
A Hash-Based Approach for Computing the Transitive
Closure of Database Relations

Farshad Fotouhi, Andrew Johnson, S. P. Rana

Computer Science Department
Wayne State University
Detroit, Michigan 48202

USA

Abstract

Recursive query processing is one of the key problems in integrating database and

artificial intelligence technologies. Among the classes of recursive queries, transitive closure

queries are the simplest, but most important. Here, we present an efficient hash-based algorithm

for computing the transitive closure of database relations. Hashing is used to reduce the data size

dynamically. The original data is partitioned once and the partitioning is maintained throughout

the computation. Partitions are used in the computation instead of the entire relation. As the new

tuples are generated after each iteration of the algorithm, these are placed in the appropriate

partitions. We have shown the performance improvement of the proposed algorithm over the

existing methods for a wide range of memory sizes, relation depths, and hash selectivity factors.

2

1. Introduction

Recursive query processing is an important part of knowledge-base systems. Jagadish

and Rakesh4 showed that any linearly recursive query can be expressed as a transitive closure,

preceded and/or followed by relational algebra operations. Therefore efficient computation of the

transitive closure is of key importance in evaluating recursive queries.

The transitive closure of a binary relation Ro with attributes A and B can be defined as:

Ro+ = ∪ Ri where Ri = Ri-1 • R0 where R0 = Ro
i≥1

and S • T, the composition of S and T, is defined as:

S • T = {(x,z) | ∃ y (x,y) ∈ S and (y,z) ∈ T}

Relation R can be represented as a directed graph which we refer to as a relation graph.

The tuples correspond to edges in the graph and the unique attribute values correspond to the

nodes. A tuple (x,y) in relation Ro becomes an edge from node x to node y in the directed graph.

A tuple (x,y) in Ro+ means there is a non-zero length path from node x to node y. The longest

path length in the graph (the depth of the transitive closure) is defined as:

p = max {min [length(q)]}
x,y q∈ paths
paths(x,y)≠0

Several algorithms have been presented in the past to efficiently process the transitive

closure of a relation1,3,7,8. Hashing techniques such as hybrid-hash2 have been used in order to

perform the composition, union and difference operations in many of the existing algorithms. In

each iteration of these algorithms the entire original relation as well as the result of the previous

step is hashed, and the desired operation is then performed. Here, we present a hash-based

algorithm for computing the transitive closure of database relations. In the proposed algorithm,

the original relation, say Ro(A,B), is first partitioned in two different ways. One partitioning is

based on the A attribute values, and the other is based on its B attribute values. Subsequently, in

each iteration of the algorithm, pairs of these partitions are joined, and the new tuples produced

are placed in their appropriate partitions. This results in significant improvement over the existing

methods because:

3

1) Rehashing is not required in each iteration.

2) Partitions begin to drop out as the computation proceeds (they will no longer be able to

add new tuples to the result). This implies less and less of Ro will have to be read in during the

join operation, and less and less of the result relation will have to be read in for duplicate

removal. A similar improvement was suggested by Lu6. to reduce the number of tuples of Ro

participating in an iteration. We have extended this so that partitions of Ro as well as partitions of

the result relation drop out as the computation proceeds.

3) The algorithm is easily extendible to a parallel implementation. This is explored further

by Johnson5.

In section 2, we present existing algorithms for computing the transitive closure of

database relations. Section 3 presents two new hash based algorithm. Section 4 gives the cost

model for these algorithms, followed by a comparative analysis in section 5. We show the

performance improvement of the proposed algorithms over the existing methods for a wide range

of memory sizes, relation depth, and hash selectivity factor (i.e., the percentage of tuples

dropping out in each iteration of the processing).

2. Existing Transitive Closure Algorithms

In this section, we describe major existing algorithms for computing the transitive closure

of a database relation. Transitive closure algorithms are best classified into iterative and recursive

algorithms. We consider the Semi-Naive and Logarithmic iterative algorithms, and Warren's

recursive algorithm as representatives of each class.

An acyclic relation is often assumed in discussing transitive closure algorithms. This is to

avoid the costly duplicate removal operation. This may cause an algorithm to compute the longest

path between every pair of nodes, rather than the shortest path. For example, in Figure 1 without

duplicate removal, the path a->e will be enumerated twice (viz. a->b->c->d->e, and a->d->e)

requiring an extra iteration, and also extra work in each iteration. While duplicate removal is a

costly process, it can cause a reduction in the number of iterations as well as the processing time

within each iteration. For these reasons we relax the assumption of acyclicity.

