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ABSTRACT 
Tracking technology for Virtual Reality (VR) applications 
typically requires the user to wear head-mounted sensors with 
transmitters or wires. This paper describes a video-based, real-
time, low-latency, high-precision 3D face tracker specifically 
designed for VR displays that requires no sensors, markers, 
transmitters, or wires to be worn. One center camera finds the 2D 
face position using Artificial Neural Networks (NN) and 
recognizes and tracks upright, tilted, frontal and non-frontal faces 
within visually cluttered environments. Two more left and right 
(L/R) cameras obtain the 3D head coordinates using a standard 
stereopsis technique. This paper presents a novel idea to train the 
NN to a new face in less than two minutes, and includes 
background training to avoid recognition of false positives. The 
system utilizes diffuse infrared (IR) illumination to avoid 
computing time-consuming image normalization, to reduce 
illumination variations caused by the physical surroundings, and 
to prevent visible illumination from interfering with the user’s 
field of view. 

CR categories: I.5.1 [Computer Methodologies]: Pattern 
Recognition⎯Models⎯Neural nets; I.4.8 [Image Processing and 
Computer Vision]: Scene Analysis—Tracking; I.3.7 [Computer 
Graphics]: 3D Graphics and Realism−virtual reality; 

Keywords: head, face or camera-based tracking; Kohonen 
neural networks; autostereoscopic 3D display; virtual reality. 

1 INTRODUCTION 
Creating credible VR worlds requires constant updating of images 
to maintain the correct perspective for the user. To achieve this, 
the VR system must incorporate a head tracker to know the exact 
position and orientation of the user's head. VR autostereoscopic 
are displays aimed at eliminating user encumbrances since require 
no stereo glasses to be worn. Therefore, it makes sense to require 
a tracking device that likewise requires no additional gear on the 
user’s part. Since this display paradigm has more stringent 
performance and latency display constraints than other passive or 
active stereo techniques [2], tracking performance requirements 
are also more demanding. 

The research described here is a cost-effective, real-time 
(640x480 at 120 fps) face recognizer and tracker that serves as 
video-based, tether-less 3D head position tracking system targeted 
for the Varrier [1] autostereoscopic display, but it is applicable to 
any tracked VR system. The user does not need to wear any 
sensors or markers, a departure from the original research [3][4] 
when the tracker was first presented at IEEE VR’04. 

The 2D head position technique is implemented using a 
Kohonen Artificial Neural Networks (NN) [17][18], whose rapid 
execution allows the system to recognize and track upright, tilted, 
frontal and non-frontal faces at high frame rates and low latency. 
This is an important factor in replacing commercially available 
tethered head trackers. Other advantage of an NN implementation 
is robustness and relative insensitivity to object partial occlusions 
and slight variations in the object view [12][13][14][15][16]. 

In developing video-based face recognition and tracking using 

machine learning, several problems arise: First, the NN has to be 
trained in advance with views of the face in order to later 
recognize and track it [5]. Training an NN for faces is usually a 
lengthy process that can take from hours to days and sometimes 
requires human intervention [5]. This is not acceptable for our 
purposes. Second, faces vary considerably with lighting and this 
can adversely affect the recognition and tracking [5]. Common 
solutions are to apply CPU-intensive pre-processing algorithms. 
Third, the tracker system has to deal with all the variations in 
distinguishing face objects from non-face objects to avoid false-
positives [5], necessitating training for possible non-face objects, 
another lengthy process. Finally, the tracker system has to 
recognize a target face from other possible faces so it can identify 
the correct users. Recognition is independent from tracking. 

This paper presents solutions to all of these problems. For 
example, it discusses several NNs, one for recognition at 10 
frames per second (fps) and one for tracking at up to 320 fps. A 
fast (under two minutes) NN face and background training 
method is developed using an image-based technique. IR diffuse 
illumination reduces image dependency cause by room and 
display lighting variation, thereby avoiding image normalization 
and preventing shining visible light into the user’s field of view. 
A prediction module achieves faster frame rates once a face is 
been recognized. A database of already trained faces obviates the 
need to re-train the same user and affords recognition of a trained 
user’s face within a scene of several faces. Moreover, having a 
rich database of faces permits a new user to be tracked using a 
similar existing face, without the need for training at all. This is 
advantageous at conferences and other public venues when a large 
number of participants wish to take turns using the system. 

