
Future Generation Computer Systems () –

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Multiuser-centered resource scheduling for collaborative display
wall environments

Sungwon Nam ∗, Khairi Reda, Luc Renambot, Andrew Johnson, Jason Leigh
Electronic Visualization Laboratory, 842 W. Taylor St., Chicago, IL 60607, United States

h i g h l i g h t s

• We present a model that prioritizes applications based on how they are presented.
• We propose a resource scheduling scheme that achieves presentation fairness.
• User study evaluates the proposed scheduler in a multiuser collaborative session.

a r t i c l e i n f o

Article history:
Received 30 November 2012
Received in revised form
10 March 2014
Accepted 15 August 2014
Available online xxxx

Keywords:
Scheduling
Human factors
Algorithms
Interactive systems
Distributed graphics

a b s t r a c t

The popularity of large-scale, high-resolution display walls, as visualization endpoints in eScience infras-
tructure, is rapidly growing. These displays can be connected to distributed computing resources over
high-speed network, providing effectivemeans for researchers to visualize, interact with, and understand
large volumes of datasets. Typically large display walls are built by tiling multiple physical displays to-
gether and running a tiled display wall required a cluster of computers. With the advent of advanced
graphics hardware, a single computer can now drive over a dozen displays, thereby greatly reducing the
cost of ownership andmaintenance of a tiled display wall system. This in turn enables a broader user base
to take advantage of such technologies. Since tiled displaywalls are alsowell suited to collaborativework,
users tend to launch and operate multiple applications simultaneously. To ensure that applications main-
tain a high degree of responsiveness to the users even under heavy use loads, the display wall must now
ensure that the limited system resources are prioritized tomaximize interactivity rather than thread-level
fair sharing or overall job-completion throughput. In this paper, we present a new resource scheduling
scheme that is specifically designed to prioritize responsiveness in collaborative large display wall en-
vironments where multiple users can interact with multiple applications simultaneously. We evaluate
our scheduling scheme with a user study involving groups of users interacting simultaneously on a tiled
display wall with multiple applications. Results show that our scheduling framework provided a higher
frame-rate for applications, which led to a significantly higher user performance (approx. 25%) in a target
acquisition test when compared against traditional operating system scheduling scheme.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Data-intensive eScience applications are driven by global cy-
berinfrastructure where visualization platforms, computing and
storage resources and instruments are distributed and intercon-
nected with high-speed network. The vast amount of data pro-
duced by these eScience applications creates a major challenge for

∗ Corresponding author. Tel.: +1 312 996 3002.
E-mail addresses: snam5@uic.edu, schiktol@gmail.com (S. Nam),

mreda2@uic.edu (K. Reda), renambot@uic.edu (L. Renambot), ajohnson@uic.edu
(A. Johnson), spiff@uic.edu (J. Leigh).

researchers whomust manage and interpret the increased scale of
their work.

Visualization provides effective means in scientific discovery
process. One can verify the correctness of a complex simulation
model, provide more insight into the model, and present results
in a way that it can be more easily understood. Large-scale, high-
resolution display walls are used in scientific disciplines because
they are an effective way to provide both context and details
when visualizing high-resolution data. Furthermore the expansive
size and exquisite resolution of the display has been conclusively
shown to positively impact the scientific discovery process by al-
lowing researchers to juxtapose multiple high-resolution visual-
izations simultaneously [1–8].

http://dx.doi.org/10.1016/j.future.2014.08.012
0167-739X/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.future.2014.08.012
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:snam5@uic.edu
mailto:schiktol@gmail.com
mailto:mreda2@uic.edu
mailto:renambot@uic.edu
mailto:ajohnson@uic.edu
mailto:spiff@uic.edu
http://dx.doi.org/10.1016/j.future.2014.08.012

2 S. Nam et al. / Future Generation Computer Systems () –

Fig. 1. A single machine-driven tiled-display wall running SAGE at the Electronic Visualization Laboratory in the University of Illinois at Chicago. The 20′ by 6′ display wall
is made up of 18 LCD panels with a total resolution approximately 17 megapixels.

A commonway to build large-scale displaywalls is to tilemulti-
ple individual displays and connect them to a cluster of computers.
Thus clustermiddleware is needed to enable users toworkwith the
wall as a single contiguous display surface. Traditional tiled display
middleware such as CGLX [9], Chromium [10] and Equalizer [11],
that are designed as large-scale visualization platforms, can be re-
garded as distributed graphic frameworks. They focus on parallel
rendering of large-scale datasets using a computer cluster, and are
typically aimed at cases where a single user interacts with a single
application spanning the entire display wall.

On the other hand, tiled display middleware such as the scal-
able adaptive graphics environment (SAGE) [12] lets users launch
distributed visualization applications on remote clusters whose
outputs are then streamed directly to display walls. This makes
SAGE a low-cost, ‘‘thin-client’’ visualization endpoint where such
visualizations are rendered by remote computing resources and
streamed over an optical network to a display wall. SAGE also pro-
vides highly collaborative visualization environments by enabling
multiple users to simultaneously view and interact with these ap-
plications on large-scale display walls [13]. An overview as well
as real-world use cases of the thin-client display wall paradigm is
discussed in [14,15]. In [16], we show how SAGE coupled with Par-
aView [17] can be used as a thin-client display for scientific visual-
ization applications.

The emergence of multi-headed graphic technologies (such as
NVIDIA’s Scalable Visualization Solutions andAMD’s Eyefinity), has
greatly amplified the graphical capabilities of a single computer
node. This empowers a single computer to drive a large-scale
display wall, in many cases eliminating the need for a computer
cluster, which significantly reduces the cost of ownership and
maintenance of these environments. Furthermore, applications
can now run natively on a single-machine without the need to
parallelize them, thus simplifying application development for

large-scale displaywalls. Fig. 1 shows a 20×6 foot large-scale tiled
display wall driven by a single computer machine at the Electronic
Visualization Laboratory in the University of Illinois at Chicago.

Driving a multiuser collaborative large-scale tiled display wall
with a single computer however, presents significant challenges
in resource management. A display wall middleware relying on
general-purpose operating system resource scheduling may fail to
provide a good user experience in collaborative large-scale display
environments where multiple users interact simultaneously
with multiple applications. A general-purpose operating system
schedules resources based on system-wide performancemeasures
such as job completion throughput and fine-grained fairness. In
large-scale collaborative displaywall environments,multiple users
may simultaneously view and interact with Cloud media data
such as pictures, documents, and movies, VNC-shared desktop
screens, and interactive scientific visualization. Users can also
move, resize, and arrange windows on the display wall in a variety
of layouts. The number of applications running on the system,
their layouts on the display, and the user-interaction pattern
in these systems can differ drastically from traditional desktop
environmentswhere a single user typically interactswith a limited
number of applications. This difference makes traditional resource
scheduling schemes unfit for tiled display wall environments.

Fig. 2 shows examples of layouts on a large-scale display wall
with varying degrees of window overlap. A traditional operating
system will try to ensure fair sharing of system resources in all
cases depicted in Fig. 2, while fair sharing might only be useful in
the case depicted in (a). When the window layout is arbitrary as in
(b), givingmore system resources towindowswithwhich users are
interacting can achieve a better user experience than a fair sharing.
Similarly, a better user experience can be achieved in (c) if more
system resources are allocated to the applicationwhosewindow is
in the foreground. For the case shown in (d), a fair-sharing scheme

S. Nam et al. / Future Generation Computer Systems () – 3

(a) Tiled. (b) Arbitrary.

(c) Maximized. (d) Partitioned.

Fig. 2. Examples of application layout on a large-scale display wall. From (a) to (c), application layout can be classified by amount of overlapped windows; (a) as least
overlapping and (c) as most overlapping. In (d) the wall is partitioned and each partition can employ a different layout.

is appropriate for applications in the left section of the display,
while the right section requires a scheduling scheme similar to (c).
We identify two issues when a general-purpose operating system
scheduler is employed in display wall environments.

1. Since fine-grained fairness in a general-purpose scheduler does
not typically consider resource requirement of an application, it
will fail to provide fairness in terms of the quality experienced
by users.

2. Process priority is typically based on process behavior rather
than user behavior. Thus the priority in traditional scheduling
schemes does not reflect the degree of user interest.

Given the variety of layouts in collaborative multiuser tiled dis-
play wall environments, the scheduling policy should not nec-
essarily be based on system-wide job completion throughput or
fine-grained, thread-level fairness. Rather, the scheduling policies
should be based on window-layout and user interaction criteria.
For example, an appropriate scheduling policymight allocatemore
resources to windows that occupy the largest space on the wall,
to windows that are least occluded, or to applications with which
users are interacting. Implementing these policies can increase the
perceived performance of the system, therefore providing a better
user experience in a collaborative, multiuser setting. The goal of
our scheduling framework is to fairly distribute system resources
to applications to optimize their performances as experienced by
users. We call this presentation fairness.

In this paper, we present a multiuser resource scheduling
framework targeting thin-client display wall where contents are
streamed to the display from high-performance computers over
high-speed networks. To evaluate the effectiveness of our schedul-
ing framework, we conduct a user study where multiple users in
groups of three subjects interacted simultaneously with applica-
tions on thedisplaywallwith andwithout the proposed scheduling
scheme. The rest of this paper is divided as follows. In Section 2 we
survey the literature on resource scheduling schemes for real-time
and interactive applications. The overall design of the scheduling
framework is explained in Section 3. Section 4 describes the Prior-
ity model in detail. In Section 5 we illustrate the details of our re-
source distribution scheme. In Section 6we describe the user study
and present our findings. We conclude the paper in Section 7 and
give future research directions in Section 8.

