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Abstract 
 
JuxtaView is a cluster-based application for 
viewing ultra-high-resolution images on scalable 
tiled displays. We present in JuxtaView, a new 
parallel computing and distributed memory 
approach for out-of-core montage visualization, 
using LambdaRAM, a software-based network-
level cache system. The ultimate goal of 
JuxtaView is to enable a user to interactively roam 
through potentially terabytes of distributed, 
spatially referenced image data such as those from 
electron microscopes, satellites and aerial 
photographs. In working towards this goal, we 
describe our first prototype implemented over a 
local area network, where the image is distributed 
using LambdaRAM, on the memory of all nodes 
of a PC cluster driving a tiled display wall. 
Aggressive pre-fetching schemes employed by 
LambdaRAM help to reduce latency involved in 
remote memory access. We compare 
LambdaRAM with a more traditional memory-
mapped file approach for out-of-core visualization. 
 
 
1. Introduction 
 

As the precision of data acquisition increases, 
scientists find it impractical to examine any 
significant portion of the data at an effective level 
of detail. For instance, scientists at the Earth 
Resource Observation Systems (EROS) Data 
Center (EDC) at US Geological Survey (USGS) 
[1] acquire on a regular basis, terabytes of data 
from satellites and aerial photography. The EDC is 
acquiring high-resolution color orthoimagery for 
133 most populated metropolitan areas of the 

United States at a resolution of about 1/3 meter. As 
an essential element of The National Map [2], the 
need for up-to-date imagery is critical for 
Homeland Security, and Emergency Response. 
The imagery can be used as a base layer for 
updating or deriving additional geographic 
information, such as transportation networks, 
hydrographic features, elevation and land cover.  
While examining any large metropolitan area like 
Chicago, one should be able to look at an overview 
of a large area, interactively pan and zoom at 
detailed resolution and also be able to teleport to 
different areas within a terabyte dataset. In such 
scenarios it is intractable to examine any 
significant portion of the large image area on a 
single desktop and higher display resolution 
becomes paramount to understanding the data. 

JuxtaView is an application designed to view 
extremely large image montages on high-
resolution, scalable tiled display walls like the 
GeoWall2 [3] built at the Electronic Visualization 
Laboratory (EVL). The GeoWall2 consists of a 
tiled array of LCD panels, driven by a cluster of 
PC’s, with a high-end graphics cards such as 
Nvidia's Quadro FX series, large disk space, dual 
processor CPUs and Gigabit Ethernet networking. 
GeoWall2 is scalable because smaller or even 
larger versions can be built by adjusting the 
number of LCD panels and computers. A separate 
master console is used to show an overview of the 
image viewed on the tiled display. The master 
node of the cluster accepts keyboard, mouse and 
joystick events from the user for interaction with 
the image on the tiled display. USGS is currently 
using a GeoWall2, with JuxtaView being deployed  
and used on a daily basis, for studying high      
resolution aerial and satellite imagery.
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Figure 1: Picture of JuxtaView on the 
GeoWall2 demonstrated at Supercomputing 
2003, Phoenix, Arizona. The image shows 
satellite data from ocean floor bathymetry of 
the Earth. Data Courtesy: USGS 
 
High-resolution tiled display walls however 
solve only part of the problem. For instance, 
hydrologists at the USGS who study the 
hurricane effects along the Atlantic seashore 
would like to be able to interactively roam 
through 6 inch resolution of LIDAR data of the 
entire coastline from Chesapeake Bay to the tip 
of Florida. It is impractical to build displays big 
enough to examine all of the data at such levels. 
Instead we need means to interactively roam 
through a dataset, potentially distributed on 
different servers.  

At EVL, we have developed a computing 
paradigm called the Optiputer as the primary 
means for supporting similar large scale 
visualization applications. The Optiputer [4] is a 
National Science Foundation funded project to 
interconnect distributed storage, computing and 
visualization resources using photonic networks. 
The main goal of the project is to exploit the 
trend that network capacity is increasing at a rate 
far exceeding processor speed, while at the same 
time plummeting in cost. We have developed 
aggressive data transfer protocols such as the 
Reliable Blast UDP [5], as part of the Optiputer 
project, to help applications take advantage of 
this available bandwidth.  

