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Abstract

The goals of our work are twofold: gain
insight into how humans interact with
complex data and visualizations thereof in
order to make discoveries; and use our
findings to develop a dialogue system for
exploring data visualizations. Crucial to
both goals is understanding and modeling
of multimodal referential expressions, in
particular those that include deictic ges-
tures. In this paper, we discuss how con-
text information affects the interpretation
of requests and their attendant referring
expressions in our data. To this end, we
have annotated our multimodal dialogue
corpus for context and both utterance and
gesture information; we have analyzed
whether a gesture co-occurs with a specific
request or with the context surrounding the
request; we have started addressing mul-
timodal co-reference resolution by using
Kinect to detect deictic gestures; and we
have started identifying themes found in
the annotated context, especially in what
follows the request.

1 Introduction

The goals of our work are twofold. The first is to
gain insight into how humans interact with com-
plex data in order to make discoveries. It is well
known that visualization is very effective for ex-
ploring large datasets and gaining insight into the
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underlying phenomena. However, users (particu-
larly visualization novices) struggle with translat-
ing higher-level natural language queries to appro-
priate visualizations that could assist in answering
their questions. Our first step has been to col-
lect and analyze naturalistic dialogues in which
novices explore such datasets. Based on the in-
sights from the data collection, our second goal is
that of developing a conversational interface that
will automatically generate the appropriate visu-
alizations by participating in a natural interaction
with users. We already have a pipeline in place
that creates visualizations in response to a limited
type of spoken requests.

In this paper, we focus on the role that context
and gestures play in the interpretation of both re-
quests and referring expressions. We are certainly
not the first ones to suggest that the context of
a request and multimodality, specifically deictic
gestures, are essential to providing a more natu-
ral interactive system. Already (Sinclair, 1992)
showed that having knowledge of utterances prior
to the current one helps the human better inter-
pret the utterance, which can lead to improved dis-
ambiguation. Similarly, multimodal systems have
been shown to be advantageous over unimodal
systems (Jaimes and Sebe, 2007). One reason is
that receiving multiple input signals rather than
just speech can reduce the chances of misunder-
standings as well as resolve ambiguities. Also, hu-
mans are able to interact more naturally by using
gestures along with speech, making the experience
more effective and natural.

This paper builds on our previous work (Au-
risano et al., 2015; Aurisano et al., 2016; Kumar



et al., 2016) and focuses on the following new
contributions: annotation of context and gestures
on our multimodal corpus; gesture detection using
Kinect; and classification of contextual themes.

2 Related Work

There are several areas of research that are rel-
evant to our work, the first one being the vast
literature on multimodality – we will just focus
on multimodal referring expressions in this paper.
As is well known (Sinclair, 1992; Kehler, 2000;
Goldin-Meadow, 2005; Landragin, 2006; Navar-
retta, 2011), in natural dialogue, the antecedents
of linguistic referring expressions are often intro-
duced via gestures; for example in our environ-
ment, the user can point to a street intersection on a
map yet never have mentioned it earlier. Crucially
from a computational point of view, including
hand gestures information improves the perfor-
mance of the reference resolution module (Eisen-
stein and Davis, 2006; Baldwin et al., 2009).
Other sources of multimodal information are im-
portant as well, including eye gaze (Prasov and
Chai, 2008; Iida et al., 2011; Liu et al., 2013), or
haptic (force exchange) information (Foster et al.,
2008; Chen et al., 2015), but we will not address
those in this paper.

Several additional challenges concerning re-
solving referring expressions arise when humans
interact with graphical representations. First, the
user will likely expect that any visible object can
be discussed (Byron, 2003). Second, the same ex-
pression can be used to refer to an entity in the do-
main or in the visualization (Qu and Chai, 2008).
For example, in our domain, users can refer to a
type of crime in the world (Look how much theft
around UIC), or to the visual elements, e.g. dots,
that represent theft (Can you color theft red?). As
far as we know, only (LuperFoy, 1992) tried to ac-
count for different perspectives on a referent, by
linking them to a so-called discourse peg; interest-
ingly, she applied her approach to an interface for
manipulating visualizations (Hollan et al., 1988).

