limited to a collective bandwidth of 16 Gbps and does
not support protocols for streaming over LFNs. Also
because of the embedded nature of both these
approaches, it is difficult for users to add their own video
sources, compression modules or network protocols to
the systems.

3. TeraVis on: System Architecture

A TeraVision setup (Figure 2) typically co

rver has the video capture hardware for capturing high-
resolution VGA or DVI inputs and the client can receive
the streams and display them at various resolutions. The
box captures the source signal at its native resolution,
digitizes it and broadcasts it to other networked
TeraVision boxes. Though the capture card is one of the
preferred means of getting a video stream to the server,
the video source can be any other video device such as a
USB/FireWire camera or even the software generating
the visualization itself.

In another configuration, using multiple VBoxes one
can also transmit an en

 sufficient VBoxes at each end-point (Figure 3). Since
the tile configuration and resolution can be different at
either ends, the TeraVision boxes provide the scaling
mechanism to automatically detect and ‘fit’ the source
video to the destination display. Similarly two VBoxes
can be connected to the twin-heads of a stereoscopic

system to stream stereoscopic visualizations. The VBoxes
take responsibility for the synchronization for
simultaneous capture of concurrent video streams on the
server side and the synchronization for displaying the
streams on the client side.

TeraVision
server

Video
source

TeraVision
client

Display
device

graphics output of the rendering so

cable, the source machine is not loaded for doing the
network streaming. The TeraVision servers take up the
load for compressing (if required) and streaming the
video data. The source can be of any hardware/software
platform and no changes have to be made to the source to
perform the streaming. The system was designed to
stream video over LFNs and contains TCP, UDP and IP
Multicast modules which are tuned for this purpose. The
system has also been designed to offer a framework for
adding new video sources, compression modules or
network protocols to the existing ones. Thus it is flexible
enough to adapt to a wide range of scientific visualization
and collaborative environments.

3.1 Concepts and Terminolo

In this section, we will intr

ch other.
TeraVision Server: The TeraVision server is the

machine (or
eams. The direction of video is always from server to

client. The server process is usually run on dedicated
machines which have some video capture hardware. The
video source can also be a software; for e.g. a set of pre-
computed video frames being fed from the disk or RAM.
One server process may be serving many clients at the
same time and all the streams being sent out are
synchronized with each other.

TeraVision Client: The clients display the incoming
video streams on the machine

ent does not require the capture hardware for its
operation. It just needs a network interface fast enough to
handle the video stream’s bandwidth and a reasonably

Video over
VGA/DVI Network

Figure 3. Example of streaming tiled displays using multiple VBoxes at each site.

fast graphics card. One client may receive its video

pro

ned by

information. Figure 6 graphically depicts the relationship

 (or client)

all

streams from one or more servers. All the component
video streams that make up the display on a client are
synchronized before being shown.

TeraVision Master: Each TeraVision server or client
cess either operates in the Master or the Slave mode.

A TeraVision site would typically consist of one master
and multiple slaves. Since there can be multiple servers
(or clients), there has to be one point of control for all the
VBoxes at a site and the master process serves that
purpose. The master process is responsible for
synchronizing all slave processes registered with it. The
user interacts only with the master process for controlling
all the VBoxes at a site. The master is also the one that
sends the synchronization messages to all slaves.

TeraVision Slave: The slave processes are spaw
a master and depend on the master for providing the sync
messages, user interaction messages and control plane

between the master and the slave processes.
Sync Channel: The sync channel is a high-priority,

low-latency channel used by peer server
processes to closely synchronize the video streams across
processes running on different machines. This is one of
the more important components as it affects the
throughput of the system to a large extent. Since a
TeraVision server (or client) site may consist of many
processes with each process sending or receiving many
video streams, they have to be synchronized in real-time,
so that the video at the display end does not appear to be
non-uniform.

Control Channel: The control channel is an
asynchronous message-passing channel that is hosted by

 the TeraVision processes. The channel is implemented
over TCP sockets and allows processes to pass control
plane messages between each other.

