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a b s t r a c t

As the amount and the resolution of collected scientific data increase, scientists are realizing the potential
benefits that large high-resolution displays can have in assimilating this incoming data. Often this data
has to be processed on powerful remote computing and storage resources, converted to high-resolution
digital media and yet visualized on a local tiled-display. This is the basic premise behind the OptIPuter
model. While the streaming middleware to enable this kind of work exists and the optical networking
infrastructure is becoming more widely available, enabling multi-user interaction in such environments
is still a challenge. In this paper, we present an interaction systemwe developed to support collaborative
work on large high-resolution displays using multiple interaction devices and scalable, distributed user
interface widgets. This system allowsmultiple users to simultaneously interact with local or remote data,
media and applications, through a variety of physical interaction devices on large high-resolution displays.
Finally, we present our experiences with using the system over the past two years. Most importantly,
having an actual working system based on the OptIPuter model allows us to focus our research efforts to
better understand how tomake such high-resolution environmentsmore user-friendly and usable in true
real-world collaborative scenarios as opposed to constrained laboratory settings.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, we have seen a steady increase in the
resolution and the amount of collected data that needs to be
analyzed or presented. Digital media produced are of higher
quality and resolution. Often, the complexity of the problems
that drive this increase requires that multidisciplinary teams
work collaboratively towards a solution. Up until the last several
years however, the predominant model for supporting such
data-intensive collaborative science and engineering involved
replicating and co-locating the computing resources with the
storage systems, and then transmitting the highly distilled results
of the computation to expensive remote visualization systems
at each collaborator’s site. This was because bandwidth was
a scarce commodity and so it was more efficient to co-locate
the data with the computation than to move the data, on-
demand, to the computation. Recently, with rate of decline of
the cost of bandwidth far exceeding that of computing and
storage, it has become viable for scientists to connect to ultra-
high-speed networks, more cheaply than they can build and
maintain large computing, storage, and visualization systems. This
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is the fundamental premise behind the concept of shared cyber
infrastructure as outlined in the OptIPuter project [1].

Furthermore, the OptIPuter project envisions that in the future
it will become routine for users to work and collaborate in
rooms whose walls are made from seamless ultra-high-resolution
displays. Such environments empower users to better cope with
the increase in scale and complexity of problems and data. We
are already seeing this trend materialize as users are adopting
large high-resolution displays as their visualization systems.
There are several benefits of large high-resolution displays when
compared to the contemporary desktop environments. The high
resolution enables considerably more information to be displayed
simultaneously, which reduces context switching and enables
juxtaposing of relevant pieces of data for direct comparison.
This allows, for example, scientists to use such displays as
visualization instruments to gather a deeper understanding of
their problems [2]. On the other hand, the large size of such
displays makes them an excellent collaborative environment,
promotes a more natural physical navigation and improves spatial
performance when analyzing high-resolution datasets [3].

Such a paradigm shift requires significant changes in the
supporting software as well as hardware infrastructure. Recent
display and networking advances have enabled us to build
such large high-resolution environments by tiling projectors (for
instance, 4K digital cinema projectors) or LCD displays (full high-
definition resolution or 4 megapixel panels) that are driven by
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a cluster of computers and are connected to remote computing
and storage resources using high-speed networks. However, no
software infrastructure exists thatwill fully exploit the affordances
of the hardware and enable the type of distributed, collaborative
working environment as envisioned by the OptIPuter project. As
a first step towards this vision, we have designed and developed
the Scalable Adaptive Graphics Environment (SAGE) [4]. SAGE is
a middleware that turns any combination and configuration of
displays driven by a cluster of computers into a seamless, fully
distributed environment where windows of locally or remotely
rendered applications can be moved and resized as if they
were on a single local desktop. However, SAGE itself is only
a middleware that manages delivery and display of remotely
rendered application pixels across tiled-displays and as such is
of little value without user interaction capabilities. In this paper,
we present the interaction system for SAGE that enables truly
multi-user and scalable user interaction with distributed data in
large high-resolution display environments, effectively turning the
OptIPuter vision into reality.

The contributions of our work can be summarized as follows:
First, we identify and describe fundamental design aspects

of an interaction system that are the basis for the type of
distributed collaborative work as envisioned by the OptIPuter
project. Additionally, we highlight the reasons behind each aspect
and explain why existing systems are not sufficient to fully enable
these novel working environments.

Next, we present our implementation of the interaction system
that satisfies these aspects. Together with SAGE, this makes it
a functional instantiation of the OptIPuter model, which is ideal
for empowering collaboration in distributed, large high-resolution
display environments for the purposes of further research of
potential applications and human factor issues. This would not be
possible using existing interaction systems since they do not fully
exploit the affordances.

Finally, we present our experiences with using the system
over the past two years. In part, our experiences support the
identified design aspects of the interaction system, but more
importantly, they are a part of our ongoing research effort to better
understand how tomake such high-resolution environmentsmore
user-friendly and usable in true real-world collaborative scenarios
as opposed to constrained laboratory settings. The existing SAGE
community will gain immediate benefit from our experiences and
the resulting improvements to the system however, we believe
that our current and future research in human factors will provide
a clearer picture of how to design and build such advanced
collaborative display environments.