If the graphical representation is presented on
a large display, as in our case, yet additional
challenges arise as concerns how humans inter-
act with it, including window management prob-
lems (Robertson et al., 2005). Closer to our inter-
ests, not much work exists on interpreting deictic
gestures directed to large displays, especially as
concerns recognizing the target at a semantic level

(Kim et al., 2017).
Finally, as regards interactive systems that gen-

erate data visualizations more in general, the vast
majority of those are not focused on natural, con-
versational interaction: (Gao et al., 2015) does not
provide two-way communication; the number of
supported query types are limited in both (Cox et
al., 2001) and (Reithinger et al., 2005), while (Sun
et al., 2013) uses simple NLP methods that limit
the extent of natural language understanding pos-
sible. EVIZA (Setlur et al., 2016), perhaps the
closest project to our own, does provide a dialogue
interface for users to explore visualizations; how-
ever, EVIZA focuses on supporting a user inter-
acting with one existing visualization, and doesn’t
cover creating a new visualization, modifying the
existing one, or interacting with more than one vi-
sualization at a time.

3 Foundational Work

As we describe in previously published work (Au-
risano et al., 2015; Aurisano et al., 2016; Kumar
et al., 2016) and briefly summarize here, our work
rests on a new multimodal corpus that we col-
lected, transcribed and started annotating, and on
an NLP pipeline that can currently interpret a sub-
set of the requests we observed in our data.

3.1 Corpus and Initial Annotations

The corpus was built by collecting spoken con-
versations from 15 subjects. Each subject inter-
acted with a remote Data Analysis Expert (DAE)
in a Wizard-of-Oz setup, to explore data visu-
alizations on Chicago crime data to understand
when and where to deploy police officers. In each
session users went through multiple cycles of vi-
sualization construction, interaction and interpre-
tation; these sessions lasted between 45 and 90
minutes. Users were invited to interact with the
DAE as naturally as possible, and to think aloud
about their reasoning. They viewed visualizations
and limited communications from the DAE on a
large, tiled-display wall. The DAE viewed the
subject through two high-resolution, direct video
feeds, and also had a mirrored copy of the tiled-
display wall on two 4K displays. The DAE gen-
erated responses to questions using Tableau,1 and
used SAGE2 (Marrinan et al., 2014), a collabo-
rative large-display middleware, to drive the dis-
play wall. The DAE could also communicate via a

1http://www.tableau.com



Words Utterances Directly Actionable Utts.
38,105 3,179 490

Table 1: Corpus size

chat window, but tried to behave like a system with
limited dialogue capabilities would. Apart from
greetings, and status messages (sorry, it’s taking
long) the DAE would occasionally ask for clarifi-
cations, e.g. Did you ask for thefts or batteries.2

However, the DAE never responded with a mes-
sage, if the query could be directly visualized; nei-
ther did the DAE engage in multi-turn elicitations
of the user requirements.

The dialogues were transcribed in their entirety:
some basic distributional statistics are presented
in Table 1, which includes directly actionable ut-
terances, the focus of our initial annotation effort.
Three coders identified the directly actionable ut-
terances, namely, those utterances3 which directly
affect what the DAE is doing; the rest are non-
actionable think-aloud utterances (during which
the user was expressing out-loud what he or she
was thinking at the time). This was achieved by
leaving an utterance unlabelled or labeling it with
one of six directly actionable request types: 1. cre-
ate new visualization (Can I see number of crimes
by day of the week?); 2. modify existing visual-
ization (Umm, yeah, I want to take a look closer to
the metro right here, umm, a little bit eastward of
Greektown); 3. window management operations
(on windows on the screen) (If you want you can
close these graphs as I won’t be needing it any-
more); 4. fact-based requests that don’t need a vi-
sualization to be answered (During what time is
the crime rate maximum, during the day or the
night?) 5. clarification questions (Okay, so is this
statistics from all 5 years? Or is this for a par-
ticular year?); 6. expressing preferences (The first
graph is a better way to visualize rather than these
four separately). After annotation, it was found
that only 15% of the dialogue consisted of action-
able requests while the remaining 85% were non-
actionable think-aloud. We obtained an excellent
intercoder agreement κ = 0.84 (Cohen, 1960) on
labeling an utterance or leaving it unlabeled; and
κ = 0.74 on the six types of actionable requests.

2Batteries in this context means an offensive touching
or use of force on a person without the person’s consent
(Merriam-Webster).

3What counts as an utterance was defined at transcription.