As an application on the Optiputer, 
JuxtaView is our work in progress to roam 
through large image datasets potentially residing 
on remote data sites interconnected by photonic 
networks. LambdaRAM [6] is the middleware 
designed based on our networking expertise 
designated to help Optiputer applications harness 
high bandwidth network connectivity and still 
address latency of long haul networks. 
LambdaRAM achieves this by managing 

distributed memory pools for data storage and 
employing aggressive pre-fetching schemes to 
cache data locally for applications. 

JuxtaView is in the preliminary phase of the 
Optiputer project. The goal in this phase is to 
present a scalable visualization model and 
prototype LambdaRAM as a network level 
abstraction for large data storage. The main 
contribution of our work is, 
• Presenting a scalable graphics visualization 

tool for large images on high-resolution tiled 
displays 

• Presenting a novel distributed memory 
approach for out-of-core visualization of 
large imagery that outperforms traditional 
approaches like memory mapped IO 

• Designing a network level cache in 
LambdaRAM, de-coupled from the 
application, designed to harness high 
network bandwidth and hide latency through 
aggressive pre-fetching 
We present our work in this phase as a proof 

of concept for our future Optiputer applications 
over wide area photonic networks.  
 
2. Related Work 
 

Standard image viewers like Adobe 
Photoshop [7], Gimp [8] and Imagemagick [9] 
offer several image manipulation features and 
handle various file formats. Specialized software 
like the ArcView (of the ArcGIS suite of tools) 
[10] provide several data display, query and 
analysis capabilities for geographically 
distributed data. Traditional image viewers 
however are largely restricted by availability of 
memory on a single machine and the disk access 
speed, in the case of images that do not fit into 
memory. Consequently most traditional viewers 
are designed to effectively handle small images, 
but not very large images in the order of several 
gigabytes.  

VLiv [11] is a desktop image viewer that 
can load very large tiff images stored in a tile 
format by loading only the tiles required for 
viewing. However an inherent requirement for 
viewing large images is the ability to look at a 
significant portion of the image at effective 
resolution, which calls for more high-resolution 
display systems like the IBM T221 display [12] 
or tiled display walls such as the GeoWall2.  

[13]and [14] give an overview of building 
scalable tiled display walls using PC clusters and 
issues involved in writing scalable software. 
Commonly used software for tiled display 

 2



 

Figure 2: Overview of JuxtaView’s design. The figure shows a image stored on disk loaded into 
LambdaRAM’s memory pool distributed on all nodes of a 4 node cluster driving a 2x2 tiled 
display. A separate master console, which shows a preview of the image, allows users to interact 
with the image on the tile display. Image courtesy: USGS 
 
environments include VNC [15] and Chromium 
[16], which provide generic means to distribute 
frame buffers and polygon rendering on a tiled 
display, respectively.  [17]describes a cluster 
based image viewer developed at Argonne 
National Labs, for large format images and list 
the problems involved in designing one. 
Argonne’s image viewer employs texture 
mapping through hardware to display images. 
While taking advantage of hardware accelerated 
bilinear interpolation, this however currently 
precludes choosing arbitrary points on the tiled 
display for zooming, in order to examine specific 
points of the image in detail. TimV developed at 
San Diego Supercomputing Center [18], is a 
cluster based image viewer for tiled displays, 
built over ImageMagick, MPI and OpenGL 
libraries. A disadvantage of TimV is its 
inherently dependence on virtual memory of a 
single machine for the image [19]. Both 
Argonne’s image viewer and TimV fail to 
address the issue of viewing out-of-core data on 
tiled display walls. 

JuxtaView addresses this issue by using 
LambdaRAM to store images over the 

distributed memory of workstations of a cluster. 
In future we aim to scale this over wide area 
networks and harness memory of several clusters 
of computers connected by high speed photonic 
networks.  
 