2. Related work

2.1. General-purpose schedulers

The modern general-purpose operating system schedulers are
designed to achieve high job completion throughput, interactivity,
and fair sharing. For instance, the time-sharing Linux operating
system’s scheduling scheme uses a notion of a time slice which
sets the maximum time during which a process is allowed to use a
processor. Thus, high job completion throughput can be achieved
by giving the time slices only to processes that are ready to run.
The scheduler ensures no idle process occupies a processorwasting
the computing resource by preempting processes that are waiting
for resources or user inputs. The preemptive, time-sharing model
also enables fair sharing of resources by maintaining a counter
that represents a priority of a process. The scheduler decreases
the counter for a process while the process occupies a processor
and increases it while the process is waiting. The scheduler may
schedule processes in a manner that it can keep the counter values
as uniform as possible to ensure the fair utilization of processors.
Fast response time for interactive processes is achieved by using
the counter as well. For example, a process waiting for I/O devices
increases its counter so that the process can a have higher counter
value by the time when it is ready to run again. This can make
the processes with smaller counter values (such as a batch process
that consumed lots of processor time while an interactive process
was waiting for I/O devices) be preempted by the scheduler. The
details of modern Linux scheduler are well explained in [18,19].
Similarly, the process scheduler in modern Microsoft Windows
operating systems maintains the dynamic priority for threads to
ensure the fairness and the high interactivity for latency-sensitive
tasks. For example, the scheduler raises the priority of a process
that is in foreground, receiving user inputs, or ready to run again
after waiting for I/O devices [20].

Aforementioned modern time-sharing, general-purpose oper-
ating system schedulers are characterized as a non-clairvoyant
scheduling where the scheduler does not rely on processes’ char-
acteristics [21]. This is because the fast turnaround time (the total
time taken by a scheduler to finish a job) is an important factor
for high job completion throughput in the time-sharing systems.
While the non-clairvoyant scheduling scheme for typical desktop
environments excels at achieving high system-wide performance,

4 S. Nam et al. / Future Generation Computer Systems () –

it lacks the ability to discover what users are interested in and to
schedule jobs in a way that the performance of the system can be
perceived to be responsive and fair in multiuser collaborative en-
vironments due to the scheduling decisions that are made based
on processes’ behavior rather than users’ interactions with the ap-
plications run in the system.

2.2. Human-centered schedulers

Human-centered scheduling schemes focus on optimizing user-
perceived interactivity rather than system-wide performance
measures [22]. The Interactive Scheduling scheme identifies inter-
active processes bymonitoring input devices through the X Server.
Etsion et al. take a similar approach by focusing on improving user
interactivity [23]. In addition to monitoring user input events in
the X Server, they also use the ratio of pixel-change to window-
size to estimate the application’s importance to the user. Zheng and
Nieh present a configurable kernel module that monitors I/O chan-
nels to identify interactive processes based on user-access pat-
terns and the usage of those I/O channel [24]. While the above
work aims to improve user experience with interactive applica-
tions, the solutions proposed are limited to traditional desktop
environments where a single user interacts with the system us-
ing traditional I/O devices. Therefore, these scheduling schemes
cannot be applied directly to large-scale collaborative display wall
environments, which introduce user-interaction patterns that are
different from desktop computer systemsmainly due to that there
can be multiple users interacting simultaneously in multiuser col-
laborative display wall environments.

2.3. Real-time schedulers

Real-time Schedulers are aimed at time-sensitive real-time ap-
plications that impose strict completion-time requirements (dead-
lines) even when the system is overloaded. Real-time schedulers
employ an unfair scheduling of resources that is biased towards
a specific set of applications to meet their deadlines. Real-time
schedulers can be in principle adapted to increase the perceived
performance of a system. In the case ofmultiuser tiled display envi-
ronments, resources allocation can be biased towards applications
that are presumed to be receiving most of users’ attention, thus
maximizing the perceived performance of the system. This section
briefly surveys work on various real-time scheduling techniques.

2.3.1. Rate-monotonic and earliest deadline first
Liu and Layland [25] showed that their rate-monotonic algo-

rithm can meet all periodic tasks deadline, bounded on processor
utilization from 69% to nearly 100%. In the rate-monotonic algo-
rithm, priorities are assigned simply based on the progression rate
of periodic tasks; tasks with shorter periods receive high prior-
ity. The Earliest Deadline First (EDF) scheduling algorithm in their
work assigns highest priority to the task whose deadline is the
nearest. The property of the EDF algorithm is important in real-
time systems in that it is the optimum scheduling algorithmwhen
the priorities are fixed. EDF achieves higher CPU utilization at a
cost of dynamic priority assignment. Such real-time scheduler re-
quires precise prior knowledge in task execution time and cannot
be applied when system is overloaded. However, the principle of
rate-monotonic and EDF scheduling is employed inmany real-time
scheduling schemes. The fundamental concept of EDF scheduling
can be adapted to our approach when several real-time applica-
tions on the display wall compete for resources.

2.3.2. Resource reservation
Resource Reservation is a restrictive approach to ensure that

time-sensitive applications meet their deadlines. To be effective,

the admission control is required to provide a guarantee on
meeting real-time requirement of running tasks. The admission
control rejects an application if the amount of resource that the ap-
plication requests exceeds the amount of remaining resource in the
system. A mechanism to reserve processor capacity in conjunction
with the rate-monotonic algorithm is illustrated in [26]. Real-Time
Mach adopts the resource reservation technique in its scheduler
to support real-time applications [27]. Less restrictive forms of the
reservation scheme where a thread is allowed to negotiate CPU-
time based on its rate progression is introduced in [28]. Jones et al.
present a system with a CPU scheduling algorithm that ensures
minimum guaranteed execution rates of real-time processes [29].
In resource reservation scheme, estimating the resource require-
ment of a task prior to the reservation can be challenging. Ac-
curate estimation of resource requirement based on application
profiling has been well studied in [30]. This restrictive approach
can be applied to a set of high priority computation-intensive, and
time-critical applications in the display wall environments.

2.3.3. Gang Scheduling
In Gang Scheduling, similar processes are grouped together

(ganged) and form a hierarchical structure so that different
scheduling policies can be applied to different processes groups.
This approach is often combined with the resource reservation
scheme. Real-Time Mach groups one or more processors to form a
processor set and apply different scheduling policies on processor
sets. Golub presents an improved scheduling paradigm over Real-
Time Mach with emphasis on supporting a combination of time-
critical and conventional applications [31]. In the CPU allocation
framework for multimedia OS proposed by Goyal et al., CPU band-
width is partitioned hierarchically by different groups of appli-
cations each with different resource requirements [32]. Recently,
real-time scheduling on multicore platforms focusing on grouping
processes in a way that increases cache utilization was presented
in [33]. The Gang Scheduling scheme can be useful for a task that
needsmultiple application instances running on the displaywall. A
group of applications can be treated as a single schedulable entity
for a task to provide better seamlessness.

2.3.4. Proportional sharing
The goal of proportional sharing is to distribute system re-

sources to all running tasks proportional to their relative weight.
Once the weight of a task is defined, calculating proportional
weight of the task is straightforward. Proportional sharing focuses
on fair sharing of resources based on weight and is analogous to
Weighted Fair Queuing. The EDF scheduling in conjunction with
the notion of Virtual Time [34] is introduced in [35]. Stoica et al.
also showed proportional sharing combined with resource reser-
vation scheme in [36]. A virtual time algorithm that focuses on
meeting real-time requirementswhile achieving proportional fair-
ness is shown in [37]. Nieh and Lam also present a similar schedul-
ing algorithm in detail [38]. Chandra et al. present how to readjust
the weights in their proportional sharing algorithm in a multipro-
cessor environment [39]. Our scheduler applies a similar notion
of proportional sharing in which applications’ weights are deter-
mined based on a priority assessment model that predicts users’
interest in applications.

While real-time schedulers have been used in interactive mul-
timedia systems, they have not been tested in large-scale display
environments. Moreover, large-scale displays offer unique capa-
bilities that allow collaborative, multiuser interaction with a large
number of applications simultaneously. Therefore, a successful
scheduling scheme for these environments should be specifically
tailored to address these unique characteristics in order to increase
the user-perceived performance of the environment.

S. Nam et al. / Future Generation Computer Systems () – 5

3. Overview

This section describes the overall design of our scheduling
framework. First we discuss general requirements for fair schedul-
ing in thin-clientmultiuser displaywalls. Thenwe present a design
overview of our proposed framework.

3.1. Applications in thin-client display walls

In thin-client display wall environments such as SAGE, the
content-generating applications (senders) typically run on high
performance computers such as visualization clusters or cloud re-
sources. The rendered visualization is then streamed to the display
wall system as a series of image frames over a high-speed network.
In our discussion, applications (receivers) refer to processes run-
ning in a display wall whose contents are being streamed over the
high-speed network. The proposed scheduling framework consid-
ers only receiving applications (receivers) that run in the display
wall system. Furthermore, we simplify the receivers by assuming
uncompressed contents stream from senders in this article.

