
PAVIS – Pervasive Adaptive Visualization and
Interaction Service

Javid Alimohideen, Luc Renambot, Jason Leigh, Andrew Johnson
Electronic Visualization Laboratory

Robert L. Grossman, Michal Sabala
Laboratory for Advanced Computing
University of Illinois at Chicago

Chicago, IL 60607

Abstract
Prior research efforts have focused on the
development of techniques for rule-based
automated generation of either visualizations or
user-interfaces. There is, however, little focus on
adaptive visualization and interaction to provide a
system that is capable of dealing with complex
visualization and automated user-interface
generation simultaneously. In this paper, we
present our objectives in the development of new
system so called PAVIS – Pervasive Adaptive
Visualization and Interaction Service, an adaptive
system that intends to automatically generate
visualization and context-sensitive user-
interfaces that are best suited for the display
device. Based on the user’s environment, display
devices may vary widely from cell-phones,
desktop computers to high-resolution tiled
displays. A context-sensitive environment can
respond to changes in visualization or data
context by accommodating techniques to change
the interface at run-time. Here, we describe our
design goals and an initial case study.

Keywords: Adaptive Visualization, Dynamic User-
Interfaces, Display Resolution, Scalable Rendering.

1. Introduction
Visualization provides a powerful mechanism for
assisting in the interpretation of complex data.
The form the visualization takes can therefore
have dramatic impact on how effectively the data
is interpreted [4]. Substantial advances in
computing, networking and displays have
enabled significant advances in our ability to
process and visualize large volumes of data.
However, our desire to access these
visualizations have also increased. Users are no
longer satisfied uniquely with desktop displays.
They would like to be able to see and interact
with the visualizations on portable devices such
as cell-phones, PDAs, laptops, as well as large
ultra-high-resolution tiled displays driven by
clusters of computers. This is an extremely
challenging problem for the application developer
because expertise in program development,
system architecture, visualization and user-
interface design is needed to enable a successful
“port” of the application to these various display
systems. A trivial approach would be to constrain
the solution to one that meets the lowest

common capabilities of all the systems (e.g. an
image on a web-browser.) A more intelligent
approach that would bring about greater benefits
would be to consider the limitations and
capabilities of each class of visualization system
and produce visualization and user-interface that
takes special advantage of those capabilities.
Recognition of these issues has given rise to
work in automated generation of graphical
representations and user-interfaces [4, 5].

In this paper, we present PAVIS – the Pervasive
Adaptive Visualization and Interaction Service, a
rule-based system that intends to automatically
generate visualization and user-interfaces that
are best suited for the display device. The
scenario presented in this paper uses the
Pantheon Gateway Testbed [10] as its main
source of data. The US Army’s Pantheon Project
seeks to develop a system that processes real-
time sensor data using data-mining algorithms to
predict impending events and to distribute alerts
to troops in the field as well as analysts and high-
level decision makers. The Pantheon Gateway
Testbed enables the testing of developed
techniques by using non-classified data from the
830 highway traffic sensors in the city of Chicago,
including weather data and text messages about
events that might affect traffic [10]. While the
developed techniques are fundamentally targeted
for the Army, the testbed can provide immediate
benefits for everyday citizens. For example, this
real-time information could be useful to a person
driving on an expressway who needs to obtain an
estimate on his travel time to a destination; or it
can predict when the city should mobilize
snowplows in anticipation of an incoming storm.