2. Related work

High-resolution displays are becoming more widespread in
scientific laboratories [5,6], and will eventually become pervasive
at the office, in the cubicle, the meeting room [7], and ultimately
at home [8]. The OptIPuter project [1] explored the use of high-
resolution environments for scientific discovery under the pre-
diction that seemingly unlimited amount of network bandwidth
delivered by progress in optical networking would change the
way science is conducted between geographically distributed
teams. Applying this concept to cinema-qualitymotion pictures for
entertainment, science and education, the CineGrid initiative
defines itself as trying to ‘‘provide media professionals access to
global cyber infrastructure capable of carrying ultra-high perfor-
mance digital media using photonic networks, middleware, trans-
port protocols and collaboration tools originally developed for
scientific research, visualization, and Grid computing’’ [9]. How-
ever, these efforts focus mostly on building the infrastructure and
delivering the content and do not address multi-user interaction
and human factors. Ultimately, the hardware is only half of the
equation and it requires a matching software infrastructure and
appropriate user interaction techniques to fully take the advantage
of the bleeding-edge technology affordances.

Previous research has pointed out that traditional interaction
methods do not scale well to large high-resolution environments
and that new, more appropriate methods are needed [10,11]. For
example, there has been significant research effort aimed towards
addressing the issue of target acquisition across large distances and
high resolutions [12–16]. However, the question remains whether
and how these techniques work outside the controlled laboratory
setting with real-world users and applications. Additionally, most
of these techniques and applications were developed with single
users in mind and for single-computer environments. Although
several real-world applications of large displays have been
demonstrated [17–20], they are highly specific to the application
domain and focus on collocated work, often without true multi-
user interaction capabilities.

The ubiquitous computing community on the other hand, has
put more focus on distributed systems. Typically, that line of
work involved integrating multiple displays and devices into a
unified environment where users can interact with the system
[21,22]. However, since such environments are still desktop ori-
ented, they often impose the limitation that there can be only one
active user per display or application [23]. While conceptually our
goals were similar, our target environment was a seamless large
high-resolution desktopwhere remotely rendered applications are
not displayed on a single screen but rather are freely movable and
resizable across any number of displays. Additionally, we must
enable simultaneous multi-user interaction with all the applica-
tions on the display.

Numerous widget frameworks already exist for desktop
environments, such as Qt or wxWidgets. However, these are
designed for desktop operating systems and therefore inherit
their limitations. For example, multi-user interaction typically
is not possible and they are often tightly integrated with the
operating system’s device events (mouse and keyboard). This low-
level coupling with the existing single-user operating systems
would make it difficult to adapt the toolkits to work with
multiple users simultaneously (i.e. interaction devices). Though
toolkits built on top of X Window System are distributed, their
typical single client–single server setup does not translate to an
arbitrary number of clients and servers (e.g. a parallel application
being displayed remotely on a tiled-display driven by a cluster
of computers). Lastly, they are not scalable and are therefore
inappropriate for displaying on very high-resolution displays
where visibility and usability becomes an issue. For instance, a
100 megapixel display with a touch screen input device requires
different widget parameters than a 10 megapixel display with a
traditional mouse.

We found that the area of concurrent multi-user interaction
in distributed large high-resolution environments is largely
unexplored, even though recent trends identify the need for it.
However, in order to make advances in this area, appropriate
software infrastructure has to exist that will support the types of
interaction scenarios as envisioned by the OptIPuter project. This
gap in the available software infrastructure motivated us to design
and develop SAGE and ultimately the interaction systempresented
in this paper upon which further research in human factors and
applications can be pursued.

3. Previous experiences with SAGE

Before the direct interaction layer for SAGE, we were limited to
a cross-platform desktop-based interface (SAGEUI). Every user can
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Fig. 1. During our weekly technical research meetings all students show their
laptop screens on the tiled-display to share ideas and promote discussion.

run a copy of the interface on their laptop and connect to the tiled-
display in order to perform basic window manipulations (resize
and move) and to start and stop applications. Additionally, each
user can show their desktop on the display through a VNC plugin
or drag-and-drop multimedia files from their laptop. Numerous
complex technological demonstrations were done using this
model [24], between various sites around the globe. However, the
complexity of the system drove us to focus on the user perspective
to make these environments successful.

3.1. Weekly meetings

For more than 2 years we have been using SAGE during
our weekly technical meetings where every participant would
simultaneously share their laptop screen with the group by
showing it on our 100 megapixel tiled-display. At the beginning of
the meeting, every user would position their small window along
the periphery of the display using SAGE UI (Fig. 1).