We can further distinguish types of applications (receivers) in
thin-client display wall environments. In one case, the content-
generating application (the sender) has an optimal streaming rate
that is known a priori. For example, an application streaming a
live video feed from a camera or a media player streaming video
over the network. Although the actual streaming performance can
change depending on various conditions such as the available net-
work bandwidth, the bandwidth needed for optimal performance
can be derived beforehand assuming their streams are uncom-
pressed. The resource requirement for optimal streaming perfor-
mance in this case can be calculated by multiplying the image size
with the frame rate set by the application. In the second case, the
application does not specify an optimal streaming rate and usually
runs in a best-effort manner. The image quality or the frame rate
varies as a user interacts with the application and thus the amount
of resources needed for the optimal performance cannot be de-
termined beforehand. Assuming unlimited resources, the resource
need for the optimal performance in this case can be derived by
the receiver application’s current resource utilization, which will
vary as the user’s interaction-rate changes. An example of this is
a scientific visualization tool where users can pan, rotate, or scale
the visualized data, requiring an update only when users interact
with the visualization. We define the amount of resources for the
optimal performance to be a time variable.

The goal of our proposed scheduling framework is to fairly dis-
tribute system resources to receiver applications to optimize their
presentation quality as perceived by users rather than ensuring
fine-grained thread-level fairness from a system point of view.We
call this presentation fairness. The perceptual quality of an applica-
tion however is highly subjective and multi-dimensional. For ex-
ample, the quality of a video game involves responsiveness and
frame rate while the quality of an animation would be determined
by image quality and frame rate. There are studies that focus on
this matter [40–42]. However, in our discussion where content-
generating applications run at remote locations and stream their
images to receiver applications run on display walls, we define
the quality of a receiver application as the ratio of the amount of
resources being consumed by the application to the amount of re-
sources it needs for optimal performance. Alsowe assume content-
generating applications run in a best-effort manner and their
resource usage is governed by systems they reside. For interactive
applicationswhere the amount of resource needed for optimal per-
formance is not known a priori, we use the application’s current
resource utilization as the basis to estimate the amount needed for
optimal performance. Section 5.2 explains in detail how we esti-
mate this. We also prioritize applications by estimating users in-
terest in the applications. This is discussed in detail in Section 4.
We then apply a weighted max–min fair sharing algorithm with
these two variables in order to achieve presentation fairness.

Fig. 3. Components of the proposed scheduling framework. Applications’
information such as their relative visibility, frequency of user interactions, and
resource utilizations are collected and processed by the Priority model and
the Performance Monitor. The proportional sharing scheduling algorithm then
determines the amount of resources allowed for each application.

3.2. Design

The proposed scheduling framework consists of a Priority
model, a Performance Monitor, and a scheduling algorithm. Fig. 3
depicts the relationship among the components. The Priority
model collects information about application states such as the ap-
plication’s window geometry and frequency of user interactions
in order to assign a priority that reflects the relative importance
of each application. The Performance Monitor keeps track of per-
formance measures from which it calculates the current resource
utilization and estimates the resources need for the optimal per-
formance of each application. The scheduling algorithm uses the
assigned priority as well as the application’s resource need to allo-
cate resources.

4. Priority model

The Priority model describes the degree of users’ interests in
applications running on the displaywall, thus the priority assigned
to applications should reflect what users perceive to be important
as accurately as possible. To achieve this, the model looks at
multiple factors related to the current layout of applications to get
a measure of users interests in applications. The model observes
three factors and produces a numeric priority value for each
application. The Effective Visible Size (EVS) and the frequency
of interaction with an application indicate spatial and temporal
importance of an application, respectively. The wall usage pattern
describes the regional importance of specific areas of the display
wall. These three factors are combined together to produce the
priority value. We discuss each of the three factors and quantify
them below.

4.1. Visual factors

The visible window size of an application as an indication of
user interest is straightforward. Even though an application might
not be receiving user input, a large window size can imply high
interest. Similarly, if an application’s window covers a significant
portion of the display wall, that application is more likely to draw
users’ attention. Visible window size is defined as the total size
of the visible, non-occluded areas of the application’s window in
pixel. This can be easily calculated by subtracting the sizes of
portions occluded by other applications. We denote the Effective
Visible Size of an application i at time t with EVS(i, t). The value

6 S. Nam et al. / Future Generation Computer Systems () –

Fig. 4. Examples of display wall usage and the corresponding black-hot heat map of the wall. Darker cell indicates higher aggregate priority values. In the top figure,
applications are mostly positioned on the left portion of the wall. In the middle figure, one application is maximized on the center of the wall. In the bottom figure, the
applications are arbitrarily scattered, but the users are mostly interacting with the applications on the left portion of the display.

of EVS can range from 0 to a maximum of i’s window size. For
instance, EVS(i, t) = 0, if an application i’s window is completely
obscured by other windows at time t , and EVS(i, t) = the size of
i’s window if the entirety of i’s window is visible at time t . The
EVS is themain factor to determine application’s visual importance
but we also consider how much an application reveals its
contents.

The Exposure Ratio E is the ratio of EVS to the application’s win-
dow size. Thus E tells how much an application reveals its con-
tent on the wall and it can be denoted by E = EVS/WindowSize.
We multiply the EVS by the exposure ratio E to obtain the prior-
ity determined by the visual factor Pvisual. Thus Pvisual = E · EVS =
EVS2/WindowSize.

4.2. Interaction factor

The EVS alone might not be enough to reflect user intentions.
Assume two applications i and j at time t , where Pvisual(i, t) ≫
Pvisual(j, t). A user could be interacting more frequently with
application jwhile i’s priority is higher because it has a larger Pvisual
value. User interactions through input devices such asmouse, gyro
mouse, touch, gesture, or keyboard indicate user’s interest in an
application directly.

However, it is hard to state exactly how much certain inter-
actions on a specific application should increase (or decrease) its
priority. There can be many different types of applications with
different user interaction schemes. So, we provide a simplified
mechanism to add the interaction factor in the Prioritymodel. Cur-
rently, we let application developers to call a function in a place
where a user interaction event is handled in the application. The
function simply increments the interaction counter for the applica-
tion. We then periodically monitor the rate of changes in the num-
ber of interactions during a single scheduling interval. This waywe
can tell how intense the recent interactions are for the application.
The interaction factor Pinteract(i, t) is defined as the number of user
interactions during the scheduling interval (t − 1, t].

4.3. Wall usage pattern

Spatial layout and window arrangement patterns are likely to
emerge if the display wall is used long enough. For example, in
Fig. 2(d) where the wall is partitioned into two sections, the left
section employs tiled-layout which is appropriate for comparisons
while the right section shows a single large application window.
Also imagine a case where users take turns to present their data
on the display wall during a meeting. In this case, the wall usage
pattern is likely to be one of the layouts shown in Fig. 2(c) and (d).
When a user can expect static application window layout patterns
on thewall, the usermight want to save the priority values (maybe
in a separate file) in order to apply them immediately for a similar
use case later. This can help the scheduler to know the region of
the wall beforehand that needs to be focused more.

To get an insight into these patterns, we can imagine a virtual
grid juxtaposed on the display wall, and use that grid to aggregate
priority values of applications in each cell of the grid. The grid can
be color-coded by the aggregated priority values forming a heat
map; high priority values are indicated as high temperature. For
example, in the top layout in Fig. 4, most of the applications are
positioned on the left portions of the wall, causing an increase in
the temperature of the left portion of thewall. In the bottom case of
Fig. 4, the left side of the wall has higher temperature even though
applications are scattered arbitrarily on the wall because users are
interacting more with the applications on the left side. In these
cases, if a user brings an application window from the right side
of the wall (cold region) to the left side of the wall (hot region),
then the application will get an immediate priority bonus.

A display wall is divided into multiple cells of a virtual grid.
Each cell in the grid maintains a priority value calculated for
the cell. Each cell c of the grid adds the priority value of each
application i that overlaps with the cell at a scheduling event
at time t , proportion to the percentage overlap. The percentage
overlap (%overlap(c, i, t)) is the ratio of the size of the region of the

S. Nam et al. / Future Generation Computer Systems () – 7

cell c covered by the application i to the cell’s size. The temperature
of the cell c at time t , Temp(c, t), is denoted as

Temp(c, t) = Temp(c, t − 1)+

i∈L


(Pvisual(i, t)

+ Pinteract(i, t)) ·
%overlap(c, i, t)

100


where L is a set of applications whose window overlaps with the
cell c and Temp(c, t−1) is the temperature value at the scheduling
event at time t−1 that immediately precedes the scheduling event
at time t . Finally, the temperature of an application i and time t ,
Ptemp(i, t), is the proportion of the sum of the temperature values
of the cells on which i’s window span. We denote this as

Ptemp(i, t) = Σc∈ITemp(c, t)/Σc∈GTemp(c, t)

where I is a set of cells under the application i’s window and G is a
set of all cells in the grid.

