
JuxtaView – a Tool for Interactive Visualization of Large Imagery on
Scalable Tiled Displays

Naveen K. Krishnaprasad*, Venkatram Vishwanath, Shalini Venkataraman, Arun G. Rao,
Luc Renambot, Jason Leigh, Andrew E. Johnson

* naveen@evl.uic.edu
Electronic Visualization Laboratory (EVL)

University of Illinois at Chicago

Brian Davis
Earth Resource Observation Systems (EROS) Data Center

US Geological Survey (USGS)

Abstract

JuxtaView is a cluster-based application for
viewing ultra-high-resolution images on scalable
tiled displays. We present in JuxtaView, a new
parallel computing and distributed memory
approach for out-of-core montage visualization,
using LambdaRAM, a software-based network-
level cache system. The ultimate goal of
JuxtaView is to enable a user to interactively roam
through potentially terabytes of distributed,
spatially referenced image data such as those from
electron microscopes, satellites and aerial
photographs. In working towards this goal, we
describe our first prototype implemented over a
local area network, where the image is distributed
using LambdaRAM, on the memory of all nodes
of a PC cluster driving a tiled display wall.
Aggressive pre-fetching schemes employed by
LambdaRAM help to reduce latency involved in
remote memory access. We compare
LambdaRAM with a more traditional memory-
mapped file approach for out-of-core visualization.

1. Introduction

As the precision of data acquisition increases,
scientists find it impractical to examine any
significant portion of the data at an effective level
of detail. For instance, scientists at the Earth
Resource Observation Systems (EROS) Data
Center (EDC) at US Geological Survey (USGS)
[1] acquire on a regular basis, terabytes of data
from satellites and aerial photography. The EDC is
acquiring high-resolution color orthoimagery for
133 most populated metropolitan areas of the

United States at a resolution of about 1/3 meter. As
an essential element of The National Map [2], the
need for up-to-date imagery is critical for
Homeland Security, and Emergency Response.
The imagery can be used as a base layer for
updating or deriving additional geographic
information, such as transportation networks,
hydrographic features, elevation and land cover.
While examining any large metropolitan area like
Chicago, one should be able to look at an overview
of a large area, interactively pan and zoom at
detailed resolution and also be able to teleport to
different areas within a terabyte dataset. In such
scenarios it is intractable to examine any
significant portion of the large image area on a
single desktop and higher display resolution
becomes paramount to understanding the data.

JuxtaView is an application designed to view
extremely large image montages on high-
resolution, scalable tiled display walls like the
GeoWall2 [3] built at the Electronic Visualization
Laboratory (EVL). The GeoWall2 consists of a
tiled array of LCD panels, driven by a cluster of
PC’s, with a high-end graphics cards such as
Nvidia's Quadro FX series, large disk space, dual
processor CPUs and Gigabit Ethernet networking.
GeoWall2 is scalable because smaller or even
larger versions can be built by adjusting the
number of LCD panels and computers. A separate
master console is used to show an overview of the
image viewed on the tiled display. The master
node of the cluster accepts keyboard, mouse and
joystick events from the user for interaction with
the image on the tiled display. USGS is currently
using a GeoWall2, with JuxtaView being deployed
and used on a daily basis, for studying high
resolution aerial and satellite imagery.

 1

mailto:*naveen@evl.uic.edu

Figure 1: Picture of JuxtaView on the
GeoWall2 demonstrated at Supercomputing
2003, Phoenix, Arizona. The image shows
satellite data from ocean floor bathymetry of
the Earth. Data Courtesy: USGS

High-resolution tiled display walls however
solve only part of the problem. For instance,
hydrologists at the USGS who study the
hurricane effects along the Atlantic seashore
would like to be able to interactively roam
through 6 inch resolution of LIDAR data of the
entire coastline from Chesapeake Bay to the tip
of Florida. It is impractical to build displays big
enough to examine all of the data at such levels.
Instead we need means to interactively roam
through a dataset, potentially distributed on
different servers.