2 BACKGROUND 
Examples of current techniques for addressing head tracking for 
projector and autostereoscopic VR displays include: DC/AC 
Magnetic pulse (e.g. Flock of Bird® by Ascension Technology and 
FASTRAK® by POLHEMUS); Acousto-inertial (e.g. IS-900  by 
InterSense); Camera with markers (e.g. Vicon MX  by Vicon, 
ARTrack1/2 by Advance Realtime Tracking GmbH and 
TRACKIR™ by NaturalPoint). All of these trackers require the 
user to wear head-mounted sensors with wires or wireless 
transmitters, or markers. Some have noteworthy specifications in 
terms of frame rate, accuracy, resolution, jitter, and large tracking 
coverage, but they are tethered or require gear to be worn. The 
only commercially available camera-based face tracker that does 
not use any markers at all is faceLAB™ from seeingmachines, 
which relies on a feature-based technique [6]. However, it has 
limited tracking volume and a maximum frame rate of 60Hz.  

In order to be appropriate for VR systems and to be competitive 
with commercial technologies, the new tracking system must meet 
the following requirements: accuracy in head localization, ample 
resolution to supply smooth 2D position transition, robustness to 
illumination and scene variations, and fast frame rate to provide 
low latency and smooth 2D tracking position. 

Our approach relies on video images grabbed by the cameras to 
find and track a particular face from the scene. Many different 
techniques or combinations of techniques have been proposed for 
tracking a user’s head based on sequences of images. Approaches 
to 2D face tracking are based on, for example, color [7][8], 
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templates [9], texture-map [10], Principal Component Analysis 
[11], and NN [5] techniques. NNs are a popular and proven 
technique for face recognition, detection and tracking. 
Comprehensive surveys can be found at [12][13][14][15][16]. 

There are several types of NNs to choose from [17], and each 
one is best suited for a specific application. The method of choice 
here is a NN called a Kohonen Net [17][18], which is further 
optimized to reach high tracking frame rates. 

An NN is not free from some drawbacks though. It needs to be 
trained with examples of the face in order to learn how to 
recognize and/or detect it [5][17]. The more samples of the same 
face (for recognition) the better the training. In order to attain 
accurate recognition (or detection) performance, training 
examples have to be carefully selected and prepared, usually 
requiring human intervention [5]. Published documentation on the 
amount of training time required is scarce, as training is usually 
considered an off-line process in NN literature. It can take from 
hours to days, especially when image samples need to be 
manually extracted from the background, aligned, etc. 

Image-based head tracking approaches are sensitive to 
variations caused by lighting or camera differences. One way to 
resolve this problem is to preprocess the images [5]. Standard 
algorithms such as histogram equalization to improve the overall 
brightness/contrast in the images, and lighting compensation 
algorithms that use knowledge of the structure of faces to perform 
lighting correction, are generally called image normalization [5]. 
Preprocessing uses CPU cycles that could be used to improve 
frame rate, if preprocessing could be avoided altogether. 

Some image-based techniques for face detection/recognition 
use a Convolutional Neural Network architecture [22] that does 
not requires any costly preprocessing, but the complexity of the 
NN prevents higher detection frame rates (e.g., 4 fps using Intel 
1.6Ghz). 

There is always a trade-off between face recognition/detection 
performance and frame rate. The more complex the algorithms, 
the slower the system tends to run. Most related papers don’t post 
the frame rate and/or image resolution of their 
recognizer/detector. Target applications like VR need the highest 
possible tracking frame rate and low latency [20]; if the image 
presented is noticeably out of sync with the user's position, the 
user cannot function. 

3 KOHONEN ARTIFICIAL NEURAL NETWORK 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The core of the face tracker is an arrangement of Vector 
Quantization (VQ) Kohonen Artificial Neural Networks, or VQ 
Kohonen nets [17][18][21]. Kohonen nets can quickly integrate 
new input data into existing clusters of data by analyzing and then 
classifying the data using connection weights that are modified 
through different training data iterations. This is termed a self-
organizing neural network, one of many cases of unsupervised 

mode training. These are algorithms that adjust the weights in a 
neural network by only including the input training data set, 
without any kind of supervision. In the face tracker, the NN is 
presented with several images of a face in different poses during 
training, which it automatically incorporates in an unsupervised 
mode into clusters representing different poses of the user’s face. 