Cluster rendering TeraVision
the graphics servers

etwork N

Figure 5. Demonstration of three TeraVision

VGA/

s
DVI
output

servers streaming video to three different
sections of the tiled-display. Each video stream
is independent of each other but the screens for
each stream are synchronized.

Figure 4. A user streams her 1600x1200 laptop

Tiled displays driven
by TeraVision clients

screen to Electronic Visualization Laboratory’s
6400 x 3072 pixel tiled display at 10 fps.

Figure 7. Case A depicts a single tile server sending its video to a 2x2 client. In this case the server has to service 4
clients and each client connects to one server. In the second case, the server is a 2x2 tile configuration and the

client is a 3x3 tiled display. If we consider the center tile on the client, we see that it has to receive 4 video streams
from 4 different servers.

4. Important System Issues

In this section we will talk about the main problems
that were addressed for TeraVision.

4.1 M x N to X x Y scaling

In the case of streaming one tiled display to another,
the configuration and resolution of the source tiles could
be different from the client-side display. In such a
scenario TeraVision will scale the source video to the
client display. This can be taken as a general case and
single displays or stereo displays can be considered as
special cases of tiled displays.

During the initial handshake phase, all the slaves on
the server side register with their masters. The master
thus is aware of the total pixel resolution on the server
side. Similarly on the client side, the master is aware of
the collective resolution of the display. The master client
then proceeds to calculate the video stream mappings for
all the clients. Since there can be any number of tiles on
either side, a server might be serving multiple clients at
any given time or one client could be receiving its video
montages (rectangular pieces making up the final video)
from multiple server (Figure 7).

We make the assumption that the all tiles on either
side have the same resolution. Consider the following
parameters:

Xs - pixel width of each server tile.
Ys - pixel height of each server tile.
Xc - pixel width of each client tile.
Yc - pixel height of each client tile
Ms - Number of horizontal tiles on the server

(numbered 0 to Ms-1)
Ns - Number of vertical tiles on the server (numbered

0 to Ns-1)
Mc - Number of horizontal tiles on the client

(numbered 0 to Mc-1)
Nc - Number of vertical tiles on the client (numbered 0

to Nc-1)

The horizontal scale factor, hsf = (Ms * Xs) / (Mc * Xc)
The vertical scale factor, vsf = (Ns * Ys) / (Nc * Yc)

Then the remaining scaling parameters can be calculated
from the following relations:

Number of horizontal client montages,

nhm = αi for i = 0,
= αi - αi-1 + 1, for i = 1 to (Mc – 1)

Where αi = (Mc/Ms) * i, for i = 0 to (Mc – 1)

Similarly, number of vertical client montages
nvm = αi for i = 0,

= αi - αi-1 + 1, for i = 1 to (Nc – 1)
Where αi = (Nc/Ns) * i, for i = 0 to (Nc – 1)

Now for every client montage that exists, there is a

Case A Case B

2x2 tiled
client

3x3 tiled
client

1 tile server 2x2 tiled server

corresponding server montage. In order to be able to
retrieve and show the corresponding server montages, the
clients need to find the following parameters,

Oxs – horizontal offset in a server tile
Oys – vertical offset in a server tile
mxs – montage width on the server side
mys – montage height on the server side

Knowing the number of client montages, we traverse

from left to right and top to bottom pixel by pixel for all
the server tiles. And every time we encounter either a
server tile boundary or (the corresponding) client tile
boundary, we note the offsets Oxs and Oys in that server
tile and the width (mxs) and height (mys) of the server
montage.

Thus, server side montage pixel width = hsf * mxs
Server side montage pixel height = vsf * mys

Knowing the number of montages, the scaling factors,
server side offsets and montage dimensions, the clients
can calculate the client side offsets of each montage too.
Each client is then able to connect to one or more servers
and request a part (or whole) of the video stream based
on these parameters. After the montages have been
streamed to the client, hardware support in the graphics
card is used to do the final stretching to fit the display
screens.

