
The Tele-Immersive Data Explorer: A Distributed Architecture for
Collaborative Interactive Visualization of Large Data-sets

Nikita Sawant, Chris Scharver,
Jason Leigh, Andrew Johnson

{nikita, scharver , spiff, aej}@evl.uic.edu
Electronic Visualization Laboratory
University of Illinois at Chicago

Georg Reinhart, Emory Creel, Suma Batchu,
Stuart Bailey, Robert Grossman

grossman@uic.edu
National Center for Data Mining

University of Illinois at Chicago

ABSTRACT
There exist a number of scientific visualization
systems designed to provide a two-dimensional
interface to the user. However, little consideration has
been given to the development of collaborative virtual
environments for visualization purposes. This paper
discusses the Tele-Immersive Data Explorer a
generalizable framework to facilitate the construction
of domain-specific data exploration applications
challenged with the problem of having to visualize
massive data-sets immersively and collaboratively. In
the paper we describe the framework’s conceptual
organization, its distributed multiprocessed object-
oriented architecture, and its application to visualize
gridded scalar data.

KEYWORDS
Tele-immersion, collaborative virtual reality, data
mining, multivariate data, annotations, persistent
environments, design patterns.

1 INTRODUCTION
Research scientists and engineers need to analyze
massive data sets generated by intensive
computational simulations, geographic information
systems etc. Scientific visualization plays an
important role in this task; it exploits the low-level
human visual system to find trends, clusters and
anomalies in these data sets rapidly. There exist a
number of general-purpose scientific visualization
systems which aide the user in performing a variety of
tasks such as data exploration and visualization:
namely IRIS Explorer[5], Khoros[6], IBM Data
Explorer[8], and AVS[9]

With the existence of high-end visualization systems
like the CAVE and the Immersadesk, it is now
possible to allow users to perceive three-dimensional
structures of the data being analyzed. These Virtual
Reality (VR) devices provide stereoscopic head-
tracked displays that give users the illusion of being
immersed in a three dimensional world and allow the
user to interact spatially in three dimensions with
objects in the environment. Research scientists at Iowa
State University have experimented with visualization

of statistical graphics on virtual display devices and on
traditional two-dimensional monitor and the benefits
of using the former over the latter in visualizing
multivariate data[4]. The aforementioned visualization
systems were not designed to take advantage of the
rich interface provided by VR devices. Efforts have
been made to add VR interfaces to AVS[10], however
these extensions only display the final visualization on
a VR device thus limiting the users interaction with
the data.

Immersive Scientific Visualization systems like
Cosmic Worm[11], Virtual Wind Tunnel[12],
CAVEvis[13], and CAVEstudy[14] have been
developed to take advantage of the rich interface the
CAVE provides. However these systems are not
collaborative. They do not allow a user to share
his/her view with a remote user. If a group of research
scientists wish to collaborate during a data
visualization session they would have to share one
interface to interact with the data; this can prove to be
quite cumbersome and inconvenient especially if the
people involved are geographically at different co-
ordinates. Wood et al. [3] have emphasized the need
for a Collaborative Visualization System and have
provided extensions to make IRIS Explorer[5]
collaborative, but this is not enough.

Another problem that the scientific visualization
community faces is the disability to visualize massive
data sets ranging from a few megabytes to several
terabytes. Scientific visualization systems that have
been designed for data that can fit into the physical
memory (in core) cannot be used for the visualization
of large data sets.

Very little work has been done to develop visuali-
zation systems that allows a user to collectively:
• Visualize data interactively and immersively
• Collaborate with remote users during the data

exploration and visualization process
• Explore large data-sets

Developing such a system can prove to be a daunting
task. The visualization process involves the following:

computational tasks that operate on the data and
rendering tasks that generate geometry to be
visualized. Both these tasks can be time consuming
and computationally intensive, especially if the data
being explored is complex and huge, this invariably
leads to very low frame rates. Immersive systems such
as the CAVE require that the rendering rate be no less
than 10 stereo frames per second, to give the user the
sense of being immersed in the environment. Any
frame rate below this is not acceptable. Tele-
Immersion (TI) is defined as the integration of audio
and video conferencing, via image based modeling,
with collaborative virtual reality (CVR) in the context
of data mining and significant computation. A tele-
immersive visualization system for handling large data
needs to provide the minimum frame rate while
collaborating with other users in parallel.

In this paper we describe The Tele-immersive Data
Explorer(TIDE): a framework for building such tele-
immersive applications for visualization of massive
data-sets. The TIDE framework allows groups of
scientists each at a geographically disparate location
to collectively participate in a data analysis session, in
a virtual environment. The data being analyzed can be
stored on data servers, which are at a different location
from the clients’[2].

This paper will describe the TIDE framework and how
it provides for collaborative immersive visualization
of large data. Section 2 discusses the conceptual
organization of TIDE. In section 3 we describe the
TIDE architecture and section 4 gives a detailed
insight into the TIDE framework. An application of
the framework is described in section 5. In the
subsequent sections we talk about lessons we learnt
from TIDE and a detailed comparison is made with
other scientific visualization systems. Some of which
are mentioned above.

2 The TIDE Concept
Imagine a scenario in which there are three scientists
who wish to confer on the effects of ocean currents on
the earth’s climate. However all the three scientists are
located at geographically disparate locations and so is
the data. One of the scientists is an oceanographer, all
the oceanographic data is situated in the
oceanographer’s lab. Another scientist is a climatic
expert and has the climate data in his laboratory and
the third is an environmentalist. The climate data is
defined by attributes such as temperature,
precipitation and pressure. Whereas the oceanographic
data has attributes such as salinity, direction and
strength of the ocean current and sea surface
temperature. The scientists decide to participate in a

collaborative data exploration and analysis session.
Each scientist can access both data sets.

The scientists visualize and interact with the data
using a rear projection based stereoscopic device such
as the CAVE or an Immersadesk. A virtual
environment is created wherein each scientist can see
the representation of the remote scientist in his own
environment. This representation is called an avatar
and is nothing but a three-dimensional model that may
constitute of various parts of the human body. The
position and orientation of each user in the virtual
environment is tracked and his/her remote
representation is updated accordingly. So if the
oceanographer points to a certain location in the data-
set, the environmentalist and the climatologist will see
his avatar pointing to that location in their own
worlds. Digital audio is set up between the sites to
allow the participants to speak to each other. The
scientists can work synchronously or asynchronously.
Consider a synchronous session where all the
participants in the session share the visual
representation of the data. The scientists can interact
with the data using three-dimensional tools.

