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Abstract 
 

In electronically mediated distance collaborations 
involving scientific data, there is often the need to stream 
the graphical output of individual computers or entire 
visualization clusters to remote displays. This paper 
presents TeraVision as a scalable platform-independent 
solution which is capable of transmitting multiple 
synchronized high-resolution video streams between 
single workstations and/or clusters without requiring any 
modifications to be made to the source or destination 
machines. Issues addressed include: how to synchronize 
individual video streams to form a single larger stream; 
how to scale and route streams generated by an array of 
MxN nodes to fit a XxY display; and how TeraVision 
exploits a variety of transport protocols. Results from 
experiments conducted over gigabit local-area networks 
and wide-area networks (between Chicago and 
Amsterdam), are presented. Finally, we propose the 
Scalable Adaptive Graphics Environment (SAGE) - an 
architecture to support future collaborative visualization 
environments with potentially billions of pixels. 
 
 

1. Introduction 

One of the common problems faced in Amplified 
Collaboration Environments [5] and scientific 
visualization applications is termed as the 'Display 
Docking' or the 'Display Pushing' problem. It expresses 
the need for distributing visualizations or presentations 
generated on one or more computers, to remote sites for 
viewing and/or post-processing. A typical source of 
graphics or video in such a case could be computers 
ranging from laptops showing presentations, to compute 
clusters number crunching terabytes of data and 
rendering high-resolution visualizations on tiled displays. 

A typical scientific visualization pipeline consists of 
four stages: storage, computation, rendering and display. 
The storage stage would typically store data in the order 
of several gigabytes, even terabytes. The computation (or 
processing) phase reduces the data to its visual 
representations and the rendering phase finally converts 
the visual primitives to pixel data, which can be fed to 
displays. In distributed environments, where each of 
these phases can be processed by a separate cluster (or a 
supercomputer), it is definitely economical to transport 
the output of the computation or the rendering phase to 
remote machines for display. 

TeraVision can be envisioned as a hardware-assisted, 
network-enabled “PowerPoint” projector for distributing 
and displaying scientific visualizations generated on 
computers ranging from embedded systems to laptops to 
graphics clusters. A user who wants to stream 
visualization simply plugs the VGA or DVI output of the 
source computer into a TeraVision Box (also called a 
VBox) for transmitting it to displays across the network. 
Figure 1 below, depicts the system’s capability of taking 
video inputs from a wide range of video sources and 
streaming them to a wide array of display technologies 
over high-speed networks.  

In this paper we will first present the main issues 
pertinent to high-resolution video streaming and the 
related work done in the area. We will discuss the system 
architecture in some detail and some important problems 
that were addressed. In the following sections, results 
from tests done over local and wide area gigabit networks 
are presented. Finally, we will talk about SAGE (Scalable 
Adaptive Graphics Environment) and the OptIPuter 
[4][6] project as architectures for supporting data and 
display-rich collaborative visualization environments of 
the future. The main contributions of the paper are: 

• Scaling and routing of streams generated by an array 
of MxN clusters to fit on a display driven by XxY 
displays. 
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Figure 1. TeraVision servers can stream video from a variety of video sources and automatically resize 
the video stream to fit the client displays. 

• Synchronization of the individual video streams that 
form a single larger stream. 

• Streaming of high-resolution video over LFNs (Long 
Fat Networks). 

2. Problems Associated with Video Stream-
ing and Related Work 

Video streaming for collaborative environments and 
scientific visualization applications has to be adaptable to 
a wide range of scenarios and faces many problems.  

• The video stream may be of the order of multiple 
gigabits per second. Scientific visualization 
applications are capable of generating high-
resolution video at high frame-rates. For example a 
single desktop with a resolution of 1280x1024 pixels 
at 24 bits per pixel and 30 frames per second 
translates to a network stream of 943 Mbps. Content-
sensitive applications such as medical imaging 
cannot withstand artifacts generated from destructive 
compression and so in many cases the streams have 
to be transmitted raw. Though the system supports 
compression, we envision inexpensive dedicated 
network connections of multiple gigabits per second 
between visualization resources in the near future 
which are capable of transmitting real-time high-
resolution uncompressed graphics. However, high 
bandwidth streaming puts considerable load on the 
sending and receiving machines to handle network 