At EVL, we have developed a computing
paradigm called the Optiputer as the primary
means for supporting similar large scale
visualization applications. The Optiputer [4] is a
National Science Foundation funded project to
interconnect distributed storage, computing and
visualization resources using photonic networks.
The main goal of the project is to exploit the
trend that network capacity is increasing at a rate
far exceeding processor speed, while at the same
time plummeting in cost. We have developed
aggressive data transfer protocols such as the
Reliable Blast UDP [5], as part of the Optiputer
project, to help applications take advantage of
this available bandwidth.

As an application on the Optiputer,
JuxtaView is our work in progress to roam
through large image datasets potentially residing
on remote data sites interconnected by photonic
networks. LambdaRAM [6] is the middleware
designed based on our networking expertise
designated to help Optiputer applications harness
high bandwidth network connectivity and still
address latency of long haul networks.
LambdaRAM achieves this by managing

distributed memory pools for data storage and
employing aggressive pre-fetching schemes to
cache data locally for applications.

JuxtaView is in the preliminary phase of the
Optiputer project. The goal in this phase is to
present a scalable visualization model and
prototype LambdaRAM as a network level
abstraction for large data storage. The main
contribution of our work is,
• Presenting a scalable graphics visualization

tool for large images on high-resolution tiled
displays

• Presenting a novel distributed memory
approach for out-of-core visualization of
large imagery that outperforms traditional
approaches like memory mapped IO

• Designing a network level cache in
LambdaRAM, de-coupled from the
application, designed to harness high
network bandwidth and hide latency through
aggressive pre-fetching
We present our work in this phase as a proof

of concept for our future Optiputer applications
over wide area photonic networks.

2. Related Work

Standard image viewers like Adobe
Photoshop [7], Gimp [8] and Imagemagick [9]
offer several image manipulation features and
handle various file formats. Specialized software
like the ArcView (of the ArcGIS suite of tools)
[10] provide several data display, query and
analysis capabilities for geographically
distributed data. Traditional image viewers
however are largely restricted by availability of
memory on a single machine and the disk access
speed, in the case of images that do not fit into
memory. Consequently most traditional viewers
are designed to effectively handle small images,
but not very large images in the order of several
gigabytes.

VLiv [11] is a desktop image viewer that
can load very large tiff images stored in a tile
format by loading only the tiles required for
viewing. However an inherent requirement for
viewing large images is the ability to look at a
significant portion of the image at effective
resolution, which calls for more high-resolution
display systems like the IBM T221 display [12]
or tiled display walls such as the GeoWall2.

[13]and [14] give an overview of building
scalable tiled display walls using PC clusters and
issues involved in writing scalable software.
Commonly used software for tiled display

 2

Figure 2: Overview of JuxtaView’s design. The figure shows a image stored on disk loaded into
LambdaRAM’s memory pool distributed on all nodes of a 4 node cluster driving a 2x2 tiled
display. A separate master console, which shows a preview of the image, allows users to interact
with the image on the tile display. Image courtesy: USGS

environments include VNC [15] and Chromium
[16], which provide generic means to distribute
frame buffers and polygon rendering on a tiled
display, respectively. [17]describes a cluster
based image viewer developed at Argonne
National Labs, for large format images and list
the problems involved in designing one.
Argonne’s image viewer employs texture
mapping through hardware to display images.
While taking advantage of hardware accelerated
bilinear interpolation, this however currently
precludes choosing arbitrary points on the tiled
display for zooming, in order to examine specific
points of the image in detail. TimV developed at
San Diego Supercomputing Center [18], is a
cluster based image viewer for tiled displays,
built over ImageMagick, MPI and OpenGL
libraries. A disadvantage of TimV is its
inherently dependence on virtual memory of a
single machine for the image [19]. Both
Argonne’s image viewer and TimV fail to
address the issue of viewing out-of-core data on
tiled display walls.

