
A Realistic Video Avatar System for Networked Virtual Environments

Vivek Rajan, Satheesh Subramanian, Damin Keenan
Andrew Johnson, Daniel Sandin, Thomas DeFanti

Electronic Visualization Laboratory
University of Illinois at Chicago, Chicago, IL, USA

vrajan@evl.uic.edu

Abstract

With the advancements in collaborative virtual reality
applications there is a need for representing users with a
higher degree of realism for better immersion. Represent-
ing users with facial animation in an interactive collabo-
rative virtual environment is a daunting task. This paper
proposes an avatar system for a realistic representation of
users. In working towards this goal, this paper will present
a technique for head model reconstruction in tracked envi-
ronments, which is rendered by view dependent texture map-
ping of video. The key feature of the proposed system is that
it takes advantage of the tracking information available in
a VR system for the entire process.

1. Introduction

The word avatar, inspired from hindu mythology, stands
for an incarnation or embodiment of human form. In the
context of the virtual reality environment, an avatar is a
graphical representation of the human form. The human
face is endowed with a myriad of gestures which need to
be represented in a avatar in order to impart it with realism
in the context of a networked virtual environment. With
continuing research and new technologies, combined with
growing expectations, there is a need for avatars that are
more human-like.

In this paper, we describe how view dependent texture
mapping can be used to produce a realistic head of an
avatar, and eliminating in the process the constraints posed
by background and lighting requirements. The process es-
sentially involves projecting real-time video images on a 3D
model of the user’s head to render the head of the avatar.
This paper also presents an automated image based model
generation technique for reconstructing the head model of a
user, making the system cost effective and usable.

2. Previous Work

A large amount of research has gone into represent-
ing users with facial animation. In general, the methods
for representing facial expression fall into two categories.
One method is to extract various facial parameters from the
video and use the parameters to animate a model. The sec-
ond method is to use the video directly by texture mapping
the video onto some model. It is observed that video di-
rectly used for rendering avatars achieves higher degree of
realism in comparison to a generic model that may have
been modified using extracted parameters from the video
data. This section will review some of the significant meth-
ods.

One of the previous methods in this area was video tex-
turing of the face [1]. This technique uses a video image of
the user’s face as a texture map onto a simple model. The
background image captured by the camera is processed to
extract the subset of the image containing the user’s face
using a simple background subtraction algorithm. The tex-
ture mapping is done using a simple frontal projection. This
technique is a compromise between mapping on a simple
shape (e.g. box, ellipsoid) which would give unnatural re-
sults and mapping on a full-featured human head model
where more precise image-feature alignment would be nec-
essary.

In model-based coding of facial expressions, as in the
previous technique, the user’s head and shoulder video im-
age is captured by a camera, but instead of transmitting
whole facial images the images are analyzed and a set of
parameters describing the facial expression are extracted [3]
[9]. This method can be used in combination with texture
mapping. The model needs an initial image of the face to-
gether with a set of parameters describing the position of the
facial features within the texture image in order to fit the tex-
ture to the face. Once this is done, the texture is fixed with
respect to the face and does not change, but it is deformed
together with the face. This differs from the approach dis-



cussed earlier where the face was static and the texture was
changing. The main drawback of the facial module is that it
is not always possible for users to be in front of the camera.

A 2D video avatar [12] is a flat polygon onto which
real-time video of the user is texture mapped. The back-
ground of the video is removed either by chroma keying or
background subtraction. The main disadvantage with this
method is that it is two dimensional and the user has to al-
ways face the camera for a good representation. Secondly,
chroma keying and background subtraction require a fixed
color background with proper lighting for obtaining a good
background-cutout of the user. These constraints make it
not usable in virtual environments like the CAVE.

Static photo-realistic 3D representation of users was
demonstrated by Insley [7]. The process involved acqui-
sition of views from 360 degrees of the user and selecting
the appropriate view depending on the remote user’s view
point to render the avatar. As 2D images are used to rep-
resent the avatar, they are not truly 3D and look good only
from the same distance and height of the camera used in
recording. These avatars are mainly significant for recogni-
tion/identification of the user.