The oceanographer decides to play the lead role and
loads the atmospheric data and chooses to visualize
the temperature over the earth’s surface. The
climatologist notices an anomaly in the surface
temperature over Europe. However the oceanographer
knows the reason behind this are the strong currents
that flow from the hot tropical regions towards the
poles and loads the ocean current information from the
database. Now the scientists can see the ocean
currents that are displayed as vectors, the magnitude
and direction of which depend on the strength and
direction of the current. The oceanographer correlates
this with the temperature information and gives a
detailed explanation of the anomaly in the temperature
of the European region. During his discourse, he can
rotate or scale the data set to focus on certain aspects
of the visualization. He/she can also navigate to a
particular point in the virtual space. For example say if
the oceanographer wants to talk by keeping both the
climatologist and the environmentalist in view then
he/she can navigate to a suitable position where both
the collaborators and the data are within his/her filed
of view Now that the environmentalist has gained
enough knowledge of the effects of the ocean currents,
he/she decides to work asynchronously and leaves the
session, the other collaborators see his avatar exit the
virtual space. After this point, no information is shared
between the environmentalist and the rest of the
participants. He then explores some other region
specific data and finds similar effects of the ocean
currents on the climate. The environmentalist and the

 climatologist, could access the oceanographers
expertise even though they were not physically in the
same space. Neither the climatologist nor the
environmentalist needed to have the oceanographic
data being visualized to be stored locally, as
visualization is generated from remote data and loaded
into the environment.

Scientific visualization involves the conversion of raw
data into a geometric representation (polygons, cubes
etc.) that can be rendered onto a display device as
shown in Figure 1. The conversion process is
responsible for fetching the data from the data source,
representing it in the computer’s physical/virtual
memory using a domain specific data model,
performing operations such as feature extraction and
decimation (if required) and finally generating a
geometrical representation of the model. The
rendering process is responsible for drawing the
geometrical representation on a display device. Both
these tasks when performed by a single application
can prove to be computationally intensive and would
generally use up most of the resources such as
memory, disk space and CPU cycles, especially for
large complex data. This results in very low frame
rates, which is unacceptable by immersive systems
such as the CAVE.

TIDE separates the conversion process from the
rendering process by allocating the tasks to different
computing environments. The conversion of the data
and the rendering of the visualization are done by
separate applications.

As shown in Figure 1 we have split the visualization
process by implementing a client/server architecture.
The server application does the conversion and
generates the geometry that is sent to the client, which
renders it on a display device to be visualized by the
user. In this way the conversion of the data into a three
dimensional visualization is done on a high end
supercomputer (the tele-immersion server), with the
resources to carry out intensive computations, and the
geometrical model is rendered on immersive display
systems such as the CAVE (tele-immersion client).
The server application also handles collaborative
visualization sessions, wherein you have a group of
clients collectively analyzing/visualizing the data.

Splitting the visualization process this way allows the
server process to focus on the data conversion and
manipulation and the client process on rendering and
user interaction.

Thus the conceptual organization of TIDE consists of
three primary components: the Remote data and
computation services (RDCS); the Tele-Immersion
Server (TIS); and one or more Tele-Immersion Client
(TIC). This is shown in the Figure 1. There can be
one or more tele-immersion clients, which connect to
a central server called the Tele-immersion server. The
Tele-immersion clients are the visualization end points
that allow the user to participate in the collaborative
virtual environment. The Tele-immersion server is in
turn connected to one or more remote data and
computation services, and mediates the interaction
between the client and these services.

Figure 1. TIDE’s Visualization Process

2.1 Remote Data and Computation Services
RDCS refer to external databases (data mining
servers) and/or simulations/compute-intensive tasks
running on supercomputers or compute clusters. The
databases hold data generated by computational
simulations and digital instrumentation systems.
Since the size of the data may vary from a few
megabytes to several terabytes, the data may be
distributed over several such nodes. It is impossible to
visualize all the data , as it will not fit in core memory,
and only a subset on the data can be visualized at a
time. Hence the data may be processed in such a way
that, from the entire data set, a smaller data set is
extracted, which is a coarser version of the original
large data set, which can be rendered by the TIC at a
desirable frame rate. Therefore a trade-off is made
between the resolution of the data set and better
interactivity. The coarse version can be obtained by
averaging i.e. by replacing a set of values by their
average and/or by decimating. In addition to this
several attributes can be mapped to distinct visually
perceptible cues such as stereoscopic depth, hue, size
and opacity.

2.2 Tele-Immersion Server
The TIS mediates interaction between the TIC and the
RDCS and also serves as a persistent entry point for
the clients so that they may initiate long-running data-
intensive queries and come back at a later time to view
their progress. The TIS handles multiple clients and
synchronizes their interaction with the RDCS. The
TIS allows each TIC connected to it to operate on it
own local sub-set of the data. It is the TIS that actually
retrieves the raw data from the RDCS and converts it
into a three dimensional geometrical representation
that can then be visualized by the TIC.

2.3 Tele-Immersion Client
The Tele-Immersion client (TIC) consists of the
virtual reality display device (such as the CAVE,
Immersadesk, PowerWall etc.) and the interface to
allow collaborative retrieval and visualization of data.
The TIC handles the rendering of the three
dimensional visualization received from the TIS, on
the VR display device. It allows the user to interact
with the data and to specify any input parameters
required for generating the next visualization step.
The TIC also provides the user with the tools to
directly manipulate the visual representation of the
data. In addition to this the TIC also manages the
rendering of avatars, allowing participants to
collaborate effectively with each other.

3 The TIDE Architecture
The distributed client/server architecture of TIDE is as
diagrammed in Figure 2.

3.1 The Tele-Immersion Client
The process of data visualization is one that involves
several steps to reach the end rendered result. A user
must first query a data archive for specific
information. Filtering operations provide more
specific details about the particular aspects of the data
to visualize. These operations may include
partitioning data, specifying correlations between
different types of data, or other filtering methods. All
of these specifications are consolidated to produce a
rendered visual image. It is this rendered image that
visually represents the data. A user may, depending
upon the visualization application, perform additional
operations based on the visualization itself. These
include translation and rotation transformations as
well as data-related functions like zooming in on
specific parts of the visualization.

TIDE has been designed to maintain a conceptual
separation between these two modes of interaction:
data querying pertains to communicating with data
archives to specify and obtain information about the
data; and visualization interaction is any interaction
performed in the context of the tele-immersive
environment. These latter actions by the user could
also communicate with the data servers. Information
about actions in the tele-immersive environment must
be communicated to other users to indicate the user is
performing an action. The query interface addresses
communications relating to the data itself, while the
visualization interface addresses interactions related to
the shared environment and the visualization
geometry.

The visualization environment utilized by TIDE is a
shared virtual environment inhabited by multiple
users. When collaborating in a virtual environment,
the user should be able to interact with the remote
participants. This is done by streaming audio between
the participants to allow them to talk to each other and
by providing a representation of the remote user, an
avatar, that reflects the users position in space.
Depending on the tracking abilities of the VR system,
the users’ position and orientation can be tracked by
electromagnetic sensors. Any changes to the client’s
position and orientation also need to be broadcast to
everyone in the environment. This information needs
to be updated regularly at high frequencies. An
environment server leverages the flow of this
information between various clients. A separate
environment server is dedicated to this task, as long
delays degrade the effectiveness of the collaborative
experience.