4

`
a b c

ed

Ro (A,B)
a b
a d
b c
c d
d e

Figure 1

Relation Ro and its Corresponding Graph

In what follows, we use Ro(A,B) to denote the source relation, and T(A,B) to denote the

transitive closure of Ro.

2.1 Iterative Algorithms

The iterative algorithms build up the transitive closure in a breadth-first fashion. The

number of iterations depends on the depth of the relation graph.

2.1.1 Semi-Naive Algorithm

In each iteration of Algorithm 2.1 (given below) the new tuples generated in the previous

iteration are joined with all tuples of the original relation. In graph theoretic terms, in the ith

iteration, all paths of length "i" are generated.

Algorithm 2.1

Input: The source relation Ro
Output: T holds the transitive closure of Ro after the algorithm terminates.
Method:

begin
T := Ro;
R∆ := Ro;
while R∆ ≠ ø do
begin

R∆ := R∆ • Ro;
R∆ := R∆ - T;
T := R∆ ∪ T;

end

end. ⁄

5

After i iterations T will contain ∪ Rj.
 0 ≤ j ≤ i+1

Algorithm 2.1 terminates after p iterations, where p is the depth of relation graph Ro.

In each iteration, new tuples generated in the previous iteration are composed with the

entire original relation. Also the entire result relation must be read in to remove duplicates.

2.1.2 Logarithmic Algorithm

The logarithmic method reduces the number of iterations by computing more of the

transitive closure in each iteration.

Algorithm 2.2

Input: The source relation Ro
Output: T holds the transitive closure of Ro after the termination of the algorithm.
Method:

begin
T := Ro;
R∆ := Ro;
Rx := Ro;
while Rx ≠ ø do

begin
R∆ := R∆ • R∆;
T∆ := T • R∆;
Rx := R∆ - T;
T := R∆ ∪ T;

T := T∆ ∪ T;
end

end. ⁄

After i iterations T will contain ∪ Rj.
 0 ≤ j ≤ 2i-1

Algorithm 2.2 terminates when 2i-1 ≥ p. Therefore the algorithm requires  log2(p+1)
iterations. There are several disadvantages to the logarithmic algorithm. The current result relation

(T) is scanned three times in each iteration. Furthermore, this result will contain many tuples that

are not relevant to the computation, but cause unnecessary overhead. Also, unnecessary

processing is done when p is not a power of two.

6

Valduriez et. al.8 proposed an auxiliary data structure called "Join Indices" to improve the

performance of the above algorithms. With Join Indices, each tuple in the original relation is

given an unique surrogate. These Join Indices (tuple identifiers) are used to create a binary

relation called a Join Index. The transitive closure of the Join Index is then taken, instead of the

transitive closure of the original relation. Join Indices have been shown to improve the

performance of the Semi-Naive and Logarithmic algorithms. Join Indices are costly to maintain as

they must either be updated every time the relation is changed, or completely recomputed

whenever the transitive closure is needed. Once the transitive closure is computed the new

realation must be recomputed from the Join Indices.

2.2 Recursive Algorithms

In contrast to the iterative algorithms, recursive algorithms build up the transitive closure

in a depth-first fashion. The number of iterations is independent of the depth of the graph.

2.2.1 Warren's Algorithm

In Warren's algorithm, the relation Ro is represented by an N by N boolean adjacency
matrix X.

Algorithm 2.3

Input: The source relation Ro
Output: T holds the transitive closure of Ro after the termination of the algorithm.
Method:

begin
Derive X(N,N) from Ro;

for i := 2 to N do
for j := 1 to i - 1 do

if X(i,j) then
for k := 1 to N do

X(i,k) := X(i,k) ∨ X(j,k);

for i := 1 to N-1 do
for j := 1+1 to N do

if X(i,j) then
for k := 1 to N do

X(i,k) := X(i,k) ∨ X(j,k)

Form X(N,N) generate the result relation T;

end. ⁄

7

Warren's algorithm is a modification of Warshall's algorithm. Warren's algorithm

improves the performance when the entire matrix cannot fit into memory. Warren's algorithm

requires only two passes, each over half the matrix, irrespective of the depth of the relation

graph. Warren's algorithm has been shown to perform better than the iterative algorithms for

large memory sizes (i.e. the adjacency matrix fits into memory). Its performance degrades rapidly

for small memory sizes.