3.2 The Articulate2 dialogue architecture

The current system’s (Articulate2) process flow
can be seen within the rectangular box in Figure
1. It begins by translating the request to logical
form using the Google Speech API and NLP pars-
ing. Three NLP structures are obtained: ClearNLP
(Choi and McCallum, 2013) is used to obtain
PropBank (Palmer et al., 2005) semantic role la-
bels (SRLs), which are then mapped to Verbnet
(Kipper et al., 2008) and Wordnet using SemLink
(Palmer, 2009). The Stanford Parser is used to ob-
tain the remaining two structures, i.e. the syntac-
tic parse tree and dependency tree. On the basis
of these three structures, a standard logical form is
obtained. Then, a classifier determines the type of
the request among the six request types we just de-
scribed. At this point in time, Articulate2 can pro-
cess the first three types of requests we discussed
earlier: it will transform the logical form to SQL
for create new visualization and modify existing vi-
sualization requests, or skip this step for window
management operations (since data retrieval is not
needed in this case). Finally, the system generates
an appropriate visualization specification which is
then executed by the Visualization Executor on the
data returned by the execution of the SQL query.
The system also stores each generated visualiza-
tion specification to its dialogue history. At the
moment, Articulate2 is limited by its inability to
resolve referring expressions (e.g., it closes the
most recently created visualization without check-
ing if the user was referring to a different window
on the screen). In this paper, we discuss what our
data tells us on multimodal referring expressions,
and discuss the first steps we have taken to model
those computationally.

Figure 1: Articulate2 dialogue processing archi-
tecture



4 Corpus Analysis: Multimodal
references in context

Preliminary analysis of the dialogue data showed
that users referred to visualizations through
speech, gestures, or both. In addition, sometimes
clues about identifying the object referred to by
the referring expression (in the form of speech
or gesture) were found as part of the think-aloud
nearby rather than temporally aligned with the ac-
tionable request. This is why we decided to extend
our analysis to the context surrounding an action-
able request (contextual utterance annotation) as
well as any gestures that occurred during that con-
text (contextual gesture annotation).

The context is comprised of three parts: setup,
request, and conclusion. For the purpose of this
work, we start from one single utterance annotated
as an actionable request, and look at its preceding
and following context. The setup includes utter-
ances that come prior to the request while the con-
clusion includes utterances after the request. Since
often the utterances just prior or after the request
are part of a larger contiguous thought process that
can be captured, all utterances up to and including
the mention of a data attribute are included.

One example is shown in Figure 2 along with
the corresponding annotation in ANVIL (Kipp,
2001) in Figure 3. The setup component includes
just one utterance because ”June”, ”July”, and
”August” are part of our data attribute set. The
request component is always just the request ut-
terance itself. Finally, in this example the conclu-
sion part is also a single utterance, however not
because it mentions data attributes, but rather be-
cause it is followed by another request, which sig-
nals the start of a new context. Also note that UR

in Figure 2 mentions a deictic referring expression
”that map”; in the conclusion utterance, clues are
provided about the referent by means of language
(”It’s like that one right there or maybe it’s that
one”) and gesture (the user points to multiple visu-
alizations). We believe that the interplay between
different components of the context, the referring
expressions and the deictic gestures is crucial to
properly resolving a referential expression, and to
interpret a request.

4.1 Context and Gesture Annotation

We performed two separate annotations on the cor-
pus, one to determine which utterances belong to
the set-up and conclusion for a certain utterance

Figure 2: Context is comprised of setup, request,
and conclusion utterances.

UR, the second for gestures and their context.

Utterances. We use the label Timestep to appor-
tion utterances to the three components of a con-
text. By default, we start with an utterance UR

previously marked as an actionable request, which
will be assigned the default Timestep value of Cur-
rent. As we noted when discussing what type of
requests Articulate2 currently processes, also here
we focus only on the first three types of actionable
requests (1. create new visualization; 2. modify
existing visualization; 3. window management op-
erations). This is a total of 449 requests out of the
490 in Table 1.

The utterances preceding the Current utterance,
i.e. UR, are coded as Previous; and those that fol-
low the request and are pertaining to it as conclu-
sion, are coded as Next. For an actionable utter-
ance UR then, the context includes all preceding
utterances marked as Previous (the context set-
up) and all following utterances marked as Next
(the context conclusion). We obtained a very good
κ = 0.783 on Timestep annotations for utterances.

Figure 4 shows the distribution of the coded
Timestep values; and then two derived distribu-
tions, Type and Context. In all three plots, the
“anchor” so to speak, is the Current utterance, i.e.
UR, the request of interest; hence, to the 449 Cur-
rent utterances in Figure 4(a) correspond the 449
Requests in Figures 4(b) and 4(c).

