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As data that sensors and simulations col-
lect exceeds a PC’s or average computing 
cluster’s capacity, scientists must rely on 

shared cyberinfrastructure (CI) for acquiring, an-
alyzing, and visualizing that data. CIs are federally 
funded research environments that let scientists 
access remote sensor data, unique instruments, 

major data stores, and high-
performance computing and 
networking resources shared 
cross-institutionally, nationally, 
and internationally. Such envi-
ronments include TeraGrid, the 
BlueWaters Petascale Facility, 
the European Organization for 
Nuclear Research (CERN) Large 
Hadron Collider, and global 
networks with funding from the 
US National Science Foundation 
(NSF) International Research 
Network Connections program.

Ultrascale data in geoscience, 
atmospheric science, astrophys-
ics, and bioscience is driving the 
growing use of high-resolution 

displays as visualization tools. Furthermore, scien-
tific problems involving complex data and enor-
mous scale often require remote, interdisciplinary 
collaboration. Remote team members need vi-
sualization tools that facilitate communication, 
collaboration, and discovery, whether the collabo-

rators are in different cities or different countries.
These trends motivated us to investigate a unified 

hardware and software environment to support 
display-rich global collaboration. In this environ-
ment, collaborators generate very-high-resolution 
visualizations on shared CI and distribute the re-
sults over high-speed networks to heterogeneous, 
high-resolution tiled displays at the collaborating 
end points. A tiled display is a large, high-resolution 
display system comprising an array of LCD panels 
that a computer cluster drives. Each computer typ-
ically drives one to four panels, on the basis of its 
graphics capability. In the SAGE (Scalable Adaptive 
Graphics Environment) model, tiled displays typi-
cally have high-speed (multigigabit) network con-
nectivity to remote high-performance-computing 
resources. Multipoint high-definition (HD) vid-
eoconferencing capability on high-resolution tiled 
displays combines the end points into a virtual 
collaboratory. Figure 1 illustrates the shared CI ar-
chitecture and a typical collaborating end point, a 
20-megapixel, LCD-based tiled display.

Over the past six years, the Electronic Visualiza-
tion Laboratory (EVL) at the University of Illinois at 
Chicago (UIC) has spearheaded construction of the 
OptIPlanet Collaboratory, a persistent display-rich 
CI for global-scale distributed visualization. This 
hardware environment connects more than 40 
ultra-high-resolution tiled displays (some over 100 
million pixels) via optical networks. We dubbed 
these networked tiled-displays OptIPortals because 

The	Scalable	Adaptive	
Graphics	Environment	(SAGE)	
is	high-performance	graphics	
middleware	for	ultrascale	
collaborative	visualization	
using	a	display-rich	global	
cyberinfrastructure.	Dozens	
of	sites	worldwide	use	
this	cyberinfrastructure	
middleware,	which	connects	
high-performance-computing	
resources	over	high-speed	
networks	to	distributed	
ultraresolution	displays.
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we based the research on the NSF OptIPuter proj-
ect’s outcomes.1

For the software environment, we developed 
and deployed SAGE2 and Visualcasting.3 SAGE is 
cross-platform middleware that works in concert 
with many visualization applications, letting users 
simultaneously access, stream, and juxtapose mul-
tiple high-resolution visualizations in windows on 
one or more OptIPortals. Visualcasting is a SAGE 
network service that supports large-scale collabora-
tive visualization in the OptIPlanet Collaboratory. 
It broadcasts high-resolution visualizations and vid-

eos to multiple OptIPortals in real time. Using Vi-
sualcasting, collaborators can see and interact with 
the same visualizations while communicating with 
each other through HD videoconferencing.

SAGE and Visualcasting
Fundamentally, SAGE leverages a shared CI to 
convert petascale data into very-high-resolution 
visualizations. Because networking costs are drop-
ping faster than computing and storage costs, ac-
quiring higher-bandwidth networking to a shared 
CI is cheaper than installing and maintaining  
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Figure	1.	A	virtual	collaboratory.	(a)	The	display-rich	distributed	collaboration	environment	uses	a	shared	
cyberinfrastructure.	(b)	A	20-megapixel,	LCD-based	tiled	display	is	a	typical	collaborating	end	point.
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local computational resources. SAGE assumes us-
ers have thin-client computers with high-speed 
network connectivity driving tiled displays.

This model doesn’t require high-end comput-
ing and graphics capability on the client side. 
CI-driven large-scale remote clusters process data 
and render visualizations. Then, SAGE streams 
the visualizations as pixels to the clients at user-
requested resolutions. Furthermore, SAGE provides 
mechanisms to capture and stream HD video and 
audio directly from real-time sources.