This was by no means required but instead seemed to be a
natural layout that we implicitly agreed upon not long after we
started using the display in our meetings. This created a large
empty space in the middle of the display that is typically used
for maximizing the window of the person currently speaking.
We noticed that users rarely reposition or resize other people’s
windows even though no such restrictions were imposed by the
system. This behavior further supported our hypothesis on the
importance of simultaneous multi-user interaction where every
user has the ability to control the display. Since all the windows
are already present on the display, switching between speakers is
only amatter of bringing the correct window into focus by resizing
and repositioning it using SAGE UI (as opposed to switching
video cables in a more traditional single-display environment).
This proved to be a significant benefit for the dynamics of
the meetings because it encouraged discussion and information
sharing. Often, there was a need to bring multiple windows into
focus for discussion, which usually resulted in one window being
maximized while other supporting windows are enlarged on the
side. However, during the discussions, there is generally a need to
point at the display, which had to be done by either walking up
to the display or passing a laser pointer between the participants.
This suggested that giving every user a more direct interaction
capability, beyond the desktop-based SAGE UI, is needed.

3.2. Class study session

Besides our regular meetings, an anatomy class professor at our
university wanted to hold an exam study session using the display.
Numerousmedical images, pertinent to that day’s discussion, were
preloaded and shown on the display before the beginning of class.
Fig. 2. The anatomy class study session where students were asked to answer
questions using the displayed images on a 100 megapixel tiled-display.

The students gathered around the display and the professor would
spur the discussion by asking questions that required the students
to use the appropriate image on the screen for answering the
question. The student that made a first attempt at answering
usually ended up walking up to the display to point out the details
and explain his/her answer (Fig. 2). Meanwhile, the professor had
to remotely point at the display in order to guide the student or to
raise specific questions. While this was easily accomplished using
a laser pointer, manipulation of the windows on the display was
still mediated for the lack of preparation time before the class
and because not every student (nor the professor) had a laptop
during the class. This, again, supported the need for the direct
interaction since one could envision many such use cases where a
desktop-based user interface is not appropriate. Furthermore, that
interface had to be intuitive and with a small learning curve to
encourage a more casual use of the display by non-expert users.
The manipulation actions typically involved bringing a window
into focus by either maximizing it or manually setting size and
position. The students and the professor provided very positive
feedback emphasizing the benefit of having all the materials
present on the display at once, which allowed them to externalize
their working memory. In a more traditional environment, the
students would have to openmultiple textbooks at different pages
in order to view all the images that they otherwise had on the
display in front of them.

3.3. SAGE community

The current SAGE user community keeps growing as more
researchers recognize the potential that tiled-displays could have
on advancing their own line of work. Currently this includes 40
sites with industry partners (e.g. Sharp Laboratories of America),
universities (e.g. National Center for Microscopy and Imaging
Research, UC San Diego) and international partners (e.g. Space
Research Institute of Russian Academy of Sciences) [25]. Most
partners have also expressed interest in the direct interaction
capabilities based on their own experiences with the desktop-
baseduser interface. However, since the resolution of their displays
varies greatly, from 10 to over a 100 megapixels, the visibility and
usability of the user interface would need to adapt to the target
environment.

Some applications are already included with SAGE, such as
4K movie player (next-generation digital cinema resolution at 8
megapixels per frame), multimedia viewer, desktop-sharing tool,
HD video conferencing tool, ultra-high-resolution map viewer and
volume visualization tool. However, because it is reasonably easy
to develop new applications or port existing ones to SAGE, the
community has also contributed their own. Previously, application
interaction was only possible from the application’s desktop
user interface that is typically displayed on the machine that
renders the application. However, that is usually inconvenient
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because applications are typically rendered on remote computing
resources that users do not have access to. Therefore, there exists
a real need to interact with these applications directly from the
display regardless of whether that application is rendered locally
or remotely. Furthermore, since the same application could be
shown on various displays, its user interface would have to scale
appropriately for the size and the resolution of that display.

4. Design aspects

Based on our preliminary experiences and the feedback from
the current SAGE user community, we identified the following
fundamental design aspects that we believe are necessary in order
to fully exploit the affordances of the high-resolution display
devices and the cyber infrastructure. Each of the aspects is called
for by one the characteristics of the hardware infrastructure
developed in the OptIPuter project. This grounding is clarified
below.

4.1. Distributed

The central architectural element of the OptIPuter is optical
networking, which provides access to remote data that is
frequently faster than accessing it from a local hard drive.
Furthermore, instead of replicating the data, it is often easier to
have the data rendered remotely and simply stream the results to
the visualization endpoints. One of the main strengths of SAGE is
its transparently distributed nature that allows precisely this kind
of work, which is what makes it so appealing to the growing user
community. Logically, the interaction system should follow the
same principle. In other words, it should allow for display of user
interface elements across any number of displays driven by any
number of machines. Additionally, application interfaces should
be visible on any remote display without the application actually
being aware of this rendering-display separation. Similarly, any
physical interaction device should be able to control any remote
application without being concerned with its rendering location.

4.2. Scalable

As the amount and the resolution of collected scientific data
increases, users are realizing the potential benefits that large high-
resolution displays can have in assimilating this incoming data.
However, since such displays are assembled as tiled LCD panels or
projects, their size and resolution can vary significantly depending
on the target application. As the SAGE users community survey
unveiled, users in fact do have displays of vastly different sizes and
resolutions, ranging from displays in offices to large collaborative
spaces in meeting rooms and public spaces. Therefore, it is
imperative that the interaction system automatically adapts to the
target display size and resolution. This adaptation is necessary
from both, the visibility and the usability perspective. For instance,
the physical interaction devices should adapt their speed and
sensitivity (control-display gain) and the interactive objects should
adjust their size to be visible and be easily target by the devices.