JuxtaView addresses this issue by using
LambdaRAM to store images over the

distributed memory of workstations of a cluster.
In future we aim to scale this over wide area
networks and harness memory of several clusters
of computers connected by high speed photonic
networks.

3. System Design

JuxtaView is a parallel application built over
MPI [20], OpenGL [21], Glut [22] and SDL [23]
libraries. It loads image files stored in a raw
RGBA file format, which enables it to easily
map the image to a buffer in the application
using either a memory mapped (mmap) interface
or a distributed shared memory interface such as
LambdaRAM. Figure 2 shows the overall system
organization in JuxtaView, which is discussed in
further detail in the following sub-sections. The
image to be loaded on the tiled display is stored
on a local disk. A JuxtaView process is started
on each node of the cluster driving the tiled
display using MPI. At start up, the image is
distributed over the memory of all the nodes
using LambdaRAM, based on a static two
dimensional partition. Each process controlling a

Fetch Data

MPI

La
m

bd
aR

A
M

Keyboard,
Mouse,
Tablet Input Image Extraction

Draw pixels

Tiled Display

Data storage

Cluster

 3

tile is set up to draw a portion of the image on
that tile through a configuration file.

The master node of the cluster driving the
tiled display accepts user interactions with the
image on the tiled display. The commands are
broadcast to all the slave processes controlling
the individual tiles, which re-compute the image
areas corresponding to their tiles. The data
corresponding to the image areas is fetched from
LambdaRAM’s cluster memory pool. Once the
pixels to be displayed are computed, the tiles
display the pixels in a synchronized fashion.

3.1 Parallel Image Extraction

JuxtaView uses an image order parallel
algorithm to extract the image pixels to be drawn
on each tile of the tiled display. The pixels to be
displayed are computed each time a new
operation is performed using a global
transformation. Since the pixels of the tiled
display are automatically divided equally among
all the tiles, the computation is in turn evenly
divided among all the nodes.

In order to implement this, we maintain
three different contexts in the program; an image
context in the order of the dimensions of the
image, the tile-display context in tile-display
coordinates including borders between display
panels, if any, and the local context of each tile,
in screen coordinates. A cursor which can be
moved across the tiled display enables a user to
choose any arbitrary point in the image as
reference for zooming in and out of the image.
The transformation from the image to the screen
coordinates is described as follows:

 If the cursor position is indicated by a point Z
(Zx, Zy) and the current scale by S (Sx, Sy), the
transformation matrix to calculate the pixel
coordinates in image space to tile display space
is computed, as show below, by translating the
cursor position to origin, scaling and translating
back to the cursor position.

The pixel indices in the image coordinates,
P (Px , Py) are computed as a product of the
transformation matrix (calculated above) and the
tile display coordinate matrix T(Tx , Ty) where
they are displayed.

At the end of computation, the pixels are
drawn on the tiles in a lock step fashion.

3.2 Communication and Synchronization

We use a master-slave MPI model for
communication and synchronization. The master
node is in charge of user interaction and
propagation of the commands via a MPI
broadcast channel which is used in a lock step
fashion on all the slaves. The slaves are
responsible for computing the pixels required for
displaying on each tile using a transformation as
described above. Each slave process uses a
LambdaRAM data client to fetch the portion of
the data required that does not reside on local
memory.

Our algorithm is designed so that the master
is not responsible for calculating each slave’s
image view. The broadcast messages are very
small, merely indicating the operation to be
performed on the image and are independent of
the image size or the number of tiles. This
ensures scalability to larger tiled displays and
image sizes.

