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Abstract

We present a technique to obtain texture-mapped models of real scenes

with a high degree of automation using only a video camera and an over-

head projector. The user makes two passes with a hand-held video camera.

For the �rst pass the scene is under natural illumination, and a structure-

from-motion technique recovers coarse scene geometry and textures. For

the second pass a grid of lines is projected onto the scene which allows us to

acquire dense geometric information. The information from both passes is

automatically combined and a �nal model consisting of the dense geometry

of the scene and a properly registered texture is created.
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1 Introduction

The process of creating real-world scene models for inclusion in virtual

environments is currently a very labor intensive task. Usually all of the ob-

jects in the scene have to be measured precisely and then manually recreated

using modeling software, including hand registering photographs for use as

texture maps. Recently there has been a great deal of interest in creating

models from the real world based solely on photographs or video.

There are several current approaches. Image-based techniques, Light

Field (Levoy and Hanrahan 1996) and the Lumigraph (Gortler et al. 1996)

generate new views of a scene without recovering the scene geometry. They

require a tremendous amount of storage and even a simple scene in an

uncompressed form takes over 1GB of memory. The Light Field method

requires additional hardware: a stepping motor and motion platform. The

Lumigraph approach requires full camera calibration that involves com-

puting both the intrinsic and extrinsic camera parameters for each camera

location. In the recently proposed hybrid geometry- and image-based ap-

proach (Debevec et al. 1996), the user creates a coarse model of scene from

a set of geometric primitives and then manually matches edges in the model

to the edges in the photographs. The algorithm then �nds the precise di-

mensions of the model based on images. However the coarse modeling is

not automated and the whole process is only a small improvement over the

traditional modeling. Yet another approach to create models is to use laser

scanners (Cyberware 1997) but these scanners work only with small objects,

and they are very expensive if capable of modeling human-size objects.



Figure 1. An example of structure light: a grid of lines projected

onto the scene.

Our method consists of two videotaped passes performed with a hand-

held camera. The �rst pass is executed under natural lighting conditions.

The features are automatically selected and tracked in the video images.

The 3D positions of features are then recovered using a structure-from-

correspondence technique. Often there are featureless areas in the scene

that will not become part of the reconstructed model as the recovered

model consists of a sparse set of 3D points. This is not satisfactory because

we want to obtain a much �ner geometry of the scene. So, we perform a

second video pass in which we project a dense grid of light onto the scene

(Fig. 1). The line crossings created with the light are easy to select and

track. Again, a structure-from correspondence approach is used to recover

the 3D locations of these arti�cial features. This combines the ability to

easily �nd corresponding points from a small baseline approach, with the

more accurate positional information from a large baseline approach.
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Figure 2. The proposed method

To realistically represent the original scene we need to texture map the

model. The simplest approach would be to use an image from the second

pass as the texture, because the texture coordinates of feature points are

easy to calculate. However the images are altered by the projected grid and

cannot be use as a texture. As both video passes were performed with a

hand-held camera, the models are not registered and could be at di�erent

scales. However, since they describe the same scene, we can align them

automatically and then use an image from the �rst pass as a texture for

the model generated from the second pass.

2 Detailed Description of Solution

Fig. 2 shows an overview of the method, and each step is explained in

the following paragraphs. We start by describing the camera calibration, as

this procedure is essential for other steps of the method to succeed. Then,

the �rst and second video passes are discussed. Finally, the registration



and calculation of texture coordinates is described.

2.1 Intrinsic Camera Calibration

Virtually all methods that recover 3D information from images have to

know how the points in the scene are mapped to the image. This mapping

depends on two sets of parameters: the location of the camera in the scene

and the camera's internal parameters. These parameters are obtained dur-

ing the external and internal camera calibration respectively. The method

presented here requires only intrinsic calibration and the camera's internal

parameters do not change during the videotaping. The user performs this

calibration only once for the camera used in this process.

The camera is described by a simple pin-hole model. In this model, the

position of a 3D point (x; y; z) and its image ( U
W
;
V
W
) is described by the

following equation:
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The matrix contains all of the important parameters of the camera: the

size of a single pixel (sx; sy), the e�ective focal length (f) and the image

center (Cx; Cy). A standard method for camera calibration is placing a

large number of targets in front of the camera, so they �ll the camera

image. Then the image is recorded and the locations of the targets in

the image are found. The camera parameters are calculated based on the

target's 3D world locations and the corresponding locations in the image



(Tsai 1987; Heikkila and Silven 1997).