We experimented with generating 3D avatars using range
information from stereo cameras [5]. Range information
obtained from a stereo camera is used to segment the back-
ground, and the foreground points are meshed to obtain an
approximate model of the user. As the model of the avatar
is constructed in real-time for every frame, the 3D shape or
size of the user need not be known. However, the quality of
the model generated depended upon the background as well
as the lighting. Moreover, the method could not be used in
real-time applications since the frame rate achieved by this
technique was about 3-4 fps.

Most of the constraints regarding background and light-
ing requirements are overcome by using the view dependent
texture mapping technique, though we require one or two
spot lights to light the user’s face. Also, since video textur-
ing of the face uses a simple model and model-based tech-
nique of facial expressions uses a generic model, the results
are not very realistic. Our technique utilises an approximate
model of the user’s head which is then rendered by project-
ing real-time video of the user onto the model, resulting in
a realistic video avatar.

3. Overview

A video camera on a tripod is placed in one of the front
corners of the CAVE. More cameras can be placed in the
CAVE to increase the field of view. The first step is to ac-
quire the data required for calibrating the camera. An LED
is attached to the wand using velcro for automatically locat-
ing the 2D location of the wand (tracker) in the video im-
age. Images of the LED are captured from the video camera

while the wand is moved around in the CAVE. The 3D loca-
tion of the wand and it’s corresponding 2D image points are
obtained automatically, which is then given as input to the
camera calibration program. The camera calibration pro-
gram uses this data for computing the intrinsic and extrinsic
parameters of the camera (i.e. the position, orientation and
focal length of the camera).

Having calibrated the camera, the next step is to recon-
struct the head model of the user. Different views of the user
are captured by the calibrated camera. These images are
segmented using background subtraction, which are then
used to reconstruct the model of the user. The model, stored
in the performer binary format (pfb), can be used as head
model of the avatar in collaborative virtual reality applica-
tions. The generated head model of the user and the camera
parameters of the calibrated camera(s) are sent to all the
remote sites. The process of head model reconstruction is
explained in detail in section 5.

The outline of the operation of the system is shown in
figure 1. The calibrated camera placed in the CAVE cap-
tures the video of the user in real-time and the tracker data
is also acquired simultaneously. To keep the video in sync
with the tracking information, the video and tracker data
are packed together and then sent over the network. As low
latency is important in collaborative applications, the UDP
protocol is used to send the information across the network.

At the remote site, a UDP receiver receives and unpacks
the data to separate the video and tracker information. The
transformations of the avatar’s head are updated based on
the tracking information received. Using projective texture
mapping, the video is projected onto the head model to ob-
tain a realistic head representation of the user.

A single camera provides only a limited field of view
and may not be able to capture the user’s face all the time.
Multiple cameras may be used to increase the field of view.
Based on the remote user’s position, the video from the ap-
propriate camera is projected onto the avatar’s head model.

4 Camera Calibration

Camera calibration is the process of determining the in-
ternal camera’s geometric characteristics (intrinsic param-
eters) and the 3D position and orientation of the camera
frame relative to a certain world coordinate system (extrin-
sic parameters). For the proposed video avatar system, the
camera needs to be calibrated in the CAVE tracker space
for two reasons - head model reconstruction of the user
and view dependent texture mapping of video. This sec-
tion describes a method for calibrating a camera in the
CAVE tracker space using Tsai’s camera calibration tech-
nique [11].



Figure 1. Operation of the Video Avatar System. Camera(s) placed in the CAVE captures the video of
the user. The portion of the video containing the user’s head is extracted and transmitted along with
the tracking information. On the remote site, the information is received and the video is projected
onto the head model of the user, to obtain a realistic head representation.

4.1 Acquisition of Calibration Data

Calibration of the camera for the pin-hole model consists
of the 3D world coordinates of a feature point and the corre-
sponding 2D coordinates of the feature point in the image.