3. Hash-Based Transitive Closure (HBTC) Approach

In the hash-based transitive closure (HBTC) approach taken by us, the given relation

Ro(A,B) is partitioned twice, based on its A values, and also its B values. The transitive closure

is then computed in two phases: "Join phase" and "Union Difference phase." In the "Join phase,"

the composition of corresponding partitions is computed, and in the "Union Difference phase" the

results obtained from all partitions in the "Join phase" are merged. Throughout the processing,

we maintain the initial partitions based on the A values, the updated partitions based on the B

values (i.e. the partitions where the result from the previous iteration is stored), and the current

result based on the B values. As the computation proceeds, none of the tuples of a certain

partition may contribute in the subsequent iterations. We refer to such a partition as an inactive

partition and the other partitions as active partitions.

Algorithm 3, below, is the Semi-Naive version of the HBTC. The variable active-partition-set

holds the index numbers of the active partitions which are involved in the ith iteration, 1≤i≤p.

Algorithm 3

Input: The source relation Ro
Output: T holds the transitive closure of Ro after the termination of the algorithm.
Method:

begin
 Ro(A,B) Partitioned based on the A values into Ra1..n;
 Ro(A,B) Partitioned based on the B values into Rb1..n;
Rt1..n := Rb1..n;
T := ø;
active-partition-set := {1..n};

while Rb1..n ≠ ø do
{JOIN PHASE}

Rb'1..n := ø;

8

for k ∈ to active-partition-set do
if Rak and Rbk ≠ ø then

Rb'1..n := Rb'1..n ∪ (Rbk • Rak);

Rb1..n := Rb'1..n;

{UNION DIFFERENCE PHASE}
for k ∈ active-partition-set do

if Rbk ≠ ø then
begin

Rbk := Rbk - Rtk;
Rtk := Rbk ∪ Rtk;

end
else

active-partition-set := active-partition-set - {k};

for k := 1 to n do
T := T ∪ Rtk;

end. ⁄

Here, the result of Rbk • Rak is placed into its appropriate partitions (by unioning it with

Rb'). This process is done by hashing on the B values of the tuples obtained in Rbk • Rak and

placing the tuples into the appropriate partitions of Rb'. The number of iterations is p, which is

the same as for the Semi-Naive algorithm.

Algorithm 4, below, is the Logarithmic version of the HBTC.

Algorithm 4

Input: The source relation Ro
Output: T holds the transitive closure of Ro after the termination of the algorithm.
Method:

begin
 Ro(A,B) Partitioned based on the A values into R∆a1..n;
 Ro(A,B) Partitioned based on the B values into R∆b1..n;
Rt1..n := R∆b1..n;
T∆1..n := R∆b1..n;
Rx1..n := R∆b1..n;
T := ø;
active-partition-set := {1..n};

9

while Rx1..n ≠ ø do
{JOIN PHASE}

R∆'1..n := ø;
for k ∈ to active-partition-set do

if R∆ak and R∆bk ≠ ø then

R∆'1..n := R∆'1..n ∪ (R∆bk • R∆ak);
R∆a1..n := R∆'1..n;
R∆b1..n := R∆'1..n;

T∆'1..n := ø;
for k ∈ to active-partition-set do

if T∆k and R∆ak ≠ ø then

T∆'1..n := T∆'1..n ∪ (T∆k • R∆ak);
T∆1..n := T∆'1..n;

{UNION DIFFERENCE PHASE}
Rx'1..n := ø;
for k ∈ to active-partition-set do

if R∆bk and Rtk ≠ ø then
Rx'1..n := R∆bk - Rtk;

Rx1..n := Rx'1..n;

for k ∈ active-partition-set do
if R∆bk and T∆k ≠ ø then

Rtk := Rtk ∪ R∆bk ∪ T∆k;
else

active-partition-set := active-partition-set - {k};

for k := 1 to n do
T := T ∪ Rtk;

end. ⁄

The original relation, as well as each of the intermediate relations from the Logarithmic

algorithm has now been broken into n partitions. As with the Semi-Naive version, only the

necessary partitions are brought into memory which reduces much of the extra procesing done by

the Logarithmic algorithm. The number of iterations is  log2(p+1) , which is the same as for the

Logarithmic algorithm.