3. System Design 
 

JuxtaView is a parallel application built over 
MPI [20], OpenGL [21], Glut [22] and SDL [23] 
libraries. It loads image files stored in a raw 
RGBA file format, which enables it to easily 
map the image to a buffer in the application 
using either a memory mapped (mmap) interface 
or a distributed shared memory interface such as 
LambdaRAM. Figure 2 shows the overall system 
organization in JuxtaView, which is discussed in 
further detail in the following sub-sections. The 
image to be loaded on the tiled display is stored 
on a local disk. A JuxtaView process is started 
on each node of the cluster driving the tiled 
display using MPI. At start up, the image is 
distributed over the memory of all the nodes 
using LambdaRAM, based on a static two 
dimensional partition. Each process controlling a 
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tile is set up to draw a portion of the image on 
that tile through a configuration file.  

The master node of the cluster driving the 
tiled display accepts user interactions with the 
image on the tiled display. The commands are 
broadcast to all the slave processes controlling 
the individual tiles, which re-compute the image 
areas corresponding to their tiles. The data 
corresponding to the image areas is fetched from 
LambdaRAM’s cluster memory pool. Once the 
pixels to be displayed are computed, the tiles 
display the pixels in a synchronized fashion. 
 
3.1 Parallel Image Extraction 
 

JuxtaView uses an image order parallel 
algorithm to extract the image pixels to be drawn 
on each tile of the tiled display. The pixels to be 
displayed are computed each time a new 
operation is performed using a global 
transformation. Since the pixels of the tiled 
display are automatically divided equally among 
all the tiles, the computation is in turn evenly 
divided among all the nodes.  

In order to implement this, we maintain 
three different contexts in the program; an image 
context in the order of the dimensions of the 
image, the tile-display context in tile-display 
coordinates including borders between display 
panels, if any, and the local context of each tile, 
in screen coordinates. A cursor which can be 
moved across the tiled display enables a user to 
choose any arbitrary point in the image as 
reference for zooming in and out of the image. 
The transformation from the image to the screen 
coordinates is described as follows: 

 

 

 If the cursor position is indicated by a point Z 
(Zx, Zy) and the current scale by S (Sx, Sy), the 
transformation matrix to calculate the pixel 
coordinates in image space to tile display space 
is computed, as show below, by translating the 
cursor position to origin, scaling and translating 
back to the cursor position.  

The pixel indices in the image coordinates,  
P ( Px , Py ) are computed as a product of the 
transformation matrix (calculated above) and the 
tile display coordinate matrix T(Tx , Ty) where 
they are displayed. 

 
 

At the end of computation, the pixels are 
drawn on the tiles in a lock step fashion. 
 
3.2  Communication and Synchronization 
 

We use a master-slave MPI model for 
communication and synchronization. The master 
node is in charge of user interaction and 
propagation of the commands via a MPI 
broadcast channel which is used in a lock step 
fashion on all the slaves. The slaves are 
responsible for computing the pixels required for 
displaying on each tile using a transformation as 
described above. Each slave process uses a 
LambdaRAM data client to fetch the portion of 
the data required that does not reside on local 
memory.  

Our algorithm is designed so that the master 
is not responsible for calculating each slave’s 
image view. The broadcast messages are very 
small, merely indicating the operation to be 
performed on the image and are independent of 
the image size or the number of tiles. This 
ensures scalability to larger tiled displays and 
image sizes. 
 
