
50	 May/June	2010	 Published	by	the	IEEE	Computer	Society	 0272-1716/10/$26.00	©	2010	IEEE

Ultrascale	Visualization

Ultrascale Collaborative
Visualization Using a Display-Rich
Global Cyberinfrastructure
Byungil Jeong ■ University of Texas at Austin

Jason Leigh, Andrew Johnson, Luc Renambot, Maxine D. Brown, Ratko Jagodic, Sungwon Nam,
and Hyejung Hur ■ University of Illinois at Chicago

As data that sensors and simulations col-
lect exceeds a PC’s or average computing
cluster’s capacity, scientists must rely on

shared cyberinfrastructure (CI) for acquiring, an-
alyzing, and visualizing that data. CIs are federally
funded research environments that let scientists
access remote sensor data, unique instruments,

major data stores, and high-
performance computing and
networking resources shared
cross-institutionally, nationally,
and internationally. Such envi-
ronments include TeraGrid, the
BlueWaters Petascale Facility,
the European Organization for
Nuclear Research (CERN) Large
Hadron Collider, and global
networks with funding from the
US National Science Foundation
(NSF) International Research
Network Connections program.

Ultrascale data in geoscience,
atmospheric science, astrophys-
ics, and bioscience is driving the
growing use of high-resolution

displays as visualization tools. Furthermore, scien-
tific problems involving complex data and enor-
mous scale often require remote, interdisciplinary
collaboration. Remote team members need vi-
sualization tools that facilitate communication,
collaboration, and discovery, whether the collabo-

rators are in different cities or different countries.
These trends motivated us to investigate a unified

hardware and software environment to support
display-rich global collaboration. In this environ-
ment, collaborators generate very-high-resolution
visualizations on shared CI and distribute the re-
sults over high-speed networks to heterogeneous,
high-resolution tiled displays at the collaborating
end points. A tiled display is a large, high-resolution
display system comprising an array of LCD panels
that a computer cluster drives. Each computer typ-
ically drives one to four panels, on the basis of its
graphics capability. In the SAGE (Scalable Adaptive
Graphics Environment) model, tiled displays typi-
cally have high-speed (multigigabit) network con-
nectivity to remote high-performance-computing
resources. Multipoint high-definition (HD) vid-
eoconferencing capability on high-resolution tiled
displays combines the end points into a virtual
collaboratory. Figure 1 illustrates the shared CI ar-
chitecture and a typical collaborating end point, a
20-megapixel, LCD-based tiled display.

Over the past six years, the Electronic Visualiza-
tion Laboratory (EVL) at the University of Illinois at
Chicago (UIC) has spearheaded construction of the
OptIPlanet Collaboratory, a persistent display-rich
CI for global-scale distributed visualization. This
hardware environment connects more than 40
ultra-high-resolution tiled displays (some over 100
million pixels) via optical networks. We dubbed
these networked tiled-displays OptIPortals because

The	Scalable	Adaptive	
Graphics	Environment	(SAGE)	
is	high-performance	graphics	
middleware	for	ultrascale	
collaborative	visualization	
using	a	display-rich	global	
cyberinfrastructure.	Dozens	
of	sites	worldwide	use	
this	cyberinfrastructure	
middleware,	which	connects	
high-performance-computing	
resources	over	high-speed	
networks	to	distributed	
ultraresolution	displays.

	 IEEE	Computer	Graphics	and	Applications	 51

we based the research on the NSF OptIPuter proj-
ect’s outcomes.1

For the software environment, we developed
and deployed SAGE2 and Visualcasting.3 SAGE is
cross-platform middleware that works in concert
with many visualization applications, letting users
simultaneously access, stream, and juxtapose mul-
tiple high-resolution visualizations in windows on
one or more OptIPortals. Visualcasting is a SAGE
network service that supports large-scale collabora-
tive visualization in the OptIPlanet Collaboratory.
It broadcasts high-resolution visualizations and vid-

eos to multiple OptIPortals in real time. Using Vi-
sualcasting, collaborators can see and interact with
the same visualizations while communicating with
each other through HD videoconferencing.