4.3. Multi-user

In recent years, we have seen a steady increase in the
resolution and the amount of collected data that needs to be
analyzed or presented. Often, the complexity of the problems
that drive this increase requires that multidisciplinary teams work
collaboratively towards a solution. As we personally experienced,
large high-resolution displays are well suited for collaborative
work since their large size easily accommodatesmultiple users and
their high-resolution allows much more content to be displayed
simultaneously. Therefore, to take advantage of these affordances,
Fig. 3. Main components of SAGE.

it will be necessary to support concurrent multi-user interaction.
This interaction could be on the same display or even within the
same application. Moreover, the applications themselves should
be unaware of how many devices are currently interacting with
its user interface.

4.4. Physical interaction device independence

The novelty of large high-resolution displays and their signif-
icantly different interaction affordances creates the opportunity
for investigating various physical interaction devices and input
modalities. Even though the mouse is the de facto standard for
desktop systems, in most cases it is inappropriate for large high-
resolution displays because it confines the user to a surface. The
research community has introduced many novel and promising
interaction devices however, no single device has emerged as
the clear winner for the large high-resolution displays. Therefore,
we deemed it necessary to have an easy way of integrating new
devices into the system without requiring changes to the applica-
tions or the display interface. Furthermore, depending on the dis-
play size, resolution and room configuration, some devices may be
more appropriate than others.

5. SAGE overview

In order to better understand the interaction system, this
section provides a brief overview of SAGE and its components
(Fig. 3). A thorough description of SAGE can be found in [4].

As mentioned earlier, SAGE allows for seamless display of
various remote applications on ultra-high-resolution displays.
Each application gives its rendered pixels to the SAGE Application
Interface Library (SAIL) that streams them to the appropriate
Display Nodes depending on the current position and size of
the window on the display. Each Display Node can receive and
display multiple pixel streams independently to allow multiple
applications to be shown concurrently on one display. FreeSpace
Manager (fsManager) is the main component of SAGE that keeps
track of the current display parameters and the arrangement of
the application pixels on the display. Based on the requested
arrangement, fsManager directs SAIL to split up application’s pixels
and send each section to the appropriate Display Nodes. The only
exposed fsManager commands for user interaction are moving,
resizing and closing application windows, which have to be issued
through a network interface. However, since fsManager already
had network connections to all the components, it was leveraged
for the interaction system presented in this paper.

6. Direct Interaction Manager (DIM)

DIM is the core of the interaction system that contains
the following components: Device Manager to manage physical



918 R. Jagodic et al. / Future Generation Computer Systems 27 (2011) 914–923
Fig. 4. Direct Interaction Manager integrated with SAGE. It manages physical
interaction devices, performs event handling for events from the devices, manages
the logic and drawing of objects and delivers events to applications. The
components in shaded gray are all a part of the Direct Interaction Manager.

interaction devices, Event Manager for delivering device events
to appropriate interactive objects and the Overlay Manager which
manages the drawing of objects on the display.

6.1. Device Manager

To successfully enable multi-user interaction, the Device
Manager accepts events frommultiple physical interaction devices
through a network interface. If multiple devices are used in a
system, especially if they are of different types, it is often the
case that they are connected to multiple computers receiving
their events (e.g. a special machine for the camera tracker), which
necessitates network-based communication. A simple Hardware
Capture (HWcapture) component contains plugins for each device
that captures the device-specific events, which are then delivered
to the Device Manager (Fig. 4). The event delivery (messaging)
library is already provided so developers only need to provide the
plugin to capture device-specific events. To provide robust service,
the DeviceManager will dynamically add new devices and remove
old ones if they fail or disconnect. Allowing devices to connect or
disconnect at any point in time, essentially allows users to freely
join and leave the space as they please, which mimics traditional
paper-based meeting environments.

So far no single device has emerged as the best tool for large
high-resolution display environments even though studies have
been performed using laser pointers, hand gestures, touch screens
and traditional mice. Therefore, we found it necessary to allow
the use of a wide variety of devices even though they may
generate different events. When these device-specific events are
delivered to the Device Manager, they are passed onto a device
plugin that describes the conversion of device-specific events into
a generic set of events that are then further used within the
system. This effectively makes all the devices appear equal in
view of the interaction system and therefore allows new types of
devices to be added without changing the user interface objects or
applications themselves. Currently, we already include support for
the following devices: mouse (and Gyromouse), joystick, Wiimote,
twodifferent touch screen implementations and a 6DOFAscension
electromagnetic tracker. In order to add support for a new type of
device, the following two steps are necessary:
• Create a HWcapture plugin that grabs device-specific events

from the physical device (e.g. touches from a touch screen
server).

• Create a device plugin to DIM that describes the conversion
between device-specific and generic events (e.g. a touch to
EVT_CLICK).