4.4. The priority function

We obtain the priority by combining the three priority factors.
The priority P of an application i at time t is defined as

P(i, t) = WvPvisual(i, t)+Wi Pinteract(i, t)+Wt Ptemp(i, t)

where Wv , Wi, and Wt denote weight factor for each components.
In our framework, an absolute value of a priority is not impor-
tant. The scheduler prioritizes resources based on a proportional
basis, with priorities indicating application’s relative importance
at a given time. How do we weigh each priority factor to produce
a priority value for an application? Weighing each priority factor
monotonously for all types of applications is not appropriate be-
cause different applications use different ways of presenting in-
formation and can possibly employ different interaction schemes.
Thus, how toweigh each priority factor depends on the type of each
application. For image-centric applications, the Pvisual can be the
most important factor while the Pinteract can be important for in-
teractive applications. For example, an application such as a movie
player where Pinteract can be very low can still receive enough re-
sources by giving it a high Wv . The Ptemp will be useful when there
is a distinct wall usage pattern after long period of display wall us-
age.While an application developer candetermine the application-
specific weight factors or provide a user-interface for users to
adjust the weights in real-time, the inequality of each weight fac-
tors in general can be expressed as Wi > Wv > Wt based on the
degree of straightforwardness of each priority component in re-
flecting users’ interest.

5. Resource distribution

Once the Priority model assigns priorities to applications, the
scheduler distributes system resources among application by ad-
justing their presentation quality to ensure presentation fairness.
In our discussion, an application’s presentation quality is the ratio
of the amount of resources the application currently consumes to
the amount of resources the application needs to achieve its opti-
mal performance at a given time. We denote the actual amount of
resources an application i consumes at time t as Rcur(i, t) and the
amount of resources i needs for the optimal performance at time t
as Ropt(i, t). The presentation quality that an application i currently
achieves at time t is denoted as

Qcur(i, t) = Rcur(i, t)/Ropt(i, t) (1)

where Rcur can be obtained by measuring the amount of resources
consumed by the application and Ropt is either provided by the ap-
plication if the amount resources required for optimal performance

is known a priori (such as applications streaming a video at a fixed
frame rate) or derived based onRcur for interactive applications.We
discuss how to derive the amount of resources needed for optimal
performance at a given time in the latter case in Section 5.2. Pre-
sentation fairness is achieved by allocating resources so that the
resulting presentation qualities (Qcur) are in accordance with ap-
plications’ priorities (applications with higher priorities achieve
higher presentation qualities) rather than ensuring fine-grained
fair sharing of resources (i.e. fair distribution of Qcur rather than
Rcur).

The scheduler also needs a system-wide variable indicating the
total amount of available resources so that these resources can
be distributed and allocated to applications at every scheduling
instance. We denote the amount of total available resources seen
by the scheduler as RTOTAL. We describe howwe obtain this amount
in Section 5.3.

5.1. The demanded quality for presentation fairness

At every scheduling instance, the scheduler determines the
maximum amount of resources allowed for each application. Thus,
combined with Ropt of the applications, the scheduler sets the
maximum presentation quality each application is allowed to
achieve. This is called the demandedquality. The demandedquality
set by the scheduler for an application i at time t can be denoted
as

Qsched(i, t) = Rsched(i, t)/Ropt(i, t) (2)

where Rsched(i, t) is the maximum amount of resources allowed for
an application i as determined by the scheduler at time t . TheQsched
ranges from 0 to 1 because the scheduler does not demand re-
sources more than the application needs (Rsched ≤ Ropt). A value
of 0 indicates that no resources are to be allocated for the appli-
cation, which implies that the application should idle. We define a
special case where an application can consume as much resources
as it can utilize if Qsched of that application is set to 1 (Rsched = Ropt).
Thus, Qsched(i, t) = 1 indicates that the scheduler sets no limit on
resource consumption for application i, until Qsched(i, t + l) is set
to a value less than 1. In this case, the amount of resources con-
sumed by an application (Rcur) can be greater than the amount de-
manded (Rsched) and the amount derived for optimal performance
(Ropt) during the time period l under this special condition. This
special condition is needed because the scheduler cannot know the
global maximum of Ropt of an interactive application. The sched-
uler lets the application (that has its Qsched was set to 1) consume
as much resources as it wants regardless of its current Rsched in or-
der to know the maximum Ropt of the application. We discuss this
special condition in detail in Section 5.2.

5.2. Estimating the time varying optimal amount

The optimal amount of resources for an application (expressed
by Ropt) is the amount of resources the application needs to achieve
optimal presentation performance. We define it as a function
of time. For non-interactive applications, the optimal amount of
resources is known a priori, thus Ropt is a fixed constant at any
given time assuming uncompressed stream as we discussed in
Section 3. For instance, a live video feed where a user at the source
(sending side) can set a desired frame rate for the feed can have
a fixed desired frame rate. On the other hand, imagine a case
where a visualization is being rendered at a remote server and the
rendered images are streamed to the displaywall. The visualization
server renders and streams images only when users interact with
the visualization, unless the user plays a predefined animation.
When the users interact, the visualization server streams in a best-
effort manner. When there is no user interaction however, the

8 S. Nam et al. / Future Generation Computer Systems () –

Fig. 5. A function that estimates the optimal amount of resources for interactive
applications. The first estimation occurs when the application is newly added to
the system or when it is woken up from an idle state. The second estimation
is to prevent a situation where the application’s potential optimal performance
(expressed by Ropt) is stuck in a local maximum when the system is overloaded.

scheduler does not have to allocate resources for the application
that receives the rendered images in the display wall because
there are no images that are being streamed. By changing the
amount of resources for the optimal performance to reflect the
resource needs, which can vary as users interact, the scheduler can
allocate resources to the applications more effectively by allowing
more resources to the ones that actually need those resources.
Therefore, Ropt of an application has to reflect the resource need
at a given time. To achieve this for interactive applications, the
Performance Monitor estimates the amount of resource for the
optimal performance at a given time based on the application’s
resource utilization.

Fig. 5 illustrates pseudo-code that estimates and updates the
optimal amount (Ropt) for interactive applications where their
resource consumption (Rcur) varies based on user interactions. Ropt
is first estimated with an initial value when the application starts
or is woken up from an idle state. The initial value can differ by
application, and the visual layout of the application’s window such
as its frame size can be used to set an initial value. Most of the
time Ropt is simply updated to Rcur , except when the application is
consuming the optimal amount (Rcur = Ropt). Notice that Rcur =

Ropt implies that the amount of resources the scheduler allows
(Rsched) is equal to the optimal amount (Ropt) which means the
demanded quality was set to 1 (Eq. (2)). This state implies that the
application might be able to consume more resources as long as
there are enough resources in the system. Recall that Qsched = 1
sets no limit on resource consumption for the application for this
case. If there exist enough idle resources in the system (the system
is underloaded), then Rcur of the application is increased as long
as the application can consumemore, thus performs better. In this
case, the condition Rcur > Ropt can occur and Ropt will be increased
to the Rcur by the line number 9 in Fig. 5. The Ropt can reflect the
increased resource need of the application by letting it to run in
best-effort manner.

What happens if there are not enough resources in the sys-
tem (the system is overloaded) when the Qsched of an application
is set to 1? Since the Ropt is updated to Rcur , the optimal amount
will not reflect the application’s capability because the application
is unable to consume more (Rcur cannot be increased because the
system is overloaded). Then the scheduler will have an underes-
timated Ropt for the application. Since the scheduler allocates re-
sources based on Ropt of the application, this can lead the scheduler
to allocate less resources than the application can actually utilize
even though enough resources become available later. The Perfor-
mance Monitor increases the application’s resource need (Ropt ←

Ropt_multiplier · Rcur) more than the Rcur of the application to prevent
a situation where Ropt is bounded to a local maximum when the
system is overloaded. The underestimated Ropt is corrected in this

way. In our experiment, the Ropt_multiplier was set to 1.1 (10% more).
However, this can lead to an overestimation of Ropt . An overesti-
mation that can happen when the application does not consume
the amount of resources it is allowed, is corrected simply by de-
creasing Ropt to the amount it currently consumes (line 9 in Fig. 5)
in subsequent scheduling instances.

Employing a notion of the optimal amount of resources (Ropt) is
necessary to provide presentation fairness where an application’s
quality (Eqs. (1) and (2)) is the metric for fairness. This in turn
makes our scheduling scheme non work-conserving because the
two estimations (the initial estimation and the estimated increase
with Ropt_multiplier) can lead to resource waste when they are
overestimated. However, our evaluation (Section 6) shows that
the improved user experience in typical use cases outweighs the
waste.

5.3. Total available resources

The amount of total available resources in the system (RTOTAL) is
bounded by hardware limit. However, having a fixed total available
resources bounded to a particular hardware may not correctly
reflect the capability of the system. For example, if the amount
of total available resources is set to the aggregate bandwidth of
all network links in the system, then RTOTAL in this case reflects
the upper bound only if all the applications in the system stream
their contents over a network link. When applications run locally
(i.e. running in the machine driving the display walls) then they
will not utilize the network resources. In this case, the amount of
total available resource is not necessarily the same as the aggregate
capacity of the network links in the system. In general, a metric
bounded to a particular hardware limitation is not feasible to
abstract the notion of the amount of total available resources in
the system

To obtain a better abstract notion of the total available re-
sources, we define the amount of total available resources in the
system seen by the scheduler as the sum of the actual amount of
resources (Rcur) consumed by applications running at the current
moment. Thus RTOTAL ranges from 0 to a constant value that indi-
cates physical limit.