For acquisition of the 3D world coordinates, the track-
ing system in the CAVE is used. Obtaining the correspond-
ing 2D image point, requires an LED to be attached to the
tracker, thereby making it possible to detect the position of
the tracker in the image. LEDs have a high saturation value
and can be easily detected in the HSV color space. The
image of the LED captured by the camera is segmented by
thresholding the image with value almost equal to the value
of the LED. Segmentation can be improved further by ap-
plying a sequence of morphological operators, thereby seg-
menting the LED portion from the rest. The centroid of the
segmented pixels is the 2D coordinates of the LED. Thus,
the 2D image points of the tracker are obtained.

4.2 Obtaining Camera Parameters

Once a set of 3D and 2D points are acquired, the equa-
tions relating the 3D world coordinates to the 2D image co-
ordinates are solved to obtain the camera parameters. From
the camera parameters obtained, the projection matrix of

the camera can be computed. A set of at least 11 points is
required for calibration but a set of about 30 points are nec-
essary for a good calibration. Even with a large number of
input points the registration may not be accurate. To correct
the registration an interactive tool described in section 7 is
used.

It is important that the camera calibration error is less
than 20 mm for a good head model reconstruction and a
good registration of video with the head model. Accord-
ing to Tsai’s camera calibration paper [11], it is essential to
keep the accuracy of the 3D points (world coordinate points
obtained for camera calibration) atleast one order of mag-
nitude tighter than the final goal of 3D measurement using
the calibrated camera; for example, if the the final accuracy
is desired to be 10 mm, then the 3D points have to be 1
mm accurate. Hence, to achieve a calibration error less than
20 mm we need to use a tracking system that has a resolu-
tion less than 2 mm. The Intersense IS900 tracking system,
which was used for this work, is very accurate and has a
resolution of 1.5 mm.

The camera used for this work is a Sony DXC950 3CCD
model (with Fujinon VCL 714BXEA zoom lens), which
has a separate CCD for each primary color (red, green, and
blue). The focal length of the camera varies with the zoom,
and hence, it is important to maintain the zoom of the cam-



era constant throughout the operation.

5. Head Model Reconstruction

The head model of the user is reconstructed using a vol-
umetric intersection of the silhouettes of the user’s head.
The volumetric intersection technique suggested by Gibson
et al. [4] uses a turntable on which the object is placed
and the images of the object are captured by a calibrated
camera while it is turned through360 degree. This method
would work well for static objects that doesn’t move but
may not work well for human subjects as they may tend to
move while the camera captures the different views. Moezzi
et al. proposed a technique [8] that simultaneously cap-
tures different views of the object from multiple calibrated
cameras. This technique does solve the problem of recon-
structing moving objects but would require a large number
of cameras. Unlike these techniques, our technique takes
advantage of the tracking information available in VR sys-
tems to determine the position and orientation of the object
for each view. Thereby, we eliminate the need for multiple
calibrated cameras.

Image based modeling in the CAVE requires a camera to
be placed in the CAVE and calibrated in the tracker space as
described in section 4. Different views of the tracked user
are captured by the calibrated camera. These views are seg-
mented and then using a volumetric intersection technique
[4] the model of the head is reconstructed. The following
sections describes each step in detail.

5.1 Image Acquisition

The image acquisition process requires the user to stand
approximately in the center of the CAVE and turn through
approximate steps of 45 degrees. A video camera, cali-
brated in the CAVE coordinate system, captures the image
of the user at each step of rotation. The user has to wear
the standard stereo glasses during this process as the head
model needs to be generated with the glasses. The transfor-
mation matrix of the head tracker, required for the model
reconstruction, is also recorded for each of the views. The
quality of the model improves as the number of views of the
user increases.

5.2 Image Segmentation

The user’s head needs to be segmented from each of the
acquired images. A background subtraction method pro-
posed by Horprasert et al. [6] is used for getting an ini-
tial segmentation. If the background in the CAVE is com-
plex, the subtraction may not produce a good silhouette of
the user. To improve the segmentation, a well lit white
background may be used while acquiring the user’s images.