SAGE and Visualcasting
Fundamentally, SAGE leverages a shared CI to
convert petascale data into very-high-resolution
visualizations. Because networking costs are drop-
ping faster than computing and storage costs, ac-
quiring higher-bandwidth networking to a shared
CI is cheaper than installing and maintaining

High-performance-computing resource

High-speed
network access point

Ultrascale
visualization

HD video and
audio streams

Ultraresolution
tiled display

(a)

(b)

Figure	1.	A	virtual	collaboratory.	(a)	The	display-rich	distributed	collaboration	environment	uses	a	shared	
cyberinfrastructure.	(b)	A	20-megapixel,	LCD-based	tiled	display	is	a	typical	collaborating	end	point.

52	 May/June	2010

Ultrascale	Visualization

local computational resources. SAGE assumes us-
ers have thin-client computers with high-speed
network connectivity driving tiled displays.

This model doesn’t require high-end comput-
ing and graphics capability on the client side.
CI-driven large-scale remote clusters process data
and render visualizations. Then, SAGE streams
the visualizations as pixels to the clients at user-
requested resolutions. Furthermore, SAGE provides
mechanisms to capture and stream HD video and
audio directly from real-time sources.

Additionally, SAGE lets distributed visualization
applications running on separate and distant ren-
dering clusters stream their visualizations in real
time to the same tiled display wall (see Figure 2).
SAGE works with parallel rendering algorithms
so that independent remote cluster nodes create
pieces of the overall image. The system stitches
these pieces together in real time on the display.

The SAGE user interface lets users interact di-

rectly with the display and manipulate multiple
visualizations on it. Behind the scenes, SAGE in-
telligently routes the pixels from the rendering
source to the nodes that display the pixels for that
portion of the display. This capability lets scien-
tists juxtapose multiple high-resolution visualiza-
tions side-by-side. Scientists then can compare the
results of simulations with various parameters or
compare sensor and simulation data to determine
how well the simulation models the phenomenon
under investigation.

Visualcasting extends this model to support dis-
tance collaboration among high-resolution tiled
displays (see Figure 1). Visualcasting is a visual-
ization distribution scheme that uses PC clusters
and high-speed networks without requiring tradi-
tional router-based multicasting, which is difficult
to deploy. This architecture uses SAGE Bridge soft-
ware, which runs on a high-performance PC clus-
ter strategically located at a high-speed network

SAGE-driven tiled display

Remote rendering cluster

A rendering node

SAGE API

Parallel
graphics
streams

Figure	2.	The	SAGE	(Scalable	Adaptive	Graphics	Environment)	architecture.	Each	visualization	application	runs	
on	nodes	in	a	distributed	rendering	cluster.	The	node	color	represents	the	application	running	on	the	node.	
SAGE	manages	the	parallel	graphics	streams	between	the	rendering	nodes	and	tiled	display	nodes.

	 IEEE	Computer	Graphics	and	Applications	 53

access point (such as StarLight in Chicago). The
SAGE Bridge redistributes visualization—the video
and audio streams SAGE captures—to multiple end
points (see Figure 3). This process lets collaborators
share their visualization applications and videos
on local and remote displays while communicat-
ing through multipoint HD videoconferencing.

SAGE Pixel Streaming
To transport image data, SAGE uses pixel-block
streaming and a pixel pipeline architecture.

Pixel-Block Streaming
One obvious approach to distributing an applica-
tion’s output image over a tiled display is partition-
ing the image according to each tile’s application
layout and streaming the fragments to appropriate
tiles. However, this approach can’t support Visu-
alcasting efficiently. Visualcasting distributes the
source image to arbitrarily sized and positioned
output windows on the displays. So, using that ap-
proach would require separately partitioning the
source image for each destination’s tiled display.
As the destinations and applications in a Visu-
alcasting session increase, the partitioned image
fragments rapidly increase. The memory copies
that the system requires to create these partitions
incur significant system overhead, limiting the Vi-
sualcasting service’s scalability.

To address this problem, SAGE streams uni-
formly sized pixel blocks rather than arbitrarily
sized image fragments (see Figure 4). SAGE gener-
ates the pixel-block routing table, such as in Figure
4b, by comparing the pixel-block and tile layouts.
It continues to send the pixel blocks according to
the table until the window layout changes. So, the
system must recalculate the table only when a user
moves or resizes a window. SAGE uses each block’s
frame ID to synchronize the pixel-block display.
It then uses each block’s configuration ID to en-
sure that the window layout it uses to locate pixel
blocks on the display is consistent with the pixel-
block routing table it uses for sending pixel blocks.