Additionally, SAGE lets distributed visualization 
applications running on separate and distant ren-
dering clusters stream their visualizations in real 
time to the same tiled display wall (see Figure 2). 
SAGE works with parallel rendering algorithms 
so that independent remote cluster nodes create 
pieces of the overall image. The system stitches 
these pieces together in real time on the display.

The SAGE user interface lets users interact di-

rectly with the display and manipulate multiple 
visualizations on it. Behind the scenes, SAGE in-
telligently routes the pixels from the rendering 
source to the nodes that display the pixels for that 
portion of the display. This capability lets scien-
tists juxtapose multiple high-resolution visualiza-
tions side-by-side. Scientists then can compare the 
results of simulations with various parameters or 
compare sensor and simulation data to determine 
how well the simulation models the phenomenon 
under investigation.

Visualcasting extends this model to support dis-
tance collaboration among high-resolution tiled 
displays (see Figure 1). Visualcasting is a visual-
ization distribution scheme that uses PC clusters 
and high-speed networks without requiring tradi-
tional router-based multicasting, which is difficult 
to deploy. This architecture uses SAGE Bridge soft-
ware, which runs on a high-performance PC clus-
ter strategically located at a high-speed network 

SAGE-driven tiled display

Remote rendering cluster
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Figure	2.	The	SAGE	(Scalable	Adaptive	Graphics	Environment)	architecture.	Each	visualization	application	runs	
on	nodes	in	a	distributed	rendering	cluster.	The	node	color	represents	the	application	running	on	the	node.	
SAGE	manages	the	parallel	graphics	streams	between	the	rendering	nodes	and	tiled	display	nodes.
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access point (such as StarLight in Chicago). The 
SAGE Bridge redistributes visualization—the video 
and audio streams SAGE captures—to multiple end 
points (see Figure 3). This process lets collaborators 
share their visualization applications and videos 
on local and remote displays while communicat-
ing through multipoint HD videoconferencing.

SAGE Pixel Streaming
To transport image data, SAGE uses pixel-block 
streaming and a pixel pipeline architecture.

Pixel-Block Streaming
One obvious approach to distributing an applica-
tion’s output image over a tiled display is partition-
ing the image according to each tile’s application 
layout and streaming the fragments to appropriate 
tiles. However, this approach can’t support Visu-
alcasting efficiently. Visualcasting distributes the 
source image to arbitrarily sized and positioned 
output windows on the displays. So, using that ap-
proach would require separately partitioning the 
source image for each destination’s tiled display. 
As the destinations and applications in a Visu-
alcasting session increase, the partitioned image 
fragments rapidly increase. The memory copies 
that the system requires to create these partitions 
incur significant system overhead, limiting the Vi-
sualcasting service’s scalability.

To address this problem, SAGE streams uni-
formly sized pixel blocks rather than arbitrarily 
sized image fragments (see Figure 4). SAGE gener-
ates the pixel-block routing table, such as in Figure 
4b, by comparing the pixel-block and tile layouts. 
It continues to send the pixel blocks according to 
the table until the window layout changes. So, the 
system must recalculate the table only when a user 
moves or resizes a window. SAGE uses each block’s 
frame ID to synchronize the pixel-block display. 
It then uses each block’s configuration ID to en-
sure that the window layout it uses to locate pixel 
blocks on the display is consistent with the pixel-
block routing table it uses for sending pixel blocks.

This pixel-block streaming relies on routing pixel 
blocks rather than arbitrarily partitioning the ap-
plication image (see Figure 5). For Visualcasting, 
the SAGE Bridge routes pixel blocks to each end 
point, requiring neither memory copies nor addi-
tional image-buffer allocation. This enables Visu-
alcasting to scale with the number of end points 
and applications until the SAGE Bridge cluster’s 
total bandwidth reaches its maximum. However, 
users can relieve this constraint by adding more 
resources (bridge nodes and network bandwidth) 
to the cluster.

Another advantage pixel-block streaming has 
over image partitioning is shorter window opera-
tion latency. For every window operation, image 
partitioning requires repartitioning the applica-
tion images and reallocating the image buffers 
for the partitioned image fragments. In contrast, 
pixel-block streaming requires updating only the 
pixel-block routing table. This method reduces 
the window operation latency enough to enable 
animated moving of an application window on a 
tiled display by combining multiple small window-
repositioning operations.
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Figure	3.	The	SAGE	Bridge.	This	cluster	accepts	parallel	visualization	
streams,	replicates	them,	and	distributes	them	to	multiple,	SAGE-driven	
tiled	displays.	The	window	operations	on	each	display	are	independent.	
An	application	can	have	a	different	window	layout	on	each	display.