3.3 User Interaction

Users can interact with the image on the
tiled display using a keyboard, mouse or
joystick, connected to the master node of the
cluster driving the tiled display. Glut and SDL
libraries are used for window management and
registering event callbacks for keyboard, mouse

Tx
Ty
1

X

P [Px , Py, 0] =

Sx 0 Zx (1 – Sx)
0 Sy Zy (1 – Sy)
0 0 1

Transformation, T =

X

X
1 0 Zx
0 1 Zy
0 0 1

Sx 0 0
0 Sy 0
0 0 1

1 0 -Zx
0 1 -Zy
0 0 1

Sx 0 Zx (1 – Sx)
0 Sy Zy (1 – Sy)
0 0 1 =

 4

and wireless joystick interactions. A preview
window is provided on the master console with
an overlaid box showing the image area viewed
on the tiled display. User operations in
JuxtaView include the following:

• panning across the image at various
speeds

• scaling with respect to any arbitrary
point on the images

• teleporting to any part of the image by
clicking on the overview map

• playing an animation movie or slide
show, by cycling through a set of
images

We have also implemented client-server
architecture using the Quanta networking API
[24] for third party communication from a laptop
or a tablet PC. A server process executing in a
separate thread on the master node, accepts
multiple TCP connections from third party
JuxtaView clients. Users executing these client
processes, presumably on laptops or tablet PC’s,
can request a mini-map of the entire image,
zoom in at a particular point and enter text
annotations which is routed through the server
on the master node to be pasted onto the image
on the tiled display. The annotations serve to
identify interesting areas in an image.

4. LambdaRAM

LambdaRAM is based on the concept of
Network Memory. Prior work in Network
Memory (NetRAM) has mainly focused on local
area or system area networks because there
simply has never been sufficient bandwidth over
a wide area network to carry data from memory
to memory at rates that are close to memory
access rates [25]. The high bandwidth photonic
networks interconnecting components on the
Optiputer makes NetRAM over wide areas
practical. The concept behind NetRAM is to
provide a massive pool of physical memory that
is distributed over separate computers which are
interconnected using high speed photonic
networks. For example, while a intra-cluster
interconnection network such as Myrinet can
have as much as a Gigabit of bandwidth with a
latency of a few microseconds, photonic
networks used by LambdaRAM will have a
bandwidth of 10 Gigabits/s and latencies of
approximately 2-5ms; whereas a SCSI disk drive
only has 300Mbits of bandwidth with an average
seek time of 8-9 ms [6]. Therefore in scenarios
where data to be stored is too high for local disk

storage, using NetRAM to move data between
sites with high bandwidth connectivity, becomes
an attractive option. LambdaRAM provides a
read-only data cache, which fits most
visualization and data mining applications where
the original data is rarely modified. Application
developers using LambdaRAM can specify the
partitioning of data on distributed workstations
to maximize locality of reference. The latency
involved in long distance photonic networks
limited by the speed of light, can be overcome by
LambdaRAM through aggressive pre-fetching
schemes, providing data to applications
hopefully before it is accessed.

4.1 Data Partitioning for JuxtaView

For the local area case of LambdaRAM, the
memory pool managed by LambdaRAM on each
node is split into two parts – the Lambda Cache,
which consists of the portion of the original data
assigned to a node and a Local Cache, which
consists of data obtained from remote nodes,
cached locally for the application. The data
stored in the cache is in turn organized in fixed
sized blocks of smaller size, as in a paging
scheme, to increase the granularity of
management.

JuxtaView specifies a two dimensional
partitioning for LambdaRAM, maintaining a
logical spatial locality in proportion to the ratio
of image sub-division on the tiled display. The
general partitioning strategy can be sketched as
follows:

Image Dimensions = M x N pixels, where M
is the number of columns and N is the
number of rows
Tile-display resolution = m x n pixels,
typically (M x N) >> (m x n), the image
being much larger than the tile-display
resolution
Tile-display layout = a x b, where a is the
number of tiles in a row and b is the number
of tiles in a column
Number of nodes in the cluster driving the
tile-display= P, where a x b =P, in a simple
case where each node drives one tile of the
display
Total Cache size of LambdaRAM on each
node = X
Lambda Cache = L1 = M/a x N/b, sub-
divided into smaller blocks of size y x z
Local Cache, L2 = X – L1, used for caching
data locally for applications. This portion is