This pixel-block streaming relies on routing pixel
blocks rather than arbitrarily partitioning the ap-
plication image (see Figure 5). For Visualcasting,
the SAGE Bridge routes pixel blocks to each end
point, requiring neither memory copies nor addi-
tional image-buffer allocation. This enables Visu-
alcasting to scale with the number of end points
and applications until the SAGE Bridge cluster’s
total bandwidth reaches its maximum. However,
users can relieve this constraint by adding more
resources (bridge nodes and network bandwidth)
to the cluster.

Another advantage pixel-block streaming has
over image partitioning is shorter window opera-
tion latency. For every window operation, image
partitioning requires repartitioning the applica-
tion images and reallocating the image buffers
for the partitioned image fragments. In contrast,
pixel-block streaming requires updating only the
pixel-block routing table. This method reduces
the window operation latency enough to enable
animated moving of an application window on a
tiled display by combining multiple small window-
repositioning operations.

SAGE Bridge
SAGE displays

Partition
Images

Duplicate
Images

Application

SAGE Bridge
node

Rendering
node

Figure	3.	The	SAGE	Bridge.	This	cluster	accepts	parallel	visualization	
streams,	replicates	them,	and	distributes	them	to	multiple,	SAGE-driven	
tiled	displays.	The	window	operations	on	each	display	are	independent.	
An	application	can	have	a	different	window	layout	on	each	display.

(a) (b)

B

C D

A 1 C 11 A
221 22 23 24 25

16 17 18 19 20

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

C,D 12 A,B
3 D 13 B
4 D
5 D …

…

6 A,C 21 A
7 A,B,C,D 22 A,B
8 B,D 23 B
9 B,D 24 B
10 B,D 25 B

Figure	4.	An	example	of	pixel	block	partitioning.	(a)	SAGE	partitions	an	
application	image	into	a	5	×	5	pixel-block	array	and	places	the	array	over	
four	tiles	(display	nodes),	A,	B,	C	and	D.	It	assigns	each	block	a	unique	ID	
from	left	to	right	and	bottom	to	top	and	uses	the	ID	to	locate	the	pixel	
block	on	the	tiled	display.	(b)	Using	the	pixel	block	routing	table,	SAGE	
sends	each	pixel	block	to	tiles	needing	any	portion	of	the	block’s	data.

54	 May/June	2010

Ultrascale	Visualization

Pixel-block streaming uses more network band-
width than image partitioning for an image frame
when pixel blocks cover multiple tiles, such as the
green blocks in Figure 5b. Because this overhead
increases with pixel-block size, we typically use a
small block, such as 32 × 32 pixels or 64 × 64
pixels, to keep the overhead trivial.

The SAGE Pixel Pipeline
SAGE transfers pixel data from an application to
a tiled display through the SAGE pixel pipeline
(see Figure 5). The SAGE API receives an applica-
tion’s output image in the data fetch stage, gener-
ates pixel blocks from the image, and routes them
to their destinations (display nodes) in the block
generation stage. For a parallel application, SAGE
synchronizes the block generation stage across the
application nodes for seamlessly repositioning and
resizing application windows. Without synchro-
nization, each node might have a different pixel-
block routing table for the same image frame, thus
updating the table at different frames during win-
dow operation. This timing would result in broken
imagery on the display. To guarantee synchronous

updates, SAGE delivers window layout messages
through synchronization signals to each rendering
node, which then updates its local routing table
according to these messages.

The pixel blocks from the block generation stage
stream to display nodes in the block transfer stage.
For network streaming, SAGE uses both TCP and
the User Datagram Protocol (UDP). TCP provides
reliable, ordered data delivery to the destination
host. Because TCP flow control relies on feedback
messages from the destination host, it performs
well over local-area networks with short round-
trip times but not over wide-area networks with
long round-trip times. UDP shows much higher
and more stable performance over wide-area net-
works than TCP does, but it doesn’t guarantee reli-
able, ordered data delivery. Applications using UDP
should employ a mechanism to guarantee safe
data delivery. In SAGE, we typically use TCP for
local streaming and UDP for remote streaming.