Each competitive unit or neuron corresponds to a cluster, the 
center represented by a weight vector w. All weight vectors (one 
for each neuron) form a weight matrix W. Fig. 1 shows a 
representation of a VQ Kohonen net and the relations between 
input vector x, output vector o, and weight matrix W. Each output 
oj of a Kohonen net is a weighted sum of its inputs xi, i <1,n>, or 
in other words, the dot product between the input vector x and a 
weight vector wj:  

Therefore, the Kohonen output vector o is equal to the product 
between the weight matrix WT by the input vector x. The 
Kohonen NN classifies all similar input vectors into a class, 
producing a unity output in the same Kohonen neuron.  

After the training phase computes all the weights wij, an 
unknown case is presented to the NN. All outputs oj are found 
using Eq. 1 and the maximum output neuron is declared the 
winner, determining the class of this unknown case by a Winner-
Take-All (WTA) strategy [29]. In other words, for any given input 
vector one and only Kohonen neuron output can be 1, and the rest 
of the neurons are 0: 

Kohonen's learning algorithm finds the weights vector closest 
to each training case and then moves the winning weight vector 
closer to this specific training case. The weight vector moves 
proportional of the distance between it and the training case. This 
proportion is called learning rate factor, that is:  

 
 
 
 
 
 

 
 
Since after training each weight vector wj represents the 

centroid of a cluster or class, a confidence number ‘C’ is defined 
as the distance between the input vector and the weight vector of 
the winning neuron: C = |wwinner – x|. 

This confidence number reports how well the weight vector 
represents the input vector, that is, how close the input vector is to 
the class center. C = 0 implies a perfect match between the input 
vector and cluster center or weight vector. This confidence 
number serves to discard all input vectors whose distances are 
above a certain threshold, and this parameter enables recognition 
of similar faces to those stored in the database. 

4 BASIC TRACKER SYSTEM 
The tracker system consists of two computers and 3 cameras 
(Figs. 2, 3) running at 120 frames per second (fps) and 640 by 480 
monochrome pixel resolution. The center camera is connected to 
the Face Tracking Computer and performs 2D face recognition 
and tracking using several Kohonen nets. The remaining L/R 
cameras connect to the Stereopsis Computer that utilizes a 
standard block-matching correspondence technique to determine 
the 3D position of the tracked face. 
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Figure 1: VQ Kohonen net representation between input vector x, 
output vector o and weight matrix W. 
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Several IR illuminators (see Fig. 3) surround the display to shed 

a uniform light over the tracked subject, and all cameras have 
visible light cut-off filters. A diffuse light area is constructed 
using these IR panels to minimize shadows and specular 
reflections that may interfere with the ability of the NN to 
recognize or track a face. The visible-cut filters prevent room and 
display illumination from entering the cameras, and IR light 
prevents blinding the user by directing visible light at the face. 
Training the NN takes place in the same controlled environment, 
and while running, the NN can cope with small variations in 
illuminations without affecting recognition or performance. 

The 2D face–tracker module consists of two Kohonen nets: the 
recognizer contains 128 neurons for recognizing a face and the 
tracker has 32 neurons for tracking the already recognized face. 
Initially, the tracker system loads a pre-learned face profile from 
the face database. Then it scans the entire video image attempting 
to recognize this face. If the system finds the user’s face, it then 
switches to tracking mode that runs at a higher frame rate than 
during recognition. During tracking, the tracker computer 
continuously sends the extracted face-image, its 2D center 
position, and the face width and height values to the stereopsis 
computer. These data are transported via a UDP/IP dedicated 
Gigabit Ethernet connection. 

 
 
 
 
 
 
 
 
 
 
 
 
 
The two outer stereopsis cameras’ coordinate axes are aligned, 

and their baseline T (line segment joining the optical centers OL 
and OR) is parallel to the camera x axis (Fig. 4). For the special 
case of non-verged geometry, a point in space projects to two 
locations on the same scan line in the L/R camera images. The 
resulting displacement of a projected point in one image with 
respect to the other is called disparity. 

The correspondence problem [19] determines the 2D locations 
in each camera image that correspond to the same physical point 
in 3D space. Then, the computation of a 3D position of a point in 
space from the disparity and known camera geometry is 
performed using triangulation (Fig. 4).  

The depth of a point in space P imaged by two cameras with 
optical centers OL and OR is defined by intersecting the rays from 
the optical centers through their respective images of P, p and p’. 
Given the baseline distance between OL and OR and the focal 
length of the cameras, the depth z at a given point may be 
computed by similar triangles as z = baseline • focal_length / 
disparity, where disparity of P is x - x’ (Fig. 4). 