Moreover, since only the head model of the user is being
reconstructed, the remaining portions of the image can be
segmented by simple bounding box technique. The seg-
mentation is further improved by applying a sequence of
erosion and dilation operations.

5.3 Image Based Modeling

Having segmented the different views of the user, these
images have to be put together to form the 3D model of
the user’s head. A volumetric intersection of the silhou-
ettes [4] is used to achieve this. The head of the user is
assumed to fit inside a fixed size cube. The cube is trans-
formed based on the transformation of the head tracker,
while a calibrated camera captures different views of the
user in the CAVE. The cube is sampled into643 voxels
for the volume representation. For each view of the user,
a distorted cone is created by the user’s silhouette and the
camera viewpoint. The intersection of all these cones pro-
vides a volumetric representation of the user’s head. Let,
(xmin, ymin, zmin) and(xmax, ymax, zmax) be the corners
of the fixed size cube that is sampled into643 volume of
voxels ((0, 0, 0) − (64, 64, 64)). Let, (vx, vy, vz) repre-
sent the coordinate of a voxel in the volume,(cx, cy, cz)
and (wx, wy, wz) be it’s corresponding coordinates in the
fixed sized cube and world (CAVE) coordinates, respec-
tively. Let, (ix, iy) be the point on the image corresponding
to the world coordinate(wx, wy, wz).

Each voxel in the volume,(vx, vy, vz), is mapped to it’s
corresponding point(cx, cy, cz) in the fixed size cube us-
ing equations 1 - 3.(cx, cy, cz) is transformed to the world
coordinates(wx, wy, wz) by the transformation matrix of
the head tracker. The image coordinate(ix, iy) of the point
(wx, wy, wz) can be obtained by transforming(wx, wy, wz)
with the camera’s projection matrix.

cx =
vx × (xmax − xmin)

volume size
+ xmin (1)

cy =
vy × (ymax − ymin)

volume size
+ ymin (2)

cz =
vz × (zmax − zmin)

volume size
+ zmin (3)

wherevolume size = 64.



wx

wy

wz


 =




Head
Transform

Matrix







cx

cy

cz


 (4)




ix
iy
X


 =




Camera
Projection

Matrix







wx

wy

wz


 (5)

whereX = don’t care.



(a) The segmented views of an user standing at the center of the
CAVE and turning through approximate steps of45 degrees.

(b) The fixed size cube confines the user’s head and is trans-
formed based on the transformation of the head tracker. The cube
is sampled into643 voxels. Few voxels are shown for the pur-
pose of illustration. The voxels are projected onto the segmented
images to check if they are part of the user’s head.

(c) Point cloud model of the user gen-
erated by volumetric intersection of the
segmented views. The image shows the
view of the model with the user’s face
facing left.

(d) Polygonal wireframe model generated
by meshing the point cloud model.

(e) Flat shaded model

Figure 2. Volumetric intersection technique to reconstruct the head model



The values of all the voxels in the volume are initialized
to 0. Each voxel in the volume, is transformed to the image
coordinates using the above equations. If the image coordi-
nates corresponding to the voxel is a part of the user’s head
(i.e. the segmented portion), then the value of the voxel is
incremented. This is repeated for every view. A voxel that is
a part ofn views would have a valuen as each view would
have incremented the value of that voxel. Hence, all the
voxels with the valuen, wheren is the number of views,
are a part of the bounding volume of the user’s head. All
these voxels form a point cloud of the user’s head, which
can be polygonized using the marching cube algorithm to
obtained a 3D model. Figure 2 shows the model generated
by the volumetric intersection of8 views.

The generated model is a fair approximation of the user’s
head. Fine details, like the lips, are not generated. The time
taken for generating the model depends on the number of
images used for generating it. On a SGI Onyx, it takes over
a minute to perform the volumetric intersection on a single
image. Usually, about 8 images are required to generate a
good quality head model. Thus, the time taken for generat-
ing a good model is about 8 - 10 minutes. The time taken
is high because there were no optimizations performed for
the intersection calculation. The polygon count of the head
model is approximately 6000. Hence, the model can be used
directly for real-time interactive applications.