For TCP, SAGE sends a group of pixel blocks us-
ing a vectored I/O system call. Vectored I/O is an
I/O method that supports reading a single data
stream to multiple buffers or writing multiple buf-

(a) (b)

Block
partitioning

Streaming

Block
routing

Data fetch

Block transfer

Block read

Block
generation

Display

Display node

SAGE Bridge
(optional)

Application node

Block read

Display

Streaming

Block transfer

Block routing

Application
image

Figure	5.	Pixel-block	pipeline.	(a)	Without	the	SAGE	Bridge,	the	SAGE	pixel	pipeline	comprises	the	three	stages	
on	each	application	node	and	the	two	stages	on	each	display	node.	The	SAGE	Bridge	adds	three	optional	
stages	to	the	pipeline.	A	pixel	data	buffer	or	network	buffer	connects	each	stage	to	the	next	so	that	all	stages	
can	run	concurrently.	(b)	The	diagram	shows	pixel-block	streaming	along	the	pipeline.

	 IEEE	Computer	Graphics	and	Applications	 55

fers to a single data stream through a system call.
Because SAGE stores pixel data in nonsequential
memory locations (blocks), it uses vectored I/O
operations to send and receive multiple blocks at
a time. A vectored I/O operation replaces many
ordinary read or write operations, relieving system
call overhead and increasing network performance
using less CPU time than streaming block by block.

For UDP, however, we experienced more data loss
with block-group streaming than streaming block
by block. The 64-Kbyte maximum UDP buffer size
limits the data quantity a system call can send.
This, in turn, limits the vectored I/O operation’s
advantage. Although TCP has its own flow control
mechanism, UDP requires application-level flow
control to minimize data loss. Streaming block by
block lets SAGE better control pixel-block flow. So,
recent SAGE versions send each pixel block sepa-
rately for UDP. The UDP streaming’s data loss pro-
duces visual artifacts on the display, but they’re
visible for only a short time if the application runs
at an interactive frame rate, typically higher than
24 frames per second (fps). Minimal momentary
data loss is acceptable, except in applications re-
quiring high-precision images, such as medical ap-
plications. A detailed description of SAGE’s UDP
flow control algorithm appears elsewhere.3

SAGE reads the pixel blocks from the network
and inserts them into the pixel-block buffer at the
block read stage. Each display node creates a sepa-
rate network read thread for each application to
concurrently read each application’s pixel streams.
For a parallel application, SAGE at this stage se-
rializes multiple pixel streams to a display node
into a single stream. Then, in the display stage,
SAGE fetches the pixel blocks from the buffer and
synchronously updates them on the display. Each
display node creates two OpenGL (Open Graph-
ics Library) textures for each application and uses
them for drawing and scaling multiple application
images on a screen.

The coupled textures work as double buffers for
each application: one for drawing on the screen
and the other for receiving a new application im-
age. To synchronously update multiple application
images across multiple tiles, SAGE employs a syn-
chronization server that monitors the coupled tex-
tures’ status at each node. When a new image is
ready at every node, the server sends synchroniza-
tion signals that trigger the texture swapping and
screen refresh. Details on the SAGE synchroniza-
tion algorithm appear elsewhere.3

The block read and block transfer stages on
the SAGE Bridge (for Visualcasting) are identical
to the ones we’ve described in this section. The

block-routing stage uses multiple threads to route
pixel blocks to multiple end points concurrently
and independently. To avoid unnecessary memory
copies, each thread has a reference to the pixel
blocks rather than a local copy. Each pixel block
has a reference count to ensure that every thread
has sent the pixel block before returning it to the
pixel-block pool in the SAGE Bridge.

User Interaction
Because SAGE effectively turns any tiled display
into a collaborative environment, enabling mul-
tiuser interaction was imperative. Initially, users
could use a cross-platform, desktop-based user
interface (SAGE UI) from their laptops to ma-

nipulate windows, share multimedia files through
drag-and-drop, share desktops, or share applica-
tions with remote displays. However, direct display
interaction is often more appropriate, especially
when users want to be mobile in front of the
display for more natural physical navigation. So,
we developed Direct Interaction Manager (DIM),
which manages numerous heterogeneous physical-
interaction devices.