GHz, utilizes 70% of its CPU to stream UDP data at 
1 Gbps. Thus there is a need to offload the task of 
streaming video to dedicated machines.  
The source and display machines ha

traffic. A typical 32-bit Pentium Xeon machine at 1.8 
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• eo streams. 
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slower networks [1]. Application writers are 

resolutions and configuration, e.g. laptop to tiled 
display or vice-versa. In this case, care has to be 
taken to appropriately scale the source video to the 
display at the viewing end. 
The source hardware/softwa
stream graphics. Also the system responsible for 
converting the video data to network streams 
requires a network interface and should be aware of 
the networking protocols. 
The source and display
platforms. Platform independence is a desired feature 
as distributed and collaborative environments are 
inherently heterogeneous in nature.  
Ability to synchronize independent vid
When multiple video streams from complex display 
systems such as stereoscopic or tiled-display clusters 
need to be transmitted, there is a requirement to 
synchronize their capture at the video serving end 
and their display at the viewing end at every frame 
for the video to be displayed effectively [10]. 
The graphics may have to be streamed over
With the introduction of inexpensive wide area 
optical networking solutions it is now possible to 
connect remote machines spread over a long distance 
using high-speed optical links. However, using these 
LFNs require specially tuned transport protocols, as 
conventional transport protocols were designed for 
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typically unaware of networking details to handle 
this aspect.  

omputing platC forms typically provide some notion of 
remote desktop access. Tools such as VNC [11] or 
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Figure 2. Typical TeraVision setup 
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icrosoft’s Remote Desktop [12] were designed to 
transmit screens of single desktops to remote computers 
over slow networks. They are designed to operate on 
event triggered streaming mechanisms which are not 
suitable for real-time streaming of scientific visualization 
or collaborative applications. Flexible scalable graphics 
systems such as Chromium [8] and Aura [9] are designed 
for distributing visualization to and from cluster driven 
tiled-displays. Applications have to be specifically 
written with the Aura API to enable them to transmit 
their graphics and Chromium was not designed to stream 
graphics over LFNs. Amongst hardware based 
approaches, Sandia National Laboratory’s ‘BeThereNow’ 
[13] system provides excellent video quality and frame 
rates over LFNs using dedicated hardware. However it 
cannot be scaled to capture and stream from/to tiled or 
stereoscopic displays. IBM’s Scalable Graphics Engine 
[17] is also a hardware based approach which allows for 
reception of pixels streamed over optical networks and 
can drive an array of displays synchronously. Currently it 
is limited to a collective bandwidth of 16 Gbps and does 
not support protocols for streaming over LFNs. Also 
because of the embedded nature of both these 
approaches, it is difficult for users to add their own video 
sources, compression modules or network protocols to 
the systems. 

3. TeraVis on: System Architecture 

A TeraVision setup (Figure 2) typically co

rver has the video capture hardware for capturing high-
resolution VGA or DVI inputs and the client can receive 
the streams and display them at various resolutions. The 
box captures the source signal at its native resolution, 
digitizes it and broadcasts it to other networked 
TeraVision boxes. Though the capture card is one of the 
preferred means of getting a video stream to the server, 
the video source can be any other video device such as a 
USB/FireWire camera or even the software generating 
the visualization itself. 

In another configuration, using multiple VBoxes one 
can also transmit an en

 sufficient VBoxes at each end-point (Figure 3). Since 
the tile configuration and resolution can be different at 
either ends, the TeraVision boxes provide the scaling 
mechanism to automatically detect and ‘fit’ the source 
video to the destination display. Similarly two VBoxes 
can be connected to the twin-heads of a stereoscopic 

system to stream stereoscopic visualizations. The VBoxes 
take responsibility for the synchronization for 
simultaneous capture of concurrent video streams on the 
server side and the synchronization for displaying the 
streams on the client side.  
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cable, the source machine is not loaded for doing the 
network streaming. The TeraVision servers take up the 
load for compressing (if required) and streaming the 
video data. The source can be of any hardware/software 
platform and no changes have to be made to the source to 
perform the streaming. The system was designed to 
stream video over LFNs and contains TCP, UDP and IP 
Multicast modules which are tuned for this purpose. The 
system has also been designed to offer a framework for 
adding new video sources, compression modules or 
network protocols to the existing ones. Thus it is flexible 
enough to adapt to a wide range of scientific visualization 
and collaborative environments. 