6. Rendering the head model

View dependent texture mapping (VDTM) [2] is a tech-
nique for generating novel views of a scene with approxi-
mately known geometry making use of one or more orig-
inal views. This technique can be applied directly to 3D
video avatars. VDTM requires to have a knowledge of the
geometry of the scene being rendered and also have a set
of calibrated images that can be mapped onto the model.
In the case of video avatars, the geometry of the scene (i.e.
the head model of the tracked user) is available and the cal-
ibrated images are also available from the calibrated cam-
era. Hence, the technique of VDTM is directly applicable
for video avatars. Moreover, to implement this efficiently
in real-time, the projective texture mapping [10] feature of
OpenGL is used.

In order to perform projective texture mapping for the
video avatars, the user specifies the position and the orien-
tation of the virtual camera (which is obtained by calibrat-
ing the camera), and a virtual image plane with the video
as the texture. The video texture is then cast onto the head
model using the camera position as the center of projection
to obtain a realistic avatar head as shown in figure 3.

Figure 3. Projecting real-time video of the
user onto the head model of the user to obtain
a realistic avatar head.

6.1 Avoiding Projection of Video on Occluded
Polygons

The video should be mapped onto the portions of the
head model that are visible from the camera viewpoint.
The OpenGL implementation of projective textures does
not perform any visibility checks and the video is mapped
throughout the geometry of the head model including the
occluded polygons as shown in figure 4. In this context,
occluded polygons refer to the polygons of the head model
that are occluded from the viewpoint of the video camera
and not the polygons occluded for the viewer. This causes
the avatar to look very odd from viewpoints other than the
viewpoint of the camera.

Figure 4. The OpenGL implementation of pro-
jective textures does not perform any vis-
ibility checks and hence the video is also
mapped onto the occluded polygons. This
causes the head to look distorted and thus it
is necessary to avoid this.

The projection of the video texture on the backfacing
polygons can be avoided using user defined clipping planes.



The basic idea is to draw the portion of the head model fac-
ing the camera with the projected texture state enabled and
draw the portion of the model facing away with a default
texture. To implement this, two clipping planes with oppo-
site normals are required. The model is effectively drawn
in two passes. In the first pass, one of the clipping planes
clips the backfacing polygons and the frontfacing polygons
are drawn with the projected texture enabled. In the second
pass, the second clipping plane is enabled, which clips the
frontfacing polygons and draws the backfacing polygons
with a default texture. This is illustrated in figure 5.

Figure 5. Projection of video onto occluded
polygons is avoided by rendering the head
in two passes. In the first pass, the oc-
cluded polygons are clipped and the front-
facing polygons are drawn with the projec-
tive textures enabled. In the second pass,
the frontfacing poygons are clipped and the
occluded polygons are drawn with a default
texture.

6.2 Projection from Multiple Views

In a CAVE, the user could be facing in any direction,
and does not necessarily have to face the video camera. As
the user turns away from the camera, the portions of the
user’s face occluded by the camera will not be visible for the
remote user. This results in poor communications because
of the loss of facial expressions. Moreover, identification of
the user becomes difficult. This problem can be overcome
by the use of multiple cameras placed in different locations
in the CAVE and projecting the video of each view based
on the projection matrix of the respective camera.

If the video of all the cameras are going to be streamed
over the network, the bandwidth required would be quite
large and would depend on the number of cameras. To min-
imize the network bandwidth, only the appropriate video
stream depending on the viewpoint of the remote user, is
sent over the network. The proposed method is described in

the next section.