In order to relate this image information in pixels to the world 
coordinate system, the geometry of the cameras has to be 
computed with accuracy with a camera calibration process [19]. 

The stereopsis computer is grabbing video images 
simultaneously from the L/R cameras. Since the 3 cameras are 
aligned horizontally and the user’s face appears in the field of 
view of the 3 cameras, the face-template from the center camera is 
used to search for the same face in the L/R video images. Using 
the epipolar constraint [19], the search is restricted to same row 
position of the L/R camera images.  

The search of the face in both images is accomplished using a 
local correspondence method called Block-Matching [27], 
selected for its efficiency. Local correspondence methods are 
more sensitive to locally ambiguous regions in images (e.g. 
occlusion regions or regions with uniform texture), but faces 
seldom present uniform texture and partial occlusion rarely 
happens when a tracked user is looking straight at the cameras. 
Block matching methods seek to estimate difference at a point in 
one image by comparing a small region centered about that point 
(the template) with a series of small regions extracted from the 
other image (the search region). The epipolar constraint reduces 
the search to one dimension. Once the face is found in both 
images, the disparity is computed and thus the z depth of the 
tracked face is known. The final task of the stereopsis computer is 
to send the 3D head position to the VR system. 

4.1 OPTIMIZATIONS 
A number of optimizations are appended to the basic system 
described above in order to increase performance and quality. 

Elimination of Preprocessing: Face recognition and tracking is 
a difficult problem because deviation in the face images due to 
illumination variations increases the complexity of the decision 
boundary between one face and another, and faces and non-faces. 
To reduce this variability, the input image is usually pre-
processed either locally by equalizing and normalizing intensity 
across small regions, or globally for the entire image. Regardless, 
preprocessing is never perfect [5], and both methods use valuable 
CPU resources that are needed to achieve higher frame rate during 
tracking. Our solution is no preprocessing at all: the face tracking 
system works in the IR lighting domain and is nearly independent 
of variations in room illumination. 

Sum of Absolute Difference (SAD): Kohonen nets compute a 
dot product to determine the distance or similarity between two 
vectors. This involves vector multiplication and normalization, 
both costly operations. Fortunately, since tracking and training are 
performed in the same controlled illumination environment, 
normalization is no longer necessary. The dot product can be 
replaced with another metric that measures the distance between 
two vectors but does not involve any complex operations: the 
Intel Pentium IV multimedia assembler instruction called Sum of 
Absolute Difference (SAD). This instruction requires two CPU 
cycles to compute the absolute value of the difference of 16 
unsigned bytes. These differences are then summed to produce an 

Figure 4: Triangulation.  

Figure 3: Varrier display with 3D head tracker on top (left). Details 
of head tracker’s three cameras, IR illuminators and filters (right). 

 

Figure 2: Tracker system architecture.  



unsigned 16-bit integer result. The algorithm is implemented 
using Intrinsics [28] to maximize its efficiency. 

Prediction: Once a face is recognized the system does not 
search into the entire video image again, only in a predicted 2D 
position. Our approach is very simple: the next probable 2D face 
position equals to last position plus the difference of last two 
positions. The size of the search area is twice the size of the face. 

Un-rectified center camera: To obtain 3D position information 
from a stereo pair of cameras exploiting the epipolar constraint, 
both L/R video-images have to be horizontally aligned, calibrated 
and rectified [19]. These processes take CPU time. Fortunately 
this is not necessary for the center camera since it only has to find 
and send the face-image with an approximate row position. In 
case the center camera has a small vertical offset with respect to 
the L/R cameras the stereopsis module searches L/R in an area of 
the camera images for a matching face-image. This area centers at 
the epipolar line and cover 10 pixels up and 10 pixels down. 

Synchronization: The L/R cameras have to be synchronized in 
order to reliably calculate the 3D face position. The center camera 
does not, for the same reasons as above, and at 120 fps the time 
difference of 8ms in acquiring the images is negligible. The L/R 
cameras are in the same FireWire bus and use auto-sync mode. 

 Field of View Constraint: For the tracker and stereopsis 
algorithm to function, the 3 cameras have to see the subject at the 
same time; in other words, the user has to be in the combined field 
of view of the 3 cameras. (Fig. 2). This implies that the stereopsis 
module does not have to search for the face in the entire scan row 
of each L/R video image pair. 