Figure 4(a) shows the distribution of utter-
ances preceding and following UR, whereas Fig-
ure 4(b) shows how those utterances are appor-
tioned within the context, i.e. as set-up or conclu-
sions. By comparing Figures 4(a) and 4(b) we can
conclude that set-up includes about 1.8 utterances
on average, and conclusions about 2 utterances on
average. Finally, Figure 4(c) simply confirms that
no utterance either in the set-up or the conclusion
is a directly actionable utterance. Whereas this fol-
lows by construction, the data confirms that no hu-



Figure 3: Annotation of a context in ANVIL (Kipp, 2001).

man errors occurred during annotation.

Gestures. The annotation for gestures includes
various components, as shown in Figure 5. First,
we mark the gesture with Timestep, as described
above: the value for Timestep will be Previ-
ous/Current/Next depending on where the gesture
occurs within the context of utterance UR. Sec-
ond, Mode is used to encode whether the gesture
is Deictic (that is, whether the gesture is pointing
to objects on the screen). If not, then it is Non-
Deictic and the Space is assigned to Peripheral or
Screen. The Screen value for Space pertains to
gestures that the user makes in front of him or her-
self while interacting with the screen, while Pe-
ripheral Space is used if the gesture is made with-
out screen interaction (Wagner et al., 2014). Note
that for Deictic gestures, the Space will always be
assigned to Screen, since pointing to objects on the
screen is clearly interactive. Finally, if the ges-
ture is Deictic, then its Type and Target are also
assigned – the values for these two labels will be
discussed shortly.

Table 2 provides intercoder agreement for var-
ious labels associated with gestures. Whereas κ
values for Timestep, Mode and Space are substan-
tial, the values for Type and Target are lower. This
is not surprising: it is difficult to determine if the
user is moving the hand while pointing, or keep-
ing it stationary; and even more so, to distinguish
between the four values the Target label can have,

including deciding whether the user is pointing to
a visualization, or to objects within a visualization.

Code κg
Timestep 0.718
Mode 0.748
Space 0.764
Type 0.659
Target 0.639

Table 2: Intercoder agreement for gestures

Figure 6 provides distributions for all the la-
bels that are included in the gesture annotation.
Figures 6(a) and 6(b) provide information about
where gestures fall with respect to request UR.
These two graphs show that only about 50% of
gestures are aligned with the actual request (Cur-
rent in Figure 6(a) and Request in Figure 6(b));
about 17% of gestures co-occur with an utterance
preceding UR (Previous/Setup), and the remain-
ing 33% co-occur with an utterance following UR

(Next/Conclusion).
Figure 6(c) shows that about 70% of gestures

are deictic; and Figure 6(d) shows that subjects
used gestures to interact with the screen far more
than peripherally, since apart from the 380 deic-
tic gestures, also 38 non-deictic gestures interact
with the screen. Finally, Figures 6(e) and 6(f) fo-
cus on deictic gestures. 4 Figures 6(e) shows that

4The attentive reader will note that totals in Figures 6(e)



(a) Timestep Frequency

(b) Context Components Frequency

(c) Type Frequency

Figure 4: Utterance contextual labels

Figure 5: Coding scheme for gestures

most deictic gestures are exclusively pointing, or
pointing while also moving the hand. Finally, Fig-
ure 6(f) provides the distributions of the targets
for the deictic gestures. Three targets occur with
similar frequencies: it is not surprising that users
point to either individual visualizations, or indi-
vidual objects within a visualization; it is less ex-
pected than they point to more than one individual
object within a visualization so frequently. On the
other hand, pointing to more than one visualiza-
tion at the same time is not as common.

4.2 Lessons from Context Annotation
The most important lesson is that UR does not oc-
cur in a vacuum: as demonstrated by Figure 4(b),
about half of the time, an actionable request UR is
preceded by contextual information directly rele-
vant to UR itself; and even more frequently, about
80% of the times UR is followed by pertinent in-
formation. The second important lesson is that
about half of the gestures relevant to the interpreta-
tion of referring expressions contained within UR

are not aligned with UR either. This is a crucial
insight for coreference resolution.

5 Towards Multimodal Coreference
Resolution

Our coreference resolution approach begins with
the spoken contextual utterances from the user.
If no referring expressions are detected, then the
process flow described in Section 3.2 will be fol-
lowed. Otherwise, if a gesture has been detected

and 6(f) are slightly lower (378 and 373 respectively), than
380, the number of deictic gestures in Figure 6(c). In both
cases a very small number of gestures has been assigned an
Other Type or Target. For the sake of brevity, we will not
discuss the Other categories.