2. Related Work
Rule-based techniques help modern visualization
software systems support a wide variety of
choices for mapping, manipulating and rendering
data [1]. Rules define high-level policies and are
used to automatically select and tune the
visualization routines based on application
requirements and available resources such as
computing and networking [2]. A vast majority of
research has been done on identifying several
rule-based techniques for automated
visualization and user-interface generation. In
Rogowitz and Trenish [1], an architecture for

incorpo
visualiz
based
flexibilit
comput
develop
interfac
SUPPL
an optim
created
specifie
widgets
selectio
reductio

Though
automa
adaptiv
system
generat
devices
overvie
compon
prototyp

3. Ar
PAVIS
Interpre
model.
compos
and U
Service
Scalabl

Figure 1 - PAVIS Architecture.
rating perceptual rules into the
ation process was introduced. A rule-
visualization sub-system to improve the
y of wide-area network-based
ational steering collaboratory was
ed in [2]. Recent automated user
e generation tools were developed:
E [11] considers interface generation as

ization problem, iCrafter [12] uses hand-
 templates, XIML [4] relies on user-
d size constraints in choosing appropriate
, and TIMM [8] is a system for automatic
n of interactors to accommodate
n in screen size.

 much has been developed for both
ted user-interface generation and
e visualization, some applications need a
 that can both adaptively visualize and
e user interfaces for a variety of display
. In the following sections, we will give an
w of the PAVIS architecture, discuss the
ents in detail, and finally describe some
e results.

chitecture
(Pervasive Adaptive Visualization and

tation Service) is based on a client/server
The core architecture (Figure 1) is

ed of four components: the Visualization
ser Interface Engine, Data Filtering
, Interface Generation Service and
e Rendering Service. This gathering of

services decouples the visual- and user-interface
creation from the display device so that thin-
clients (clients with minimal computing capacity)
can be handled.

The Visualization and User-Interface Engine
This module is responsible for coordinating
between the data source, information about the
capabilities of a device (PDA, tiled display etc)
and a specification of rules for handling the
salience of information. The visualization and
user-interface engine retrieves the raw data and
related information from the Pantheon gateway
server (Figure 1). The related information
includes structure of the data, relative salience of
the data attributes and the data-specific
visualization rules. Information about the display
device, such as screen resolution and networking
capabilities are obtained from the devices. These
data- and device-specific rules are efficiently
merged and filtered to obtain a new set of rules
that act as an input to the data-filtering and user-
interface generation service. As an example from
our scenario, the data rule set could specify
priorities to data attributes such as: alerts have
higher priority than events and based on the
device information for a cell phone, a new filtered
rule is dynamically generated which specifies
“display alerts only” and updates user-interface
related rules to include only relevant widgets.

Figure 2 - PDA user visualizing real-time change in
traffic congestion.

Figure 3 - 100-Megapixel tiled display depicting real
time traffic alerts (white circles)

The Data Filtering Service
This module performs data filtering on the raw
data based on the filtered rules obtained from the
visualization and user interface rule engine. In
our scenario, if there are several alerts occurring
around a small radius, displaying all the alerts on
a cell phone makes it un-interpretable. A possible
alternative is to mark the whole region of that
radius as an area of importance and as the user
zoom level changes, display the individual alerts
based on the available display area. Moreover,
separate color schemes to identify the alerts with
different priority could be applied. To achieve this
kind of interactive and adaptive behavior, efficient
data filtering must be applied based on several
constraints such as display area, user’s area of
interest, and data-specific attributes.

The User Interface Service
The goal is to develop a mechanism for the
generation of user interfaces that are suited to a
variety of display screens [7], ranging from the
powerful tiled displays to the small cellular
phones. Each platform has its own constraints:
some devices are immobile (e.g., a desktop
computer) while others are mobile (e.g., PDA);
some support extensive graphical capabilities [6]
(e.g., wide-band tiled displays). Several user
interfaces need to be developed in order to
handle this wide range of clients. The user
interface engine has a generic rule set built-in,
which is then tailored according to the user’s
device capabilities based on the filtered rules.
Also, an adaptive user-interface based on
visualized data context can be generated. For
instance, to perform magnification operations, a
desktop application could be equipped with a
slider, whereas a PDA could use the stylus, and
a cell phone could use up/down navigation
buttons to obtain the same degree of interactivity.
As mentioned in the data filtering section,
detailed individual alerts on a magnified level can
be made interactive by changing the user
interface at run-time to handle mouse events on
a regular desktop; on a cellular phone, alerts

would be numbered and keypads could be used
to interact with individual alerts.