Naturally, many off-the-shelf devices actually behave like a
mouse. However, the question arises as to how one captures
the events from each Gyromouse independently since all the
devices will fight over the control of a single operating system
cursor. This means that if we wanted to use three mouse-like
devices (e.g. Gyromouse), we would have to have three different
computers, one device per computer. To get around this operating
system limitation, we use a tool called GlovePIE [26], which can
distinguish between the different physical devices connected to
the same computer. However, sinceGlovePIE uses its own scripting
language and does not offer any sort of networking capabilities,
there was no direct way for us to send these captured events
to DIM. While operating systems themselves cannot distinguish
between different mice, they can easily support multiple joysticks.
Therefore, we convert Gyromouse events to virtual joystick events
and capture those from aHWcapture plugin for a standard joystick.
The rest of the event conversion simply occurs as if the Gyromouse
were a joystick.

6.2. Event Manager

As mentioned previously, all device-specific events are con-
verted to a generic set of events, which in turn allows heteroge-
neous devices to interact with the display equally. Naturally, some
devices are more powerful than others, so they can generate a
larger subset of the generic events. These generic events are then
put in an event queue where the Event Manager processes them
in order, trying to find an appropriate event handler for each. If an
event handler is found the event is passed onto the handler, other-
wise the event is discarded. Event handler is the base class for any
interactive object that wants to receive events. Essentially, it is a
rectangular container that has size and position and depth param-
eters, knows how to receive events and it contains other properties
common to all widgets (e.g. tooltips, labels, visibility flags). There
is also an event handler for every application, which will deliver
interaction events to the actual application, whether it is local or
remote (for instance, a dragging event can be delivered to a map
application). Since the applications can be freely resized and repo-
sitioned on the display, all the event coordinates are normalized
before being sent to the applications, as they are unaware of their
own window position and size.

While an event handler is processing an event, the Event
Manager will lock it in order to prevent competition from different
devices (for example, if a button is held down or something
is being dragged). However, no such restrictions are imposed
between different event handlers, which allows for truemulti-user
interaction.

6.3. Overlay Manager and drawing

Overlay refers to any visible object on the display. The label
‘‘overlay’’ is used because SAGE itself draws only application pixels
on the display so any other object is actually an overlay drawn
on top of the application pixels. If an event handler is drawn on
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the display, it is also an overlay. On the other hand, objects such
as cursors are just overlays and not event handlers because they
do not react to any events. The actual drawing of each overlay is
performed by the appropriate overlay plugin to the Display Nodes
that describes how the overlay should be drawn in certain visual
states (e.g. button is down or up). Each plugin is a subclass of a
base overlay class, which contains basic draw parameters (depth
ordering, transparency, size, position, visibility . . . ) and contains
a generic draw method that each object has to implement. Draw
methods provided by plugins are actually just snippets of OpenGL
code, which are called at the appropriate time during the draw
loop. As event handlers receive events from devices, they issue
drawing commands that the Overlay Manager then delivers to the
appropriate overlay plugin on each Display Node.

7. SAGE widgets

With the introduction of DIM, we had a functional, though very
limited, interface for SAGE. It was possible to move and resize
application windows and simple events such as pan, zoom or
click could be forwarded to the application (for traversing maps
for example). However, there was no way for the application to
present a user interface on a remote display, short of drawing
it manually into its own application buffer that is streamed to
SAGE. Consequently, we developed a unified widget framework,
which allows all applications, and the display itself, to use the
same set of widgets without dealing with the event handling,
the drawing, the interaction devices being used or the distributed
nature of the environment. Currently, several basic widgets have
been implemented: buttons, icons, menus, labels, thumbnails,
panels and sizers.

One may argue that application developers will be hesitant to
redesign their applications to use these newly developed SAGE
widgets. While this may be true in some cases, it is also important
to note that typically, current user interfaces were developed for
desktop systems and therefore are not usable on a much larger
and higher resolution displays. This is primarily because they
rely on the accuracy of the mouse to acquire smaller targets.
However, the mouse is not appropriate anymore for these new
environments since it confines users to a hard surface whereas
users often want to be mobile in front of the display. Additionally,
the applications themselves are often custom developed for the
large high-resolution displays, again because current desktop
applications rarely take advantage of the vastly increased display
resolution available to them. Therefore, these custom applications
are often still in development when the cost of adding a more
suitable user interface is not tremendous.

7.1. The anatomy of a distributed widget

The widget framework was designed to be compatible with
the existing DIM architecture where each widget is actually a
collection of several distributed elements.

• An event handler plugin to DIM. This component contains the
logic, the API for creating this widget and all the parameters of
the widget. It also listens for device events and decides how to
act on each.

• An overlay plugin to Display Nodes. This component contains
the drawing code for the widget for all possible states (e.g. how
to draw a button when it is pressed or not).

• Widget stubs plugin in SAIL. This small component allows the
application to create thewidget through a simple API (same API
as the event handler plugin). It also keeps track of and initiates
widget event callbacks that the application is interested in.
Fig. 5. The process of creating an application widget, a button in this case.