6.2.1 Projection of Video based on Remote User’s
Viewpoint

Rendering the video avatar using the video that looks best
from the remote user’s viewpoint, helps in reducing the net-
work bandwidth by sending only one video stream. This
is illustrated with an example consisting of two cameras as
shown in figure 6. The camera that is used to project video
can be determined from the position of the remote user. The
world (or the scene) can be divided into two regions (1 and
2), based on the world position of the cameras as shown in
figure 6. The line perpendicular to the line joining the two
cameras and passing through it’s center divides the world in
two regions. Depending on the region of the remote user, a
request is sent to the server to send the appropriate video.
If the remote user is in region 1 then camera 1 is used to
project the video, and similarly for region 2, camera 2 is
used to project the video. This can be easily extended for
any number of cameras.

Figure 6. Determining the correct camera for
projection. This example illustrates which
video image to project depending on the re-
mote user’s viewpoint for a two camera situ-
ation. The world is divided into two regions
based on the camera position and video from
camera 1 or 2 is used if the remote user is in
region 1 or 2 respectively.

7 Registration Issues

The video image will not be registered correctly with the
head model if the camera parameters are not accurate. The



camera calibration errors are caused because of errors in
acquisition of 2D points and errors in tracker information.
These errors are inherent in the system and are hard to cor-
rect. To correct the registration, an interactive tool was de-
veloped.

The tool displays the head model in three different orien-
tations with the video texture mapped on them. It also dis-
plays a head model that spins continuously at a slow pace.
The camera parameters can be manipulated using the tool
with it’s effect seen in real-time. Thereby, the registration
of the video with the head model can be corrected with ease
in 2 to 3 minutes to finish the camera calibration. Figure 7
shows snapshots of the interactive registration tool.

(a) Initial registration, using the camera parameters obtained by cal-
ibrating the camera, is not very accurate.

(b) The registration can be corrected by using the interactive tool.
The tool lets the user adjust the registration in the X, Y and Z axis
with it’s effect seen in real-time. Thereby, the registration can
be corrected with ease. This process needs to be done only once
after calibrating the camera.

Figure 7. Interactive tool for correcting regis-
tration

Since a static model of the head is used, there is some
error in registration when there is a movement of the user’s
mouth and jaw. In most cases, especially from the front

view, this error is not very noticeable. It is the most visible
from the side view of the avatar. Figure 8 clearly illustrates
this error in registration. The error is quite obvious when
the user’s jaw is wide open and is almost not visible while
the user is speaking. As static models are used, this error is
inherent in the system. The use of dynamic models may be
investigated to overcome this problem.

Figure 8. The image on the left shows the side
view of the avatar where the error in registra-
tion is very noticeable when the jaw of the
user is open. This occurs because the head
model of the user is static. The image on the
right shows that the error is not very notice-
able from the front view of the avatar.

8 Video Streaming

Video avatars requires video to be transmitted over the
network in real-time. Streaming video usually requires a
great deal of bandwidth. The video frame used in this work
had a dimension of720×486, with each pixel consisting of
four channels (Red, Green, Blue and Alpha), each channel
being a byte long. So the size of a single video frame is
720 × 486 × 4 = 1399680 bytes. To maintain a smooth
video frame rate, the video needs to transmitted atleast at
15 fps. The bandwidth required to send this video at 15
fps would be720 × 486 × 4 × 8 × 15 = 167961600 bps
(160 mbps). This amount of bandwidth is unacceptable and
needs to be reduced.

8.1 Reducing bandwidth using a bounding box

The video avatar has the head model mapped by the
video. The rest of the avatar is composed of dummy mod-
els without any video texture. Hence, the portion of video
containing the user’s head is only used for texture mapping.
Therefore, the remaining portion of the video, which is re-
dundant, need not be broadcasted over the network. By



broadcasting only the bounding box of the user’s head in
the video, the bandwidth requirements can be reduced.

Figure 9. The 3D bounding box of the user’s
head is computed by computing the bound-
ing box of the user’s head model. The corners
of this 3D bounding box is projected onto the
video image to obtain the 2D cutout of the
user’s head.