10

3.1 Memory Usage

Given M pages of memory, in the "Join phase" of the Semi Naive version (algorithm 3),

n' pages are used for the partitions of Rb' (the hash table for the new tuples generated in an

iteration), with one page devoted to each active partition. The corresponding partitions of Rbk
and Rak (for some k ∈ active-partition-set) are loaded into the remaining memory (M - n').

Hybrid hash is used to perform the join within this remaining memory. Whenever a page

corresponding to a partition of Rb' is filled up, that page is written to the disk.

In the "Union Difference phase" of the Semi Naive verison, corresponding partitions of

Rbk and Rtk (for some k ∈ active-partition-set) are brought into the memory so that duplicates

can be removed from Rbk and the new tuples added to Rtk. The entire memory is available for

this computation.

Similar work is done in the Logarithmic version (algorithm 4) except that two joins, a

union, and a difference operation are done in each iteration due to the extra processing.

3.2 Partitioning

The partitioning plays an important part in the algorithm. The number of partitions will

depend on the available memory. For smaller memory sizes, multiple nodes in the relation graph

will be combined into a single partition. If a partition contains multiple nodes x and y, it is

possible that node x will drop out before node y, but the tuples for both node x and node y would

have to be brought into memory until node y drops out (at this time the partition drops out).

When the number of partitions equals one, the algorithm reduces to simple Semi-Naive.

When multiple nodes are stored in a single partition, a unique identifier would have to be

added to the attribute values in the buckets. This way only those nodes with the same identifier in

the corresponding Ra and Rb partition would be joined.

The partitioning is done only in the initial phase of the algorithm and active-partition-set is

initialized to contain all partitions. Each partition is assigned a distinct set of nodes. The partitions

are not redefined subsequently. As the computation proceeds, partitions begin to drop out.

11

3.3 Why Do Partitions Drop Out?

If a page corresponding to a partition does not have tuples after an iteration then there is

no reason to keep that partition in memory during the "Join phase." Let's assume attribute value x

(node of the graph labelled x) corresponds to partition Rbk (for some k ∈ active-partition-set).

Let's also assume that partition Rbk contains values y and z after iteration i. This implies that the

length of the path from y to x and z to x is i. In the subsequent iteration we use this length i path

to compute length i+1 paths for node x. But if partition Rbk is empty then there are no length i

paths entering node x to participate in the next iteration. With no length i paths entering node x,

there cannot be any length i+1 paths entering node x. Therefore there cannot be any more longer

paths entering node x. Thus the partition in question will not be kept in memoryfor further

iterations. Lu6 discusses the above phenomena. It is possible that a longer version of an already

generated path may try to go through an inactive node. This duplicate path is implicitly eliminated

by the inactive node without necessitating an explicit duplicate removal step.

If a partition Rak is empty, then that partition will never be active in the "Join phase" of

any iteration, but the corresponding Rbk may be active in the "Union Difference phase." This is a

node that has no outgoing edge, but may have a number of incoming edges, and thus is still

active.

3.4 Example

Consider the relation Ro shown in Figure 2. Here, we assume one node per partition.

The initial state and the states in subsequent iterations and phases of the Semi-Naive version of

the method (algorithm 3) are shown below.

12

1

2

3

4

5

6

Ro(A, B)
 1 4
 2 1
 2 3
 3 6
 4 3
 4 5
 4 6
 5 1

Figure 2

Relation Ro and its Corresponding Graph

Initialization State: (#active-partitions = 6)
Rb Ra Rt

2,5->1 1->4 2,5->1
ø->2 2->1,3 ø->2

2,4->3 3->6 2,4->3
1->4 4->3,5,6 1->4
4->5 5->1 4->5

3,4->6 6->ø 3,4->6

Ra1 (1->4) shows that there is a path FROM node 1 TO node 4. R contains a tuple (1,4)
Rb1 (2,5->1) shows that there is a path TO node 1 FROM nodes 2 and 5. R contains tuples (2,1) and (5,1)
Rt1 (2,5->1) shows that there is a path TO node 1 FROM nodes 2 and 5. R contains tuples (2,1) and (5,1)