The Event Manager then ensures the proper routing of events
from devices to widgets (event handler) and applications, and
the Overlay Manager handles the routing of drawing commands
from the widget to the proper overlay plugin on the Display Node
that actually draws the widget. This plugin-oriented architecture
ensures that we can easily add new widget types to the system.
Therefore, in order to create a new type of widget, one has to
write the three plugins described above. While it may appear
complicated, the process is in fact the same process as writing a
custom widget in any of the desktop-based widget toolkits. The
only difference is that the code for the widget is split across three
different locations as opposed to only one. Nevertheless, this has
certain benefits. For instance,we can change the logic or drawing of
widgets without recompiling applications, as long as the API stays
the same.

7.2. Widget creation and widget types

Even though all the widgets, events and devices are managed
by DIM, widgets can be created by DIM itself or by the application
through a simple API that is similar to desktop-based wxWidgets
framework. Widget parameters (e.g. size, position, label) are set
using the API, which then creates an XML description of the
widget. This XML description represents thewidget in the network
communication between DIM, the application and the Display
Node. When a widget is created by the application, the widget
stubs plugin exposed in SAIL only generates appropriate XML file
and executes event callbacks as the events are received from DIM.
The rest of the widget functionalities were all carried out by the
event handler plugin to DIM (i.e. logic, event handling) or the
overlay plugin to a Display Node (i.e. drawing), as described in
the previous section. For instance, if a widget is created by the
application, its XML description will be delivered to DIM, in order
to create the event handler for it, and to the Display Node in order
to create the overlay for it (Fig. 5). Entities that create the widgets
can also register callbacks to receive widget events when they
take place (e.g. button click, menu selection). These events will
be automatically delivered to the appropriate event callback even
if the widget was created by an application running on a distant
rendering cluster.
Global widgets—created by DIM, one set of those exists for each
display environment and make up the main display user interface.
Examples would be some icons on the desktop or a main menu
for starting applications. Global widgets are positioned relative to
the display bounds and are resized appropriately for the current
display size. Also, note that typical widget toolkits (and operating
systems) do not allow you to place widgets on the desktop directly
whereas in our framework that is a non-issue since SAGE itself
takes the role of a window manager for tiled-displays.
Application widgets—created by the application. This is the most
common way of using widgets in modern widget toolkits. The
application developer uses these widgets for creating a user
interface for the application. These widgets are always positioned
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Fig. 6. Application widgets are scaled relative to the application window (player
controls) while global widgets are scaled relative to the display size (maximize and
close buttons).

and resized relative to the application itself in order to keep their
interface consistent with the designer’s intentions (Fig. 6).
Per-application widgets—created by DIM, one set of those exists
for every application on the display. These are always positioned
relative to the application (they follow them around). For instance,
as mentioned earlier, there is an event handler (i.e. application
window widget) for every application. This widget is always the
size of the application pixels as drawn by SAGE and positioned
so that it exactly covers them. It is completely transparent except
for the borders. Then, by receiving events from devices, we are
able to manipulate the application pixels as if it were an actual
window in a window manager (e.g. EVT_DRAG that is delivered
to this application window widget, will move the window around
on the display). The size of the per-application widgets can be
relative to the display bounds, as in global widgets, or relative to
the application itself, as in application widgets.

7.3. Event handling scenario

Fig. 7 shows the propagation and event handling for a hardware
event, in this case amouse click. First, amouse click occurs on some
remote machine and a hardware specific event is generated. The
hardware specific event is sent over the network to DIM where
the Device Manager loads an appropriate device plugin for this
particular interaction device, a mouse in this case. The plugin
knows how to convert the hardware specific event to a generic
event, EVT_CLICK. The EventManager in DIM then attempts to find
the event handler that is listening for this type of event. In this case,
a button event handler plugin is found at the current event position
and the event is passed onto it. The event handler determines that
the click event altered the button state (into a down state) and
the appropriate BUTTON_DOWN widget event is generated. This
BUTTON_DOWN event is now sent to the Display Node to update
the button appearance using the button overlay plugin and to the
application to execute the callback that was originally set for this
button.

7.4. Attaining design aspects

(1) Distributed
By decoupling the widget logic, drawing and creation, we

achieved a truly distributed widget framework. Widgets can
be seamlessly drawn across any number of displays driven by
any number of Display Nodes. Applications located on distant
rendering resources can present their user interface on any display
by requesting widgets and receiving events over the network
all without ever being aware of this separation. The separation
means that we can develop new interaction techniques that are
more appropriate for the large high-resolution displays without
requiring any modifications to the applications themselves. For
example, as display resolution dramatically increases, target
acquisition becomes much more difficult. One approach is to
dynamically resize targets as cursors get near, which is something
wewere able to easily implementwithout changing or recompiling
any of the applications (Fig. 6).

(2) Scalable
During startup, DIM first collects information about the display

environment and calculates the appropriate widget scale factor to
adjust for usability (ease of clicking on a target with a physical
interaction device) and visibility (font size visible on the display).
To provide truly scalable drawing, we use dynamically resizable
vector fonts and large raster images that are typically scaled down
to reduce aliasing. It would be straightforward to add support for
vector images as well. Since we always assume that applications
are rendered remotely, we cannot assume that every image used
in the application interface is already present on the display side.
Therefore, the API automatically embeds necessary images in the
XML widget description, which is then delivered to the Display
Nodes for drawing. This gives application developers freedom to
design custom interfaces.