After a query has been completed the visualization
geometry is sent to each of the connected clients, who
load it into their environment for viewing. The user
can scale and rotate the visualization to get the correct
view of the data, or to bring a particular region of
interest into focus. There is a time interval between
the moment that the user submits a query and the
visual image is rendered on the screen. This delay
depends on the amount of information queried, the
available bandwidth of the network, the time taken to
convert the data into a visual model, file download
time and time taken for rendering the image. This time
interval varies from a few milliseconds to a couple of
minutes (or may be even hours and days), depending
on the size of the queried data. For improving the
performance of the system, the client starts the process
of loading the new visualization in a new thread,
which runs in the background. The old visualization is
removed only after the new one is ready. This way the
user does not have to stay idle for long intervals.
Whenever any client changes the state of the
visualization, this change is propagated to all the other
clients participating in the collaboration.

Although the visualization has been reduced in
complexity from the fidelity of the original data, the
geometry can still be quite intricate. Complex
geometry can hinder the performance of the
interaction due to increased time between frame
updates. To reduce the polygon count of the geometry
during manipulation, level of detail features have been
introduced. This switch to a significantly lower
number of polygons makes the manipulation updates
more fluid in response to the user's actions. As soon
as a manipulation begins, the geometry view switches

to a lower-resolution bounding box. This switch takes
place for all users in the environment. It also serves to
provide an indication that a user has initiated a
manipulation operation on the geometry.

In order to provide additional status information about
the current state of operations, the client uses audio
cues. These cues indicate when a visualization
download has begun. Additionally, a 3D watch icon
indicates that the client is performing processing--in
this case, background loading the geometry into the
scene graph.

3.2 The Tele-Immersion Server
The TIS abstracts the TIC from the actual data, the
TIC need not be aware of how and where the data is
stored. It only needs to specify to the server what data
it is interested in and how it wants to visualize the data
i.e. as a three-dimensional plot, extract an isosurface
from the data or correlate several attributes by
generating a histogram etc.

In this way the TIS server acts as a mediator
decoupling the TIC from the source of data, ideally
allowing any client to visualize any data. The TIC can
then concentrate on making the rendering process
more efficient by focusing on tasks that improve the
interactivity with the visualization and increase the
frame rate.

The TIS is multiprocessed i.e. for every new client a
separate server handler process is created. When a
client connects it can specify what view of the data set
it wants to visualize, and the corresponding server
process retrieves that data from the data server. Every

 Figure 2. Distributed Architecture of TIDE

handler process stores locally the subset of the data
being visualized by the client. The client can specify
operations on its own subset of the data set like feature
extraction, decimation, mapping attributes of the data
set to various visual dimensions etc. The handler
process performs these operations on the data,
converts the data into a three dimensional
representation and notifies all the clients that new data
is ready. The client then downloads the visualization
from the server.

The clients share only the geometric representation in
a collaborative session, not the data. The novelty of
the TIDE architecture lies here, where it decouples the
data from its visualization, thus allowing them to be
treated as separate entities. If a new client connects to
an already existing session then the TIS automatically
sends commands to the new client enabling it to
visualize the current data being explored. To visualize
another data set a client needs to submit a fresh query,
the handler process again retrieves the necessary data
from the data source.

Since every handler process has the data for its client,
the client can perform multiple operations on this data,
without having to query the data servers repeatedly.
Huge amounts of data transfers lead to an increased
delay in responding to the client. If the dataset the
client is interested in fits into the physical memory of
the TIS, then the data can be retrieved once and
different views can be generated off the same data,
this improves the response time as the TIS does not
have to execute expensive data retrieval operations
always.

For example consider a scenario where there are two
clients (A and B) visualizing an atmospheric data set,
which is characterized by attributes such as wind
velocity, precipitation, temperature and vegetation.
Client A is analyzing the effect of precipitation on the
vegetation and Client B is correlating the temperature
to the wind velocity. Client B discovers an anomalous
trend in the correlation and needs Client A’s opinion
to support his finding, hence he asks client A to
participate in the analysis session. Client B then shares
his visualization with Client A. After discussing with
client B, A can still go back to his own visualization
by asking the TIS handler process to generate a
visualization from his copy of the data, without having
to re-query for the data.

A shared memory arena is used for communication
between the various handler processes and the parent
process. Communication between the TIC and TIS is
established using CAVERNsoft G2, a C++ toolkit for
building collaborative networked applications [1].

3. 2.1 Co-Servers of the TIS
To efficiently handle the communication between
various participants in the collaborative session,
separate dedicated servers are allocated the tasks of
handling exchange of shared information and file
operations, namely the world server and the file
server.

3.2.1.1 The World Server
Information about the immersive environment is
communicated among multiple users through the
TIDE world server. This server allows for
collaboration between researchers examining a
particular dataset. Each user has hand and head

Tide_ConcreteMediator

Tide_Client_Manager Tide_Converter

Tide_iv_Writer

Tide_iv_Converter

Tide_ConcreteConverter

handleNewConnections()
processRequests()
handleClient()

Tide_Server

processHandleRequest()
handleCommand()

Tide_ConcreteServer

Tide_BaseCommand-
Mediator * mediator

execute() o

Tide_BaseCommand

executeCmd()

Tide_BaseCommandMediator

return mediator->executeCmd()

Tide_ConcreteCommand
UserDefined_DataModel

Tide_ConcreteMediator

Tide_Client_Manager Tide_Converter

Tide_iv_Writer

Tide_iv_Converter

Tide_ConcreteConverter

handleNewConnections()
processRequests()
handleClient()

Tide_Server

processHandleRequest()
handleCommand()

Tide_ConcreteServer

Tide_BaseCommand-
Mediator * mediator

execute() o

Tide_BaseCommand

executeCmd()

Tide_BaseCommandMediator

return mediator->executeCmd()

Tide_ConcreteCommand
UserDefined_DataModel

Figure 3. UML Class diagram for the TIS

tracking data available from the CAVE library. This
information is shared among users to provide the
location information for each avatar within the
environment. Whenever a manipulation is initiated
from within the visualization, the other users need to
be aware of that operation as well.

The TIDE world server is comprised of three primary
components. First, a UDP reflector transmits UDP
packets from one client to another. Second, when
information being transmitted is essential, a TCP
reflector transmits reliable TCP packets. Finally, a
database component manages state information such
as the transformations of the visualization geometry.
An identifier string identifies each of these
manipulations, this allows for multiple manipulations
within the environment.

The CAVE library handles the tracking of the user’s
position and orientation. This information is
transmitted during each frame to the TIDE world
server. The high frequency of the transmission does
not require a very reliable service. Therefore, a UDP
connection is made between each client and the
server. During each frame update, the client packages
the position and orientation of the user's hand and
head, and sends them via a UDP connection to the
server. The server reflects this information to each of
the other connected users in the environment. Each
client in turn updates the avatar for the particular user.

Client commands involving direct manipulation of the
interface are signaled with reliable TCP transmissions,
as any loss of this information could lead to
misunderstandings in the communication between
participants. For example, when a user begins to
rotate an object, the client sends a rotation
initialization command to the server. When this
command is reflected to the other remote clients, they
each switch their views to the bounding box
representation of the geometry. After manipulation is
completed the client sends a rotation complete
command. Each remote client receives the reflected
command from the server and switches the
visualization back to the full-resolution geometry. In
the time duration between the beginning and the end
of a rotation the client sends state information that
reflects the amount/degree of rotation to the remote
clients, which use this information to rotate their view.