JOIN PHASE UNION DIFFERENCE PHASE
Iteration 1: (#active-partitions = 5)

Rb Ra Rb Rt
2,5->1 1->4 4->1 2,4,5->1
ø->2* *2->1,3 ø->2* ø->2*

2,4->3 3->6 1->3 1,2,4->3
1->4 4->3,5,6 2,5->4 1,2,5->4
4->5 5->1 1->5 1,4->5

3,4->6* *6->ø 1,2,4->6* 1,2,3,4->6*

Iteration 2: (#active-partitions = 5)
Rb Ra Rb Rt

4->1 1->4 ø->1* 2,4,5->1*
ø->2* *2->1,3 ø->2* ø->2*

1->3 3->6 2,5->3 1,2,4,5->3*
2,5->4 4->3,5,6 ø->4* 1,2,5->4*

1->5 5->1 2->5 1,4->5
1,2->6* *6->ø 1,2,5->6 1,2,3,4,5->6

13

Iteration 3: (#active-partitions = 3)
Rb Ra Rb Rt

ø->1* *1->4 ø->1* 2,4,5->1*
ø->2* *2->1,3 ø->2* ø->2*

5->3 3->6 ø->3* 1,2,4,5->3*
ø->4* *4->3,5,6 ø->4* 1,2,5->4*

2->5 5->1 ø->5* 1,4->5*
5->6* *6->ø 5->6 1,2,3,4,5->6

The computation terminates after iteration 3 because all partitions of Rb are empty.

In this example, inactive partitions are marked with an asterisk. Partition 6 never

participates in the "Join phase" since Ra6 is empty, but Rb6 does get new tuples in each iteration.

Partition 2 does not participate in anything since Rb2 is empty. In the "Join phase" of iteration 3 a

tuple 2->1 is generated, but partition Rb1 is inactive during the "Union Difference phase" since

Rb1 partition is inactive during the "Join phase." Tuple 2->1 had been generated earlier. Since

partition 1 is inactive, the duplicate (2,1) is implicitly removed without having to compare with

t1.

4. Cost Model

In this section we derive the cost formulae for the presented algorithms. These cost

formulae are similar to those used by Lu7 and Valduriez8. We assume that R(A,B) is a binary

relation with the values of A, B coming from the same domain. The following set of parameters

is used in deriving various cost measures:

14

M = Number of pages of memory
|R| = Number of pages in relation R
||R|| = Number of tuples in relation R
JS = Join Selectivity = ||R join S||

||R|| * ||S||

US = Union Selectivity = ||R ∪ S||
||R|| + ||S||

DS = Difference Selectivity = ||R - S||
 ||R||

F = Hashing fudge factor
TS = Tuple length (in bytes)
PS = Page size (in bytes)
p = Number of iterations or the depth of the Transitive Closure
HS = Hash selectivity
#part = | active-partition-set |
#parto = initial | active-partition-set |

tcomp = Time for comparing two attribute values
tmove = Time for moving a binary tuple in memory
tlookup = Time for looking up one value in the hash table
thash = Time for hashing an attribute
tread = Time for reading one page from disk
twrite = Time for writing one page to disk

HS is the fraction of partitions in iteration i which will be active in the iteration i + 1, for

i= 1,2,...n. #part is the number of partitions that participated in iteration i. While ||R|| * ||S|| * JS

gives the number of tuples in the next iteration, #part * HS gives us the number of partitions over

which these tuples will be evenly distributed.

The appendix contains the cost for the Join(hybrid hash), Union, and Union Difference

operations, as well as the cost of Semi-Naive, Logarithmic and Warren's algorithms. These are

similar to those used by Lu7 and Valduriez8.

The join operation used by our algorithm is a slight modification of the hybrid-hash join

method used by Lu7 and Valduriez8, we refer to this as HASHJOIN. In our algorithm a distinct

page of memory is allocated for each of the partitions and the new tuples generated after each

iteration are placed in their appropriate partitions. HASHJOIN does not deal with the cost

required to write the new tuples generated at the end of each "Join phase" to the disk. This cost is

related to the total number of new tuples generated in this iteration, not just the number of new

tuples generated for this partition. So, while this cost is incurred in the "Join phase," it is counted

when we write the new tuples to the disk. We refer to this distribution as

HASHDISTRIBUTION.