4.2 Sync Channel

The current implementation of the sync channel is
done as a two way handshake over TCP/IP. The sync
packets have to be sent from the master to all the slave
processes with minimal delay to get the best results. One
way to ensure good latency between processes is to
switch off the Nagle’s algorithm in the TCP stack. This
can usually be done by setting the TCP_NO_DELAY
option at the TCP socket level [3] as explained in RFC
896 [7]. Another requirement of this channel is real-time
priority. The upper bound on the transmission time of
sync packets is greatly affected by factors such as system
load, scheduler’s time slice resolution, buffering delays
etc. Real-time implementation of this channel will be
carried out in the future.

4.3 Video Data over UDP

When video streams are sent over UDP and packet
losses or packet duplication occurs, care has to be taken
to recover from these errors. If the receiver fails to detect
any anomaly, then the video frames are distorted. A
protocol was built over UDP streams for this purpose.

This protocol numbers every UDP packet of a video
frame and allows the receiver to correctly place the
packet in its right place in the video buffer despite losses,
out-or-order arrival or duplication.

5. Tests and Observations

In this section we shall present results obtained with
TeraVision systems over local and wide area gigabit
networks. All machines used for the tests were equipped
with gigabit Ethernet adapters and a 100 BaseT interface.
The video data was sent over the gigabit interfaces and
the synchronization messages are passed over the Fast
Ethernet interface.

5.1 Specifications

The system has been implemented for Linux and
Windows operating systems. For the Linux machines, we
used Dual Intel Xeon CPUs at 1.8 GHz, 512 MB RAM
running Red Hat 7.3. The video source was emulated in
software. For the windows machines, we used Intel Xeon
CPUs at 1.5 GHz, 512 MB RAM running Windows 2000
Professional. The video source was Foresight Imaging’s
I-RGB-200 video-capture card. All machines used 1
Gbps network interface cards. The LAN tests were done
over a gigabit switch. Tests for LFNs were conducted
between SARA, Amsterdam and EVL (Electronic
Visualization Laboratory), Chicago over the Starlight
network [14] and also between GRNET (Greek Research
and Technology Network), Greece and EVL.

The video frames used for the tests are 1024x768 at
24bpp unless otherwise specified. All UDP tests were
done with 1500 byte MTUs and TCP tests utilized 64
Kbytes flow windows. The prototype systems use capture
cards that have drivers for the Windows OS only. Thus
all results done with the Windows machines as the server
imply the use of the capture hardware. The Linux servers
used a video source emulated in software.

5.2 Experiments

The bandwidths shown are the maximum possible that
could be achieved by the system under the given test
conditions. The UDP bandwidths indicated in the results
are the maximum sustained throughputs noted without
any packet losses.

Performance over TCP and UDP

Tables 1 and 2 show the maximum throughput
achieved with TCP and UDP streams over the LAN and
WAN test-beds. We note that UDP performance for

Windows machines is limited to less than 200 Mbps
because of the standard 1500 byte MTUs used. If we
increase the size of the MTU, the throughput improves
but the 1500 byte MTU was a standard test condition for
all UDP streams used for the tests.

Effect of Synchronization and Scalability

Table 3 shows the effect of synchronization on system
throughput. We observe that using one server as we
increase the number of clients, the total sending
bandwidth of the server decreases gradually but its CPU
utilization increases. However since increasing the
number of clients reduces the amount of video data
received by each client, the CPU utilization on the clients
goes down. Table 4 shows that with one client as we
increase the number of servers, the amount of data being
received by the client increases and its CPU usage goes
up. This creates a bottleneck causing TCP’s congestion
mechanism to reduce the sending rate on the servers [3]
and we see the CPU utilization of the servers decreasing.

Effect of different video frame sizes

In the following tests, shown in Figure 8 and 9, we
vary the frame sizes. The tests shown here were done
over TCP and UDP on LAN between one sending
(Windows) machine and one receiving (Linux) machine.
We notice that the throughput of the system is nearly
constant even as the frame sizes are varied.