 5

also used to store data pre-fetched from
remote nodes
Thus every node explicitly knows the data

partition and fetches data from the remote node
on demand, to satisfy a memory request.
LambdaRAM’s intra-cluster communication is
implemented using TCP scatter-gather
mechanisms provided by the Quanta networking
API, for gathering data distributed on other
nodes of the cluster. Over a wide area network,
LambdaRAM data transfer module would take
advantage of protocols such as Reliable Blast
UDP provided by Quanta [5], instead of TCP.

4.2 Cache Management

The Cache Management module in
LambdaRAM comprises of the following:
a. Data-Server

The data-server thread services requests
from other nodes, for data present in its Lambda
Cache. The smallest unit of data transfer is one
block of data, which can be specified by the user.
b. Data-Client

The Data-Client is the interface used by
applications like JuxtaView to request data. The
Data-Client checks if the data requested is
contained in either the Lambda Cache or the
Local Cache. In the case of a hit, the pointer to
the memory requested is returned. In the case of
a miss, requests are sent to remote nodes which
contain the data blocks. Once the data blocks are
received, a pointer to the memory requested is
returned back to the application.
c. Cache Replacement

LambdaRAM currently implements a Least
Recently Used (LRU) block replacement strategy
for garbage collection in the Local Cache area.
Each data request made by the application is
identified using an Operation Id (OID).
d. Data Pre-fetcher

We have implemented a data pre-fetching
scheme based on the locality of reference of the
data. When a block of data is accessed, the
adjacent blocks surrounding the requested block
are also pre-fetched from remote memory. We
have experimented with different block sizes in
order to determine the optimal balance of high
hit ratio and memory usage.

Our current design of LambdaRAM assumes
that the image fits into the collective memory of
a PC cluster.

5. Results

We conducted experiments to quantify the
performance of JuxtaView on a 16 node Intel
Xeon 1.8 GHz cluster running a Red Hat Linux
2.4.18-3smp kernel, with 512 MB RAM, 512KB
cache and using NVIDIA GeForce4 graphic
cards. The dataset used for our experiments was
a 1.8 GB image file of dimensions 30,000 x 15,
000 pixels, showing aerial photography of the
Chicago downtown area at 1 foot resolution.

We provide comparative results of loading
the image in JuxtaView using a mmap API,
traditionally used for out-of-core visualization in
image viewers such as ImageMagick [19], versus
using LambdaRAM to use the collective
distributed memory of the cluster. The dataset
was replicated on all the individual disks of the
nodes in the mmap case, in order to increase disk
access speed.

We performed hundred random pan and
zoom operations and recorded the latencies for
the operations. The latency calculations in our
results indicate the time taken by JuxtaView to
complete the data access and computation,
recorded just before drawing. The value used is
the maximum (worst case) latency among all the
nodes in the cluster, since that is the
synchronization cost for displaying the image on
the tiled display. The following were the test
cases:
1. Panning: The image was panned at full

resolution, and the image area requested was
the same as the area to be displayed on the
screen. The latency of panning reduces as
the image areas already visited are accessed
again, for example when a user pans right
and left immediately.

2. Zooming: The zoom operations in this test
are performed by choosing any point in the
image to teleport to, and zooming in at full
resolution and followed by two zoom out
operations to examine a larger area of the
image. Tele-porting to an arbitrary point in
the image to zoom in triggers a random
memory accesses into the image, usually
resulting in the peak latencies shown in the
graphs.

3. Pre-fetching: In this case LambdaRAM
fetched adjacent blocks surrounding the data
requested, so that the subsequent pan or
zoom operation would find the data in the
local cache. We found pre-fetching to be
useful in reducing the latencies further. The
test results are tabulated:

 6

In summary, we find that the LambdaRAM
version of JuxtaView outperforms the mmap
version by a factor of 2 in most cases. The
graphs obtained from the tests are plotted below.
The graphs show a histogram of operations lying
in different ranges of latencies. A normal curve
is provided in each graph to show the
distribution of numbers around the mean latency.