RTOTAL(t) = Σi∈LRcur(i, t). (3)

However, Eq. (3) alone is not enough for the scheduler to work
properly. When a new application is added to the system, the
scheduler cannot know the Rcur of the newly added application
before running it. And the application cannot run before the
scheduler determines a quality for that new application. Thus an
estimation of RTOTAL is needed whenever an application is added to
the system. Fig. 6 depicts how the RTOTAL is updated. RTOTAL starts
with 0 and increased whenever a new application is introduced to
the system. Although the RTOTAL can be updatedwith estimations, it
eventually converges to a constant value that reflects the hardware
capacity in an abstract amount.

5.4. Proportional sharing algorithm

We apply a weighted max–min fair-sharing algorithm to
achieve presentation fairness. The algorithm takes the priorities
assigned by the Prioritymodel, the optimal amount of resources for
each application, and the amount of total available resources in the
system. The algorithm then assigns a demanded quality (Qsched) for
each application to adjust its quality (Qcur), providing presentation
fairness across the display wall.

The algorithm is illustrated with a partial pseudo-code in Fig. 7.
The array_Rsched is an empty array that will hold the values of Rsched
shown in Eq. (2) for each application. Each application i adjusts
its resource consumption to comply with the scheduler’s demand.

S. Nam et al. / Future Generation Computer Systems () – 9

Fig. 6. A function that updates the amount of total available resources seen by
the scheduler with the actual amount of resources applications currently consume.
RTOTAL is increased whenever an application is newly added to the system.

The unitAllocAmnt is an empty array that holds the fraction of the
amount of resources that can be allocated for each application
at every iteration in the loop in the COMPUTE_Qd function. The
fraction that determines a granularity of the resource allocation
(which affects the time complexity of the algorithm) is initialized
with a constant value F (0 < F ≤ 1).

unitAllocAmnt[i] = fraction · Ropt(i, t) · (P(i, t)/ΣP(i, t)) (4)

where L is a set of all applications. The values in the unitAllocAmnt
array differ by applications and are calculated for each application
from its Ropt and the priority proportion at a given time. Eq. (4)
conveys themain idea of the scheduling algorithm. A small amount
of resources proportional to a priority value of an application is
allocated progressively. The temporary priority sum (sum_tmp)
needs to be reset (line 10) before the inner loop (line 11) because
some applications can be excluded during the iterations as in the
conditional block (line 12–14). The unitAllocAmnt of application i
at time t is defined as the fraction of Ropt(i, t) multiplied by i’s
priority proportion at time t (Eq. (4)). An application’s Ropt is first
multiplied by the application’s priority proportion. This means,
at every iteration in the scheduling loop, an application receives
only a portion of the amount based on its priority proportion.
Then each application’s portion of the amount it receives is further
fragmented by the global variable fraction. This is to ensure fine
granularity in resource allocation at a cost of increased execution
time of the algorithm.

The algorithm starts with obtaining the current Ropt and the
RTOTAL. Then Rsched for each application is calculated progressively
in the inner loop (line 11) until no more resources can be allocated
to any application. This condition can arise when either all the
available resources are allocated (line 7) or all the application is
allocated with the amount equal to their Ropt (line 8).

To find the worst case running time of the algorithm, let the
RTOTAL be infinite and for all application, let Rcur > 0. Then the al-
gorithm will terminate only after all the applications are allocated
with the amounts that they require (when Rsched = Ropt). There-
fore the maximum number of iterations of the inner loop (line 11)
will be determined by the lowest priority application (because the
list L is ordered by the priority and an application always receives
a small portion of the amount it wants) and the value of the frac-
tion F as in Eq. (4). The maximum number of iterations (denoted
as numit in Eq. (5)) of the outer loop (line 7) is then determined
by the number of allocation for the least important application A
(Ropt(A)/unitAllocAmnt[A]). Using Eq. (4), we obtain

numit = fraction · (P(A)/ΣP(A)) (5)

where A is the application with the lowest priority.
The ESTIMATE_Ropt(), GET_RTOTAL(), and the inner loop of the

algorithm (line 11) take O(n) time where n is the number of
applications in the system. Therefore, the worst case running time
of the algorithm is O(numit n) using Eq. (5).

Fig. 7. Partial pseudo-code of our proportional sharing scheduling algorithm. The
algorithm progressively allocates small amounts of resources, proportional to an
application’s priority until no more resources are available, or until all applications
receive the resources needed for their optimal performance.

6. Evaluation

In this section, we describe two experiments to demonstrate
that our scheduler achieves presentation fairness on a tiled display
with non-interactive as well as interactive applications, and with
multiple users interacting with the system simultaneously. The
tiled-display wall system employed in the experiments consists
of 18 LCD displays, as shown in Fig. 1, with a total resolution of
approximately 17 megapixels. A single machine equipped with
dual Intel X5650 quad core processors, 12 GB ofmainmemory, and
3 Nvidia GeForce GTX580 dual DVI graphics was used to drive the
entire display.We use a separate, equally powerful machine to run
sender applications that stream images to the display wall system
over network to simulate a thin-client display environment. Thus
there exist a receiver application for each sender application.

Both machines run 64bit OpenSUSE 12.1 (Linux kernel 3.1).
The display wall middleware we ran in our experiments mainly
consists of receiver applications that receive streams of images
from sender applications, the proposed scheduler that manages
resources for the receiver applications, and graphics part that
provides a large screen surface on the display wall. While each
sender is an individual process in the sendingmachine, the receiver
runs in a thread within the display wall middleware in the display
wall system. When the proposed scheduling scheme is enabled,
the receivers’ resource usages are monitored and scheduled as we
explained in previous sections. This is denoted as Sched throughout
the remainder of the paper. And we denote the condition where
the proposed scheduling algorithm was not running as NoSched.
Our display wall middleware runs as a user-level application. Thus
the operating system’s scheduler was running in both Sched and
NoSched conditions. The two machines are network connected
with a 10 Gbps optical switch.We use the bit-rate of an application
as a metric for the amount of resources. Thus the amount of

10 S. Nam et al. / Future Generation Computer Systems () –

Fig. 8. Achieved frame rate for applications used in the experiment under the
operating system’s scheduler (NoSched), and with our scheduler running (Sched).
The X axis lists frame sizes of the 10 applications which are run simultaneously in
the experiment. Application windows are arranged in a tiled mode as illustrated in
Fig. 2(a) giving them equal priority. The flat line shows indeed that the scheduler
assigns equal priority proportions to all applications.

resources an application consumes (Rcur) indicates its image
streaming bandwidth in bits-per-second.

The first experiment evaluates our scheduler with non-
interactive applications streaming at a fixed rate. Thus, the optimal
amount of resources (streaming bandwidth) for these applications
is known a priori (Ropt is constant). The second experiment
evaluates the scheduler with interactive applications, and with
multiple users simultaneously interactingwith the system, causing
a variable demand on system resources (Ropt can vary). In both
experimentswe overload the system to simulate heavy usage. Each
experiment is performed twice, once with our scheduler running,
and a second timewithout our scheduler, leaving the system to rely
solely on the operating system’s scheduler.

6.1. Presentation fairness in non-interactive applications

In the first experiment, we evaluate the effectiveness of our
scheduler with non-interactive applications. We developed a sim-
ple non-interactive sender application that streams a fixed size
buffer (in memory) at a fixed rate to the corresponding receiver
application in the display wall over network. Ten sender applica-
tions with different image sizes (shown on the X axis in Fig. 8) are
run simultaneously, streaming their contents to the display wall
at 30 frames per second. Thus the bandwidth needed by each cor-
responding receiver application for optimal performance (Ropt) is
their image frame size in bits multiplied by 30 Hz. Although the
image frame sizes of the sender applications are fixed, their win-
dow sizes on the display wall, which determine their Pvisual, can be
arbitrary.

To demonstrate presentation fairness, we arrange the windows
in a tiled mode as illustrated in Fig. 2(a), thus giving applications
the same priority. Therefore Pvisual is the same for all applications,
Pinteract is 0 and, Ptemp is negligible in this case because the
application layout is static.

The flat line in Fig. 8 shows that the scheduler indeed assigns
equal priority proportions to all applications. When our scheduler
is not running (NoSched condition), the operating system’s sched-
uler distributes resources evenly among applications. Since ap-
plications have varying frame sizes, this fine-grained distribution
of resources leads to diverging performance as evident in Fig. 8.
Applications with larger frame sizes suffer a big performance hit
with their frame rate dropping below 15 FPS, while applications

with smaller frame sizes achieve their optimal 30 FPS. This dispar-
ity in performance is particularly evident to users, which detracts
from the user experience. On the other hand when our scheduler
is running (Sched condition), all applications achieve a comparable
performance with their frame rate around 22 FPS, thus achieving
presentation fairness. This is because the Prioritymodel assigns the
same priority to all applications, and the scheduling algorithm al-
locates resources taking applications’ Ropt into account.

6.2. Evaluating responsiveness in interactive applications

Imagine a scenario where a user interacts with a scientific
visualization tool by rotating, panning, and scaling a 3D model, or
a piece of video production software where the user works with
multiple media assets, traverses video frames, make rough cuts,
etc. The application’s responsiveness (as determined by the time
the application takes to update its content from the moment of
user interaction) is crucial to meeting the users’ expectation for
these types of applications. We simulate this scenario in a user
study in order to evaluate the effectiveness of our scheduler with
interactive applications and multiuser interaction.