3.1 Concepts and Terminolo

In this section, we will intr

ch other.  
TeraVision Server: The TeraVision server is the 

machine (or 
eams. The direction of video is always from server to 

client. The server process is usually run on dedicated 
machines which have some video capture hardware. The 
video source can also be a software; for e.g. a set of pre-
computed video frames being fed from the disk or RAM. 
One server process may be serving many clients at the 
same time and all the streams being sent out are 
synchronized with each other.  

TeraVision Client: The clients display the incoming 
video streams on the machine

ent does not require the capture hardware for its 
operation. It just needs a network interface fast enough to 
handle the video stream’s bandwidth and a reasonably 
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Figure 3. Example of streaming tiled displays using multiple VBoxes at each site. 

fast graphics card. One client may receive its video 
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 (or client) 

all

streams from one or more servers. All the component 
video streams that make up the display on a client are 
synchronized before being shown. 

TeraVision Master: Each TeraVision server or client 
cess either operates in the Master or the Slave mode. 

A TeraVision site would typically consist of one master 
and multiple slaves. Since there can be multiple servers 
(or clients), there has to be one point of control for all the 
VBoxes at a site and the master process serves that 
purpose. The master process is responsible for 
synchronizing all slave processes registered with it. The 
user interacts only with the master process for controlling 
all the VBoxes at a site. The master is also the one that 
sends the synchronization messages to all slaves. 

TeraVision Slave: The slave processes are spaw
a master and depend on the master for providing the sync 
messages, user interaction messages and control plane 

between the master and the slave processes. 
Sync Channel: The sync channel is a high-priority, 

low-latency channel used by peer server
processes to closely synchronize the video streams across 
processes running on different machines.  This is one of 
the more important components as it affects the 
throughput of the system to a large extent.  Since a 
TeraVision server (or client) site may consist of many 
processes with each process sending or receiving many 
video streams, they have to be synchronized in real-time, 
so that the video at the display end does not appear to be 
non-uniform.  

Control Channel: The control channel is an 
asynchronous message-passing channel that is hosted by 

 the TeraVision processes. The channel is implemented 
over TCP sockets and allows processes to pass control 
plane messages between each other. 
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Figure 5. Demonstration of three TeraVision 
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servers streaming video to three different 
sections of the tiled-display. Each video stream 
is independent of each other but the screens for 
each stream are synchronized. 

Figure 4. A user streams her 1600x1200 laptop 
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screen to Electronic Visualization Laboratory’s 
6400 x 3072 pixel tiled display at 10 fps. 



 

 

Figure 7. Case A depicts a single tile server sending its video to a 2x2 client. In this case the server has to service 4 
clients and each client connects to one server. In the second case, the server is a 2x2 tile configuration and the 

client is a 3x3 tiled display. If we consider the center tile on the client, we see that it has to receive 4 video streams 
from 4 different servers. 

4. Important System Issues 

In this section we will talk about the main problems 
that were addressed for TeraVision.  

4.1 M x N to X x Y scaling 

In the case of streaming one tiled display to another, 
the configuration and resolution of the source tiles could 
be different from the client-side display. In such a 
scenario TeraVision will scale the source video to the 
client display. This can be taken as a general case and 
single displays or stereo displays can be considered as 
special cases of tiled displays. 

During the initial handshake phase, all the slaves on 
the server side register with their masters. The master 
thus is aware of the total pixel resolution on the server 
side. Similarly on the client side, the master is aware of 
the collective resolution of the display. The master client 
then proceeds to calculate the video stream mappings for 
all the clients. Since there can be any number of tiles on 
either side, a server might be serving multiple clients at 
any given time or one client could be receiving its video 
montages (rectangular pieces making up the final video) 
from multiple server (Figure 7).  

We make the assumption that the all tiles on either 
side have the same resolution. Consider the following 
parameters: 

 

Xs - pixel width of each server tile. 
Ys - pixel height of each server tile. 
Xc - pixel width of each client tile. 
Yc - pixel height of each client tile 
Ms - Number of horizontal tiles on the server 

(numbered 0 to Ms-1) 
Ns - Number of vertical tiles on the server (numbered 

0 to Ns-1) 
Mc - Number of horizontal tiles on the client 

(numbered 0 to Mc-1) 
Nc - Number of vertical tiles on the client (numbered 0 

to Nc-1) 
 