(a) (b)

B

C D

A 1 C 11 A
221 22 23 24 25

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

C,D 12 A,B
3 D 13 B
4 D
5 D …

…

6 A,C 21 A
7 A,B,C,D 22 A,B
8 B,D 23 B
9 B,D 24 B
10 B,D 25 B

Figure	4.	An	example	of	pixel	block	partitioning.	(a)	SAGE	partitions	an	
application	image	into	a	5	×	5	pixel-block	array	and	places	the	array	over	
four	tiles	(display	nodes),	A,	B,	C	and	D.	It	assigns	each	block	a	unique	ID	
from	left	to	right	and	bottom	to	top	and	uses	the	ID	to	locate	the	pixel	
block	on	the	tiled	display.	(b)	Using	the	pixel	block	routing	table,	SAGE	
sends	each	pixel	block	to	tiles	needing	any	portion	of	the	block’s	data.



54	 May/June	2010

Ultrascale	Visualization

Pixel-block streaming uses more network band-
width than image partitioning for an image frame 
when pixel blocks cover multiple tiles, such as the 
green blocks in Figure 5b. Because this overhead 
increases with pixel-block size, we typically use a 
small block, such as 32 × 32 pixels or 64 × 64 
pixels, to keep the overhead trivial.

The SAGE Pixel Pipeline
SAGE transfers pixel data from an application to 
a tiled display through the SAGE pixel pipeline 
(see Figure 5). The SAGE API receives an applica-
tion’s output image in the data fetch stage, gener-
ates pixel blocks from the image, and routes them 
to their destinations (display nodes) in the block 
generation stage. For a parallel application, SAGE 
synchronizes the block generation stage across the 
application nodes for seamlessly repositioning and 
resizing application windows. Without synchro-
nization, each node might have a different pixel-
block routing table for the same image frame, thus 
updating the table at different frames during win-
dow operation. This timing would result in broken 
imagery on the display. To guarantee synchronous 

updates, SAGE delivers window layout messages 
through synchronization signals to each rendering 
node, which then updates its local routing table 
according to these messages.

The pixel blocks from the block generation stage 
stream to display nodes in the block transfer stage. 
For network streaming, SAGE uses both TCP and 
the User Datagram Protocol (UDP). TCP provides 
reliable, ordered data delivery to the destination 
host. Because TCP flow control relies on feedback 
messages from the destination host, it performs 
well over local-area networks with short round-
trip times but not over wide-area networks with 
long round-trip times. UDP shows much higher 
and more stable performance over wide-area net-
works than TCP does, but it doesn’t guarantee reli-
able, ordered data delivery. Applications using UDP 
should employ a mechanism to guarantee safe 
data delivery. In SAGE, we typically use TCP for 
local streaming and UDP for remote streaming.

For TCP, SAGE sends a group of pixel blocks us-
ing a vectored I/O system call. Vectored I/O is an 
I/O method that supports reading a single data 
stream to multiple buffers or writing multiple buf-
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Figure	5.	Pixel-block	pipeline.	(a)	Without	the	SAGE	Bridge,	the	SAGE	pixel	pipeline	comprises	the	three	stages	
on	each	application	node	and	the	two	stages	on	each	display	node.	The	SAGE	Bridge	adds	three	optional	
stages	to	the	pipeline.	A	pixel	data	buffer	or	network	buffer	connects	each	stage	to	the	next	so	that	all	stages	
can	run	concurrently.	(b)	The	diagram	shows	pixel-block	streaming	along	the	pipeline.
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fers to a single data stream through a system call. 
Because SAGE stores pixel data in nonsequential 
memory locations (blocks), it uses vectored I/O 
operations to send and receive multiple blocks at 
a time. A vectored I/O operation replaces many 
ordinary read or write operations, relieving system 
call overhead and increasing network performance 
using less CPU time than streaming block by block.

For UDP, however, we experienced more data loss 
with block-group streaming than streaming block 
by block. The 64-Kbyte maximum UDP buffer size 
limits the data quantity a system call can send. 
This, in turn, limits the vectored I/O operation’s 
advantage. Although TCP has its own flow control 
mechanism, UDP requires application-level flow 
control to minimize data loss. Streaming block by 
block lets SAGE better control pixel-block flow. So, 
recent SAGE versions send each pixel block sepa-
rately for UDP. The UDP streaming’s data loss pro-
duces visual artifacts on the display, but they’re 
visible for only a short time if the application runs 
at an interactive frame rate, typically higher than 
24 frames per second (fps). Minimal momentary 
data loss is acceptable, except in applications re-
quiring high-precision images, such as medical ap-
plications. A detailed description of SAGE’s UDP 
flow control algorithm appears elsewhere.3

SAGE reads the pixel blocks from the network 
and inserts them into the pixel-block buffer at the 
block read stage. Each display node creates a sepa-
rate network read thread for each application to 
concurrently read each application’s pixel streams. 
For a parallel application, SAGE at this stage se-
rializes multiple pixel streams to a display node 
into a single stream. Then, in the display stage, 
SAGE fetches the pixel blocks from the buffer and 
synchronously updates them on the display. Each 
display node creates two OpenGL (Open Graph-
ics Library) textures for each application and uses 
them for drawing and scaling multiple application 
images on a screen.