Smoothing: To avoid possible jittering due to image noise and 
the inability of the neural network to find the ‘exact’ head center, 
a simple smoothing technique is applied. The average of the 
median of the last four 3D positions is reported. Five frames is a 
value based on experience that produces a reasonable degree of 
smoothing while minimizing added latency. 

5 TRAINING 
To recognize any object, all NNs must know a priori the object to 
be recognized. Hence, a learning algorithm must teach the NN, a 
process called training [5][17]. To be effective and require an 
acceptable amount of training time, an NN must be able to 
extrapolate from a modest number of training samples. Thus, the 
face tracker NN must be presented with sufficient views of the 
face to extrapolate all possible poses of the face from these views. 
The challenge is for an unsupervised NN is to learn what a face is 
without prior knowledge, and to do so in a reasonably short time.  

5.1 METHODOLOGY 
 
 
 
 
 
 
 
 
 
 
 
 

 
The user begins by sitting in front of the center camera. Video is 
then recorded while the user slowly executes a series of head 
poses (turning L/R, nodding up-down, tilting L/R, and leaning in-
out) over the course of 512 frames, or 26 seconds. This process 
allows the system to accommodate for the natural changes in the 

user’s face orientations and position while interacting with the VR 
system. 

Once the recording is finished, the user manually superimposes 
two ellipses (Fig. 5) onto the first-frame image: the head-tracking 
ellipse and the neural-network ellipse. The ellipses are manually 
positioned to the center of the face and adjusted such that the size 
of the larger head-tracking ellipse is approximately the size of the 
head and the smaller neural-network ellipse is the size of the face. 

The width and height of the neural-network ellipse’s bounding 
box defines the width and height of the face, and face-size = face-
width * face-height determines the number of components in the 
input vector x for this specific user. This input vector will be 
masked with a face-width by face-height ellipse to extract the 
background from the face-image foreground. The resulting 
masked vector is the input to the neural network (Fig. 2).  

After this initial procedure, the NN is trained automatically for 
this user, requiring about two minutes depending on the user’s 
face-size. Once finished training, the system saves not only the 
recorded video but also the NN weight vectors under the user’s 
name, creating a record in the database of tracker users. After this 
process, the system automatically starts tracking the user. 

5.2 ALGORITHM DESCRIPTION 
An image-based algorithm performs the automatic training. As 

mentioned above, two ellipses were manually centered around the 
face-image. The head-tracking ellipse sets the initial position for 
an ellipse-based head-tracker and the neural-network ellipse 
follows the face using a block matching motion estimation 
algorithm [30]. During the automatic NN training, both ellipses 
follow the face through the 512 frames of training data. 

Given that an ellipse-based method is used for training the NN, 
a reasonable question is why an ellipse-based tracker is not used 
for head tracking altogether, instead of an NN. These trackers 
tend to jitter around the center and may track other ellipse-shaped 
objects from the scene. Given the nature of these algorithms, their 
instability is understandable because they use a grid of pixels to 
determine either the gradient or the Hough transform, and this 
decreases their center resolution. We choose a head detector for 
training based on ellipse Hough transforms (HT) [23][24], which 
is slower than gradient methods [25][26] but more stable around 
its center. 

The algorithm works in this way: during the playback of the 
training video the block matching motion estimation algorithm 
moves the neural-network ellipse smoothly following the face. 
However, over time the neural-network ellipse can accumulate 
errors from the face center because IR light sometimes washes out 
face-image details. When presented with smooth textures this 
algorithm tends to fail in tracking the movement properly. 
However, since the head-tracking ellipse always follows the head, 
it can determine if the neural-network ellipse is drifting out of 
range and ‘nudge’ it back. Combining both methods guarantees 
that the neural-network ellipse smoothly follows the face.  

Then, frame-by-frame, pixels inside the neural-network ellipse 
are extracted and saved into a NN_Training array for later use. At 
the same time background pixels are saved into a 
Background_Training array. This is the scene without a user’s 
face since it was already extracted. The NN_training array now 
has 512 rows containing extracted face-images in different poses. 
Each row of this array is actually an image of the size face-size, 
but expressed as a vector. The Background_training array now 
has 512 rows containing extracted background with no user’s 
face. With the NN_training array, the training algorithm of 
Section 3 uses equation (2) to train the recognizer NN and the 
tracker NN. All elements of the Background_training array are 
averaged and saved it into a User_Background_average image. 