Table 1. System performance with TCP

Tests Bandwidth
used

(Mbps)

Effective
FPS*

Server
CPU
usage

Client
CPU
usage

LAN
(Linux to

Linux)

703.12

37.4

65.4 %

98 %

LAN
(Windows to

Linux)

534

28.4

60 %

64 %

Starlight
(Linux to

Linux)

110

5.8

15 %

9 %

GRNET
(Windows to

Linux)

110

5.8

54 %

10 %

Table 2. System performance with UDP

Tests Bandwidth
used

(Mbps)

Effective
FPS*

Server
CPU
usage

Client
CPU
usage

LAN
(Linux to

Linux)

930.6

49.5

64 %

94 %

LAN
(Windows to

Linux)

180

9.6

80 %

17 %

Starlight
(Linux to

Linux)

285

15.2

26 %

27 %

GRNET
(Windows to

Linux)

190

10.1

60 %

100%

Table 3. Effect of synchronization and scalability
on clients

Number of

Clients
Bandwidth

used
(Mbps)

Effective
FPS*

Server
CPU
usage

Per Client
CPU usage

1 534 28.4 60 % 64 %

4 530 28 95 % 17 %

9 503.84 26.8 97 % 7.5 %

Table 4. Effect of synchronization and scalability
on servers

Number of

Clients
Bandwidth

used
(Mbps)

Effective
FPS*

Per Server
CPU
usage

Client
CPU
usage

1 623 33 70 % 80 %

4 180 9.5 17 % 94 %

9 120 6.3 15 % 99 %

*FPS: Frames per second.

 Figure 8. TeraVision throughput for different
frame sizes.

Figure 9. The frames per second decreases with
increase in frame size

Multicast over gigabit networks

A WAN multicast test-bed was setup over gigabit
links and high-bandwidth multicast tests were conducted
between EVL, Technology Research Education and
Commercialization Center (TRECC) and National Center
for Supercomputing Applications (NCSA). The servers at
EVL were used to transmit a captured laptop screen
simultaneously to four separate clients at TRECC and
one client at NCSA. Table 5 presents the results obtained
from these tests. The bandwidth numbers are the
maximum throughputs seen before packet losses were
observed at either ends. In other words the receiving ends
observed zero packet losses at the reported bandwidths.

All the receiving machines were running Linux. The
Windows server used 1000 byte packets and the Linux
server was configured with 1450 byte packets. It has been
observed that the Windows OS shows better network
throughput for UDP and Multicast with 1000 byte
packets.

Table 5. System performance over multicast

Type of server Bandwidth
used

(Mbps)

Effective
FPS*

Server
CPU
usage

Client
CPU
usage

Windows 377 19.9 100 % 57 %

Linux 512 27.12 41 % 54 %

*FPS: Frames per second.

7. Conclusions and Future Work

TeraVision provides a flexible and scalable solution
for the display pushing problem. Users can stream the
output of complex visualization systems, such as tiled-
displays, over LFNs without making any modifications to
the source software/hardware. The system scales the
visualization, generated by the source machines,
automatically to the client’s display. The solution also
distributes the load for streaming the high-resolution
video streams to dedicated machines. This is a very
important feature for computationally heavy visualization
application environments. TeraVision provides a
framework which allows easy adaptation to many
visualization scenarios and it is hoped that it will prove to
be a useful tool for collaborative environments and the
scientific community.

The following issues need to be addressed as part of
the future work.

• The system currently is capable of multicasting

single video streams to single displays only. The
problem of multicasting to and from tiled-displays
requires more work and can be solved if it is
assumed that the client configuration at each
receiving site is the same.

• UDP may not provide the ideal solution in many
scientific visualization scenarios because of the
possibility of packet-losses and the resulting
artifacts. We need a transport layer, which can
provide the performance of UDP but with the
reliability of TCP. EVL has been working on such a
streaming protocol called the RBUDP [1]. In the
future, TeraVision will provide a plug-in for
RBUDP.

• As discussed in section 4.2, real-time guarantees are
required from the OS to enable very good
synchronization. We hope to incorporate real-time
support in the future versions of TeraVision.