The TIDE world server's primary function is to serve
as a central connection point for each of the clients.
The server reflects commands and operations to each
of the connected clients to enforce the shared states of
the environment.

3.2.1.2 The File Server
A dedicated file server allows multiple clients to down
load the geometry files generated by the TIS. This
improves the performance of the TIS as it does not
have to deal with uploads to all the clients,
additionally the architecture can be further modified to
allow the clients to download the files only if they
wish to.

The file server is based on CAVERNSoft’s remote file
I/O networking class.

4 The TIDE Framework
TIDE provides an application developer with the
infrastructure to build collaborative teleimmersive
applications to explore large multi-dimensional data
sets. TIDE has a distributed command driven
architecture as shown in Figure 2. A message-passing
interface is used for exchanging information between
the TIS and the TIC over the network. A typical
application of TIDE would consist of a number of
TICs on various VR display devices requesting
services from the central TIS. The TIDE framework
defines how the client handles collaboration, user
interaction, rendering of the visualization and
querying the TIS for information. It specifies how the
TIS handles: multiple requests from multiple clients,
data representation and conversion. Communication
with the TIC is established using a reliable TCP
channel.

The implementation of the framework is done in C++
and effectively uses design patterns[20] such as
Template method, Command, Observer and Mediator.

4.1 The Tele-Immersion Server
It is not possible to define every operation that the TIS
needs to carry out, as some tasks are application
specific. However, some key tasks remain common to
all applications and these are: handling multiple
requests from multiple clients, data representation and
conversion. “What” the client requests are and “how”
they are to be handled may be application specific.
Similarly “what” the data is and “how” the geometric
modeling is done may depend on the application
domain. The TIS provides a network of interrelated
abstract classes, the task of providing the application
specific functionality is deferred to specialized sub-
classes, which need to be implemented by the
application developer.

Figure 3 shows the interrelationships between various
classes using the UML notation. The classes
belonging to the framework are blue in color. The
Tide_Client_Manager maintains a client database for
the Tide_Server. Every client request is packaged into

a command object and a handler is implemented to
execute one or more commands. For example if a
client wishes to visualize a subset of the data then the
TIS gets a message from the client that specifies all
the parameters required for data segmentation. The
TIS implements a segmentation command to wrap the
client request into an object and then identifies a
handler which is aware of the data source and knows
how to get the subset of the data the client is interested
in. So every time a client asks for a data subset the
segmentation command-handler pair is sufficient to
handle the request. Command-Handler pairs can be
created based on the abstract Tide_BaseCommand and
Tide_BaseCommandMediator classes.

The framework also has an abstract converter class
that specifies the algorithm for converting the data
into a geometric model and sending the reply back to
the client. Hooks are provided wherever application
specific code needs to be added, this code is provided
by concrete converters. The handlers that do
geometric modeling use these converters. For
example: if the client wishes to extract an isosurface
based on a threshold value it sends a message to the
TIS, the TIS sets the isosurface_command and
isosurface_handler objects to execute the request, The
isosurface_handler uses an isosurface_converter to
generate the isosurface, the geometry information for
which is then sent back to the requesting client.
Currently the framework has a Writer object that
generates the geometry as an Open Inventor file.
Writers for other formats can easily replace this one.

4.1.1 Communication with the Clients
For every client that connects, the TIS forks a new
handler process, which is responsible for carrying out
any requests made by a client. However the type of
requests made by a client, are application specific,
hence all the tasks performed by the handler process
cannot be defined a priori. A template method,
handleClient(), is used to define the function
associated with the handler process. This method
defines the steps to : read incoming requests from the
TIC, handle those commands (a hook method
handleCommand() is provided for this purpose) and
send the reply to the main parent TIS process to be
sent back to the client(s). A hook method
processHandleRequest() is provided to allow concrete
server classes to interpret the reply , and package it
and send it to one or more clients.

The concrete sub-classes can define the behavior that
can vary by implementing these handleCommand()
and the processHandleRequest() functions, which are
called when a new client request arrives and before
sending data back to the client (i.e. unmarshal/marshal

the client request/reply). The Tide_Server class
therefore provides the basic framework to handle
multiple client connections and to send commands,
state information and data to these clients. The TIC
uses a reliable TCP connection to send commands to
the server using a message-passing interface.

4.1.2 Handling Client Requests
The task of interpreting the client requests and
performing the operations needed to carry them out is
deferred to application specific concrete subclasses of
Tide_BaseCommand and Tide_BaseCommand-
Mediator, these classes are based on the Command
pattern[20]. The concrete subclasses understand the
client requests and are aware of the operations to be
performed to fulfill those requests. The TIDE
framework provides a generic way in which requests
can be coupled to handler objects that execute the
request.

The Tide_BaseCommand provides the interface to
wrap the client request into an object and stores the
receiver of the request as an instance variable. Once
this is done a client of this class invokes the command
by calling the execute() function, which internally
calls the executeCmd() function of the handler
(instances of Tide_BaseCommand-Mediator).
Concrete subclasses of Tide_BaseCommandMediator
override the executeCmd() operation and perform
application specific tasks to handle the requests.

In this way an application can handle any user request
by implementing
• A concrete subclass of Tide_BaseCommand that

stores the state of the user request and implements
execute() (e.g. Tide_ConcreteCommand)

• A concrete subclass of Tide_BaseCommand-
Mediator that implements executeCmd() and has
the knowledge to carry out the request (e.g.
Tide_ConcreteCommand-Mediator)

The Tide_ConcreteServer class creates both the
command and the corresponding mediator object and
links them together. Thus it is easy for an application
to add new commands, as it does not have to modify
existing classes.

4.1.3 Data Representation and Conversion
The Tide_Converter class is an abstract class that
defines the interface for data conversion. The
Tide_Converter class provides hooks for concrete sub-
classes to override for application specific code.
Concrete instances of this class will have a reference
to the user defined data model, the result is a
geometric representation of the data, which is
currently represented in Open Inventor format and is

written to a file. This file is then downloaded by the
TIC for visualization. Handler objects use a converter
to generate a specific type of model, for example if the
TIC needs streamlines to be generated from a data set,
then the handler would use a streamlineConverter
defined for the purpose and a streaklineConverter if
streaklines were required.

4.2 Tele-Immersion Client
The TIC provides an interface to the data, hence its
prime responsibility is to handle user interaction and
creation of the shared virtual environment for the
participants. Currently two types of interfaces are
provided for user interaction: a query interface to
interact with the TIS and a 3D interface to directly
interact with the visual model. The virtual
environment is created based on Limbo, which
provides the basis for creating tele-immersive
applications. A UML class diagram showing the TIC
framework is shown in Figure 4.