Summary of results

2.03

5.92

2.14

5.98

1.13 1.01

2.62

3.95

2.22

0.93 0.89

2.42

0
1
2
3
4
5
6
7

Panning
Average

case

Panning
worst
case

Zooming
average

case

Zooming
worst
case

La
te

nc
ie

s
(s

ec
on

ds
)

MMap

LambdaRAM

LambdaRAM with pre-fetching

Figure 3: Summary of results

Figure 4: Panning using MMap:
Approximately 70% of the latencies lie
in the range of 1.8 – 3.8 seconds

Figure 5: Panning using LambdaRAM:
Approximately 70% of the latencies lie
in the range of 0.5 – 1.5 seconds

Figure 6: Panning using LambdaRAM
with pre-fetching: About 70% of the
latencies lie in the range of 0 – 1 second

Figure 7: Zooming using mmap: The
latencies are more evenly distributed,
with 25% lying in the range of 0-0.5
seconds, 25% between 0.5-2 seconds
and 30% between 2-4 seconds

 7

Figure 8: Zooming using LambdaRAM:
Approximately 70% of the latencies lie
in the range of 0 – 1 second

Figure 9: Zooming using LambdaRAM
with pre-fetching: Here too, about 70%
of the latencies lie in the range of 0 – 1
second

6. Current Applications and Future

Work

JuxtaView is being used by US Geological
Survey (USGS) for Geosciences’ applications
involving satellite imagery and aerial
photography. The Institute of Geophysics and
Planetary Physics at the Scripps Institution of
Oceanography [26] employs JuxtaView to
analyze IKONOS[27] satellite imagery, aerial
photography and panoramic images from the
Mars Rover missions. The National Center for
Medical Imaging and Research (NCMIR) [28]
uses JuxtaView to visualize large cerebral
montages obtained from Confocal Microscopy.
We are also working with the Joint
Oceanographic Institutes [29] in using
JuxtaView to visualize images of extremely long

core samples extending to several miles,
obtained by drilling ocean and lake beds.

We have loaded image sizes up to 15 GB,
corresponding to a 65,000 X 55,000 pixel aerial
photography image on our 3 node 64 bit Opteron
cluster. In future, as we proceed towards a tera-
byte scale of data, we need to introduce an
additional layer in LambdaRAM to pre-fetch
data stored on disk at distributed sites. Moreover,
intuitive user interfaces are needed to roam
through them, at various resolution levels
specified by the user.

LambdaRAM should be able to load
portions of a big image dataset, using a
configuration provided by the user. The dataset
configuration would specify mapping from the
image space to a specific image file and an IP
address to indicate the location of the file on a
remote site. More intelligent data pre-fetching
schemes that adapt to the memory access
patterns in an image will increase the efficiency
of LambdaRAM.

In serving the Geosciences community, we
are currently implementing overlaying of
multiple geo-referenced images with different
transparency levels to merge different types of
data from the same geographical location. We
have developed a prototype Optiputer test-bed
between Chicago and Amsterdam over OMNInet
[30], the Optical Metropolitan Network
Initiative, currently deployed in Chicago and
Evanston, linked to StarLight [31] and a
transatlantic high-performance link provided by
SURFnet [32], on to NetherLight in Amsterdam
[33]. We are currently conducting LambdaRAM
experiments using JuxtaView on this test-bed
between Chicago and Amsterdam, with a cluster
of computers at Amsterdam serving as a data
source for images, visualized at EVL in Chicago
on our GeoWall2.