0

5

10

15

20

25

30

35

40

45

800x600 1024x768 1280x1024 1600x1200

Frame sizes

Frame rate over UDP

0

100

200

300

400

500

600

800x600 1024x768 1280x1024 1600x1200

Frame rate over TCP

Frame sizes

Th
ro

ug
hp

ut
 (i

n
M

bp
s)

Fr

am
es

 p
er

 se
co

nd

TCP throughput
UDP throughput

TeraVision is part of a larger research framework

called the OptIPuter [4]. The OptIPuter is a National
Science Foundation funded project to interconnect
distributed storage, computing and visualization
resources, using IP mechanisms over photonic networks.
Recent years have seen a large increase in the capacities
of optical networks, while the costs have plummeted.
This allows one to experiment with a new paradigm in
distributed computing - where dedicated optical networks
serve as the computer's system bus; and compute clusters
taken as a whole, serve as the peripherals in a widely
distributed computing platform. The OptIPuter is aimed
at solving research problems for the scientific
community, such as in the areas of geo-science and bio-
informatics [4][6].

The techniques developed in TeraVision are the basis
for the OptIPuter’s Scalable Adaptive Graphics
Environment (SAGE) - an architecture for supporting
cyber meeting rooms and laboratories which are “wall-
papered” with ultra-high-resolution displays [16]. The
impetus for the work on SAGE comes from the two main
problem areas. The first is that applications written for
one graphics environment have to be re-designed before
they can be run under other environments. For example:
visualization tools that are developed for desktop
computers are rarely able to take advantage of the
processing power of a cluster of graphics computers;
conversely visualization tools developed for clusters
rarely function on desktop computers. Secondly, the
ability of visualization software and systems to scale in
terms of the amount of data they can visualize, and the
resolution of the desired visualization, is still an area of
intensive computer graphics research [2][15]. SAGE
addresses the need to support heterogeneity and
scalability by decoupling graphics rendering from
graphics display and taking advantage of affordable ultra-
high-bandwidth networks to bridge them.

The SAGE architecture will allow multiple rendering
nodes or clusters to access a virtual frame-buffer across
the network. The framework will intelligently partition
the graphics pipeline to distribute the load. Factors such
as computing and rendering capabilities of the
participating machines will decide the load distribution.
Thus, unlike TeraVision where only pixels are routed to
the display machines, SAGE would also route geometry
and custom graphics formats. The framework will also
support the notion of multiple collaborators
simultaneously accessing a display space through a
shared “window” manager.

Acknowledgements

We would like to thank Cees de Laat at University of

Amsterdam for providing the endpoints at SARA in
Amsterdam to perform experiments during the
development of TeraVision. Alan Verlo, Lance Long, Pat
Hallihan, Paul Wielinga and Hans Blom provided us with
networking and system support. Also the valuable inputs
by Naveen Krishnaprasad, Shalini Venkataraman, Javier
Girado, Yong-Joo Cho and Greg Dawe are greatly
appreciated. We also want to thank our collaborators for
their help with conference demos; Fotis Karayannis from
GRNET (Greek Research and Technology Network),
Mike Papka from ANL (Argonne National Labs) and
Dave Semeraro from NCSA.

This work was supported in part by the OptIPuter
grant from the National Science Foundation-Cooperative
Agreement ANI-0225642. It was also supported by the
Office of Naval Research through an award from the
Technology Research Education and Commercialization
Center (TRECC).

References

[1] E. He, J. Leigh, O. Yu , T. A. DeFanti, “Reliable
Blast UDP: Predictable High Performance Bulk Data
Transfer”, IEEE Cluster Computing 2002, Chicago,
Illinois, Sept 2002.

[2] W. Blanke, C. Bajaj, D. Fussell, and X. Zhang, “The
Metabuffer: a Scalable Multiresolution Multidisplay
3-D Graphics System using Commodity Rendering
Engines.” Tr2000-16, University of Texas at Austin,
February 2000.