4.2.1 Limbo
CAVERN_perfLimbo0 is a part of the CAVERNsoft
G2 toolkit. CAVERN_perfLimbo0 provides the basic
shell to build tele-immersive applications. Several
other modules included within the toolkit are used for
basic functionality within the TIDE client. An avatar
module, namely CAVERN_perfAvatar_c, manages
connections between multiple users in a virtual
environment. The information pertaining to each
remote user is wrapped into a
CAVERN_perfBaseAvatar object. The avatar module
manages this collection and makes sure that
information of the local user is transmitted to remote
users and vice versa. This module creates two network

connections with the world server (which is the central
collaboration server for the avatars): a TCP
connection is used as a hailing channel to signal the
entry and exit of users to and from the environment;
and a UDP connection is used as a tracking channel to
continuously transmit information about the local
users' tracking of body positions. The
CAVERN_perfLimbo0 class provides the
functionality to load a set of default scene objects into
the environment, TIDE uses these objects as elements
for providing feedback about the visualization
environment. These can be further refined as needed
in the future.

The TIDEclient_c class inherits from the CAVERN
classes, the basic functionalities to manage avatars and
extends this capability to support user interaction and
collaborative visualization. This class implements a
process() function which is executed once every time
after the scene is rendered. It is here that most of the
user related events are handled. The TIDE_client_c
class also references a background loader, which is a
part of the TANDEM[21] VR toolkit. The
TcGfxBgLoader is responsible for loading the
visualization in a background process. The
TIDE_client_c class also references an abstract
TIDEnet_mediator class that handles the
communication with the TIS and the world server for
visualization data and collaboration respectively. So in
its implementation of the process() function, a
TIDE_client_c object calls the handleRequest()
function of the background loader to handle new load
requests since the last call to it and the
doInteraction()function of the TIDEnet_mediator to
handle communication of user requests.

CAVERN_perfBaseAvatar

CAVERN_perfLimbo0

handleInteraction()
notify() o

TIDEui_query

handleInteraction()
notify() o

TIDEui_vis TIDEmpi_TIS

queryUpdate()
visUpdate()
newDataArrived()
update()
gfxLoadUpdate()
doInteraction()

TIDEnet_mediator

checkForNewData()
sendCmd()
notify() o

handleRequest()

TcGfxBgLoader

observer->queryUpdate()

observer->visUpdate()

observer->newDataArrived()

gfxLoadUpdate()

TcGfxLoaderObserver

notify()

CAVERNmisc_subject

update()

CAVERNmisc_observer

process()

TIDEclient_c

CAVERN_perfAvatar_c

CAVERNmisc_observer *
observer

notify() o

CAVERNdb_client_c

observer->update()

CAVERN_perfBaseAvatar

CAVERN_perfLimbo0

handleInteraction()
notify() o

TIDEui_query

handleInteraction()
notify() o

TIDEui_vis TIDEmpi_TIS

queryUpdate()
visUpdate()
newDataArrived()
update()
gfxLoadUpdate()
doInteraction()

TIDEnet_mediator

checkForNewData()
sendCmd()
notify() o

handleRequest()

TcGfxBgLoader

observer->queryUpdate()

observer->visUpdate()

observer->newDataArrived()

gfxLoadUpdate()

TcGfxLoaderObserver

notify()

CAVERNmisc_subject

update()

CAVERNmisc_observer

process()

TIDEclient_c

CAVERN_perfAvatar_c

CAVERNmisc_observer *
observer

notify() o

CAVERNdb_client_c

observer->update()

Figure 4. UML Class diagram for the TIC

4.2.2 User Interface Protocols
Limbo only provides the capability to navigate
through a static virtual environment. TIDE has the
additional requirements of the ability to query a
remote data computation service as well as
manipulating the resulting visualization geometry.
The framework breaks these interfaces into two
classes, TIDEui_query and TIDEui_vis respectively as
shown in Figure 4. Both these classes inherit from
the abstract CAVERNmisc_subject class, and hence
are subjects, which are observed by the
CAVERNmisc_observer class (see Observer
Pattern[20]). These classes implement a basic notify()
function, whenever this function is called all the
observers interested in this event are updated.
Concrete implementations of these classes need to
provide application specific details to build a user
interface for querying and visualization and to notify
observers of all events. These abstract classes also
specify a handleInteraction() function that is called to
check for any user interaction.

4.2.2.1 Query Interface
The role of the query class is to communicate with the
TIDE server. Its implementation will provide a user
interface for the user to make queries with the data
server. The abstract class leaves the application
specific details to be implemented by the application
programmer. The query can be done through
interaction within the virtual environment,
communicating with a handheld device, or using a
2D/3D widget interface. The query interface may or
may not have any coupling with the virtual
environment itself, and implementing it as a separate
class allows for a wider range of extensibility. A
concrete TIDEui_query class needs to provide

application specific notify() and handleInteraction()
functions.

4.2.2.2 Visualization Interface
Interaction within the visualization geometry is
contained within a concrete implementation of the
TIDEui_vis class. Like the query interface class, the
abstract base class provides no concrete functionality.
It serves only to provide a base class for references
with other parts of the framework. The visualization
interface can extract information about the user's
actions within the virtual environment in order to
apply changes to the visualization. These extractions
could involve obtaining information such as CAVE
Wand button presses or any other input device such as
the data glove.

After a query process has been completed, it is
typically the visualization interface, which adds the
geometry to the virtual environment. Any interactions
or manipulations of that geometry are the
responsibility of the concrete visualization interface,
though some basic manipulations such as rotation and
scaling are provided. A concrete TIDEui_vis class
needs to provide application specific notify() and
handleInteraction() functions.

4.2.3 Network Mediator
The Network mediator (TIDEnet_mediator) handles
network communication for the client. It inherits from
the CAVERNmisc_observer class and hence is based
on the Observer software design pattern[20], the
mediator observes instances of each of the TIDE user
interface clients. When an operation is performed on
any of the interfaces, a notification is sent to the
mediator. The responsibility of the mediator is to then
transmit appropriate data to the server and other

Figure 5(b): A 3D plot of Latitude (Y-
axis), Longitude (X-axis), Ozone (Z-axis)
and Temperature (color) on a TIC

Figure 5(a): A 2D plot of Temperature
(Y-axis) vs. Ozone (X-axis), and
Latitude (color) on a DSTP client

connected users (through the world server), if
required.

The network mediator implements a doInteraction()
function which is called once between two
consecutive frame updates. It is this function that
concrete subclasses need to override to handle
application specific functionalities. For example: in a
simple case this function would call the
handleInteraction() functions of the query interface
object and the visualization objects to see if any user
interaction has occurred, any user interaction would in
turn trigger other events i.e. as observers are notified
of events. The network mediator is also an observer of
CAVERNdb_client_c, which allows a seamless
infrastructure for collaboration of visualization states.
Whenever a remote collaborator modifies the state of
his/her visualization, the update() function of the
network mediator is called, as it is a registered
observer for this event. Similarly if the local user
modifies (i.e. rotates or scales) the visualization, this
information is sent to other remote users. The
TIDEmpi_TIS provides a TCP communication
channel to the TIS. The network mediator implements
the newDataArrived() function to be updated when
new data arrives from the TIS, this is called when the
notify function of the TIDEmpi_TIS object is called..
The network mediator checks if any new data has
arrived by calling the checkForNewData() function.
Concrete classes of TIDEmpi_TIS need to specialize
the notify() and checkForNewData() member
functions.