We developed a simple sender and an interactive receiver ap-
plication where the sender streams a fixed size buffer (in mem-
ory) to the receiver. The sender application is called a streamer and
the corresponding receiver application is called a receiver. We also
refer the receiver as user applications throughout the remainder
of the paper. The streamer is analogous to scientific visualization
software that runs on a high-performance computer and gener-
ates visual contents. The receiver is analogous to a corresponding
GUI process that runs on the display wall system displaying the
contents it receives from the visualization software. The streamer
streams images to the receiver in a best-effort fashion whenever
a user interacts with the receiver. The size of the image streamed
by the streamer is fixed at 2560 × 1600× 24 bits but its frame
rate varies and is determined by the rate of user interaction (Rcur
and Ropt vary as the user interacts). Therefore, the Pvisual of the
applications is fixed while the Pinteract changes as users interact.
The scheduler determines Ropt based on Rcur , which changes de-
pending on user interaction rate. The receiver process (user ap-
plication) conforms to the Qsched determined by the scheduler by
altering its frame rate. During the experiment, the displaywall sys-
temwas overloadedwith 6 non-interactive applications streaming
a 2560× 1600 video sequence with 24 bits per pixel at a fixed rate
of 30 Hz (Ropt = 2949.12 Mbps). We refer to these applications as
the overhead.

6.2.1. Task
The user study comprised single and multiuser interactions

with user applications on the display wall within groups of 3 sub-
jects at a time. Each user interacts exclusively with a single re-
ceiver dedicated to that user using a mouse. The user application’s
window is displayed on the displaywall, with subjects sitting side-
by-side approximately 8 foot in front of the display wall. The user
application presented the user with a target acquisition task in
which the user is asked to move the mouse cursor and click on
a target appearing in a random location inside the user applica-
tion’s window as quickly as possible. However, a target can be ac-
quired and anext target appears onlywhen the subject successfully
clicks the target. Thus subjects were implicitly asked to be as pre-
cise as possible at the same time. The user application’s window
is updated only when a new frame is received from the streamer.
Therefore, smoothness of the cursormovement, which is the visual
feedback the user receives, depends on the frame rate, which will
ultimately influence subject performance. The rationale behind
this task is that performance in the target acquisition task will
demonstrate the responsiveness of the system. This will in turn

S. Nam et al. / Future Generation Computer Systems () – 11

Fig. 9. (a) The average hit latency for all groups with and without the proposed scheduling scheme. Error bars reflect the standard errors. The hit latency was reduced
significantly with the proposed scheduling scheme. (b) The average hit latency for groups A, B, and C where the experiment began with the Sched condition. (c) The average
hit latency for groups D, E, and F where the experiment began with the NoSched condition.

Fig. 10. The average frame rate achieved by user applications. The frame rates
slightly dropped as the number of users increased in the NoSched condition, where
as the frame rates remained high with our scheduling scheme ensuring better user
interactivity.

reflect objective performance (target acquisition speed and preci-
sion) as well as subjective user experience in more complex sce-
narios such as scientific visualization and interactive, multimedia
applications.

6.2.2. Procedure
We recruited 18 subjects. All subjects were computer science

students (both graduate and undergraduate). Subjects are divided
into groups of three, with a total of 6 groups, which we refer to as
groups A through F. Each group goes through a series of 7 rounds
to vary the number of users interacting simultaneously. In the
first three rounds, a single subject interacts with the system to
perform the task (one of the three subjects in the group per round).
In the second set of three rounds, two subjects perform the task
simultaneously. In the final round all three subjects perform the
task simultaneously. The 7 rounds are repeated twice under two
different conditions: once with our scheduling scheme running
(referred to as Sched condition), and a second time without our
scheduling scheme (referred to as NoSched condition), leaving the
system to rely solely on operating system scheduling. This order is
balanced across the 6 groups. (groups A, B, and C started with the
Sched condition, while groups D, E, and F started with the NoSched
condition).

6.2.3. Results
For each subject, we measure the hit latency (the time it takes

for the subject to move the mouse cursor and successfully click
the target from the moment it appears in the subject’s assigned
window) and the miss count (the number of clicks that missed the
targets). We first illustrate the effect of our scheduler on subject

performance. We then show our scheduling scheme total resource
utilization.

We compute a 2 (factor #1: NoSched versus Sched conditions)
x 3 (factor #2: 1, 2, and 3 users interacting simultaneously) fac-
torial ANOVA to see the differences between average hit latencies
under various conditions. The result indicates that there are sig-
nificant main effects (factor #1: F(1, 3234) = 927, p < 0.000,
factor #2: F(2, 3234) = 6.12, p = 0.002) but no interaction effect
(F(2, 3234) = 0.13, p = 0.88). Fig. 9(a) shows the average hit la-
tency of all groups with and without our scheduling scheme. With
our scheduling scheme, the average hit latency of all subject groups
is reduced by approximately 28%. This increased user performance
is due to the higher frame rate achieved with our scheduling
scheme as shown in Fig. 10. The user applications achieve mini-
mum of approximately 17.5 Hz with our scheduling scheme. This
is higher than a frame rate threshold (10–15 Hz) where human
performance can be adversely affected [43–46]. Even with a high
workload and increasing number of users interacting simultane-
ously, our scheduler was able to maintain a sufficient frame rate,
which helped subjects maintain their task performance as shown
in Fig. 9(a)–(c).

The frame rates under Sched condition in Fig. 10 are not linear
as NoSched condition. This is due to multiuser interactions. We
observed that subjects tend to compete with others especially
when multiple subjects were interacting simultaneously. The
reason that the frame rates under NoSched condition in Fig. 10
shows linearity is because of the operating system scheduler’s
fair scheduling policy where it tries to distribute resources evenly
among applications.

Under the NoSched condition, subjects’ performance decreases
as the number of users interacting simultaneously increases as de-
picted in Fig. 9(b). On the other hand, subjects’ performance im-
proved slightly as the number of users interacting simultaneously
increases as depicted in Fig. 9(c). We believe this trend is caused
by an effect where subjects gradually adapt to performing the task
at low frame-rates.

The aggregate number of missed clicks of all subject groups
was reduced by 19%, 42%, and 33% for one, two and three users,
respectively (shown in Fig. 11(a)). However, the difference in
the average number of missed clicks is insignificant as shown
in Fig. 11(b). During the user study, we observed that the
number ofmissed clicks is highly dependent on subject interaction
characteristics rather than resource scheduling policies. Users who
are careful in clicking targetsmiss the target less oftenwhether our
scheduler is employed or not.

Fig. 12 depicts the total resource utilization breakdown. The
graph shows that fewer resources are allocated to the overhead,
allocating more to user applications under our scheduling scheme
as the design dictates, which ultimately led to the improved user

12 S. Nam et al. / Future Generation Computer Systems () –

Fig. 11. (a) The aggregate number of all subject groups’ that missed clicks with and without the proposed scheduling scheme. (b) The average number of missed clicks with
and without the proposed scheduling scheme shown with standard errors.

Fig. 12. The average of total resource utilization breakdown with and without our
scheduling scheme. The graph indicates that more resources are utilized by user
applications under the proposed scheduling scheme.

performance. As expected, the overall resource utilization of the
proposed scheduling scheme is lower than the operating system’s
scheduler. This is because resources are allocated based on an
application’s Ropt , which is not known a priori, and needs to be
estimated based on its current performance. In the current Ropt
estimation mechanism, the user’s interaction characteristic is the
major factor determining the precision of Ropt estimation and the
estimation tends to be more precise (meaning the Ropt precisely
reflects the amount of resources a user will utilize thereby the
difference between the Ropt and the Rcur can be small) better
when the rate of changes in user interactions is steady, thereby
increasing resource utilization.

7. Conclusion

Thin-client display wall systems are used for displaying high-
resolution visual contents that are rendered at remote resources
(such as high-performance computers and media providers) and
providing multiuser interactions on them. In this paper, we pre-
sented a novel resource scheduling scheme for these highly col-
laborative display wall environments. Unlike traditional resource
scheduling in modern operating systems, our multiuser resource
scheduling scheme adopts a user-centered scheduling tomaximize
user-perceived performance, favoring applications that are most
likely to draw user attention.

Our scheduling framework ensures the presentation fairness.
A Priority model is used to describe the degree of users interest

in applications on the display wall. The effective visible size of an
application’s window, the frequency of user interactions, and the
wall usage patterns are used to determine the priority of an ap-
plication. For interactive applications where the optimal resource
requirement is not known a priori, the scheduler estimates these
amounts based on current application performance. The scheduler
then finds a fair distribution of system resources and adjusts re-
source consumption indirectly by modulating presentation quali-
ties of applications.

Experimental results show that our resource scheduler achieves
presentation fairness in non-interactive applications where re-
source needs are known a priori.We also conducted a user study to
evaluate the effect of our scheduler on user performance with in-
teractive applications running on an overloaded tiled display wall.
The user study shows the subject performance in a target acqui-
sition task improved with the proposed scheduling scheme over
general-purpose operating system scheduling. This demonstrates
the effectiveness of our scheduling scheme when employed in in-
teractive tiled display walls that are used in collaborative settings
where multiple users interact simultaneously with the system.