The horizontal scale factor, hsf  = (Ms * Xs) / (Mc * Xc) 
The vertical scale factor, vsf = (Ns * Ys) / (Nc * Yc) 

 
Then the remaining scaling parameters can be calculated 
from the following relations: 
 
Number of horizontal client montages,  

nhm = αi for i = 0, 
= αi - αi-1 + 1, for i = 1 to (Mc – 1) 

Where αi = (Mc/Ms) * i, for i = 0 to (Mc – 1) 
 

Similarly, number of vertical client montages 
nvm = αi for i = 0, 

= αi - αi-1 + 1, for i = 1 to (Nc – 1) 
Where αi = (Nc/Ns) * i, for i = 0 to (Nc – 1) 
 

Now for every client montage that exists, there is a 
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corresponding server montage. In order to be able to 
retrieve and show the corresponding server montages, the 
clients need to find the following parameters, 

 
Oxs – horizontal offset in a server tile 
Oys – vertical offset in a server tile  
mxs – montage width on the server side 
mys – montage height on the server side 
 
Knowing the number of client montages, we traverse 

from left to right and top to bottom pixel by pixel for all 
the server tiles. And every time we encounter either a 
server tile boundary or (the corresponding) client tile 
boundary, we note the offsets Oxs and Oys in that server 
tile and the width (mxs) and height (mys) of the server 
montage. 

 
Thus, server side montage pixel width = hsf * mxs 
Server side montage pixel height = vsf * mys

Knowing the number of montages, the scaling factors, 
server side offsets and montage dimensions, the clients 
can calculate the client side offsets of each montage too. 
Each client is then able to connect to one or more servers 
and request a part (or whole) of the video stream based 
on these parameters. After the montages have been 
streamed to the client, hardware support in the graphics 
card is used to do the final stretching to fit the display 
screens. 

4.2 Sync Channel 

The current implementation of the sync channel is 
done as a two way handshake over TCP/IP. The sync 
packets have to be sent from the master to all the slave 
processes with minimal delay to get the best results. One 
way to ensure good latency between processes is to 
switch off the Nagle’s algorithm in the TCP stack. This 
can usually be done by setting the TCP_NO_DELAY 
option at the TCP socket level [3] as explained in RFC 
896 [7]. Another requirement of this channel is real-time 
priority. The upper bound on the transmission time of 
sync packets is greatly affected by factors such as system 
load, scheduler’s time slice resolution, buffering delays 
etc. Real-time implementation of this channel will be 
carried out in the future. 

4.3 Video Data over UDP 

When video streams are sent over UDP and packet 
losses or packet duplication occurs, care has to be taken 
to recover from these errors. If the receiver fails to detect 
any anomaly, then the video frames are distorted. A 
protocol was built over UDP streams for this purpose. 

This protocol numbers every UDP packet of a video 
frame and allows the receiver to correctly place the 
packet in its right place in the video buffer despite losses, 
out-or-order arrival or duplication. 

5. Tests and Observations 

In this section we shall present results obtained with 
TeraVision systems over local and wide area gigabit 
networks. All machines used for the tests were equipped 
with gigabit Ethernet adapters and a 100 BaseT interface. 
The video data was sent over the gigabit interfaces and 
the synchronization messages are passed over the Fast 
Ethernet interface. 

5.1 Specifications 

The system has been implemented for Linux and 
Windows operating systems. For the Linux machines, we 
used Dual Intel Xeon CPUs at 1.8 GHz, 512 MB RAM 
running Red Hat 7.3. The video source was emulated in 
software. For the windows machines, we used Intel Xeon 
CPUs at 1.5 GHz, 512 MB RAM running Windows 2000 
Professional. The video source was Foresight Imaging’s 
I-RGB-200 video-capture card. All machines used 1 
Gbps network interface cards. The LAN tests were done 
over a gigabit switch. Tests for LFNs were conducted 
between SARA, Amsterdam and EVL (Electronic 
Visualization Laboratory), Chicago over the Starlight 
network [14] and also between GRNET (Greek Research 
and Technology Network), Greece and EVL. 

The video frames used for the tests are 1024x768 at 
24bpp unless otherwise specified. All UDP tests were 
done with 1500 byte MTUs and TCP tests utilized 64 
Kbytes flow windows. The prototype systems use capture 
cards that have drivers for the Windows OS only. Thus 
all results done with the Windows machines as the server 
imply the use of the capture hardware. The Linux servers 
used a video source emulated in software. 