2.2 First Pass

We videotape the scene with a hand-held video camera under natural

lighting conditions, keeping the interesting areas of the scene in the camera

view. We have to move the camera's position signi�cantly, panning is not

enough. In general we moved the camera approximately on an arc around

the scene, always pointing it at the center of the scene.

2.2.1 Feature Selection and Feature Tracking

After digitizing the video sequence, the software �nds the feature points in

the �rst video frame. Features normally are of high contrast such as corners

and edges. A plain wall on the other hand doesn't have features because it

is of a slowly varying or uniform intensity.

The next step is to track the selected features across the video sequence.

Because the images are recorded at the rate of 30 pictures per second,

the camera viewpoint doesn't change dramatically from frame to frame.

Therefore sequential images are very similar, and the corresponding features

are nearly at the same locations in both images. In this case, the software

can track a feature from frame to frame.

Our method uses Kanade-Lucas-Tomasi (Birch�eld 1998) feature track-

ing software that combines the feature selection and tracking processes.

The features are selected depending on how well they can be tracked. This

algorithm also detects some occlusions and features that do not correspond



to points in the world.

No known tracking algorithm works perfectly. Features can become oc-

cluded, be lost by the tracker, or tracked incorrectly. An occluded feature

ought to be dropped by the tracker, but it is di�cult to recognize every

occlusion automatically. Incorrect tracking occurs when there are similar

areas close together and an incorrect one is assumed to be a match. This

introduces a false match. Another case is when a feature appears di�erently

in successive images due to lighting or shadows, and the tracker is not able

to match it correctly. A di�erent problem is false features, such as edge

partially occluding another edge that is farther away or a specular reection

on a surface. These are not real 3D features, because their locations in 3D

change during videotaping. Because of the above problems, some human

intervention in removing erroneous matches may be necessary. Usually this

involves no more than 10% of the tracked features. A visualization which

connects the tracked features by lines is created so that errors in tracking

are easy to identify.

Tracking features from frame to frame in a video sequence, we obtain

the locations of the features in the �rst frame and their corresponding lo-

cations in the last frame. These corresponding locations are from images

with signi�cantly di�erent viewpoints which enables a more accurate posi-

tion determination than would be possible from correspondence in adjacent

frames.



Figure 3. An example of a mesh generated for a 2D point set.

2.2.2 Structure from Correspondence

Based on the correspondence information and the camera's intrinsic prop-

erties, a structure-from-motion software (Zhang 1996) recovers 3D locations

of feature points. The basic requirement is it to have at least 8 correspond-

ing features. In practice, at least 15-20 corresponding points are necessary

to obtain meaningful data.

The recovered 3D points are in a speci�c coordinate system. The origin

of this system is the location of the initial camera location. Its axes are

aligned with the camera axes. The recovered 3D points are at a speci�c

scale factor. Based on a set of 2D images alone, we cannot determine the

absolute sizes of the photographed objects. However, this is not a problem

as there are objects of known size in the image.

2.2.3 Mesh Generation

So far we have obtained a set of 3D points, but representing a scene as

a set of points is not very compelling to a viewer. We want to render

the scene as a set of triangles or, preferably, texture mapped triangles. In



order to connect the 3D points into a set of triangles we need to consider the

relationship between features in the �rst image from the video. The features

in this image are 2D points, and we mesh them using Delauney triangulation

(Fig. 3). The triangles created in this fashion are 2D primitives, laying on

the same plane and not overlapping each other. Each of these 2D features

has its 3D equivalent after the structure-from-correspondence recovery. We

use the 2D connectivity obtained with the Delauney triangulation as the

way to mesh 3D points.

The procedure described so far would su�ce if enough feature points

were evenly distributed in the scene. However, this is rarely the case. Often

there are large featureless areas in scenes; for example, plain walls. These

areas are not going to be part of the constructed model, because they don't

contain features. These problems are the motivation for the second pass

videotaping.

2.3 Second Pass

In this pass, we arti�cially create a large number of evenly distributed

features in the scene using structured light. We do this by projecting a

grid of lines with an overhead projector onto the scene (Fig. 1). The grid

has a black background and white lines. In this manner we create arti�cial

features in all areas of the scene, even in areas which were featureless during

the �rst pass. The intersections of the grid lines show up very well on nearly

all surfaces and it is easy for the software to select and track the crossing

of such lines. The process then becomes very similar to the �rst pass. We



Figure 4. Camera paths and reconstructed 3D meshes.

calculate the 3D locations of the tracked features based on correspondence

and camera parameters and we mesh these 3D points using the Delauney

triangulation of corresponding 2 dimensional features. This generates a

dense model of the scene with vertices evenly distributed in all areas of the

scene.