8. Future work

In the future we plan to extend our Priority model. Currently,
the application window size and the frequency of interaction with
applications are major factors in determining the priority of the
application. The contribution of these two factors is reconsidered
only when a user actually interacts with the application. However,
a usermay desire high performance for an application even though
he/she is not currently interacting with the application. To address
this case, the Priority model could anticipate user intention with-
out relying on application states. For example, tracking devices can
be used to capture a user’s interest in applications by sensing the
user’s head orientation or his/her location relative to the applica-
tion. This information can then be incorporated into the Priority
model. Also in our Priority model, we simplified the mechanism to
obtain the interaction factor by having the interaction counter that
needs to be implemented by an application developer. This can be
prone to programming error and can have an adverse effect on a
display wall. In the future we plan to move this part into the dis-
play wall’s application programming interface.

Our scheduling scheme maintains the notion of an optimal
amount of resource for an application based on its current resource
consumption. In particular, when the system is overloaded, the
scheduler increases the optimal amount for an application assum-
ing that the application might be able to consume more. The re-
source can be wasted when the amount is overestimated. Thus our
scheduling framework is not work-conserving. Precise estimation
of the optimal amount of resources for an interactive application

S. Nam et al. / Future Generation Computer Systems () – 13

is crucial to keep the system’s resource utilization high. This is a
hard problem because the system cannot precisely predict what
a user will do. However, we plan to do further research on esti-
mating the optimal amount of resource of interactive applications
based on knowledge that can be learned from online profiling, user
interaction pattern, or machine learning techniques.

The proposed scheduling scheme assumes a simple stream
receiving application where an advanced video decompression
technology is not required at the receiving end (at the display
wall). This allowed us to assume a fixed required bandwidth
that can be simply calculated a priori for an application as we
mentioned in Section 3. This simplification was based on the
advent of high-speed optical networking which is one of the key
components of the cyberinfrastructure. However, modern video
compression/decompression technologies are also an important
factor that enables users to stream high-resolution videos. The
scheduling scheme can be improved by supporting a receiver
application that employs modern decompression technologies.
This requires further study on how to reliably estimate the
optimal amount of resources for the receiver application that keeps
changing its resource utilization (depending on the decompressing
complexity of current data) even without user interactions.

Also in our experiments, we implemented the receiver ap-
plication that has a single thread for receiving images that are
streamed from the sender over the network. We plan to improve
our scheduling scheme to support multiple concurrent threads for
high-performance applications such as a scientific visualization
that can render and stream images in parallel.

Currently, our work is focused on network streaming resources
but a more complex receiver application might need to utilize
different types of resources. Handling different types of resources
will make the proposed scheduling scheme more general and
enables the scheduler to support wider range of application.

References

[1] R. Ball, C. North, Analysis of user behavior on high-resolution tiled displays,
human–computer interaction, in: INTERACT 2005, 2005, pp. 350–363.

[2] B. Yost, Y. Haciahmetoglu, C. North, Beyond visual acuity: the perceptual
scalability of information visualizations for large displays, in: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, 2007,
pp. 101–110.

[3] J. Leigh, L. Renambot, A. Johnson, B. Jeong, R. Jagodic, N. Schwarz, D.
Svistula, R. Singh, J. Aguilera, X. Wang, V. Vishwanath, B. Lopez, D. Sandin,
T. Peterka, J. Girado, R. Kooima, J. Ge, L. Long, A. Verlo, T.A. DeFanti, M.
Brown, D. Cox, R. Patterson, P. Dorn, P. Wefel, S. Levy, J. Talandis, J. Reitzer,
T. Prudhomme, T. Coffin, B. Davis, P. Wielinga, B. Stolk, G. Bum Koo, J. Kim,
S. Han, J. Kim, B. Corrie, T. Zimmerman, P. Boulanger, M. Garcia, The global
lambda visualization facility: an international ultra-high-definition wide-area
visualization collaboratory, Future Gener. Comput. Syst. 22 (2006) 964–971.

[4] M. Czerwinski, G. Robertson, B. Meyers, G. Smith, D. Robbins, D. Tan, Large
display research overview, in: CHI’06 Extended Abstracts on Human Factors
in Computing Systems, 2006, pp. 69–74.

[5] D.S. Tan, D. Gergle, P. Scupelli, R. Pausch, With similar visual angles,
larger displays improve spatial performance, in: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, 2003, pp. 217–224.

[6] M. Haller, J. Leitner, T. Seifried, J.R. Wallace, S.D. Scott, C. Richter, P. Brandl,
A. Gokcezade, S. Hunter, The NiCE discussion room: integrating paper and
digital media to support co-located group meetings, in: Proceedings of the
28th International Conference onHuman Factors in Computing Systems, 2010,
pp. 609–618.

[7] C. Andrews, A. Endert, C. North, Space to think: large high-resolution displays
for sensemaking, in: Proceedings of the 28th International Conference on
Human Factors in Computing Systems, 2010, pp. 55–64.

[8] C. Plaue, J. Stasko, Presence & placement: exploring the benefits of multiple
shared displays on an intellective sensemaking task, in: Proceedings of
the ACM 2009 International Conference on Supporting Group Work, 2009,
pp. 179–188.

[9] K. Doerr, F. Kuester, CGLX: a scalable, high-performance visualization
framework for networked display environments, IEEE Trans. Vis. Comput.
Graphics 17 (2011) 320–332.

[10] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P.D. Kirchner,
J.T. Klosowski, Chromium: a stream-processing framework for interactive
rendering on clusters, ACM Trans. Graph. 21 (2002) 693–702.

[11] S. Eilemann, M. Makhinya, R. Pajarola, Equalizer: a scalable parallel rendering
framework, IEEE Trans. Vis. Comput. Graphics 15 (2009) 436–452.

[12] B. Jeong, L. Renambot, R. Jagodic, R. Singh, J. Aguilera, A. Johnson, J. Leigh,
High-performance dynamic graphics streaming for scalable adaptive graphics
environment, in: Supercomputing, 2006, SC’06. Proceedings of the ACM/IEEE
SC 2006 Conference, 2006, p. 24.

[13] R. Jagodic, L. Renambot, A. Johnson, J. Leigh, S. Deshpande, Enablingmulti-user
interaction in large high-resolution distributed environments, Future Gener.
Comput. Syst. 27 (2011) 914–923.

[14] L. Smarr, M. Brown, C. de Laat, Special section: OptIPlanet—the OptIPuter
global collaboratory, Future Gener. Comput. Syst. 25 (2009) 109–113.

[15] T.A. DeFanti, J. Leigh, L. Renambot, B. Jeong, A. Verlo, L. Long, M. Brown,
D.J. Sandin, V. Vishwanath, Q. Liu, M.J. Katz, P. Papadopoulos, J.P. Keefe, G.R.
Hidley, G.L. Dawe, I. Kaufman, B. Glogowski, K.-U. Doerr, R. Singh, J. Girado, J.P.
Schulze, F. Kuester, L. Smarr, The OptIPortal, a scalable visualization, storage,
and computing interface device for the OptiPuter, Future Gener. Comput. Syst.
25 (2009) 114–123.

[16] S. Nam, B. Jeong, L. Renambot, A. Johnson, K. Gaither, J. Leigh, Remote visu-
alization of large scale data for ultra-high resolution display environments,
in: Proceedings of the 2009 Workshop on Ultrascale Visualization, 2009,
pp. 42–44.

[17] A. Cedilnik, B. Geveci, K. Moreland, J. Ahrens, J. Favre, Remote large data
visualization in the paraview framework, in: Proceedings of the Eurographics
Parallel Graphics and Visualization, 2006, pp. 162–170.

[18] D.P. Bovet,M. Cesati, Understanding the Linux Kernel, third ed., O’ReillyMedia,
Inc., Sebastopol, CA, 2005.

[19] M.K. McKusick, G.V. Neville-Neil, Thread scheduling in FreeBSD 5.2, Queue 2
(2004) 58–64.

[20] M.E. Russinovich, D.A. Solomon, A. Ionescu,Windows Internals, fifth ed., 2009.
[21] R. Motwani, S. Phillips, E. Torng, Non-clairvoyant scheduling, in: Proceedings

of the Fourth Annual ACM–SIAM Symposium on Discrete Algorithms, 1993,
pp. 422–431.

[22] S. Evans, K. Clarke, D. Singleton, B. Smaalders, Optimizing Unix resource
scheduling for user interaction, in: Proceedings of the USENIX Summer
1993 Technical Conference on Summer Technical Conference, vol. 1, 1993,
pp. 205–218.

[23] Y. Etsion, D. Tsafrir, D.G. Feitelson, Desktop scheduling: how can we know
what the user wants?, in: Proceedings of the 14th International Workshop on
Network and Operating Systems Support for Digital Audio and Video, 2004,
pp. 110–115.

[24] H. Zheng, J. Nieh, RSIO: automatic user interaction detection and scheduling,
in: Proceedings of the ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, 2010, pp. 263–274.

[25] C.L. Liu, J.W. Layland, Scheduling algorithms for multiprogramming in a hard-
real-time environment, J. ACM 20 (1973) 46–61.