The coupled textures work as double buffers for 
each application: one for drawing on the screen 
and the other for receiving a new application im-
age. To synchronously update multiple application 
images across multiple tiles, SAGE employs a syn-
chronization server that monitors the coupled tex-
tures’ status at each node. When a new image is 
ready at every node, the server sends synchroniza-
tion signals that trigger the texture swapping and 
screen refresh. Details on the SAGE synchroniza-
tion algorithm appear elsewhere.3

The block read and block transfer stages on 
the SAGE Bridge (for Visualcasting) are identical 
to the ones we’ve described in this section. The 

block-routing stage uses multiple threads to route 
pixel blocks to multiple end points concurrently 
and independently. To avoid unnecessary memory 
copies, each thread has a reference to the pixel 
blocks rather than a local copy. Each pixel block 
has a reference count to ensure that every thread 
has sent the pixel block before returning it to the 
pixel-block pool in the SAGE Bridge.

User Interaction
Because SAGE effectively turns any tiled display 
into a collaborative environment, enabling mul-
tiuser interaction was imperative. Initially, users 
could use a cross-platform, desktop-based user 
interface (SAGE UI) from their laptops to ma-

nipulate windows, share multimedia files through 
drag-and-drop, share desktops, or share applica-
tions with remote displays. However, direct display 
interaction is often more appropriate, especially 
when users want to be mobile in front of the 
display for more natural physical navigation. So, 
we developed Direct Interaction Manager (DIM), 
which manages numerous heterogeneous physical-
interaction devices.

Supporting heterogeneous devices is crucial 
because no device has emerged as the most ap-
propriate for large high-resolution displays. We’ve 
experimented with devices such as a traditional 
mouse, Gyromouse, trackball, joystick, Wiimote, 
touch screen, and six-degree-of-freedom CAVE 
(CAVE Automatic Virtual Environment) wand. 
DIM also handles drawing user interface objects 
(widgets) on the display and performs device event 
handling while enabling true simultaneous mul-
tiuser interaction.

SAGE Applications
The following major applications highlight differ-
ent ways of using SAGE.

Multimedia Applications and Scientific Animation
As 10-megapixel cameras become prevalent, us-
ers can easily create high-resolution images that 
desktop screens can’t accommodate at their na-
tive resolutions. The SAGE ImageViewer provides 

Because SAGE effectively turns any tiled 
display into a collaborative environment, 
enabling multiuser interaction was 
imperative.
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a simple way to load and view a high-resolution 
image file at its native resolution on a tiled display. 
It supports most conventional image formats, in-
cluding JPEG, PNG, GIF, and TIFF.

For video and animation, Mplayer is a cross-
platform media player that supports a range of 
media file formats, such as MPEG, VOB (Video 
Object), AVI (Audio Video Interleave), VIVO (Video 
In Video Out), and RealMedia. We implemented 
an MPlayer plug-in for SAGE so that users can 
display any MPlayer-supported media file. Mplayer, 
however, is limited to conventional resolution and 
lossy media formats. Scientific uses require higher-
resolution, lossless animation.

To support higher-resolution animation, the US 
National Center for Supercomputing Applications 
(NCSA) developed Bitplayer, a high-resolution ani-
mation playback tool. We ported Bitplayer to SAGE 
and enhanced it to support uncompressed (24-bit 
RGB) and compressed (DXT texture format) con-
tent at any resolution. DXT is a group of lossy tex-
ture compression algorithms S3 Graphics developed, 
under the name S3 Texture Compression. SAGE sup-
ports DXT1, which converts 4 × 4 input pixels into 
64 bits of output. This conversion results in an 8:1 
compression ratio for the 32-bit RGBA (RGB and al-
pha) pixel format. Most modern GPUs support DXT 
decompression. SAGE supports transferring and dis-
playing DXT format image data onto a tiled display. 
DXT compression lets users stream full HD (1,920 × 
1,080 pixels) video over a gigabit connection and 4K 
(4,096 × 2,160 pixels) animations without needing a 
high-end storage system or an expensive codec.

Scientific animation is essential for teaching 
and disseminating scientific-visualization results. 
Preserving advanced simulation and rendering’s 
intricate details, such as for climate or molecular 
simulations, requires very high resolution—HD at 
minimum, but preferably 4K-resolution. As we’ve 
demonstrated at numerous workshops and confer-
ences over the past four years, Bitplayer effectively 
supports this need.