15

HASHJOIN(R,S)
STEP 1-2 of JOIN(R,S)
STEP 3 if (||R|| + ||S||) * F * TS > (M-#part) then

begin
+ ((||R|| + ||S||) * TS - (M - #part) /F) / TS * tmove
+ ((||R|| + ||S||) * TS - (M - #part) /F) / PS * twrite
+ ((||R|| + ||S||) * TS - (M - #part) /F) / PS * tread
+ ((||R|| + ||S||) * TS - (M - #part) /F) / TS * thash
end;

STEP 4-5 of JOIN(R,S)

As new tuples are generated in the "Join phase" they will be hashed and moved into the

appropriate partition. As the number of new tuples is based on the total number of tuples in the

partitions being joined this calculation must be done separate from the "Join phase" in what is

called the "Hashdistribution phase."

HASHDISTRIBUTION
STEP 1 2 * ||R|| * ||S|| * JS * thash;
STEP 2 + 2 * ||R|| * ||S|| * JS * tmove;

The cost of moving these tuples from the memory to the disk is given below.

STEP 3 + #part * HSi *
||R|| * ||S|| * JS

 #part * HSi
 * TS

PS
 * twrite

4.1 Cost of HBTC Algorithm

We assume that the new tuples generated in iteration i are evenly distributed across the

active partitions for iteration i+1 for i = 0..p, and that the number of active partitions decreases by

a factor of HS after each iteration.

The number of partitions must be chosen upon entry into the algorithm. There must be

enough room in memory to store the hash tables for Rbk and Rak, as well as one page for each

partition to hold new tuples. Given the available memory as M pages, the initial number of

partitions is determined by the following equation:

M = #parto +
2 * |Ro| * F

#parto

16

Solving for #parto in the above we get:

#parto =
M + M2 - 8 * |Ro| * F

2

The maximum number of partitions is obtained when each partition contains exactly one

distinct node; each node representing a unique value in the relation Ro. Therefore #parto can not

be any greater than #nodes. Since the directed graph(relation) could vary from a complete directed

graph to a chain, #nodes can vary from 2 * #edges + 1 to #edges + 1, respectively. In our cost

analysis, where ||Ro|| = #edges, #nodes has been set to:

#nodes = 2 * 2 * ||Ro|| which is twice the number of nodes in the complete graph.

 This number of active partitions is to ensure that the partitions in the first iteration fit in

memory. |Rak| remains constant, but |Rbk| fluctuates as computation proceeds. Also, #part

decreases. Since only the active partitions are needed in the "Join phase," there will be additional

room in memory to store the hash tables for Rbk and Rak;if partitions become inactive.

The cost (C) of the HBTC approach to the Semi-Naive algorithm is given below:

C :=
|Ro| * tread

+ ||Ro|| * 2 * thash

+ |Ro| * 3 * twrite

+

HASHJOIN Rak
i-1,Rbk

i-1 ∑
k = 1

#parto * HSi - 1

+ HASHDISTRIBUTION

+ Union_Difference Rbk
i ,tk ∑

k = 1

#parto * HSi
∑
i = 1

p

+ Rti * tread + twrite∑
i = 1

#partitions

17

The cost (C) of the HBTC approach to the Logarithmic algorithm is given below:

C :=
|Ro| * tread

+ ||Ro|| * 2 * thash

+ |Ro| * 5 * twrite

+

Join R∆bk, R∆ak∑
k = 1

#part0 * HS2i -1

+ 2 * HASHDISTRIBUTION

Join T∆k, R∆ak∑
k = 1

#part0 * HS2i -1

+ HASHDISTRIBUTION

+ Union_Difference R∆bk, Rtk∑
k = 1

#part0 * HS2i

+ Union T∆k, Rtk∑
k = 1

#part0 * HS2i

∑
i = 1

log2(p + 1)

+ |Rt| * tread + twrite∑
i = 1

#partitions

5. Performance Comparison

In this section we compare the performance of HBTC Semi Naive, Semi-Naive, HBTC

Logarithmic, Logarithmic, and Warren's algorithms. The following set of values are assumed

throughout the comparisons.