5.2 Experiments  

The bandwidths shown are the maximum possible that 
could be achieved by the system under the given test 
conditions. The UDP bandwidths indicated in the results 
are the maximum sustained throughputs noted without 
any packet losses.  

Performance over TCP and UDP 

Tables 1 and 2 show the maximum throughput 
achieved with TCP and UDP streams over the LAN and 
WAN test-beds. We note that UDP performance for 



Windows machines is limited to less than 200 Mbps 
because of the standard 1500 byte MTUs used. If we 
increase the size of the MTU, the throughput improves 
but the 1500 byte MTU was a standard test condition for 
all UDP streams used for the tests. 

Effect of Synchronization and Scalability 

Table 3 shows the effect of synchronization on system 
throughput. We observe that using one server as we 
increase the number of clients, the total sending 
bandwidth of the server decreases gradually but its CPU 
utilization increases. However since increasing the 
number of clients reduces the amount of video data 
received by each client, the CPU utilization on the clients 
goes down. Table 4 shows that with one client as we 
increase the number of servers, the amount of data being 
received by the client increases and its CPU usage goes 
up. This creates a bottleneck causing TCP’s congestion 
mechanism to reduce the sending rate on the servers [3] 
and we see the CPU utilization of the servers decreasing.  
 
Effect of different video frame sizes 
 

In the following tests, shown in Figure 8 and 9, we 
vary the frame sizes. The tests shown here were done 
over TCP and UDP on LAN between one sending 
(Windows) machine and one receiving (Linux) machine.  
We notice that the throughput of the system is nearly 
constant even as the frame sizes are varied. 

 
 

Table 1. System performance with TCP 
 

Tests Bandwidth 
used 

(Mbps) 

Effective 
FPS* 

Server 
CPU 
usage 

Client 
CPU 
usage 

LAN 
(Linux to 

Linux) 

 
703.12 

 
37.4 

 
65.4 % 

 
98 % 

LAN  
(Windows to 

Linux) 

 
534 

 
28.4 

 
60 % 

 
64 % 

Starlight 
(Linux to 

Linux) 

 
110 

 
5.8 

 
15 % 

 
9 % 

GRNET 
(Windows to 

Linux) 

 
110 

 
5.8 

 
54 % 

 
10 % 

 
 
 
 
 

Table 2. System performance with UDP 
 

Tests Bandwidth 
used 

(Mbps) 

Effective 
FPS* 

Server 
CPU 
usage 

Client 
CPU 
usage 

LAN 
(Linux to 

Linux) 

 
930.6 

 
49.5 

 
64 % 

 
94 % 

LAN  
(Windows to 

Linux) 

 
180 

 
9.6 

 
80 % 

 
17 % 

Starlight 
(Linux to 

Linux) 

 
285 

 
15.2 

 
26 % 

 
27 % 

GRNET 
(Windows to 

Linux) 

 
190 

 
10.1 

 
60 % 

 
100% 

 
 

Table 3. Effect of synchronization and scalability 
on clients  

 
Number of 

Clients 
Bandwidth 

used 
( Mbps) 

Effective 
FPS* 

Server 
CPU 
usage 

Per Client 
CPU usage

1 534 28.4 60 % 64 % 

4 530 28 95 % 17 % 

9 503.84 26.8 97 % 7.5 % 

 
 

Table 4. Effect of synchronization and scalability 
on servers 

 
Number of 

Clients 
Bandwidth 

used 
( Mbps) 

Effective 
FPS* 

Per Server 
CPU 
usage 

Client 
CPU 
usage 

1 623 33 70 % 80 % 

4 180 9.5 17 % 94 % 

9 120 6.3 15 % 99 % 

 
*FPS: Frames per second. 
 

 



       Figure 8. TeraVision throughput for different  
frame sizes. 

Figure 9. The frames per second decreases with 
increase in frame size 

Multicast over gigabit networks 

A WAN multicast test-bed was setup over gigabit 
links and high-bandwidth multicast tests were conducted 
between EVL, Technology Research Education and 
Commercialization Center (TRECC) and National Center 
for Supercomputing Applications (NCSA). The servers at 
EVL were used to transmit a captured laptop screen 
simultaneously to four separate clients at TRECC and 
one client at NCSA. Table 5 presents the results obtained 
from these tests. The bandwidth numbers are the 
maximum throughputs seen before packet losses were 
observed at either ends. In other words the receiving ends 
observed zero packet losses at the reported bandwidths. 