High-Definition Video and Audio Streaming
We developed HD video and audio streaming (HDS), 
which streams low-latency, uncompressed full-HD 

video and audio from a camera using an HDMI 
(High-Definition Multimedia Interface) capture 
card. HDS passes the captured video frames in the 
YUV422 format directly to SAGE for streaming. The 
frame rate can control total bandwidth use, which 
is usually under 1 Gbit per second (Gbps) without 
significant quality loss. We used HDS in the suc-
cessful Visualcasting demonstrations and experi-
ments we describe in the next section.

Several organizations have developed HD video 
and audio streaming solutions using SAGE: the 
University of Queensland (HDS with DXT com-
pression), ResearchChannel (iHDTV), Masaryk 
University’s ANTLab (UltraGrid), and Nippon 
Telegraph and Telephone (I-Visto, a multirate HD-
video transmission system).

Ultraresolution Image Viewer
MagicCarpet is a cluster-based interactive ultra-
resolution image viewer for scalable tiled displays. 
It uses preprocessed multiresolution images that 
reside on a local disk and loads appropriate detail 
at different zoom levels by paging texture data to 
video memory on demand.

MagicCarpet can work as a standalone application 
or with SAGE to stream the rendered image to local 
or remote tiled displays. The SAGE ImageViewer is 
useful for loading high-resolution image files onto a 
tiled display. However, scientists who deal with ex-
tremely high-resolution images, such as aerial and 
satellite imagery (365K × 365K pixel maps) or tiled 
electron microscope images, require an advanced 
tool to explore their large-scale image data.

Parallel Real-Time 3D Rendering
ParaView is a parallel application for visualizing 
and interacting with large-scale 3D data on a re-
mote visualization cluster through an interactive 
client on a laptop or desktop computer.4 How-
ever, the clients’ screen resolution and available 
network bandwidth constrain the visualization’s 
resolution and interactivity. ParaView itself can 
support high-resolution visualization on a tiled 
display, but it has two limitations. First, the ren-
dering nodes must directly drive the tiled display; 
ParaView doesn’t support remote visualization for 
a tiled display. Second, it allows visualizing only 
one data set at a time, occupying the entire display.

To overcome these limitations, we integrated 
ParaView into the SAGE framework. This integra-
tion enables large-scale remote visualization using 
ParaView on a high-resolution tiled display. Para-
View enables distributed visualization of a very 
large data set on a remote rendering cluster. SAGE 
streams the high-resolution visualization over a 

Scientific animation is essential for 
teaching and disseminating  

scientific-visualization results.
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high-speed network in parallel to a user’s display. 
Users can employ a ParaView client to interact with 
the visualization.

Accomplishments
Multiple organizations and user communities have 
successfully deployed and demonstrated SAGE.

Streaming from Distributed Rendering Sources
At the iGrid 2005 workshop, we simultaneously 
streamed various content, including

 ■ real-time parallel volume-rendered images of 
the Visible Korean Human from the Korea In-
stitute of Science and Technology Information 
(KISTI) over KreoNet2,

 ■ NCSA’s prerendered HD tornado simulation an-
imations from the SARA Supercomputing and 
e-Science Support Center in Amsterdam over 
SURFnet,

 ■ 1-foot-resolution aerial photographs of New 
Orleans in the aftermath of Hurricane Katrina, 
and

 ■ live HD video from EVL over CAVEwave/Na-
tional LambdaRail.

We allocated 10 Gbps for this iGrid experi-
ment, which ran for six hours over three work-
shop sessions. SAGE achieved 9 Gbps of sustained 
throughput, transferring approximately 24 Tbytes 
of dynamic image data. This was the first success-
ful international demonstration showing SAGE 
could enable and manage simultaneous real-time 
streaming of distributed, high-resolution visual-

ization applications from distributed rendering 
sources to a large-scale tiled display.

Visualcasting Experiments and Demonstrations
On 18 April 2008, Visualcasting enabled HD 
videoconferences among five international sites. 
Figure 6 shows the videoconference from EVL’s 
viewpoint. This was the first successful multi-
point videoconference among globally distributed 
tiled displays. Visualcasting enabled casual con-
versation among all the participants through its 
short-latency uncompressed HD video and audio 
distribution. Each end point sent an audio stream 
and a full HD camera live feed at a rate of 17 to 
18 fps and 0.7 Gbps network bandwidth to two 
SAGE Bridge nodes at StarLight. Each end point re-
ceived multiple HD video streams according to its 
capacity. The total Visualcasting throughput was 
9.2 Gbps. This experiment showed that we could 
realize high-resolution image multicasting on the 
order of tens of gigabits per second by using a PC 
cluster connected to high-speed networks.