(3) Multi-user
This design aspect was rather easy to achieve sincewe designed

DIM to support multiple interaction devices while giving each
device a separate cursor. Additionally, while rules exist to prevent
multiple devices from interacting with one widget at the same
time, no such rules are enforced between widgets; hence multiple
users can interact with different widgets simultaneously, even
within the same application.

(4) Physical interaction device independence
Asmentioned earlier, it is possible that newphysical interaction

devices will surface that perform better on large high-resolution
displays or as we have personally experienced, multiple input
Fig. 7. Event handling scenario for a mouse click. Dotted lines denote a network connection.
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modalities may be more intuitive for different use cases. New
devices can be added to SAGE by simply providing a plugin that
describes the conversion between device-specific events and the
generic set of events. By using this generic set of events and
therefore removing any specifics of each device, we can treat all
of them equally for event handling purposes.

8. Experiences using the system

In order to fully exploit the affordances of large high-
resolution displays, users should ideally be mobile in front of the
display [27]. Themouse has been the de facto standard for desktop
interaction but it is notwell suited for large high-resolution display
environments primarily because it confines users to a hard surface.
Although, the research community has investigated various novel
interaction devices [28–31],many of them require elaborate setups
and equipment for which most users in the SAGE community will
not have time or resources to set up or maintain (e.g. camera
trackers). Therefore, the physical interaction device independence
attained in our design, proved to be invaluable since it enabled
us to easily experiment with various off-the-shelf devices such
as joysticks, Gyromouse, trackpads, 6 DOF tracked wand and
the Wiimote. Although each device had its own strengths and
weaknesses, the Gyromouse seemed to be the most suitable one
in the end. It was inexpensive, readily available, many could be
used simultaneously and it allowed users to be mobile in front of
the display because it did not tie users to a hard surface and it did
not require a line-of-sight for operation. Additionally, since it was
essentially a mid-air mouse, it did not require an elaborate setup.
Even though it has a slight learning curve associated with it, users
quickly became comfortable using it and it remained as a preferred
device. However, since the Gyromouse is inherently affected by
hand jitter, it may be somewhat difficult to acquire smaller targets,
especially on larger displays as the accuracy of the device has to
be traded for speed. Initially, application windows could bemoved
by clicking and dragging a small area at the bottom and top of
the window to mimic the behavior on desktop operating systems.
However, by allowing the windows to be dragged by clicking
anywhere within the window, moving them became significantly
faster and easier, and encouraged users to experiment more with
the layout. Similarly, windows can be resized by dragging any of
the four corners, but after allowing the windows to be ‘‘zoomed’’
in and out using a mouse wheel, we noticed that it became a
preferred method and again, users experimented with different
window sizes more often.

Although the Gyromouse was used for the bulk of the
interaction, when users are at arm’s length from the display, it
becomes somewhat confusing to use because small movements
of the mouse result in large movements on the display. In such
cases, directly interacting with the wall using touch gestures
is more natural. Once again, having physical interaction device
independence proved valuable as integrating a touch screen device
into DIM simply required converting raw touches into our generic
set of events in a device plugin. The addition of touch input
immediately exposed a new set of research questions. For instance,
users now have the ability to interact from a distance using a
Gyromouse (when focusing on the context) and interact from
up-close using touch input (when focusing on detail). But, how
does one automatically adapt the user interface according to the
input modality being used since the affordances of each are vastly
different? The question is further complicatedwhenmultiple users
are interacting with the system simultaneously using different
modalities. Such questions are a part of our ongoing research effort
to make these environments more user-friendly and usable in true
real-world collaborative scenarios.
Fig. 8. A semester-long computer science class held entirely using the new thin-
bezel 20 megapixel display which in resolution equals two 4K displays placed side-
by-side. In this particular case, the left half of the displaywas used to display lecture
notes in a web browser, while the right side was used for juxtaposing relevant
multimedia for easier comparison.

We continued to hold our weekly meetings in front of the
display. However,wewanted to give the participants direct control
of the display without using the old SAGE UI that seemed too
cumbersome and full-featured for casual use. Since providing
every participantwith aGyromousewas impractical and given that
every participant already used a laptop in themeetings, we created
a minimal desktop application called Sage Pointer that allows the
users to directly control the SAGE display form their laptop, share
multimedia files and share their desktop on the display. Using a
global hot key, users can capture their desktop’s mouse pointer
and a new pointer would be created on the SAGE display that
the trackpad now controls. This gives users the same ability to
manipulate widgets and applications on the display as if they
were using a Gyromouse, but from their personal laptops. Such
interaction mechanisms proved so natural in fact, when users did
not have their laptops and therefore, the ability to point at and
interactwith the display, certain subtle frustration became evident
as they could not easily convey their ideas and thoughts relative
to the existing conversation and content on the display. Clearly,
this would not be possible without integrating true multi-user
interaction into the design. Since new devices (i.e. pointers) can be
added toDIMdynamically, users can casually switch back and forth
between controlling their laptop and controlling the SAGE display.
Sage Pointer application seemed to be well accepted since it was a
much simpler interface to SAGE that was more powerful than the
old SAGE UI. For instance, meeting participants could now point
on the screen from their laptops without walking up to the screen,
which was something we found to be important in our meetings
using the old SAGE UI. Furthermore, the simplicity and the direct
interaction features of the Sage Pointer application encouraged
more impromptu meetings using the display.