7. Conclusion

We have presented JuxtaView, an
interactive visualization tool for large imagery
on scalable tiled displays. JuxtaView presents a
new distributed memory approach for out-of-
core visualization of image datasets that do not
fit on the memory of a single computer. We have
provided results to show that LambdaRAM
outperforms memory mapped IO by at least a
factor of 2. We have also prototyped
LambdaRAM as a network level cache to
provide seamless access to distributed data
storage. The experience in integrating JuxtaView

 8

and LambdaRAM will help designing other
visualization applications over the Optiputer.

8. Acknowledgements

The advanced networking and visualization
research, collaborations, and outreach programs
at the Electronic Visualization Laboratory (EVL)
at the University of Illinois at Chicago are made
possible by major funding from the National
Science Foundation (NSF), awards EIA-
9802090, EIA-0115809, ANI-9980480, ANI-
0229642, ANI-9730202, ANI-0123399, ANI-
0129527, EAR-0218918, as well as the NSF
Information Technology Research (ITR)
cooperative agreement (ANI-0225642) to the
University of California SanDiego (UCSD) for
"The OptIPuter" and the NSF Partnerships for
Advanced Computational Infrastructure (PACI)
cooperative agreement (ACI-9619019) to the
National Computational Science Alliance. EVL
also receives funding from the US Department of
Energy (DOE) ASCI VIEWS program and by
the Office of Naval Research through an award
from the Technology Research Education and
Commercialization Center (TRECC). In
addition, EVL receives funding from the State of
Illinois, Microsoft Research, General Motors
Research, and Pacific Interface on behalf of NTT
Optical Network Systems Laboratory in Japan.
The USGS Land Remote Sensing Program and
the Cooperative Topographic Mapping (CTM)
Program fund Information Technology Research
at the EROS Data Center, concentrating on
Scientific Visualization Investigations.

9. References

[1] The EROS Data Center (EDC), USGS,

http://edc.usgs.gov/
[2] The National Map, US Geological Survey

http://nationalmap.usgs.gov
[3] The GeoWall 2,

http://www.evl.uic.edu/cavern/optiputer/geowall2
.html

[4] T.A. DeFanti, J. Leigh, M.D. Brown, D.J. Sandin,
O. Yu, C. Zhang, R. Singh, E. He, J.
Alimohideen, N.K. Krishnaprasad, R. Grossman,
M. Mazzucco, L. Smarr, M. Ellisman, P.
Papadopoulos, A. Chien, J. Orcutt,
“Teleimmersion and Visualization with the
OptIPuter,” Proc. of the 12th International
Conference on Artificial Reality and Telexistence
(ICAT 2002), The University of Tokyo, Japan,
December 3-6, 2002, to be published by
Ohmsha/IOS Press

[5] Eric He , Jason Leigh , Oliver Yu , Thomas A.
DeFanti, Reliable Blast UDP: Predictable High
Performance Bulk Data Transfer, Proceedings of
the IEEE International Conference on Cluster
Computing, p.317, September 23-26, 2002

[6] C. Zhang, J. Leigh, T. A. DeFanti, TeraScope:
Distributed Visual Data Mining of Terascale Data
Sets over Photonic Networks, .In Future
Generation Computer Systems, Elsevier Science
Press. 2003

[7] Adobe Photoshop software,
http://www.adobe.com/products/photoshop/main.
html

[8] Gimp, The GNU Image Manipulation Program,
http://www.gimp.org

[9] ImageMagick image manipulation toolkit and
API, http://www.imagemagick.org/

[10] ArcView GIS and mapping software and the
ArcGIS suite of tools,
http://www.esri.com/software/arcgis/arcview/ind
ex.html

[11] VLiv desktop image viewer for large images,
http://delhoume.frederic.free.fr/vliv.htm

[12] IBM T221 display,
http://www.research.ibm.com/deepview/

[13] Hereld, I. R. Judson, and R. L. Stevens,
"Introduction to Building Projection-based Tiled
Display Systems," IEEE Computer Graphics &
Applications, vol.20, pp. 22 - 28, 2000