2.4 Registration

After performing both passes, we obtain two 3D meshes. The �rst mesh

is sparse but contains 3D point locations as well as the corresponding tex-

ture. The second mesh is much more detailed, but has no associated tex-

ture. The goal now is to combine the information from these 2 passes and

obtain a dense texture mapped 3D mesh.

Both video passes were performed with a hand-held camera, so the cam-

era paths are di�erent (Fig. 4). The origin of each coordinate system is
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Figure 5. Two meshes describing the same object: 3 faces of a

cube. One of the meshes is more detailed, the other one has

fewer vertices.

the camera position upon taking the �rst frame. The scale of each co-

ordinate system is chosen arbitrarily as the length of the camera path in

each pass. The two models from the two passes have di�erent scales and

origins of their coordinate system. However, both structures describe the

same scene, and we can transform the second mesh in such a way that

the meshes become registered. This transformation T is going to contain a

translation (Tx; Ty; Tz), rotation (Rx; Ry; Rz) and a scale (s).

Assume we have 2 meshes: M1 andM2, each described by a set of points

(p1; p2; : : : ; pn) and (q1; q2; : : : ; qm) respectively. Suppose n is signi�cantly

larger then m similar to the situation in Fig. 5. The sum of the distances

from the points in the M1 to surfaces of M2 is de�ned as:

Q(M1;M2) =

nX

i=1

dist(pi;M2) (1)



Figure 6. Meshes are registered. The texture from the first pass

can be applied to the dense second mesh.

We are going to use the function Q as a way to measure how well the

meshes are registered. If they are poorly registered then the value of Q is

going to be large. From the two video passes we have two meshes. We want

to register the second, more detailed mesh in such a way that it becomes

aligned with the �rst one. In mathematical terms, we want to minimize the

value of Q with respect to the transformation T , which is applied to the

second mesh:

min
T

Q(M1; T (M2)) (2)

If we are able to �nd a T for which the value of Q is very small, this

would mean the meshesM1 and T (M2) are aligned as in Fig. 6. Because the
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Figure 7. After calculating the transformation to register the two

matches, that transformation can be used to register the texture

coordinates.

transformation T contains a translation (Tx; Ty; Tz), rotation (Rx; Ry; Rz)

and a scale (s), the minimization is a 7 dimensional task. To perform it, we

use simple minimization routines like Multidimensional Downhill Simplex

Method and Direct Set (Powell's) Method. There is no guarantee that this

method will �nd the global minimum. However, when the algorithms are

started from di�erent initial guesses, the smallest result is often very close

to the global minimum.

2.5 Texture Coordinate Calculations

In the registration process, we have found a transformation T from the

coordinate system of the second pass to the coordinate system of the �rst

one. When this transformation is applied to the second pass mesh, the mesh

is placed in the �rst pass's coordinate system. The origin of this system



is the �rst pass initial camera location (see section 2.2.2). The relation

between the �rst image from the video and the mesh is now straightforward,

as in Fig. 7. In this situation we can calculate the texture coordinates

of the second mesh's 3D points. For a point P (x; y; z) in the mesh, its

corresponding point in the image is xt; yt. The relation between these

points is as follows:

xt = f
x

z
yt = f

y

z
(3)

Values in these equations are expressed in world units. However, the

texture coordinates (Xt; Yt) are expressed in pixels. The size of a pixel in

world units is (sx; sy). Therefore:

Xt =
xt

sx

=
x

z

f

sx

Yt =
yt

sy

=
y

z

f

sy

(4)

The terms f

sy
and f

sx
were calculated in the camera calibration process

described in section 2.1. The values x; y; z specify the 3D location of a

point, and they are known for each point in the mesh. Therefore we can

calculate the texture coordinates (Xt; Yt) for all points. In this fashion, we

�nally obtain the desired model: a dense texture mapped 3D mesh.

3 Evaluation

This method was applied to synthetic and real video sequences.



Figure 8. The model used in the synthetic tests.

3.1 Synthetic Scene

In this case the synthetic camera was moved around the model (Fig.