The TIDE client class has a single network mediator
to broker all the network communications for the
querying and visualization services of the client
application. The mediator contains references to
concrete instances of the query and visualization
interfaces. When the mediator receives network
information, it propagates the data to the appropriate
interface for updating. For example if an application
programmer needed to capture a particular user input
say the threshold value for an isosurface extraction
module on the TIS the query interface would provide
a widget to get the user value when its
handleInteraction() function is called by the
doInteraction() function of the base network mediator.
A concrete CAVERN-net_mediator would implement
a specialized queryUpdate() function that will be
invoked when a user enters a threshold value. This
function would in turn send the information to the TIS
through the message-passing interface (i.e. by using
the sendCmd() function). The sendCmd() function
send a packet of data to the TIS. The TIS would
handle this request and the newDataArrived() function
is called when the client receive a reply from the

server. The applications concrete network mediator
will then intercept the reply by implementing the
newDataArrived() function to do the needful.

5 A TIDE Application
Data mining servers store large multidimensional data
sets such as results of scientific simulations and digital
outputs of Geographical Information Systems. These
data sets contain information, which is as yet
undiscovered and could be potentially useful to the
analyst. The TIDE framework can be applied to
visualize these “hidden gems” of information.

The Laboratory of Advanced Computing at the
University of Illinois at Chicago focuses on providing
an infrastructure for mining and exploring remote
distributed data[17]. They use a protocol for retrieving
data from remote nodes on the Internet namely the
Data Space Transfer Protocol (DSTP). Servers on
some of the nodes called DSTP Servers perform the
task of data retrieval. The data on the nodes is
organized in tables, with each row in the table
corresponding to a data point and the columns specify
an attribute of the data point. Attributes of two data
points can be correlated if they have more then one
attribute in common; this common attribute is the
Universal Correlation Key (UCK).

In the implementation of TIDE that interacts with the
DSTP servers, the TIC can specify the attributes of the
DSTP data that its interested in visualizing. The TIS
then retrieves the data from the DSTP Servers. Once
the TIS gets the data the client can specify how the
attributes are to be correlated and visualized. One can
correlate various attributes of the data set by plotting
them against one another on a three dimensional graph
or by generating a three dimensional histogram.

Since virtual reality devices such as the CAVE
provide one more dimension for visualization, the
client can select an attribute for each of the three axes
(X, Y and Z) as well as the visual representation of
each attribute of the data set. When generating
visualization from a multivariate data set, the multiple
dimensions need to be mapped to different visually
perceptible attributes, so that the user can rapidly and
accurately identify trends/anomalies in the data sets.
In the current TIDE architecture a user can map three
attributes to the X, Y and Z-axes and can specify the
color, transparency and the size of the points in the 3D
graph to be controlled by three other attributes. In this
way six dimensions of the data can be visualized at a
time.

DSTP Servers have been populated by gridded
weather data provided by the National Oceanic and

Atmospheric Administration (NOAA). The data
consists of monthly satellite measurements of global
surface temperatures, precipitation, ozone levels and
vegetation index. Complete data sets are available for
every month of the years 1985 - 95. The UCKs for this
application are latitude and longitude, gridded in one-
degree intervals. Each data file consists of about
64000 rows (roughly 360 times 180) and the columns
of the file are: latitude, longitude followed by a
particular attribute. The combined size of all files is
approximately 350 MB.

Consider a case where a user wishes to see the
temperature and the ozone levels over the surface of
the earth. The user can get the temperature values
from one DSTP server and the ozone levels from
another. The Figure 5(a) shows the graph generated
by a DSTP client to be rendered on a two-dimensional
screen, and Figure 5(b) shows one generated by TIDE
for rendering on a VR display. In the DSTP graph, a
maximum of three attributes can be visualized at a
time. As opposed to this a TIC can visualize up to 6
attributes at a time by mapping them to visibly
perceptible cues such as opacity, hue and size in
addition to the normal X, Y and Z-axis. The
temperature is mapped to color and the Ozone to the
Z-axis. The longitude and latitude are mapped to the
X-axis and the Y-axis respectively. The easily
discernible features are the warm equatorial belt, the
cold temperatures at the poles and the depletion in the
ozone level at the South Pole.

Since the TIS allows for connections from multiple
clients to visualize the data, we can have two clients
who are analyzing different attributes of a multi
dimensional data set. Say Client 1 (from Chicago) is

visualizing the temperature over the earth’s surface
(Figure 6(a)), from within a CAVE and Client 2
(from Portland) is visualizing the ozone concentration,
on an ImmersaDesk. Client 2 then notices an anomaly
in the ozone concentration at the North Pole and needs
to discuss this with Client 1. He then calls up his
colleague and asks her to participate in the
visualization session, they now wish to correlate the
two attributes i.e. temperature and the ozone
concentration. Client 2 then maps the Z-axis to the
ozone concentration and the color of the points in
space to the temperature, they also plot a 3D
Histogram to find any clusters in the data set. Both of
them confer over the reasons for this anomaly (Figure
6(b)), after they are done with their discussion Client
1 goes back to her own visualization. In this way
multiple clients from any geographic location can
connect to the TIS and query for data stored in several
DSTP servers, which are located at different
geographic co-ordinates.

A demonstration of TIDE/DSTP was given at
Supercomputing ’99, in Portland, Oregon. TIDE users
running on ImmersaDesks at various exhibit booths
(notably the National Center for Data Mining,
Argonne National Laboratory and Alliance exhibit
booths) and a InTENsity PowerWall at the Advanced
Strategic Computing Initiative (ASCI) booth,
collaboratively queried and correlated 500 MB of
atmospheric data (provided by NOAA) distributed
amongst several servers situated in Chicago. A
snapshot of TIDE at SC99 is shown in Figure 7. Two
TICs (in Portland) are visualizing atmospheric data
from DSTP servers situated in Chicago. Both the TICs
are running on an ImmersaDesk.

Figure 6(a). A user visualizing Temperature over
the Earth’s surface in the CAVE

Figure 6(b). A user collaborating from an
ImmersaDesk

Although we experimented with an atmospheric data
set, TIDE and DSTP can be used to visualize various
other multidimensional data. Ongoing research on
TIDE is now focused on the visualization of ASCI
data.

6 Lessons Learned
TIDE lays the foundation for building tele-immersive
data visualization applications. The application
programmer does not have to bother about handling
issues such as leveraging collaboration amongst the
clients. Implementing a distributed multiprocessed
Client/Server architecture for TIDE resulted in a
number of advantages; some of them are listed below:

6.1 Centralized control of collaboration
The central server mediates all the information
exchanged between the clients. All the updates from a
client are first sent to the world server which forwards
the data to all other participants, similarly the TIS
generates the visualization based on a single clients
request and forwards it to the rest, this was a central
server has control over events. The central server can
arbitrate any conflicts and maintain a uniformity to
ensure consistency in the shared environment.