[3] W. R. Stevens, “Unix Networking Programming,
Volume 1, Second Edition: Networking APIs:
Sockets and XTI,” Addison Wesley, 1998, pp.357.

[4] J. Leigh, L. Renambot, T.A. DeFanti , M.D. Brown ,
E. He, N.K. Krishnaprasad, J. Meerasa, A. Nayak, K.
Park, R. Singh, S. Venkataraman, C. Zhang, D.
Livingston, M. McLaughlin, “An Experimental
OptIPuter Architecture for Data-Intensive
Collaborative Visualization”, 3rd Workshop on
Advanced Collaborative Environments (in
conjunction with the High Performance Distributed
Computing Conference), Seattle, WA 06/22/2003 -
June 2003

[5] J. Leigh, A. Johnson, K. Park, A. Nayak, R. Singh,
V. Chowdhry, “Amplified Collaboration
Environments”, VizGrid Symposium, Tokyo,
November 2002.

[6] T.A. DeFanti, J. Leigh, M.D. Brown, D.J. Sandin, O.
Yu, C. Zhang, R. Singh, E. He, J. Alimohideen, N.K.
Krishnaprasad, R. Grossman, M. Mazzucco, L.
Smarr, M. Ellisman, P. Papadopoulos, A. Chien, J.
Orcutt, “Teleimmersion and Visualization with the
OptIPuter,” Proc. of the 12th International

http://www.evl.uic.edu/papers/pap_project.php3?indi=197
http://www.evl.uic.edu/papers/pap_project.php3?indi=197
http://www.evl.uic.edu/papers/pap_project.php3?indi=197

Conference on Artificial Reality and Telexistence
(ICAT 2002), The University of Tokyo, Japan,
December 3-6, 2002, to be published by
Ohmsha/IOS Press.

[7] John Nagle. Rfc896: Congestion Control in IP/TCP
Internetworks. Technical report, Internet Assigned
Numbers Authority, Jon Postel, USC/ISI, 4676
Admiralty Way, Marina del Rey, DA 90292, 1984.

[8] G. Humphreys, M. Houston, Y. Ng, R. Frank, S.
Ahern, P. Kirchner, and J. T. Klosowski,
“Chromium: A Stream-Processing Framework for
Interactive Rendering on Clusters”, Proc of
SIGGRAPH 2002.

[9] D. Germans, H.J.W. Spoelder, L. Renambot, H. E.
Bal, "VIRPI: A High-Level Toolkit for Interactive
Scientific Visualization in Virtual Reality", Proc.
Immersive Projection Technology/Eurographics
Virtual Environments Workshop (IPT/EGVE),
Stuttgart, Germany, May 2001.

[10] Y. Chen, H. Chen, D. W. Clark, Z. Liu, G. Wallace,
K. Li., “Software environments for cluster-based
display systems”, First IEEE/ACM International
Symposium on Cluster Computing and the Grid,
May 2001.

[11] http://www.realvnc.com
[12] http://www.microsoft.com/windows2000/docs/rdpfa

ndp.doc
[13] http://www.sandia.gov/newscenter/publications/sand

iatechnology/2003/st2003v5no1.pdf
[14] http://www.startap.net
[15] G. Stoll, et. al., “Lightning-2: A High-Performance

Display Subsystem for PC Clusters,” Proceedings of
Computer Graphics (SIGGRAPH 2000).

[16] http://www.evl.uic.edu/cavern/sage
[17] Parallel Graphics and Interactivity with the Scaleable

Graphics Engine, Kenneth A. Perrine, Donald R.
Jones, William R. Wiley, Proceedings of the 2001
ACM/IEEE conference on Supercomputing.

http://www.cs.vu.nl/~renambot/vr/papers/ipt2001.pdf
http://www.cs.vu.nl/~renambot/vr/papers/ipt2001.pdf
http://www.realvnc.com/
http://www.microsoft.com/windows2000/docs/rdpfandp.doc
http://www.microsoft.com/windows2000/docs/rdpfandp.doc
http://www.startap.net/
http://www.evl.uic.edu/cavern/sage