At Supercomputing 2008, EVL and some OptI-
Planet Collaboratory partners demonstrated Visu-
alcasting’s full capabilities throughout the week. 
We streamed full HD video, audio, and 4K scien-
tific animations among three booths on the show 
floor (SARA, KISTI, and EVL/California Institute 
for Telecommunications and Information Technol-
ogy/San Diego Supercomputing Center), UIC, the 
University of Michigan, Masaryk University, and 
the University of Queensland. We thus created a 
sustained global teleconference sharing massive-
data-set visualizations (see Figure 7).

Figure	6.	Multipoint	videoconferencing.	The	team	at	the	Electronic	Visualization	Laboratory	in	Chicago	holds	
an	HD	videoconference	using	Visualcasting	with	(clockwise	from	top	left)	the	Gwangju	Institute	of	Science	and	
Technology,	University	of	Michigan,	SARA	Supercomputing	and	e-Science	Support	Center,	and	Korea	Institute	
of	Science	and	Technology	Information.
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We used UDP for all the experiments and dem-
onstrations we describe in this section.

SAGE User Communities
More than 40 OptIPlanet sites have built high-
resolution display walls and adopted SAGE (Figure 
8 shows a few). These sites include universities, re-
search institutions, and companies, both nation-
ally and internationally.

Texas Advanced Computing Center. The Texas Ad-
vanced Computing Center (TACC) at the University 
of Texas at Austin has built Stallion, the world’s larg-
est high-resolution tiled display. It’s a 307-Mpixel 
display comprising 75 (15 × 5) Dell 30-inch flat-
panel monitors (see Figure 8b). TACC adopted SAGE 
as the tiled-display manager and became one of the 
most active SAGE user sites.

SAGE has successfully supported scientific vi-
sualizations on Stallion. TACC’s Ranger, one of 
the world’s largest computing systems for open 
science research, and Spur, the high-end remote-
visualization system tightly coupled with Ranger, 
generate these visualizations. TACC is interested 
in expanding SAGE’s capability and has recently 
started a partnership with EVL to investigate op-
portunities as SAGE development progresses.

University of Michigan. The university’s School of 
Information (SI) has been an OptIPlanet Collabo-
ratory partner since 2005. As such, SI has enthu-
siastically participated in various international 
research experiments and demonstrations of Visu-

alcasting. SI researchers have investigated how SAGE 
can support collaboration in research and education 
on the campus using the Virtual Space Interaction 
Testbed (VISTI; http://visit.si.umich.edu). This SI ini-
tiative aims to apply advanced CI capabilities to the 
challenges of effective distance collaboration.

SI has deployed four OptIPortals across three 
departments. This implementation lets research-
ers and students interact with remote collaborators 
and visualization on a total of 235 Mpixels of digi-
tal canvas. SAGE has allowed collaboration in such 
disciplines as atmospheric science, computational 
social science, civil engineering, and humanities.

SARA Computing and Networking Services. An OptI-
Planet partner since 2004, the e-Science Support 
Center of SARA, the Dutch supercomputer cen-
ter, has contributed greatly to SAGE development, 
transatlantic tests, and demonstrations. SARA 
also supports SAGE use in the broader Dutch 
e-science community. For example, the Dutch 
Climate Research Institute has performed sev-
eral extremely large-scale climate simulations on 
numerous European supercomputers. These sim-
ulations created hundreds of terabytes of data, 
which SARA stored. Climate institute researchers 
selectively visualize the data sets at SARA and use 
SAGE to stream and display the results to their 
tiled displays. This practice has become a part of 
their daily workflow.

The University of Amsterdam’s Bioinformatics 
Institute uses SAGE to stream and display very-
large-scale microarray data over optical networks.

HD video

Figure	7.	Three	remote	participants,	(clockwise	from	bottom	right)	Masaryk	University,	the	University	of	
Illinois	at	Chicago,	and	the	University	of	Michigan,	collaborate	through	Visualcasting	at	Supercomputing	
2008.	The	participants	can	view	each	other	as	well	as	the	scientific	visualization	in	the	top-right	pane.
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SARA, the European Space Agency, and the Dutch 
Air Force are collaborating on a project to reduce 
collision danger between migrating birds and air-
planes using a complex simulation. They use SAGE 
to remotely disseminate simulation results to het-
erogeneous tiled displays at various institutes.

Louisiana State University. In 2009, Louisiana State 
University (LSU) placed first at the IEEE Interna-
tional Scalable Computing Challenge at the IEEE/
ACM International Symposium on Cluster, Cloud, 
and Grid Computing. LSU demonstrated a scal-
able, end-to-end, interactive system for simulating 
and visualizing black holes.

The LSU researchers ran the simulation on 2,048 
cores of TACC’s Ranger cluster for 160 hours, gen-
erating 42 Tbytes of data. They transferred this 
data over the 10-Gbps Louisiana Optical Network 
Initiative network to rendering nodes at an LSU vi-
sualization cluster. A parallel renderer at LSU used 
GPU acceleration to render images. The researchers 
used SAGE to stream the visualization result to the 
final display.