All the receiving machines were running Linux. The 
Windows server used 1000 byte packets and the Linux 
server was configured with 1450 byte packets. It has been 
observed that the Windows OS shows better network 
throughput for UDP and Multicast with 1000 byte 
packets. 

Table 5. System performance over multicast 

Type of server Bandwidth 
used 

( Mbps) 

Effective 
FPS* 

Server 
CPU 
usage 

Client 
CPU 
usage 

Windows 377 19.9 100 % 57 % 

Linux 512 27.12 41 % 54 % 

*FPS: Frames per second. 

 

7. Conclusions and Future Work  

TeraVision provides a flexible and scalable solution 
for the display pushing problem. Users can stream the 
output of complex visualization systems, such as tiled-
displays, over LFNs without making any modifications to 
the source software/hardware. The system scales the 
visualization, generated by the source machines, 
automatically to the client’s display. The solution also 
distributes the load for streaming the high-resolution 
video streams to dedicated machines. This is a very 
important feature for computationally heavy visualization 
application environments. TeraVision provides a 
framework which allows easy adaptation to many 
visualization scenarios and it is hoped that it will prove to 
be a useful tool for collaborative environments and the 
scientific community. 

The following issues need to be addressed as part of 
the future work. 

 
• The system currently is capable of multicasting 

single video streams to single displays only. The 
problem of multicasting to and from tiled-displays 
requires more work and can be solved if it is 
assumed that the client configuration at each 
receiving site is the same. 

• UDP may not provide the ideal solution in many 
scientific visualization scenarios because of the 
possibility of packet-losses and the resulting 
artifacts. We need a transport layer, which can 
provide the performance of UDP but with the 
reliability of TCP. EVL has been working on such a 
streaming protocol called the RBUDP [1]. In the 
future, TeraVision will provide a plug-in for 
RBUDP.  

• As discussed in section 4.2, real-time guarantees are 
required from the OS to enable very good 
synchronization. We hope to incorporate real-time 
support in the future versions of TeraVision. 
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TeraVision is part of a larger research framework 

called the OptIPuter [4]. The OptIPuter is a National 
Science Foundation funded project to interconnect 
distributed storage, computing and visualization 
resources, using IP mechanisms over photonic networks. 
Recent years have seen a large increase in the capacities 
of optical networks, while the costs have plummeted. 
This allows one to experiment with a new paradigm in 
distributed computing - where dedicated optical networks 
serve as the computer's system bus; and compute clusters 
taken as a whole, serve as the peripherals in a widely 
distributed computing platform. The OptIPuter is aimed 
at solving research problems for the scientific 
community, such as in the areas of geo-science and bio-
informatics [4][6]. 

The techniques developed in TeraVision are the basis 
for the OptIPuter’s Scalable Adaptive Graphics 
Environment (SAGE) - an architecture for supporting 
cyber meeting rooms and laboratories which are “wall-
papered” with ultra-high-resolution displays [16]. The 
impetus for the work on SAGE comes from the two main 
problem areas. The first is that applications written for 
one graphics environment have to be re-designed before 
they can be run under other environments. For example: 
visualization tools that are developed for desktop 
computers are rarely able to take advantage of the 
processing power of a cluster of graphics computers; 
conversely visualization tools developed for clusters 
rarely function on desktop computers. Secondly, the 
ability of visualization software and systems to scale in 
terms of the amount of data they can visualize, and the 
resolution of the desired visualization, is still an area of 
intensive computer graphics research [2][15]. SAGE 
addresses the need to support heterogeneity and 
scalability by decoupling graphics rendering from 
graphics display and taking advantage of affordable ultra-
high-bandwidth networks to bridge them. 

The SAGE architecture will allow multiple rendering 
nodes or clusters to access a virtual frame-buffer across 
the network. The framework will intelligently partition 
the graphics pipeline to distribute the load. Factors such 
as computing and rendering capabilities of the 
participating machines will decide the load distribution. 
Thus, unlike TeraVision where only pixels are routed to 
the display machines, SAGE would also route geometry 
and custom graphics formats. The framework will also 
support the notion of multiple collaborators 
simultaneously accessing a display space through a 
shared “window” manager. 
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