(a) Timestep Frequency (b) Context Frequency

(c) Mode Frequency (d) Space Frequency

(e) Deictic Gesture Type

(f) Deictic Gesture Target

Figure 6: Gesture features distributions

by the gesture detection process we will discuss
in the next section, information about any ob-
jects pointed to by the user will be provided to
the Matcher. The Matcher will then be invoked
and attempt to find a best match between prop-
erties of each of the relevant entities. A diffi-
culty we still need to address is to select the prop-
erties of visualizations and objects we will keep
track of. A first inventory of good properties to ex-
tract from a visualization include, statistics in the
data (e.g., neighborhoods with lowest and highest
crime rates), trends in the data (e.g., top 5 and bot-
tom 5 crime and location types), the title, plot type,
and any more prominent objects within the visual-
ization, such as hot-spots, street names, bus stops,
and so on.

As noted earlier, when users are faced with a
graphical representation, any object in the repre-
sentation can become a referent. However an ad-
ditional difficulty is that we do not have a declar-
ative representation for all these potential refer-
ents. For example, in a map representation of
crime occurrences, each crime is represented by
a dot; however, the dot is procedurally generated
by the graphics software to render one data point
in the data; that individual dot does not exist as an
individuated object in some declarative represen-
tation of the visualization. The reason for a lack
of representation is that the language we used for
generating visualizations (Vega (Trifacta, 2014))
abstractly performs behind-the-scenes operations
on the data when producing graphs and does not
directly provide access to individual objects.

5.1 Deictic Gesture Recognition

Whereas the Matcher still needs to be developed,
we have made considerable progress on recogniz-
ing deictic gestures, to which we turn now.

Several approaches are proposed to estimate the
pointing direction using Computer Vision tech-
niques. One common method is to model the
pointing direction as the line of sight that connects
the joints of head and hand (Kehl and Van Gool,
2004). Using regular cameras to detect body joints
is still a challenging task in Computer Vision since
they lack information about the depth of the users
body and surrounding environment.

Since its release in 2011, the Microsoft Kinect
camera provided the capability of depth detection
at a low cost. It combines depth and infrared cam-
eras with a regular RGB camera for depth stream



acquisition and skeletal tracking. The Kinect cam-
era has the ability to track 24 distinct joints of
the human body in which the 3D coordinates of
body joints can be obtained. Using the 3D infor-
mation from the Kinect camera, we constructed a
virtual touch screen originally defined by (Cheng
and Takatsuka, 2006) and adapted later by (Jing
and Ye-peng, 2013) to enable an efficient pointing
gesture interaction with the large display. The user
interacts with the large display through the con-
structed virtual touch screen to point to a specific
visualization on the display.

5.1.1 Virtual Touch Screen Construction
First, we set up the interaction space by defining
the physical space that will model the Kinect po-
sition and orientation in relation to the large dis-
play position. Each acquired joint position by the
Kinect is rotated and translated so the center of the
display represents the origin of the world coordi-
nate. We receive data from the Kinect camera as
a stream of 3D positions of body joints per frame.
Although we can track all body joints, we focused
only on the head and the fingertip of the right hand
as dominant hand.

We created a virtual touch screen using head-
fingertip positions to estimate the pointing target.
As shown in Figure 7, the virtual screen is as-
sumed to be at the position of the fingertip from
the large display. Since the large display and the
Kinect are in the same plane, the z coordinate of
the large display is zero. Each point (x, y) on the
large display is mapped to a point (x

′
, y
′
) on the

virtual screen through a line from the large display
to the head joint position (xh, yh, zh). Therefore:

xh − x
xh − x′

=
yh − y
yh − y′

=
zh − z
zh − z′

(1)

Hence, we can estimate any point (x, y) on the
large display by calculating x and y from Equa-
tion 1.

x =
zh ∗ (x

′ − xh)
zh − z′

+ xh (2)

y =
zh ∗ (y

′ − yh)
zh − z′

+ yh (3)

The user interacts with the large display as if it
was brought forward in front of him/her and we
can map any point on the virtual screen to its cor-
responding point on the large display using the
above equations. The position and dimensions of

the virtual screen are calculated based on the posi-
tions of the head and fingertip, and subsequently,
it is adaptive to the positions of the user head and
fingertip. Using pointing data, it is possible to in-
fer which visualization the user is pointing to –
in particular, we are now also able to identify the
window or windows that point (x,y) belongs to.

Figure 7: User interaction with large display
through constructed virtual touch screen at user’s
fingertip.