3.3 User Interaction  
 

Users can interact with the image on the 
tiled display using a keyboard, mouse or 
joystick, connected to the master node of the 
cluster driving the tiled display. Glut and SDL 
libraries are used for window management and 
registering event callbacks for keyboard, mouse 
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and wireless joystick interactions. A preview 
window is provided on the master console with 
an overlaid box showing the image area viewed 
on the tiled display. User operations in 
JuxtaView include the following: 

• panning across the image at various 
speeds 

• scaling with respect to any arbitrary 
point on the images 

• teleporting to any part of the image by 
clicking on the overview map 

• playing an animation movie or slide 
show, by cycling through a set of 
images 

We have also implemented client-server 
architecture using the Quanta networking API 
[24] for third party communication from a laptop 
or a tablet PC.  A server process executing in a 
separate thread on the master node, accepts 
multiple TCP connections from third party 
JuxtaView clients. Users executing these client 
processes, presumably on laptops or tablet PC’s, 
can request a mini-map of the entire image, 
zoom in at a particular point and enter text 
annotations which is routed through the server 
on the master node to be pasted onto the image 
on the tiled display. The annotations serve to 
identify interesting areas in an image. 
 
4. LambdaRAM  
 

LambdaRAM is based on the concept of 
Network Memory. Prior work in Network 
Memory (NetRAM) has mainly focused on local 
area or system area networks because there 
simply has never been sufficient bandwidth over 
a wide area network to carry data from memory 
to memory at rates that are close to memory 
access rates [25]. The high bandwidth photonic 
networks interconnecting components on the 
Optiputer makes NetRAM over wide areas 
practical. The concept behind NetRAM is to 
provide a massive pool of physical memory that 
is distributed over separate computers which are 
interconnected using high speed photonic 
networks. For example, while a intra-cluster 
interconnection network such as Myrinet can 
have as much as a Gigabit of bandwidth with a 
latency of a few microseconds, photonic 
networks used by LambdaRAM will have a 
bandwidth of 10 Gigabits/s and latencies of 
approximately 2-5ms; whereas a SCSI disk drive 
only has 300Mbits of bandwidth with an average 
seek time of 8-9 ms [6]. Therefore in scenarios 
where data to be stored is too high for local disk 

storage, using NetRAM to move data between 
sites with high bandwidth connectivity, becomes 
an attractive option. LambdaRAM provides a 
read-only data cache, which fits most 
visualization and data mining applications where 
the original data is rarely modified. Application 
developers using LambdaRAM can specify the 
partitioning of data on distributed workstations 
to maximize locality of reference. The latency 
involved in long distance photonic networks 
limited by the speed of light, can be overcome by 
LambdaRAM through aggressive pre-fetching 
schemes, providing data to applications 
hopefully before it is accessed. 

 
4.1  Data Partitioning for JuxtaView 
 

For the local area case of LambdaRAM, the 
memory pool managed by LambdaRAM on each 
node is split into two parts – the Lambda Cache, 
which consists of the portion of the original data 
assigned to a node and a Local Cache, which 
consists of data obtained from remote nodes, 
cached locally for the application. The data 
stored in the cache is in turn organized in fixed 
sized blocks of smaller size, as in a paging 
scheme, to increase the granularity of 
management. 

JuxtaView specifies a two dimensional 
partitioning for LambdaRAM, maintaining a 
logical spatial locality in proportion to the ratio 
of image sub-division on the tiled display. The 
general partitioning strategy can be sketched as 
follows: 

Image Dimensions = M x N pixels, where M 
is the number of columns and N is the 
number of rows  
Tile-display resolution = m x n pixels, 
typically (M x N) >> (m x n), the image 
being much larger than the tile-display 
resolution 
Tile-display layout = a x b, where a is the 
number of tiles in a row and b is the number 
of tiles in a column 
Number of nodes in the cluster driving the 
tile-display= P, where a x b =P, in a simple 
case where each node drives one tile of the 
display 
Total Cache size of LambdaRAM on each 
node = X  
Lambda Cache = L1 = M/a x N/b, sub-
divided into smaller blocks of size y x z  
Local Cache, L2 = X – L1, used for caching 
data locally for applications. This portion is 
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also used to store data pre-fetched from 
remote nodes 
Thus every node explicitly knows the data 

partition and fetches data from the remote node 
on demand, to satisfy a memory request. 
LambdaRAM’s intra-cluster communication is 
implemented using TCP scatter-gather 
mechanisms provided by the Quanta networking 
API, for gathering data distributed on other 
nodes of the cluster. Over a wide area network, 
LambdaRAM data transfer module would take 
advantage of protocols such as Reliable Blast 
UDP provided by Quanta [5], instead of TCP. 
 