8) on two di�erent curves. Camera calibration is critical to the method

and it was found that 50 points were necessary to properly calibrate the

camera. The feature tracking was perfect (no incorrect matches) therefore

no human intervention was necessary. The mesh generated from the �rst

pass contained 90 points, while the mesh from the second pass contained 350

points. These meshes were aligned within an average distance of 0.008 units,

with very good texture alignment. The registration and texture coordinates

calculations are automatic, so the whole process in the synthetic video case

involved no user input.



Figure 9. A model of a reconstructed office space, viewed from

a new viewpoint.

3.2 Office

In order to test this technique, an o�ce with drawers and boxes was

videotaped. We used a Sony CCD-VX3 Hi8 video camera, which has 46

degrees horizontal FOV and 36 vertical FOV. The �rst video pass, under

natural light, consisted of 113 frames. 25 features were selected and tracked

automatically. A 3D mesh was created.

During the second pass, we projected a grid onto the scene, creating

approximately a 3-inch-cell grid on the scene. This video pass consisted

of 144 frames. 291 features (line crosses) were selected and tracked. 16

matches were obviously incorrect and were manually removed. During the

registration phase, the Multidimensional Downhill Simplex routine found



a transformation for which the value of Q is very close to 0. Therefore

the result is close to the global minimum (perfect registration). A texture

mapped model seen from a new viewpoint is shown on Fig. 9.

3.3 Control Room

The size of the recovered model is limited with this method, because

an interesting area of the scene has to be constantly visible during the

recording. Using this simple approach, we are not able to construct a

model that surrounds the user. However, we can construct several small

models of parts of the scene, and then merge them to create a larger model.

This technique was used in a control room example. The scene was divided

into 3 parts, and the original technique was applied to each of these parts

independently. A VR user then moved and scaled these models in such a

way that they formed a single large model. The �nal model is shown in Fig.

10. We can also think of a more automatic way of merging these models.

A user could select 3 corresponding points in 2 models, and based on this

information models could be merged by software.

4 Current Limitations

There are several limitations to this method. Since structured light does

not show up well on dark, non-reective surfaces, the number of features

in such an area of the model may be reduced. To overcome this, a more

intense light source should be used. Also, the number of identi�ed and

tracked features is limited by the 640 x 480 pixel video image. It is hard



Figure 10. A control room which consists of 3 sections indepen-

dently modeled. A user in a virtual environement interactively

merged these models.

to achieve more than 2000 vertices in the model. Another problem with

standard NTSC video is that a video image is composed of 2 interleaved

�elds. Each of these �elds is taken at slightly di�erent times. When the user

moves fast during, the recording the images become jittered. This causes

problems for feature tracking software. One solution is to use every other

line-one �eld-from the image. This will solve the problem with jitters but

at the same time will lower the vertical resolution, reducing the accuracy of

the reconstructed scene. The other option is to remove \bad" frames from

the sequence either manually or automatically. When a large number of

features is dropped between 2 frames, that gives us a hint that the second

frame could be jittered. In our tests a maximum of only 4-6 frames out of

100 were bad.



The feature points must be visible in each frame during the videotaping

in order to track them. Occlusion could reduce the number of features and

cause the reconstructed scene to be coarser.

The resolution of the projected grid implies that some small objects

would not be a part of the reconstructed geometry. If none of the crossing

grid lines shows up on a small object, then no corresponding features are

created and the geometry is not captured. However, the object will still be

visible in the �nal model because it is seen on the texture map. This works

well if a small object is not far away from bigger objects. The texture gives

the impression that the object is still part of the model. However, a small,

isolated object, such as a thin pipe, far away from other surfaces in the

scene, will appear to be incorrectly located in the �nal model.

When the projected grid doesn't create features just on an edge of an

object, the edge is seen as a \soft edge" in the �nal model. This happens

because the geometry edge and a corresponding texture edge are not in the

same place. The remedy is to manually introduce few features just on the

edge in the critical objects.

5 Conclusions and Future Work

The method proved to be a fast and simple way to obtain texture mapped

models of real environments. It is convenient to be able to gather video

with a hand-held camera in such a non-intrusive way. Very little training

is required, because the camera path can be chosen by the user. The most

work-intensive steps in the algorithm, feature selection and tracking, are



automatic. The models created were simple enough to be rendered in stereo

at a high frame rate in the CAVE environment. When viewed in VR with

user-centered perspective, these tests were a convincing experience for the

viewers.

Enhancements are possible in both camera passes. The quality of the

texture maps depends on the resolution of the �rst camera pass that was

640 by 480 in this work. A higher resolution camera could be used which

would both generate higher resolution texture maps and a map with higher

density.
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