The Scalable Rendering Service
Graphical capabilities of the clients vary widely
requiring applications to have the capability to
perform scalable rendering. By scalability, we
mean the system should be able to render data
from few thousand pixels to hundreds of
megapixels, or from a few primitives to several
hundred of thousands primitives. For instance, a
PDA client may need only 280 x 320 pixel
resolution, whereas a wide-band display might
need an image as large as 4000 x 4000 pixels.
The challenge of achieving high-quality and fast
rendering outputs can be handled by the use of
distributed rendering techniques (e.g., using
parallel rendering cluster).

4. Current Status
A proof-of-concept prototype was developed
manually. It can handle multiple PDA clients and
tiled displays with minimal data filtering
techniques and generation of visualizations. The
processed sensor data is obtained from the
Pantheon Gateway Testbed in the form of flat
text files and were filtered using pre-defined rules
to indicate change in regions of congestion,
volume, speed and occupancy. The same
procedure is performed on alert, event and
weather data input.

PAVIS is designed around XML-based rule sets
that specify the data structure, the relative
salience of the data attributes and high-level
policies (e.g., data attribute X is more important
than Y). The reason for choosing XML, as the
primary input to the system, is that it could be
dynamically integrated with the SVG based
visualization routines and with languages like
XIML [4] for automated user interface generation.
The current prototype uses Batik’s [15] SVG
rendering capabilities, and the-user interface
components were built using Sun JFC/Swing
toolkit [16]. Figures 2 and 3 illustrate users

interacting with both a PDA and a high-resolution
tiled display to visualize real-time Chicago traffic
conditions. The user interfaces were built by
hand using Eclipse user interface editor [19] for
the tiled display client, and with IBM Studio
Device Developer [18] for the PDA. For the high-
resolution tiled display, visualizations were
managed using SAGE (Scalable Adaptive
Graphics Environment), a graphics streaming
architecture supporting high-resolution
collaborative scientific visualization [17]. Figure 4
shows the real-time congestion map with several
layers enabled (e.g., alerts, events, mobile
sensors and predicted accidents). Designing user
interfaces and visualizations by hand individually,
for a PDA and a tiled display was very time
consuming and tedious, hence paving the way for
a system such as PAVIS.

Figure 4 - Real-time traffic congestion map

Acknowledgements
This work was supported in part by the U.S Army
Pantheon Project and National Science
Foundation. The Electronic Visualization
Laboratory (EVL) at the University of Illinois at
Chicago specializes in the design and
development of high-resolution visualization and
virtual-reality display systems, collaboration
software for use on multi-gigabit networks, and
advanced networking infrastructure. This material
is based upon work supported by the National
Science Foundation (NSF), awards CNS-
0224306, CNS-0420477, OCI-0229642 and OCI-
0441094, as well as the NSF Information
Technology Research (ITR) cooperative
agreement (OCI-0225642) to the University of
California, San Diego (UCSD) for "The
OptIPuter." EVL also receives funding from the
National Institutes of Health, the State of Illinois,
the Office of Naval Research on behalf of the
Technology Research, Education, and
Commercialization Center (TRECC), and Pacific
Interface on behalf of NTT Optical Network
Systems Laboratory in Japan. Any opinions,
findings, and conclusions or recommendations
expressed in this publication are those of the
authors and do not necessarily reflect the views
of the funding agencies and companies.

References
[1] B. Rogowitz, L. Trenish, An architecture for rule

based visualization, Proc of the fourth conference
on Visualization’93, San Jose, California, 1993, pp
236-243

[2] L. Jiang, H. Liu, M. Parashar, D. Silver, Rule-Based
Visualization in a Computational Steering
Collaboratory. International Conference on
Computational Science 2004: 58-65

[3] S. Lok and S. Feiner, A survey of automated layout
SmartGraphics Symposium '01, pages 61--68, Mar.
2001.