6 Towards interpreting requests in
context

As we noted earlier, requests don’t occur in isola-
tion: they are preceded by a set-up in 50% of the
cases, and followed by a conclusion in 80% of the
cases. The conversational interface clearly needs
to take this information into account: the set-up in
order to further refine the request, and the conclu-
sion, in order to further the task itself. As a first
step towards these goals, we focused on analyzing
the conclusion component of a context, and specif-
ically, on uncovering any relevant themes that may
occur. In the conclusion part of the context, via
additional annotation, it was found that the user
would either: discuss resulting graphs produced
from the current request (e.g., ”ok so it shows that
the theft, battery, deceptive-practice and criminal-
damage have the highest rate of *uh* crime.”), (2)
refine the current request (e.g., ”thank you, i shall
take a look at these, by the hour.”), (3) provide
some insights (e.g., ”so then maybe if may–, if it
gets cold, crime goes down at least the cops can
go where its warm, maybe take their vacations in
the winter.”, (4) or some unrelated utterances (e.g.,
”ok, thank you. ok, thank you.”).

Figure 8 shows the distribution of these themes:
66% of conclusions discuss what the user gleaned
from the request; of these, about 60% discuss
the results directly, whereas an additional 6% dis-



cuss more general insights into the phenomenon
at hand. About 20% represent a further refinement
of the request, which sets the stage for the next
request.

Figure 8: Conclusion utterances label frequency.

Given these annotations, we trained a super-
vised classification model to predict the overall
theme of a set of conclusion utterances. The model
used three different categories of feature types:
syntactic, semantic, and miscellaneous. The syn-
tactic feature types include unigrams, bigrams,
and trigrams for words, part-of-speech, and tagged
part-of-speech. The semantic category is based
on the Word2Vec word embedding representa-
tion. Specifically, the utterances within a conclu-
sion were added together by their corresponding
Word2Vec vectors and then normalized. Finally,
the remaining feature types include total number
of words across a given conclusion, the total num-
ber of Chicago crime data attributes mentioned
across a given conclusion, and the total number
of utterances in the conclusion that ended with a
question mark (because such utterances were ob-
served to occur in the conclusions). The feature
vector dimensions was 17,904 (feature selection
was applied to reduce the dimensionality). Ac-
curacy results when using different classifiers are
shown in Table 3. Apart from Multinomial Naive
Bayes, the other three classifiers all perform simi-
larly. We will further investigate sources of confu-
sion in classfication to improve their performance.

7 Conclusions and Future Work

In this paper we presented our work on investi-
gating the role context plays in interpreting re-
quests and referential expressions in task-oriented

Classifier Accuracy
Support Vector Machine 74%
Decision Tree 74%
Random Forest 73%
Multinomial Naive Bayes 64%

Table 3: Thematic conclusion classification accu-
racy.

dialogues about exploring complex data via visu-
alizations. This work takes place in the context
of our Articulate2 project. Our goals are both
to gain insight into how people use visualizations
to make discoveries about a domain, and to use
our findings in developing an intelligent conversa-
tional interface to a visualization system. In pre-
vious work, we had collected a new corpus of dia-
logues, started annotating and analyzing it, and set
up the NLP pipeline for the Articulate2 system.

Specifically as concerns context, in this paper
we have presented how we annotated the context
surrounding each of our directly actionable re-
quests, and how we annotated for gestures also in
context. We found that indeed an actionable re-
quest is preceded by a set-up 50% of the times,
and followed by a conclusion 80% of the times.
As concerns gestures, we found that (not surpris-
ingly) the majority of them are interactional with
respect to the screen and in fact deictic; however,
we also found that half of the gestures relevant
to the interpretation of referring expressions con-
tained within the request are not aligned with the
request, but with the setup, or more often, with the
conclusions.

As concerns the computational modeling of our
findings, so far, we have focused on recognizing
deictic gestures via Kinect, and on learning clas-
sifiers for the themes contained in the conclusion
component of a context.

Much work remains to be done. Apart from tak-
ing advantage of the context to refine and disam-
biguate requests, our most pressing work regards
resolving referring expressions. As we noted, we
still need to understand what specific properties of
visualizations and objects within visualizations are
the most useful for resolving referring expressions
in our domain. From our findings on gestures and
where they occur in the context, it is clear that our
algorithm must be incremental. We also need to
analyze the referring expressions that users use in
our data, to assess how prevalent the phenomenon
of a single referent playing a dual role (in the do-
main, or as a graphical element) is.
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