[14] Y. Chen, H. Chen, D. W. Clark, Z. Liu, G.
Wallace, K. Li., “Software environments for
cluster-based display systems”, First IEEE/ACM
International Symposium on Cluster Computing
and the Grid, May 2001

[15] Virtual Network Computing,
http://www.uk.research.att.com/archive/vnc/

[16] Greg Humphreys, Mike Houston, Ren Ng, Sean
Ahern, Randall Frank, Peter Kirchner, and James
T. Klosowski, Chromium: A Stream Processing
Framework for Interactive Graphics on Clusters
of Workstations. ACM Transactions on Graphics
(Proceedings of SIGGRAPH 2002), pp 693-702,
July 2002

[17] Justin Blinns, Michael E. Papka, Rick Stevens,
Cluster-based image viewer
http://www.fusiongrid.org/research/papers/hpdc0
2-viewer.pdf

[18] Tiled Image Viewer (TimV),
http://graphics.ucsd.edu/~cdonner/timv/

[19] Image Magick FAQ,
www.imagemagick.com/www/FAQ.html#C9

[20] MPICH implementation of the Message Passing
Interface (MPI),
http://www-unix.mcs.anl.gov/mpi/

[21] Open GL cross platform graphics library
http://ww.opengl.org

[22] GL Utility Toolkit (GLUT),
www.opengl.org/resources/libraries/glut.html

[23] Simple DirectMedia Layer (SDL),
http://www.libsdl.org

[24] Eric He, Javid Alimohideen, Josh Eliason,
Naveen Krishnaprasad, Jason Leigh, Oliver Yu,

 9

http://edc.usgs.gov/
http://nationalmap.usgs.gov/
http://www.evl.uic.edu/cavern/optiputer/geowall2.html
http://www.evl.uic.edu/cavern/optiputer/geowall2.html
http://www.adobe.com/products/photoshop/main.html
http://www.adobe.com/products/photoshop/main.html
http://www.gimp.org/
http://www.imagemagick.org/
http://www.esri.com/software/arcgis/arcview/index.html
http://www.esri.com/software/arcgis/arcview/index.html
http://delhoume.frederic.free.fr/vliv.htm
http://www.research.ibm.com/deepview/
http://www.uk.research.att.com/archive/vnc/
http://www.fusiongrid.org/research/papers/hpdc02-viewer.pdf
http://www.fusiongrid.org/research/papers/hpdc02-viewer.pdf
http://graphics.ucsd.edu/~cdonner/timv/
http://www-unix.mcs.anl.gov/mpi/
http://ww.opengl.org/
http://www.opengl.org/resources/libraries/glut.html
http://www.libsdl.org/

Thomas A. DeFanti, “Quanta: A Toolkit for High
Performance Data Delivery over Photonic
Networks,” Journal of Future Generation
Computer Systems (FGCS), Elsevier Science
Press, Volume 19, Issue 6, August 2003, pp. 919-
934

[25] K. Li. IVY: A Shared Virtual Memory System
for Parallel Computing. In Proceedings of the
International Conference on Parallel Processing,
1988

[26] The Scripps Institution of Oceanography,
http://www.igpp.ucsd.edu/

[27] IKONOS Satellite imagery,
http://www.spaceimaging.com/

[28] The National Center for Medical Imaging and
Research (NCMIR), University of California, San
Diego, http://ncmir.ucsd.edu/

[29] Joint Oceanographic Institutions,
http://www.joiscience.org

[30] http://www.icair.org/omninet
[31] http://www.startap.net/starlight
[32] http://www.surfnet.nl
[33] http://www.uva.nl

 10

http://www.igpp.ucsd.edu/
http://www.spaceimaging.com/
http://ncmir.ucsd.edu/
http://www.joiscience.org/
http://www.icair.org/omninet
http://www.startap.net/starlight
http://www.surfnet.nl/
http://www.uva.nl/