18

M - 7,500
|Ro| - 10,000
|R| - 30,000
JS - 10-7
US - 1.0
DS - 1.0
F - 1.2
TS - 8 Bytes
PS - 1600 Bytes
P - 24
HS - 0 .9
tcomp - 3 microsecs
tmove - 20 microsecs
thash - 9 microsecs
tlookup - 6 microsecs
tread - 15 millisecs
twrite - 20 millisecs

For the comparison, we have chosen to vary three parameters: Depth, Memory Size, and
HS.

Figure 3 illustrates HS versus execution time in the HBTC Semi-Naive and HBTC

Logarithmic algorithms. Values for the other three algorithms are shown for comparison. When

HS is one, none of the partitions drop out. HBTC Semi-Naive still performs better than Semi-

Naive, and HBTC Logarithmic still performs better than Logarithmic because partitioning means

fewer tuples must be written back to the disc during the "Join phase." When HS decreases below

0.95, HBTC Semi-Naive begins performing better than the other three non-HBTC algorithms

because of partition dropout. HBTC Logarithmic does not have such a drastic change in behavior

since it has logarithmically fewer iterations. Below 0.5 the performance is relatively constant.

Figure 4 illustrates number of partitions versus execution time in the HBTC Semi-Naive

and HBTC Logarithmic algorithms. The number of partitions is usually set according to the

formulas in Section 4.4, but here the number of partitions is varied from one to the maximum

number of partitions for a relation of that size. When the number of partitions is equal to one, the

HBTC algorithms perform like the non HBTC versions. The partitioning of the source relation

creates dramatic improvements with only a few partitions. The execution time continues to

improve as the number of partitions are increased until the number of partitions reaches

approximately 1000. At this point there is a slight performance decrease since not enough

partitions drop out to give enough room to bring all of the partitions to be joined into memory at

once within the first few iterations.

19

0

10000

20000

30000

40000

50000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

HS

Time
(secs)

Semi Naive
Logarithmic
Warren's
HBTC Semi Naive
HBTC Logarithmic

Figure 3
HS versus Execution Time

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

1 10 100 1000 10000

#partitions

Time
(secs)

HBTC Semi Naive
HBTC Logarithmic

Figure 4
#partitions versus Execution Time

20

Semi Naive
Logarithmic
Warren's
HBTC Semi Naive
HBTC Logarithmic

Figure 5
Memory size versus Execution Time

0

20000

40000

60000

80000

100000

120000

140000

160000

0 10 20 30 40 50 60 70

depth

Time
(secs)

Semi Naive
Logarithmic
Warren's
HBTC Semi Naive
HBTC Logarithmic

Figure 6
Depth versus Execution Time

21

Figure 5 illustrates memory size versus execution time for all five algorithms. Since

HBTC Semi-Naive and HBTC Logarithmic deals with many small partitions instead of a single

large partition, their performance is almost constant over a very wide range of memory sizes.

When memory size is smaller than or comparable to the relation size, the HBTC algorithms do

significantly better than the other three methods. Only when memory size is more than double the

size of the relation size does Warren's algorithm perform better than the HBTC algorithms. When

the memory size is four times as large as the relation size, the logarithmic algorithm begins to

perform slightly better than HBTC algorithms.

Figure 6 illustrates depth versus execution time for all five algorithms. Warren's execution

time remains constant as the depth increases, but since the memory size is near the relation size, it

does not perform as well as the HBTC algorithms. HBTC's performance remains almost constant

with changing depth due to the partition drop out.

6. Conclusions

We have presented and analyzed a hash-based method to compute the transitive closure of

a database relation. The algorithm uses hashing to partition the source relation. Hashing is also

needed to place the new tuples generated after each iteration of the algorithm into appropriate

partitions. We have shown that this method can be applied to both the Semi Naive and

Logarithmic algorithms to improve performance over a wide range of parameter values. Since the

partitions are disjoint, much of the processing could be done concurrently, and thus our method

is amenable to parallelization. Currently we are investigating the use of this technique in

computing aggregative closure and traversal recursions.

22

References

1. R. Agrawal and H. Jagadish, Direct algorithms for computing the transitive closure of
database relations. Proc. 13th VLDB Conf., Sept. 1987.