6.2 Centralized Location for Data
The TIS handles requests for data from all the clients,
storing a local copy for each client. The clients do not
have to expend memory and CPU resources
performing operations like data retrieval,
representation and conversion. The server alleviates
the client of performing these tasks, at the expense of
increased latency which is introduced due to the
delays in the network in fetching the data from the
server and talking to the server. This does not affect
the rendering frame rate as the client is not blocked in
waiting for the data, the user can still interact with the
other collaborators, as the server that handles the
avatar information is different from the one that is
doing the computation.

Since the client only has an interface to the data, it can
focus more on improving the rendering task. There is
no need to have a monolithic client that handles all the
complexities as the tasks are distributed over several
processes.

6.3 Multiple Processes
Having a separate process to handle a particular client
allows the TIS to pay individual attention to each
client. Also since every process runs in its own
address space, there is very little possibility that a
faulty process will affect the other processes, this
increases the robustness of the application.

Since each process has a local copy of the data for the
client, it may lead to replication of data and may affect
the overall performance of the applications that have a
large number of clients connecting to the server. To
improve the performance of the processes themselves
may be distributed over several processors or a global
copy of the data can be maintained in shared memory
if all the clients are to visualize the same data.

6.4 Large Data Visualization
The centralized Client/Server architecture also allows
the client to specify what subset of the data it is
interested in and the server then retrieves only that
information for the client. In this way all the data need
not be loaded into memory. However for this design to
be implemented efficiently the database that hold the
data should have a hierarchical structure or should
allow for selective retrieval of data based on some
input parameters. There is ongoing research on using
hierarchical formats for data storage[19].

6.5 Extensibility of the TIDE Framework
The TIDE framework has been designed keeping in
mind the requirements of collaborative applications
for data visualization. It provides a message-passing
interface between the TIC and the TIS. The
Command-Handler abstraction allows future
applications to support different types of client
requests. Hooks have been provided to add application
specific code. For example: if an application
programmer were to develop an application that
allows multiple users to visualize a volumetric data
set, the TICs query interface needs to be implemented
according to the application requirements, command-
handler pairs will have to be implemented for each
request from the TIC to the TIS, a suitable data model
that captures all the properties of the volumetric data
needs to be implemented. Depending on the kind of
visualizations to be generated from the data (i.e.
isosurfaces, streamlines, isocontours etc.) specialized
converters need to be implemented. No code needs to
be written for maintaining the shared VR environment
or for network communications between the TIS and
the TIC. However, the TIC needs to be defined as well
as that between the TIS and the RDCS.
Implementation of the networking protocol between
the TIS and RDCS is required.

For the TIDE-DSTP application it was very easy to
extend the client queries by just implementing the
appropriate command and handler classes. Also it was
very easy to plug in the 3D graph converter, which
generated a 3D graph based on the user’s selections of
mappings for the various dimensions and the
Histogram converter, which generated a 3D histogram
to correlate three attributes. Only the interface for the

TIC needed programming, as most of the VR
framework for collaboration was in place and the
client did not have to do any computations pertaining
to the data. Since the TIC is a thin client and does not
need to have the data stored locally, we did not have
to use very high-end machines to run the client at
SC99, and it worked well on an SGI O2. The data was
stored on DSTP servers in Chicago, the client could

query for this data from Portland seamlessly.

At SC99 we had two clients participating in a
collaborative session for data analysis. Currently the
TIS does not arbitrate which client controls the
visualization, hence it is possible that both clients can
change each other’s visualization randomly. This led
to situations where a client’s visualization would
change suddenly when analyzing another data set.
This conflict will be resolved in the next version of
TIDE.

7. Conclusion
Most Scientific Visualization environments were not
designed for tele-immersion, collaborative and VR
interface modules were added as extensions later. The
goal of TIDE was to provide an infrastructure for
developing tele-immersive environments for
exploration and visualization of large data sets. It
allows a group of scientists to query for subsets of a
data set and collaborate on the visualization of the
data set. The design aims to keep the data separate
from its visual representation by distributing the
computation and rendering tasks over several
machines. The advantage of this design is that the
massive data sets can reside on high-end data servers

with the disk capacity to store them; the data can be
distributed over several such servers. Thus the
visualization end-points can still visualize the data in
real time even if they do not have the memory and the
disk capacity to hold the data from which the
visualizations are generated.

8. Related Work
A number of Visualization Systems exist which have
been designed to aide scientists in visualization and
exploration of scientific data. Modular data-flow
systems such as IRIS Explorer[5], Khoros[6], IBM
Data Explorer[8], and AVS[9] provide the user with a
collection of modules, the user then uses visual
programming techniques to connect these modules
together into a visualization network. Data is read in
by the initial module in the network, each subsequent
module in the pipeline acts on the data transforming it,
till the final module which is generally a rendering
module renders it on a display device. Most of these
systems were designed to run on traditional two-
dimensional monitors; efforts have been made to
develop rendering modules, which will display the
output of theses systems on a VR device. However
the user cannot interact with the visualization
generated on the VR device. These systems were not
designed with collaboration in mind, though efforts
have been made to make such systems
collaborative[3]. Another draw back of these data-
flow systems is that they transform the entire data set,
hence they are not well suited for visualization of
large data, especially on VR devices, which demand a
very high frame rate for interactivity.

Some visualization systems have been designed
specifically for high performance visualization on VR
devices. The Virtual Wind Tunnel[12], a VR based
scientific visualization system developed at the NASA
Ames Research Center, is one such system that is
designed to study unsteady 3D vector fields. CAVEvis
is another distributed system for interactive
visualization and exploration of large data sets.
CAVEvis was developed at the National Center for
Supercomputing Applications to study scalar and
vector field data in an immersive environment. This
system is similar to TIDE in that, it distributes the
rendering and computation tasks over several
machines, however it is focused more on the rendering
tasks and is not collaborative. In Table 1 we have
compared other such systems; extensibility,
collaboration and immersion being the main points of
comparison.

Figure 7. TIDE at SC99: A user running the
TIDE Client on a PowerWall, at the ASCI
booth. Inset: Another user collaborating
from an ImmersaDesk

Table 1. Comparison of Visualization Systems

9. Future Work
Future research on TIDE will focus on supporting:
q Multiple sessions: In the current implementation

of TIDE all the clients participate in one
collaborative visualization session. A
collaborative visualization framework ideally
should provide for multiple such sessions and
allow clients to participate in any such session.
This feature can be easily added to TIDE, by
modifying the client database to handle groups of
clients in addition to singular clients.

q Persistent TIS: Collaborative sessions need to be
persistent. Provision needs to be made to allow
the client to submit an intensive query and come
back for the result at a later date/time i.e. the
server processes need to be made persistent.

q Annotating data sets: TICs can connect from
geographically different co-ordinates that fall in
different time zones; hence for effective
collaboration Clients need to annotate the data
set. For example: Consider a TIC connecting
from Japan and one in the US but at a different
time (Day in Japan => night in America) and the
client in Japan notices anomaly in the data set and
wishes to convey this to his colleague in America.
This can be done in various ways (write about
annotations, ongoing research)

q Visualizing time-dependent data: When
exploring time dependent data sets one needs to
visualize a fixed set of attributes of the data set
corresponding to different time stamps. For

example: A client may want to traverse through
their data sets in monthly and yearly time steps.
TIDE can provide this as an easy extension to the
visualization process.

q Comparing two visualizations: In the next
version of TIDE we also wish to provide an
ability to compare two data sets by juxtaposing
them.