4.2  Cache Management 
 

The Cache Management module in 
LambdaRAM comprises of the following: 
a. Data-Server 

The data-server thread services requests 
from other nodes, for data present in its Lambda 
Cache. The smallest unit of data transfer is one 
block of data, which can be specified by the user. 
b. Data-Client 

The Data-Client is the interface used by 
applications like JuxtaView to request data. The 
Data-Client checks if the data requested is 
contained in either the Lambda Cache or the 
Local Cache. In the case of a hit, the pointer to 
the memory requested is returned. In the case of 
a miss, requests are sent to remote nodes which 
contain the data blocks. Once the data blocks are 
received, a pointer to the memory requested is 
returned back to the application. 
c. Cache Replacement 

LambdaRAM currently implements a Least 
Recently Used (LRU) block replacement strategy 
for garbage collection in the Local Cache area. 
Each data request made by the application is 
identified using an Operation Id (OID).  
d. Data Pre-fetcher 

We have implemented a data pre-fetching 
scheme based on the locality of reference of the 
data. When a block of data is accessed, the 
adjacent blocks surrounding the requested block 
are also pre-fetched from remote memory. We 
have experimented with different block sizes in 
order to determine the optimal balance of high 
hit ratio and memory usage. 

Our current design of LambdaRAM assumes 
that the image fits into the collective memory of 
a PC cluster.  
 
 
 
 

5. Results 
 

We conducted experiments to quantify the 
performance of JuxtaView on a 16 node Intel 
Xeon 1.8 GHz cluster running a Red Hat Linux 
2.4.18-3smp kernel, with 512 MB RAM, 512KB 
cache and using NVIDIA GeForce4 graphic 
cards. The dataset used for our experiments was 
a 1.8 GB image file of dimensions 30,000 x 15, 
000 pixels, showing aerial photography of the 
Chicago downtown area at 1 foot resolution.  

We provide comparative results of loading 
the image in JuxtaView using a mmap API, 
traditionally used for out-of-core visualization in 
image viewers such as ImageMagick [19], versus 
using LambdaRAM to use the collective 
distributed memory of the cluster. The dataset 
was replicated on all the individual disks of the 
nodes in the mmap case, in order to increase disk 
access speed.  

We performed hundred random pan and 
zoom operations and recorded the latencies for 
the operations. The latency calculations in our 
results indicate the time taken by JuxtaView to 
complete the data access and computation, 
recorded just before drawing. The value used is 
the maximum (worst case) latency among all the 
nodes in the cluster, since that is the 
synchronization cost for displaying the image on 
the tiled display. The following were the test 
cases: 
1. Panning: The image was panned at full 

resolution, and the image area requested was 
the same as the area to be displayed on the 
screen. The latency of panning reduces as 
the image areas already visited are accessed 
again, for example when a user pans right 
and left immediately.  

2. Zooming: The zoom operations in this test 
are performed by choosing any point in the 
image to teleport to, and zooming in at full 
resolution and followed by two zoom out 
operations to examine a larger area of the 
image. Tele-porting to an arbitrary point in 
the image to zoom in triggers a random 
memory accesses into the image, usually 
resulting in the peak latencies shown in the 
graphs.  