The 3D bounding box of the user’s head can be com-
puted by calculating the bounding box of the user’s head
model. The vertices of the 3D bounding box can be pro-
jected onto the video image, using the camera’s projection
matrix, to obtain the 2D cutout of the user’s head from the
video as shown in figure 9. The figure shows a user standing
approximately in the center of the CAVE. The 2D bounding
box of the user’s head is about200×150, which is about 11
times smaller than the whole frame (720× 486). The band-
width required to send frames of this size at15 fps would be
200×150×4×8×15 = 14400000 bps (13mbps). The size
of the bounding box depends on the proximity of the user to
the camera, but in most cases, users stand approximately in
the center of the CAVE, and hence a considerable amount
of bandwidth can be reduced.

OpenGL supports textures with a 5551 pixel format of
RGBA with 5 bits for R, G and B channels, and 1 bit for
the alpha channel. Using this format, the size of each pixel
is 2 bytes long, which is half the size of the usual RGBA
texture with 1 byte/channel. The network bandwidth can be
further reduced by a factor of 2 by broadcasting the video
in this format. This format would lead to a degradation of
the quality of image compared to the 4 byte RGBA format.
However, the benefit gained by using this format is signifi-
cantly beneficial for networks with low bandwidths.

8.2 Temporal Errors

Some collaborative virtual reality applications transmit
tracking information and video (if any) using separate chan-
nels. However, this is not suitable for the proposed system
as it may lead to some temporal errors. Temporal errors,
produced by out of sync tracker and video data, results in
poor registration of the video with the head model. For the
video to be registered correctly, the head tracking data and
the video need to be synchronized. Therefore, the tracking
information (head position and orientation) corresponding
to a video frame is packed along with each video packet.
Thereby, the temporal errors in the registration of the video
can be eliminated.

9 Discussion

The presented system uses an image based modeling
technique to generate the head model. However, the model
can be generated using other techniques too. For example,
the model could be generated using a 3D laser scanner. But
this would require the user to manually align the model with
the tracker coordinate system. The image based modeling
technique is completely automated and requires no user in-
tervention to align the model with the tracker coordinate
system.

In many cases, there are more than one person in the
CAVE. In such cases, the system would work well as long as
the other people in the CAVE don’t get between the camera
and the tracked user. If people came between the camera
and the user, the camera would not capture the video of the
user, thereby resulting in projecting incorrect video onto the
head model. Hence, if there are more than one person in the
CAVE, care should be taken to not block the camera’s view
of the tracked user.

Lastly, the proposed system was mainly experimented in
the CAVE but it is applicable to the ImmersaDesk and other
related VR devices. The main requirement for this system to
work is that the VR devices should have an accurate track-
ing system. Inaccurate tracking systems would lead to poor
registration of the video image.

10 Conclusion

The concept of an avatar in a virtual environment is not
merely to denote the presence of a user but to impart it with
realism that would make the whole experience of interaction
with an avatar life-like. This paper is a step in that direction.

This paper explores ways of imparting realism to an
avatar in a convenient way, while keeping in mind the goals
of minimizing the human intervention factor, ease of use
and cost. The key feature of the proposed system is that



it takes advantage of the tracking information available in
a VR system for camera calibration, head model recon-
struction and projective texture mapping. The technique
of head model reconstruction enables creation of models
in tracked virtual environments in a convenient way using
images, thereby, eliminating the need for expensive laser
scanners and the need for any manual intervention. View
dependent texture mapping helps in removing the need for
most background and lighting constraints. The use of mul-
tiple cameras allow a greater degree of freedom for users
without any restriction of motion. This eases the behavior
of the user, an improvement in usability. The “bounding
box” technique for reducing bandwidth makes the system
usable in real world networks. Moreover, the interactive
registration tool enables less precise tracking systems, such
as electromagnetic trackers, to be usable with a small mar-
gin of error.

The rendered head model is a good representation of the
user. Projecting real-time video results in a good transmis-
sion of the user’s facial expressions and also helps in easy
identification of the user. Imperfections are present in the
system, especially in the quality of model generated, and do
require enhancements, but nevertheless, it is a step forward.
Static head models cause some errors in registration due to
the jaw motion. Another issue is that the switching of video
from one camera to another is quite visible. These issues
will have to be addressed for achieving more realism.