Future Challenges
SAGE is a research prototype that must now transi-

tion to a hardened technology because it’s in high 
demand in the SAGE user community. To achieve 
this goal, we must address several problems.

Enhancing 3D Parallel Visualization in SAGE
Although SAGE is designed to support 3D parallel 
visualization applications for large-scale data visu-
alization, its users face two primary hurdles to fully 
using this capability. First, the variety and number 
of SAGE-enabled 3D parallel visualization appli-
cations is limited, and they require complex user 
configurations. Second, users prefer to stay with vi-
sualization tools they’re familiar with rather than 
switch to a new SAGE-enabled visualization tool.

To address these problems, we’ll integrate widely 
used, massively parallel visualization tools such as 
VisIt (https://wci.llnl.gov/codes/visit/home.html) 

(a) (b)

(c) (d)

Figure	8.	OptIPortals	and	SAGE.	(a)	At	EVL’s	CyberCommons,	a	user	is	directly	interacting	with	the	SAGE-
driven	tiled	display.	(b)	The	TACC’s	SAGE-driven	Stallion	is	the	world’s	largest	tiled	display.	(c)	The	University	
of	Michigan’s	collaborative	ultraresolution	environment	uses	SAGE.	(d)	At	SARA’s	National	Science	Day	
demonstration,	SAGE	shows	scientific	animations	and	4K	movies	on	SARA’s	tiled	display.

SAGE is a research prototype that must 
now transition to a hardened technology 
because it’s in high demand in the SAGE 
user community.
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in addition to ParaView. All these visualization 
packages are based on the Visualization Tool Kit 
(VTK), a cross-platform and open source software 
system for 3D computer graphics, image process-
ing, and visualization.5 We’ll develop a VTK out-

put module for SAGE so that researchers can use 
potentially any VTK-based visualization tool with 
SAGE. We expect these solutions will help sci-
entists and engineers use high-resolution display 
walls and CI for their ultrascale visualizations.

Several well-known tiled-display middleware systems ex-
ist, including Chromium,1 DMX (Distributed Multihead 

X Project; http://dmx.sourceforge.net), Equalizer,2 and 
CGLX (Cross-Platform Cluster Graphic Library).

In Chromium, one or more servers intercept OpenGL 
graphics primitives from an unmodified application and 
stream them to clients driving the tiled-display wall. These 
clients then must render the graphics primitives on their GPUs.

DMX provides a single unified X Window desktop 
by coupling multiple X servers on multiple machines. In 
DMX, a master node distributes X Window primitives to 
other client nodes, which render the visualization. This 
lets users view general X applications on a tiled display, 
but not hardware-accelerated OpenGL-based applications. 
However, DMX can work with Chromium to provide a 
complete desktop solution across multiple displays. DMX 
renders an application’s original GUI on the tiled display 
without any source code change, whereas Chromium 
renders the 3D graphics windows.

Equalizer offers a hybrid approach in which the user can 
combine various rendering techniques. It supports screen-
space, database, time-multiplex, pixel, and stereo task dis-
tribution. Users can select parallel compositing algorithms.

CGLX doesn’t distribute graphics primitives, but it runs 
the same copies of an OpenGL-based application on all 
clients and replicates visualization data on all the clients. 
Users must modify applications to support CGLX. The 
amount of graphics data it can render is limited to the 
GPUs’ and onboard main memory’s capacities.

Table 1 summarizes the key differences among SAGE and 
the middleware we just described. Chromium’s chief advan-
tage is that it requires no modification to an existing OpenGL 
program. However, it works only with OpenGL-based appli-
cations, and the entire tiled wall can run only one application 
at a time. DMX works with various applications but supports 

only Unix-based (Linux) applications. Furthermore, the master 
node becomes a bottleneck as the number of running applica-
tions increases. In all cases, the local graphics card’s capability 
constrains a clients’ ability to visualize large-scale data.

SAGE has four chief advantages:

 ■ The resolution and frame rate of visualization streams can 
scale with the number of rendering and display nodes.3

 ■ Multiple applications can run simultaneously, and users 
can organize them as windows on a tiled display.

 ■ Applications needn’t be OpenGL-based.
 ■ SAGE works for Linux, Mac, and Windows applications.

SAGE doesn’t require powerful graphics cards at the 
clients; rather, it leverages networked shared CI to per-
form ultrascale visualization. Moreover, SAGE is completely 
independent of the method for generating applications’ 
pixels (software or hardware rendering, GPU or many-
core systems, or Mac/Windows/Linux OS). So, it’s future-
proof in a rapidly changing technology landscape. Finally, 
Visualcasting enables simultaneous visualization distribu-
tion to multiple tiled displays.
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SAGE versus the Competition

Table 1. Comparing Tiled-Display Middleware Systems.