3. Pre-fetching: In this case LambdaRAM 
fetched adjacent blocks surrounding the data 
requested, so that the subsequent pan or 
zoom operation would find the data in the 
local cache. We found pre-fetching to be 
useful in reducing the latencies further. The 
test results are tabulated:   
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In summary, we find that the LambdaRAM 
version of JuxtaView outperforms the mmap 
version by a factor of 2 in most cases. The 
graphs obtained from the tests are plotted below. 
The graphs show a histogram of operations lying 
in different ranges of latencies. A normal curve 
is provided in each graph to show the 
distribution of numbers around the mean latency. 
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Figure 3: Summary of results  

 
 
 

 

 
 
Figure 4: Panning using MMap: 
Approximately 70% of the latencies lie 
in the range of 1.8 – 3.8 seconds 

 

Figure 5: Panning using LambdaRAM: 
Approximately 70% of the latencies lie 
in the range of 0.5 – 1.5 seconds 

Figure 6: Panning using LambdaRAM 
with pre-fetching: About 70% of the 
latencies lie in the range of 0 – 1 second 

Figure 7: Zooming using mmap: The 
latencies are more evenly distributed, 
with 25% lying in the range of 0-0.5 
seconds, 25% between 0.5-2 seconds 
and 30% between 2-4 seconds 
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Figure 8: Zooming using LambdaRAM: 
Approximately 70% of the latencies lie 
in the range of 0 – 1 second 

Figure 9: Zooming using LambdaRAM 
with pre-fetching: Here too, about 70% 
of the latencies lie in the range of 0 – 1 
second 

 
 
6. Current Applications and Future 

Work 
 

JuxtaView is being used by US Geological 
Survey (USGS) for Geosciences’ applications 
involving satellite imagery and aerial 
photography. The Institute of Geophysics and 
Planetary Physics at the Scripps Institution of 
Oceanography [26] employs JuxtaView to 
analyze IKONOS[27] satellite imagery, aerial 
photography and panoramic images from the 
Mars Rover missions. The National Center for 
Medical Imaging and Research (NCMIR) [28] 
uses JuxtaView to visualize large cerebral 
montages obtained from Confocal Microscopy. 
We are also working with the Joint 
Oceanographic Institutes [29] in using 
JuxtaView to visualize images of extremely long 

core samples extending to several miles, 
obtained by drilling ocean and lake beds. 

We have loaded image sizes up to 15 GB, 
corresponding to a 65,000 X 55,000 pixel aerial 
photography image on our 3 node 64 bit Opteron 
cluster. In future, as we proceed towards a tera-
byte scale of data, we need to introduce an 
additional layer in LambdaRAM to pre-fetch 
data stored on disk at distributed sites. Moreover, 
intuitive user interfaces are needed to roam 
through them, at various resolution levels 
specified by the user.   

LambdaRAM should be able to load 
portions of a big image dataset, using a 
configuration provided by the user. The dataset 
configuration would specify mapping from the 
image space to a specific image file and an IP 
address to indicate the location of the file on a 
remote site. More intelligent data pre-fetching 
schemes that adapt to the memory access 
patterns in an image will increase the efficiency 
of LambdaRAM.  

In serving the Geosciences community, we 
are currently implementing overlaying of 
multiple geo-referenced images with different 
transparency levels to merge different types of 
data from the same geographical location. We 
have developed a prototype Optiputer test-bed 
between Chicago and Amsterdam over OMNInet 
[30], the Optical Metropolitan Network 
Initiative, currently deployed in Chicago and 
Evanston, linked to StarLight [31] and a 
transatlantic high-performance link provided by 
SURFnet [32], on to NetherLight in Amsterdam 
[33]. We are currently conducting LambdaRAM 
experiments using JuxtaView on this test-bed 
between Chicago and Amsterdam, with a cluster 
of computers at Amsterdam serving as a data 
source for images, visualized at EVL in Chicago 
on our GeoWall2.  
 
7. Conclusion  
 

We have presented JuxtaView, an 
interactive visualization tool for large imagery 
on scalable tiled displays. JuxtaView presents a 
new distributed memory approach for out-of-
core visualization of image datasets that do not 
fit on the memory of a single computer. We have 
provided results to show that LambdaRAM 
outperforms memory mapped IO by at least a 
factor of 2. We have also prototyped 
LambdaRAM as a network level cache to 
provide seamless access to distributed data 
storage. The experience in integrating JuxtaView 
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and LambdaRAM will help designing other 
visualization applications over the Optiputer. 
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