Some of the enhancements that can be done to improve
the system are listed as follows:

• Reducing the time taken for model reconstruction.
Optimization algorithms, for volumetric intersection,
could possibly be investigated.

• Simultaneous projection of multiple video streams to
avoid switching between video and to produce more
realistic avatars. This can be implemented using net-
works with higher bandwidths.

• Implementation of dynamic head models that can syn-
chronize jaw movements in real-time. Video based
techniques, for capturing jaw motions, could be inves-
tigated.

• Small lipstick cameras could be used to minimize the
cameras from blocking the CAVE screens.

This paper was an attempt to address some issues in or-
der to impart some realism to an avatar. The future work
may be thought of as a road towards realism whose founda-
tion was attempted by this work.

Acknowledgements

The virtual reality research, collaborations, and outreach
programs at the Electronic Visualization Laboratory (EVL)

at the University of Illinois at Chicago are made possible
by major funding from the National Science Foundation
(NSF), awards EIA-9802090, EIA-9871058, EIA-0115809,
ANI-9980480, ANI-9730202, and ANI-0123399, as well
as the NSF Partnerships for Advanced Computational In-
frastructure (PACI) cooperative agreement ACI-9619019 to
the National Computational Science Alliance. EVL also re-
ceives funding from the US Department of Energy (DOE)
Science Grid program and the DOE ASCI VIEWS program.
In addition, EVL receives funding from Pacific Interface
on behalf of NTT Optical Network Systems Laboratory in
Japan.

The CAVE and ImmersaDesk are registered trademarks
of the Board of Trustees of the University of Illinois.

References

[1] T. K. Capin, I. S. Pandzic, N. Magnenat-Thalmann, and
D. Thalmann.Avatars in Networked Virtual Environments.
John Wiley & Sons, 1999.

[2] P. E. Debevec, Y. Yu, and G. D. Borshukov. Efficient view-
dependent image-based rendering with projective texture-
mapping. InEurographics Rendering Workshop, pages 105–
116, June 1998.

[3] I. Essa, S. Basu, T. Darrell, and A. Pentland. Tracking and
interactive animation of faces and heads using input from
video. InIEEE Proceedings of Computer Animation, 1996.

[4] D. P. Gibson, N. W. Campbell, and B. T. Thomas. Itera-
tive generation of 3-d models from a set of 2-d images. In
Eurographics, pages 135–145, March 1998.

[5] X. Gong. Video avatars using depth from stereo. Master’s
thesis, University of Illinois at Chicago, 2000.

[6] T. Horprasert, D. Harwood, and L. Davis. A statistical
approach for real-time robust background subtraction and
shadow detection. InThe Proceedings of IEEE ICCV’99,
1999.

[7] J. Insley. Using video to create avatars in virtual reality. In
The Visual Proceedings of the 1997 SIGGRAPH Conference,
Aug 1997.

[8] S. Moezzi, L.-C. Tai, and P. Gerard. Virtual view generation
for 3d digital video.IEEE Multimedia, 4(1):18–26, 1997.

[9] I. Pandzic, P. Kalra, and N. Magnenat-Thalmann. Real time
facial interaction.Displays, 15(3):157–163, 1994.

[10] M. Segal, C. Korobkin, R. van Widenfelt, J. Foran, and
P. Haeberli. Fast shadows and lighting effects using texture
mapping. InProceedings of the 19th Annual Conference on
Computer Graphics, pages 249–252, 1992.

[11] R. Y. Tsai. An efficient and accurate camera calibration tech-
nique for 3d machine vision. InProceedings of IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
364–374, 1986.

[12] S. Yura, T. Usaka, and K. Sakamura. Video avatar: Embed-
ded video for collaborative virtual environment. InProceed-
ings of the IEEE International Conference on Multimedia
Computing and Systems, volume 2, Jun 1999.