Figure 5: Head tracker and Training user interfaces. 



5.3 BACKGROUND DETECTION 
It is easy to get a representative sample of images that contain 
faces, but more difficult to acquire representative samples of non-
face images, because the non-face feature space is much larger 
than the face feature space [5]. To minimize the problem of 
mistakenly recognizing or tracking an area of the background as a 
face, the tracker system can automatically train for non-faces 
using the current background. We define the ‘current background’ 
as the view when: (a) no people are in field of view of the center 
camera and (b) the user’s face is extracted from the background. 

To acquire (a), the tracker system averages 512 video frames 
when no one is present in the camera field of view and saves it 
into a Background_average image. The data in (b) has already 
been obtained in the User_Background_average image from the 
NN training. 

The system uses a confidence ‘C’ number to determine the 
presence of a face. This C number is the measured distance using 
a SAD metric between the probable face-image from the video 
input and one of the faces stored as weights inside the NN. If the 
C number is above a certain threshold, the system considers the 
face-image as a face. To perform the background detection the 
face-image is compared against a sub-image extracted from the 
User_Background_average and from the Background_average at 
the same 2D face-center position using the same SAD metric to 
measure the distance between the two sub-images. If the 
confidence number is greater for either of the average background 
images than for the candidate face-image, then the candidate face-
image is actually a part of the background. Therefore the system 
ignores this area of the video image and continues scanning for 
the user’s face. 

This works well in our approach since the background is largely 
constant once the system is in use, and the IR illumination of the 
background is robust to changes in room lighting. 

6 HARDWARE AND SOFTWARE SPECIFICATIONS 
The complete system runs on two machines with Dual Intel® 
Xeon CPU @ 3.60GHz. The code is implemented using the 
Intel® Integrated Performance Primitive (IPP) library and Intel 
Streaming SIMD Extension 3 (SSE3) Intrinsics [28]. Camera 
calibration is accomplished with the Small Vision System (SVS) 
Developer kit from SRI International. Cameras are IEEE 1394b 
PointGrey DragonFly Express. Visible light cut-off filters are 
B&W, near IR @ 650nm. Camera lenses are 4.6mm focal length, 
and the stereopsis camera baseline is 277 mm. 

7 USE AND PERFORMANCE 
Once the system has been trained, the user can immediately be 
tracked. If the tracker system does not recognize or track the user 
around the center of the face, it can be re-trained by retrieving the 
recorded video from the database, re-centering both ellipses and 
re-training. 

Assume now that the tracker system has been trained with 
several faces stored in the database, if the user has been trained, 
the system will recognize the person and start tracking. But in 
many cases NN training is not necessary for a new user. Once the 
tracker system has enough faces in the database, the user can relax 
a neural network parameter called confidence threshold and ask 
the system to perform an automatic database search until it 
recognizes and tracks with a similar stored face. 

If the confidence is set too high, the new face must resemble 
the stored face closely. Alternately, if the confidence is set too 
low, other non-face objects are tracked. The recognition and 
tracking confidence levels are adjustable through a user interface 
(Fig. 5). During tracking this number also serves the important 
purpose of resetting the system to recognition mode if the 

confidence is below the threshold. This happens when, for 
example, the tracked face disappears from the camera field of 
view. When the system is started, reset, or loses tracking it 
defaults to recognition mode: The system will scan the video-
image and try to find the face that closely resembles its stored 
profile. Once the user’s face is found the tracker system 
immediately resumes tracking mode. The tracker user has the 
option to manually load his or her profile. 

The measures in Table 1 were taken using 3D position 
reporting software with a display resolution of less than ± 3mm. 
Static jitter and drift were measured using observations of 
reported 3D position for several minutes, sampling every second, 
and averaging the minimum and maximum per X, Y, and Z 
coordinates.  End-to-end latency was measured using the method 
of [20]. This quantity is the total system latency including 16ms 
rendering time, and is a measurement from when the tracked 
object moves until the display responds. Accuracy was measured 
with nine position samples within a 0.37 m2 area, and compared 
physical locations against reported 3D positions.  