Besides the experience with the new interface during our
meetings, a semester-long computer science class was also
taught using the new thin-bezel 20 megapixel display. The class
focused on visualization and visual analytics where the focus
was on teaching various visualization techniques through existing
visualization examples. Because of the thin 7 mm bezels (distance
between two pixels on adjacent screens), viewing text was not
problematic unlike on previous generation tiled-displays where
bezels potentially obscured multiple lines of text. Therefore, the
professor would hold lectures using a website prepared for the
class and use the SAGE display for showing images and videos
pertinent to the discussion (Fig. 8). To show the media files on
the SAGE display, it was sufficient to simply drag and drop them
from the web browser, or local hard drive, onto the Sage Pointer
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application. A Gyromouse was used to control the web browser
on the computer and to control the SAGE display. The switching
between the control modes was done using the Sage Pointer
application, which mapped one of the auxiliary buttons on the
Gyromouse to a hot key that typically did the switching. This
proved to be a fairly natural and straightforward way to switch
between the modes. The nature of the class required that many
high-resolution images be compared simultaneously since they
illustrated different solutions to the same problem. While this
would be difficult using a single projector given its low resolution,
it was a perfect use case for a tiled-display where the benefits
of increased screen resolution immediately became apparent. At
the end of the class, a survey about the classroom experience was
administered to the students, which confirmed this benefit. Eighty
percent of the students felt that they were learning significantly
more in this classroom space than they would have in a more
traditional classroom equipped with whiteboards and a single
projector. The main stated reason behind this was the ability to
compare multiple visualizations simultaneously, which would not
have been possible in a traditional classroom.

However, as the available size and resolution of the display
increases, users tend to put more and more information up and it
becomes more difficult and tedious to organize it into meaningful
arrangements. We have observed a similar trend during the class.
For instance, every time the professor would drag media to the
display, they had to be manually moved and resized for direct
comparison. Furthermore, when students would use the display
to present their work, they would often preload their images in
order to bring them upmore easily at the time of the presentation.
However, as more students wanted to preload their images, the
display quickly became crowded and it became more difficult to
find and organize the appropriate images for each student. The
problem of content organization was something we anticipated
hence we developed certain layout management features to more
easily organize multiple windows on the display. For instance, we
added a few automatic-tiling modes that lay windows out in a
grid while trying to utilize the available space as much as possible.
Independently of the display resolution, at some point there will
inevitably be more content than one could comfortably fit. For
such caseswe created aminimize featurewherewindows could be
minimized and recalled in the future. This proved to be especially
useful during student presentations where a set of images for each
student could be kept until they are needed for their presentation.
Furthermore, we added the ability to select multiple windows
andmanipulate them simultaneously (e.g. move, resize, maximize,
minimize). For instance, this can be used to put in focus a
remote video conference stream and a visualization shared among
distributed participants (for example, a 4K visualization). Lastly, to
better manage the large increase in the amount of content and to
provide persistency to the uploaded content, we created a tool for
easily browsing and showing a large number ofmultimedia files by
taking advantage of the high resolution (Fig. 9). We anticipate that
these features will become of even greater significance as more
users attempt to use the display simultaneously which will greatly
increase the amount of content.

9. Conclusion and future work

We have presented this interaction system as a first instanti-
ation of the OptIPuter’s interaction model while focusing on the
design aspectswhich are drawn from the basic premise of theOptI-
Puter: collaborative large high-resolution displays interconnected
with ultra-high-speed networks. Having an actual working system
allows us to study such environments in real-world settings. By
introducing the direct interaction capabilities,we have encouraged
a more casual and consistent use of our high-resolution display
Fig. 9. The media browser, developed using SAGE widgets, is a tool for easily
browsing and showing multimedia files on large high-resolution displays.

environments as evidenced by more frequent impromptu meet-
ings. Further simplifying the interaction techniques (e.g. resizing
and moving windows) brought additional benefits. We have also
noticed that giving the power to every user to simultaneously con-
trol the display is extremely beneficial in encouraging participation
and conveying of ideas and thoughts during collaborative work.
But, perhapsmost importantly, increased casual use exposedmany
new research questions,whichwill need to be addressed beforewe
can reap all the benefits of such environments. Currently, we are
focusing our research efforts on bridgingmultiple inputmodalities
for smooth interaction and content organization issues in collabo-
rative work.

We will continue to improve the user interaction system
through experiences with real-world users, such as classroom de-
ployments, distributed scientificworkspaces, ultra-high-resolution
media production and content delivery for science, education and
entertainment. Besides opening up the opportunities to study dis-
tributed collaborativework and new applications, we believemore
useful feedback can be gathered through our planned release of the
new interaction system to the SAGE users community.
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