10. Acknowledgements
The virtual reality research, collaborations, and
outreach programs at the Electronic Visualization
Laboratory (EVL) at the University of Illinois at
Chicago are made possible by major funding from the
National Science Foundation (NSF), awards EIA-
9802090, EIA-9871058, ANI-9980480,
ANI-9730202, and ACI-9418068, as well as NSF
Partnerships for Advanced Computational
Infrastructure (PACI) cooperative agreement ACI-
9619019 to the National Computational Science
Alliance. EVL also receives major funding from the
US Department of Energy (DOE), awards 99ER25388
and 99ER25405, as well as support from the DOE's
Accelerated Strategic Computing Initiative (ASCI)
Data and Visualization Corridor program. In addition,
EVL receives funding from Pacific Interface on behalf
of NTT Optical Network Systems Laboratory in
Japan.

Visualization
System

Distributed Collaborative Immersive Large
Data Viz.

Extensible
Framework

Application Domain

AVS Y Y N Y Y Wide

AVS
GROTTO

Y Y Y Y Y Wide

IRIS Explorer Y Y N N Y Wide

IBM Data
Explorer

Y N N N Y Wide

Khoros Y N N Y Y Wide

CAVEstudy Y N Y N Y Computational Steering

CAVEvis Y N Y Y Y Time varying scalar and
vector fields

Virtual Wind
Tunnel

Y N Y N N Scalar and Vector CFD Data

Cosmic
Worm

Y N Y Y N Computational Steering

SGI Mineset N N N N Y Data Mining and Visualization

CAVE6D N Y Y N N Limited

SCIRun N N N Y Y Wide

TIDE Y Y Y Y Y Wide

The CAVE and ImmersaDesk are registered
trademarks of the Board of Trustees of the University
of Illinois.

ImmersaDesk2, PARIS, Wanda and CAVELib are
trademarks of the Board of Trustees of the University
of Illinois.

11. References
[1] Leigh, J., Johnson, A., DeFanti, T., “CAVERN:

A Distributed Architecture for Supporting
Scalable Persistence and Interoperability in
Collaborative Virtual Environments”. In Virtual
Reality: Research, Development and
Applications, Vol. 2.2, December 1997 (1996),
pp. 217-237

[2] Leigh, J., Johnson, A., DeFanti, T., et al. “A
methodology for Supporting Collaborative
Exploratory Analysis of Massive Data Sets in
Tele-Immersive Environments”. 8th IEEE
International Symposium on High Performance
and Distributed Computing, Redondo Beach,
California, Aug 3-6, 1999.

[3] Wood, J., Wright, H., Brodlie, K., “Collaborative
Visualization”. In Proceedings of the Conference
on Visualization 1997.

[4] Arns, L., Cook, D., Cruz-Neira, C., “The Benefits
of Statistical Visualization in an Immersive
Environment”, In Proceedings of IEEE VR'99,
pp. 88-95, September 1998.

[5] Foulser, D., “IRIS Explorer: A Framework for
Investigation”, In Computer Graphics, vol. 29(2),
pp 13-16, 1995.

[6] Argiro D., Kubica S., Young M., and Jorgensen,
S., “KHOROS: An Integrated Development
Environment for Scientific Computing and
Visualization”, http://www.khoral.com

[7] Young, M., Argiro, D., Kubics, S., “Cantata:
Visual Programming Environment for the Khoros
System”, Computer Graphics, vol. 29(2), pp. 22-
24, 1995.

[8] Abram, G., and Ternish, L., “ An Extended Data-
Flow Architecture for Data analysis and
Visualization”, Computer Graphics, vol. 29(2), pp
17-21, 1995.

[9] Advanced Visual Systems (AVS)
http://www.avs.com/products/index.htm.

[10] Kuo, E., Lanzagorta, M., Rosenberg, R., Julier S.,
and Summers J., “VR Scientific Visualization in
the GROTTO”, In Proceedings of the IEEE
Virtual Reality, 1998.

[11] Roy, T. M., Cruz-Neira, C., DeFanti, T. A., and
Sandin, D.J., “ Cosmic Worm in the CAVE:
Steering a high Performance Computing
Application from A Virtual Environment”,
Special Issue on Networks and Virtual

Environments of Presence: Teleoperators and
Virtual Environments, Fall 1994, pp. 121-129.

[12] Bryson, S., and Levit, C., “ The Virtual Wind
Tunnel: An Environment for the Exploration of
Three Dimensional Unsteady Flows”, In IEEE
Computer Graphics and Applications, July 1992

[13] Jaswal, V., “CAVEvis: Distributed Real-Time
Visualization of Time-Varying Scalar and Vector
Fields Using the CAVE Virtual Reality Theater”,
In Proceedings of the conference on Visualization
‘97, 1997, pp. 301

[14] Renambot, L., Bal, E. H., Germans D., Spoelder,
H., “CAVEStudy: an Infrastructure for
Computational Steering in Virtual Reality
Environments”,
http://www.cs.vu.nl/~renambot/vr

[15] Leigh, J., Johnson, A., "CALVIN: an
Immersimedia Design Environment Utilizing
Heterogeneous Perspectives", In proceedings of
IEEE International Conference on Multimedia
Computing and Systems '96. Hiroshima, Japan,
June 17 - 21, 1996, pp. 20-23.

[16] DeFanti, T., Cruz-Neira, C., Sandin, D.,
“Surround Screen Projection-Based Virtual
Reality: The Design and Implementation of the
CAVE,” In Conference Proceedings, ACM
SIGGRAPH'93, Anaheim, CA, July 1993.

[17] Creel, E., Grossman, R., Reinhart, G.,
“DataSpace: Protocols and Services for
Distributed Data Mining and Remote Data
Analysis”, Conference: Knowledge Discovery
and Data Mining August 20-23, 2000, Boston
MA, submitted for review.
http://www.lac.uic.edu/

[18] Schroeder, W., Martin K., Lorensen B., An
Object-Oriented Approach To 3D Graphics.
Prentice Hall, 1997.
http://www.kitware.com/vtk.html

[19] Folk M., A White Paper on “HDF as an Archive
Format: Issues and Recommendations”, January
27, 1998. NCSA/University of Illinois
http://hdf.ncsa.uiuc.edu/archive/hdfasarchivefmt.h
tm

[20] Gamma, E., Helm R., Johnson R., and Vlissides.
J., Design Patterns: Elements of Reusable Object-
Oriented Software. Addison Wesley, 1995.

[21] TANDEM: http://www.evl.uic.edu/cavern