Table 1: Comparison of camera-based and commercial tracker 

 Camera-based 
tracker 

InterSense 
IS-900 

Recognition frame rate (fps): ~8 N/A 
Tracking frame rate (fps): 120/~320(max) 120 
Static Jitter ±(X,Y and Z in mm): < 3, < 3, < 3 18, 3, < 3 
Drift ±(X, Y and Z in mm): < 3, < 3, < 3 3, < 3, < 3 
Latency (ms): 80 ± 8 87 ± 8 
Training time (min): < 2 N/A 
Accuracy (X and Z in mm): 15, 30 12, 6 

8 CONCLUSIONS 
A cost-effective tetherless head-tracker 3D position system is 
presented that is comparable to tethered commercial trackers in 
terms of frame rate, static jitter, precision and resolution, and does 
not require any markers or sensors to be worn.  

Its NN approach allows the system to not only track a face but 
also recognize a specific user’s face, even with partial face 
occlusion. Once a user is trained, his or her profile is saved in a 
database and there is no need to re-train for that user again. The 
system scans the database until it recognizes the face of the user, 
and then loads the user’s profile to continue tracking. The tracker 
system can be adjusted to recognize and track similar faces as 
those stored in the database. After dozens of faces had been 
trained and stored, it is likely that a new user will match an 
existing one, allowing rapid user switches without training.  

A unique configuration is based on three cameras (Figs. 2, 3). 
The center camera’s computer recognizes and tracks a face. Then 
it transmits the necessary information to the L/R cameras’ 
computer to calculate the stereopsis, or depth from stereo, which 
then presents the 3D position of the head to the VR system. 

The tracking frame rate is limited by the video cameras at 120 
fps but can reach 320 fps with pre-recorded video input files.  

The end-to-end latency is 80ms, which is on the order of our 
current reference system, the InterSense IS-900 at 87ms. This 
includes 16ms of rendering time plus all other overhead. At a 
measurement resolution of 3mm, the camera-based tracker does 
not suffer from short-term drift or static jitter, while the 
InterSense can experience jitter up to 12mm and short-term drift 
of 3mm. However, the InterSense has better accuracy, 
approximately ±12mm compared to ±30mm.  

The system avoids costly CPU image preprocessing, because it 
is robust to room illumination changes and VR display emission 
and reflection by using IR illuminators and IR filters. The tracker 



system automatically initializes without user intervention, and can 
re-initialize automatically if tracking is lost. It can track head pose 
including various head rotations, depending on the variety of the 
training poses. The entire training process requires minimum 
human intervention, and is easy to perform in around 2 minutes. 

Changing camera lenses, camera resolution and camera 
baseline distance permits the head-tracker to be adapted to cover 
different tracking volumes (Fig. 2). Wider lenses with shorter 
focal length can be installed to cover more tracking volume, but 
the resolution of the tracker system will be reduced. A plane 
parallel to the camera sensor has a resolution proportional to the 
sensor resolution. To compensate the camera resolution can be 
increased, but the tracker system will have to process more pixels 
at expense of lower frame rate.  

Nevertheless, the approach can be improved on several fronts. 
For example, in order for the tracker system to work properly the 
user has to be within the combined field of view of the three 
cameras, which limits the tracking coverage. We are currently 
developing a version the uses four verged cameras. The 3D 
position will be obtained averaging several 2D positions reported 
by those cameras, such that the effect of outliers is minimized.  

Other improvements rely on the use of a different and more 
robust metric to determine the distance between two vectors. We 
use the SAD metric within the NN and stereopsis computation, 
but a Normalized Cross-Correlation (NCC) is more robust [19]. 
This NCC metric is more CPU intensive than SAD, but given 
future increases in processing power, we believe that frame rate 
performance will be sufficient, and the recognition rate will 
improve. 

The IR illuminators do cause specular reflections in users who 
wear eyeglasses, causing some tracker instability. Research is 
ongoing to diffuse the IR lights more or to add polarizing filters in 
front of the IR emitters. Also, incandescent lighting emits IR 
wavelengths of light, which can interfere with tracker operation. 

The lack of accuracy is because the NN is unable to determine 
the exact center of the face (or head). We are planning to integrate 
into the tracker system an eye and nose detector using NNs to find 
the center of the head with more accuracy. 

Finally, the tracker system reports x,y,z position data only, or 3 
degrees of freedom (3DOF). In our experience, this has not 
become a limitation for our autostereoscopic VR developted at 
EVL, and it is applicable to any VR display system in which a 
3DOF tether-less head tracker is required. 
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