[26] C.W. Mercer, S. Savage, H. Tokuda, Processor capacity reserves: operating
system support for multimedia applications, in: International Conference on
Multimedia Computing and Systems, 1994, pp. 90–99.

[27] H. Tokuda, T. Nakajima, P. Rao, Real-timemach: towards predictable real-time
systems, in: USENIX Mach Symposium, 1990, pp. 73–82.

[28] D.K.Y. Yau, S.S. Lam, Adaptive rate-controlled scheduling for multimedia
applications, IEEE/ACM Trans. Netw. 5 (1997) 475–488.

[29] M.B. Jones, D. Roşu, M.-C. Roşu, CPU reservations and time constraints:
efficient, predictable scheduling of independent activities, SIGOPS Oper. Syst.
Rev. 31 (1997) 198–211.

[30] B. Urgaonkar, P. Shenoy, T. Roscoe, Resource overbooking and application
profiling in shared hosting platforms, in: Proceedings of the 5th Symposium
on Operating Systems Design and Implementation, 2002, pp. 239–254.

[31] D.B. Golub, Operating system support for coexistence of real-time and
conventional scheduling, in: School of Computer Science, Carnegie Mellon
University, 1994.

[32] P. Goyal, X. Guo, H.M. Vin, A hierarchical CPU scheduler for multimedia
operating systems, in: J. Kevin, Z. HongJiang (Eds.), Readings in Multimedia
Computing and Networking, Morgan Kaufmann Publishers Inc., 2001,
pp. 491–505.

[33] J.H. Anderson, J.M. Calandrino, U.C. Devi, Real-Time Scheduling on Multicore
Platforms, in: Real-Time and Embedded Technology and Applications
Symposium, 2006. Proceedings of the 12th IEEE, 2006, pp. 179–190.

[34] L. Zhang, Virtual clock: a new traffic control algorithm for packet switching
networks, in: Proceedings of the ACM Symposium on Communications
Architectures & Protocols, 1990, pp. 19–29.

[35] I. Stoica, H. Abdel-Wahab, K. Jeffay, S.K. Baruah, J.E. Gehrke, C.G. Plaxton,
A proportional share resource allocation algorithm for real-time, time-
shared systems, in: Real-Time Systems Symposium, 1996, 17th IEEE, 1996,
pp. 288–299.

[36] I. Stoica, H. Abdel-Wahab, K. Jeffay, On the duality between resource
reservation and proportional share resource allocation, in: Proc. ofMultimedia
Computing and Networking, 1997, pp. 207–214.

[37] K.J. Duda, D.R. Cheriton, Borrowed-virtual-time (BVT) scheduling: supporting
latency-sensitive threads in a general-purpose scheduler, in: Proceedings of
the Seventeenth ACM Symposium on Operating Systems Principles, 1999,
pp. 261–276.

[38] J. Nieh, M.S. Lam, A SMART scheduler for multimedia applications, ACM Trans.
Comput. Syst. 21 (2003) 117–163.

[39] A. Chandra, M. Adler, P. Goyal, P. Shenoy, Surplus fair scheduling: a
proportional-share CPU scheduling algorithm for symmetric multiprocessors,
in: Proceedings of the 4th Conference on Symposium on Operating System
Design & Implementation, vol. 4, 2000, p. 4.

[40] H. Zixia, A. Ahsan, A. Pooja, N. Klara, W. Wanmin, Towards the understanding
of humanperceptual quality in tele-immersive shared activity, in: Proceedings
of the 3rd Multimedia Systems Conference, 2012, pp. 29–34.

http://refhub.elsevier.com/S0167-739X(14)00160-5/sbref3
http://refhub.elsevier.com/S0167-739X(14)00160-5/sbref9
http://refhub.elsevier.com/S0167-739X(14)00160-5/sbref10
http://refhub.elsevier.com/S0167-739X(14)00160-5/sbref11
http://refhub.elsevier.com/S0167-739X(14)00160-5/sbref13
http://refhub.elsevier.com/S0167-739X(14)00160-5/sbref14
http://refhub.elsevier.com/S0167-739X(14)00160-5/sbref15
http://refhub.elsevier.com/S0167-739X(14)00160-5/sbref18
http://refhub.elsevier.com/S0167-739X(14)00160-5/sbref19
http://refhub.elsevier.com/S0167-739X(14)00160-5/sbref20
http://refhub.elsevier.com/S0167-739X(14)00160-5/sbref25
http://refhub.elsevier.com/S0167-739X(14)00160-5/sbref28
http://refhub.elsevier.com/S0167-739X(14)00160-5/sbref29
http://refhub.elsevier.com/S0167-739X(14)00160-5/sbref31
http://refhub.elsevier.com/S0167-739X(14)00160-5/sbref32
http://refhub.elsevier.com/S0167-739X(14)00160-5/sbref38

14 S. Nam et al. / Future Generation Computer Systems () –

[41] C. Kuan-Ta, T. Cheng-Chun, X. Wei-Cheng, OneClick: A Framework for
Measuring Network Quality of Experience, INFOCOM 2009, IEEE, 2009,
pp. 702–710.

[42] W. Wu, A. Arefin, R. Rivas, K. Nahrstedt, R. Sheppard, Z. Yang, Quality
of experience in distributed interactive multimedia environments: toward
a theoretical framework, in: Proceedings of the 17th ACM International
Conference on Multimedia, 2009, pp. 481–490.

[43] J.Y.C. Chen, J.E. Thropp, Review of low frame rate effects on human
performance, IEEE Trans. Syst. Man. Cybern. A 37 (2007) 1063–1076.

[44] M. Claypool, K. Claypool, Perspectives, frame rates and resolutions: it’s all in
the game, in: Proceedings of the 4th International Conference on Foundations
of Digital Games, 2009, pp. 42–49.

[45] R.T. Apteker, J.A. Fisher, V.S. Kisimov, H. Neishlos, Video acceptability and
frame rate, IEEE MultiMedia 2 (1995) 32–40.

[46] S.R. Gulliver, G. Ghinea, Changing frame rate, changing satisfaction? [multi-
media quality of perception], in: IEEE International Conference onMultimedia
and Expo, ICME’04, 2004, pp. 177–180.

Sungwon Nam received M.S. degree in Computer Science
from the University of Southern California in 2005. He is
currently pursuing a Ph.D. degree in Computer Science in
the University of Illinois at Chicago. His research interest
lies in the area of interactive visualization system and a
collaborative environment.

Khairi Reda received his M.S. degree in Computer Sci-
ence from the University of Illinois at Chicago, where he
is currently pursuing a Ph.D. degree in Computer Science.
His research interests are in data visualization and hu-
man–computer interaction. Heworks closelywith domain
scientists to develop novel, interactive visualizations that
apply perceptual and cognitive techniques for the explo-
ration of complex scientific data.

Luc Renambot received the Ph.D. degree from the Univer-
sity of Rennes-1, France, in 2000, conducting research on
parallel rendering algorithms for illumination simulation.
Holding a postdoctoral position at the Free University of
Amsterdam, Amsterdam, The Netherlands, until 2002, he
worked on bringing education and scientific visualization
to virtual reality environments. Since 2003, he has been
with the Electronic Visualization Laboratory, University
of Illinois at Chicago, Chicago, first as a Postdoctoral Re-
searcher and now as a Research Assistant Professor, where
his research topics include high-resolution displays, com-

puter graphics, parallel computing, and high-speed networking.

Andrew Johnson is an Associate Professor in the Depart-
ment of Computer Science and amember of the Electronic
Visualization Laboratory, University of Illinois at Chicago,
Chicago. His research and teaching focus on interaction
and collaboration using advanced visualization displays
and the application of those displays to enhance discovery
and learning.

Jason Leigh is a Professor of Computer Science and Di-
rector of the Electronic Visualization Laboratory and the
Software Technologies Research Center at the University
of Illinois at Chicago, Chicago. He is an internationally rec-
ognized pioneer in collaborative virtual reality. His prior
projects and research for which he is best known include:
the OptIPuter, GeoWall, CoreWall, LambdaVision, Tele-
Immersion, and Reliable Blast UDP. His research for the
past ten years focused on ultraresolution display-rich col-
laboration environments amplified by high-performance
computing and networking. His current research focuses

on human augmentics—the development of technologies for expanding the capa-
bilities and characteristics of humans.

http://refhub.elsevier.com/S0167-739X(14)00160-5/sbref41
http://refhub.elsevier.com/S0167-739X(14)00160-5/sbref43
http://refhub.elsevier.com/S0167-739X(14)00160-5/sbref45

	Multiuser-centered resource scheduling for collaborative display wall environments
	Introduction
	Related work
	General-purpose schedulers
	Human-centered schedulers
	Real-time schedulers
	Rate-monotonic and earliest deadline first
	Resource reservation
	Gang Scheduling
	Proportional sharing

	Overview
	Applications in thin-client display walls
	Design

	Priority model
	Visual factors
	Interaction factor
	Wall usage pattern
	The priority function

	Resource distribution
	The demanded quality for presentation fairness
	Estimating the time varying optimal amount
	Total available resources
	Proportional sharing algorithm

	Evaluation
	Presentation fairness in non-interactive applications
	Evaluating responsiveness in interactive applications
	Task
	Procedure
	Results

	Conclusion
	Future work
	References