2. D DeWitt, R. Katz, F. Oken, L. Shapiro, M. Stonebraker and D. Wood, Implementation
techniques for main memory database systems. Proc. ACM-SIGMOD Conf., June 1984.

3. Y.E. Ioannidis, On the computation of the transitive closure of relational operations. Proc.
12th VLDB Conf, Aug. 1986.

4. H.V. Jagadish, R. Agrawal, and L. Ness, A study of transitive closure as a recursion
mechanism. Proc. ACM-SIGMOD Conf., May 1987.

5. A. Johnson, Recursive query processing in deductive databases. MS thesis, Computer
Science Dept, Wayne State University, Detroit, Micigan, USA, 1989, (in preparation).

6. H. Lu, New strategies for computing the transitive closure of a database relation. Proc.
13th VLDB Conf., Sept. 1987.

7. H. Lu, K. Mikkilineni, and J.P. Richardson, Design and evaluation of algorithms to
compute the transitive closure of a database relation. Proc. Third Intl. Conf. on Data
Engineering, Feb. 1987.

8. P. Valduriez and H Boral, Evaluation of recursive queries using join indices. Proc. First
Intl. Conf. on Expert Database Systems, Apr. 1986.

23

Appendix:

Cost of Basic Operations

JOIN(R,S)
STEP 1 (|R| + |S|) * tread
STEP 2 + (||R|| + ||S||) * thash
STEP 3 if (||R|| + ||S||) * F * TS > m then

begin
+ ((||R|| + ||S||) * TS - M * PS / F) / TS * tmove
+ ((||R|| + ||S||) * TS - M * PS / F) / PS * twrite
+ ((||R|| + ||S||) * TS - M * PS / F) / PS * tread
+ ((||R|| + ||S||) * TS - M * PS / F) / TS * thash
end

STEP 4 + ||R|| * tmove
STEP 5 + ||S|| * tcomp
STEP 6 + 2 * ||R|| * ||S|| * JS * tmove
STEP 7 + ||R|| * ||S|| * JS * TS / PS * twrite

UNION(R,S)
STEP 1-5 of JOIN(R,S)
STEP 6 + (||R|| + ||S||) * US * tmove
STEP 7 + (||R|| + ||S||) * US * TS / PS * twrite

UNION DIFFERENCE(R,S)
STEP 1-7 of UNION(R,S)
STEP 8 + (||R|| + ||S||) * DS * tmove
STEP 9 + (||R|| + ||S||) * DS * TS / PS * twrite

24

Cost (C) of Semi-Naive Algorithm

C :=

|Ro| * tread

+ |Ro| * 2 * twrite

+
Join R∆i, R0

+ Union_Difference R∆i,T
∑

i = 1

p

Cost (C) of Logarithmic Algorithm

C :=
|Ro| * tread

+ |Ro| * 2 * twrite

+

Join R∆i, R∆i

+ Join T, R∆i

+ Union_Difference R∆i, T
+ Union Ti, T

∑
i = 1

log2(p + 1)

25

Cost (C) of Warren's Algorithm

C :=
|R0| * tread
+ ||R0|| * thash+ tmove

+ |R0| * 1 - M
 |R1|

 * twrite

+ |R0| * PS
TS

 * log2
PS
TS

 * tcomp+ tmove

Pass #1
+ |R0| * 1 - M

 |R1|
 * tread

+ ||R1|| * tcomp

+ ||R1|| - ||R0|| * thash+ tlookup

+ i * TS - M * PS
i * TS

 * tread∑
i = M * PS

TS
 + 1

||R1||

+ ||R1|| - ||R0|| * log2
PS
TS

 * tcomp

+ ||R1|| - ||R0|| * tmove

+ ||R1|| - M * PS
TS

 * tmove

+ |R1| - M * twrite

Pass #2
+ |R1| - M * tread

+ ||R|| * tcomp

+ ||R|| - ||R1|| * thash+ tlookup

+ i * TS - M * PS
i * TS

 * tread∑
i = M * PS

TS
 + 1

||R||

+ ||R|| - ||R1|| * log2
PS
TS

 * tcomp

+ ||R|| - ||R1|| * tmove

+ ||R|| * tmove
+ |R| * twrite