 [4] A. Puerta and J. Eisenstein, XIML: A Common
Representation for Interaction Data. In Proceedings
of the 7th international conference on Intelligent user
interfaces, pp. 214-215, 2002.

5. Conclusion and Future Work
We have presented PAVIS, an approach for
performing adaptive visualization and user-
interface generation based on device-specific
information (e.g., resolution, networking
capability). With this system, applications will be
able to handle clients irrespective of their working
environments and help users to visualize data
and interpret meaningful information. Not only
display characteristics can be expressed in
PAVIS, other domain could be considered such
as networking capabilities and power
management, which are crucial to mobile
devices. Hence, a deeper analysis of rule based
visualization and interaction approach is needed
to provide a more comprehensive system. This
architecture also needs to be applied to a variety
of domain specific data sources to prove the
versatility of this approach.

[5] S. Fiener, J. Mackinlay, and J. Marks, Automating
the design of effective graphics.Tutorial notes. AAAI
’93, Washington DC, July 11-16, 1993.

[6] J. Eisenstein, J. Vanderdonckt, A. Puerta, Applying
Model-Based Techniques to the Development of
UIs for Mobile Computers, Proceedings on
Intelligent User Interfaces, Santa Fe, 2001.

[7] M. Satyanarayanan, Fundamental Challenges in
Mobile Computing, Proc of the fifteenth annual
ACM symposium on Principles of distributed
computing, ACM Press, New York, 1996, pp-17

[8] J. Eisenstein and A. Puerta, Adaptation in
Automated User Interface Design, Proc of IUI’2000
(New Orleans, 9-12 January 2000), ACM Press,
New York, 2000, pp 74-81

[9] J. Vanderdonckt, L. Bouillon, and N. Souchon,
Flexible Reverse Engineering of Web Pages with
VAQUISTA. Proceedings of the IEEE 8 th Working
Conference on Reverse Engineering. Stuttgart,
October 2-5, 2001. IEEE Press, pp. 241-248.

[10] R. Grossman, M. Sabala, J. Alimohideen, A.
Aanand, J. Chaves, J. Dillenburg, S. Eick, J. Leigh,
P. Nelson, M. Papka, D. Rorem, R. Stevens, S.
Vejcik, L. Wilkinson, and P. Zhang, Real Time
Change Detection and Alerts from Highway Traffic
Data. ACM/IEEE SC 2005 Conference (SC'05).

[11] S. Ponnekanti, B. Lee, A. Fox, P. Hanrahan, and T.
Winograd, ICrafter: A service framework for
ubiquitous computing environments. Lecture Notes
in Computer Science, 2201:56--??, 2001.

[12] K. Gajos, D. Weld, SUPPLE: Automatically
Generating User Interfaces. In Proceedings of
IUI'04. Funchal, Portugal, 2004.

[13] K. Gajos, D. Weld, Automatically Generating User
Interfaces For Ubiquitous Applications. In Workshop
on Ubiquitous Display Environments, Nottingham,
UK, 2004.

[14] http://www.w3.org/XML/
[15] http://xml.apache.org/batik/index.html
[16] Java Foundation Classes: Now and the future,

Whitepaper,
http://java.sun.com/products/jfc/whitepaper.html

[17] B. Jeong, R. Jagodic, L. Renambot, R. Singh, A.
Johnson, J. Leigh. Scalable Graphics Architecture
for High Resolution Displays. Presented at IEEE
Information Visualization Workshop 2005,
Minneapolis, MN, 10/24/2005

[18] IBM Websphere Studio Device Developer.
http://www-306.ibm.com/software/wireless/wsdd

[19] http://www.eclipse.org/

http://www.w3.org/XML/
http://xml.apache.org/batik/index.html
http://java.sun.com/products/jfc/whitepaper.html
http://www-306.ibm.com/software/wireless/wsdd

	Abstract
	Keywords: A
	The Visualization and User-Interface Engine
	The Data Filtering Service
	The User Interface Service
	The Scalable Rendering Service
	4. Current Status
	5. Conclusion and Future Work
	References