SAGE Chromium DMX* Equalizer CGLX*

Supports multiple applications simultaneously Yes No Yes No No

Supports non-OpenGL applications Yes No Yes No No

Application transparency No Yes Yes No No

Supports distance collaboration Yes No No No No

Platforms Linux, Mac, 
Windows

Linux, Mac, 
Windows

Linux Linux, Mac Linux, 
Windows

Open source Yes Yes Yes Yes No

* DMX stands for Distributed Multihead X Project; CGLX stands for Cross-Platform Cluster Graphic Library
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Another solution is to integrate commonly used 
parallel-rendering systems for tiled displays, such as 
Chromium or Equalizer, with SAGE (see the “SAGE 
versus the Competition” sidebar). These tools would 
feed SAGE rather than drive a tiled display directly. 
This integration will let users run several instances 
of these tools at one time on a display and benefit 
from the expertise invested in the systems’ devel-
opment. Furthermore, integration with Chromium 
or Equalizer will let users of OpenGL-based visual-
ization applications use parallel rendering without 
modifying their applications. They’ll also be able to 
harness SAGE’s ability to show results from these 
multiple applications side-by-side.

Developing a Persistent Visualcasting Service
The international Visualcasting demonstrations 
confirmed that Visualcasting is a requirement for 
display-rich global collaboration. However, users 
still lack the capability to easily share, discover, 
browse, and initiate collaboration sessions. In ad-
dition, Visualcasting resources must be able to 
automatically scale as the number of streams and 
resolution grow. We plan to leverage the accumu-
lated knowledge from the Access Grid project, which 
supports distributed collaborative interactions over 
computational grids, to develop a persistent, more 
robust Visualcasting service.6 We’ll initially deploy 
it at the StarLight international communications 
exchange facility in Chicago. Subsequently, we’ll 
work with OptIPlanet partners to create more Vi-
sualcasting service points internationally.

Another problem in building a persistent Visu-
alcasting service is supporting the heterogeneous 
end points in network and display capacity. Be-
cause of this heterogeneity, end points consume 
(display) streamed data at different rates, and a 
slow end point might degrade overall Visualcasting 
performance. For example, the maximum frame 
rate of an uncompressed 4K animation at an end 
point with 6 Gbps of network bandwidth is 30 fps; 
the maximum frame rate at another end point 
with 1 Gbps of network bandwidth is only 5 fps. 
We’ll address this problem by developing multilay-
ered Visualcasting. This idea is analogous to lay-
ered multicasting—that is, distributing a version of 
the same image data with different image quality 
or resolution through each data layer.7 Each end 
point subscribes to a layer appropriate to its data 
bandwidth and display resolution without affect-
ing the streams to other end points.

Enhanced Support for Interactivity
Although SAGE applications run on remote serv-
ers and stream visualizations to tiled displays, 

SAGE doesn’t forward an application’s GUI to 
the displays. This is important because a GUI of-
ten carries information about the visualization. 
Without access to the application GUI, users at 
remote sites can only view the application output, 
rather than interact with it. Leveraging Virtual 
Network Computing (VNC), we’ll develop a ser-
vice that lets users view and control an interface 
directly on the tiled display as well as through a 
wireless laptop.

To fully exploit increased display resolution, 
SAGE’s current API lets application developers pass 

interaction gestures as events to their applications. 
However, SAGE still needs a more complete set of 
interaction capabilities, including a widget library 
to create visual interfaces for tiled displays. These 
widgets will be smart enough to resize themselves 
appropriately according to the tiled display’s size 
and resolution. We’ve built an early prototype of a 
widget framework to validate the concept. A com-
prehensive set of widgets will require additional 
work. The next step would be extending these wid-
gets so that collaborating users can control them 
from different tiled displays.

Today, ultra-high-resolution display environ-
ments are fast becoming the lenses of virtual 

microscopes and telescopes, enabling researchers 
to observe data in CI repositories. Using SAGE 
and OptIPortals, scientists can create visualiza-
tion pipelines from multiple sources to access and 
share information, in various resolutions and for-
mats. This capability lets users access up-to-date 
and related information sets to display them si-
multaneously, quickly see context as well as detail, 
and make more informed and timely decisions. 
This technology will have a profound, transforma-
tive effect on ultrascale collaborative visualization, 
making CI more accessible to end systems and us-
ers, in both the laboratory and classroom.

The SAGE software, including full source code, 
user manuals, and applications, is available at 
www.sagecommons.org. 

Using SAGE and OptIPortals, scientists can 
create visualization pipelines from multiple 
sources to access and share information, in 
various resolutions and formats.
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