Supporting heterogeneous devices is crucial
because no device has emerged as the most ap-
propriate for large high-resolution displays. We’ve
experimented with devices such as a traditional
mouse, Gyromouse, trackball, joystick, Wiimote,
touch screen, and six-degree-of-freedom CAVE
(CAVE Automatic Virtual Environment) wand.
DIM also handles drawing user interface objects
(widgets) on the display and performs device event
handling while enabling true simultaneous mul-
tiuser interaction.

SAGE Applications
The following major applications highlight differ-
ent ways of using SAGE.

Multimedia Applications and Scientific Animation
As 10-megapixel cameras become prevalent, us-
ers can easily create high-resolution images that
desktop screens can’t accommodate at their na-
tive resolutions. The SAGE ImageViewer provides

Because SAGE effectively turns any tiled
display into a collaborative environment,
enabling multiuser interaction was
imperative.

56	 May/June	2010

Ultrascale	Visualization

a simple way to load and view a high-resolution
image file at its native resolution on a tiled display.
It supports most conventional image formats, in-
cluding JPEG, PNG, GIF, and TIFF.

For video and animation, Mplayer is a cross-
platform media player that supports a range of
media file formats, such as MPEG, VOB (Video
Object), AVI (Audio Video Interleave), VIVO (Video
In Video Out), and RealMedia. We implemented
an MPlayer plug-in for SAGE so that users can
display any MPlayer-supported media file. Mplayer,
however, is limited to conventional resolution and
lossy media formats. Scientific uses require higher-
resolution, lossless animation.

To support higher-resolution animation, the US
National Center for Supercomputing Applications
(NCSA) developed Bitplayer, a high-resolution ani-
mation playback tool. We ported Bitplayer to SAGE
and enhanced it to support uncompressed (24-bit
RGB) and compressed (DXT texture format) con-
tent at any resolution. DXT is a group of lossy tex-
ture compression algorithms S3 Graphics developed,
under the name S3 Texture Compression. SAGE sup-
ports DXT1, which converts 4 × 4 input pixels into
64 bits of output. This conversion results in an 8:1
compression ratio for the 32-bit RGBA (RGB and al-
pha) pixel format. Most modern GPUs support DXT
decompression. SAGE supports transferring and dis-
playing DXT format image data onto a tiled display.
DXT compression lets users stream full HD (1,920 ×
1,080 pixels) video over a gigabit connection and 4K
(4,096 × 2,160 pixels) animations without needing a
high-end storage system or an expensive codec.

Scientific animation is essential for teaching
and disseminating scientific-visualization results.
Preserving advanced simulation and rendering’s
intricate details, such as for climate or molecular
simulations, requires very high resolution—HD at
minimum, but preferably 4K-resolution. As we’ve
demonstrated at numerous workshops and confer-
ences over the past four years, Bitplayer effectively
supports this need.

High-Definition Video and Audio Streaming
We developed HD video and audio streaming (HDS),
which streams low-latency, uncompressed full-HD

video and audio from a camera using an HDMI
(High-Definition Multimedia Interface) capture
card. HDS passes the captured video frames in the
YUV422 format directly to SAGE for streaming. The
frame rate can control total bandwidth use, which
is usually under 1 Gbit per second (Gbps) without
significant quality loss. We used HDS in the suc-
cessful Visualcasting demonstrations and experi-
ments we describe in the next section.

Several organizations have developed HD video
and audio streaming solutions using SAGE: the
University of Queensland (HDS with DXT com-
pression), ResearchChannel (iHDTV), Masaryk
University’s ANTLab (UltraGrid), and Nippon
Telegraph and Telephone (I-Visto, a multirate HD-
video transmission system).

Ultraresolution Image Viewer
MagicCarpet is a cluster-based interactive ultra-
resolution image viewer for scalable tiled displays.
It uses preprocessed multiresolution images that
reside on a local disk and loads appropriate detail
at different zoom levels by paging texture data to
video memory on demand.

MagicCarpet can work as a standalone application
or with SAGE to stream the rendered image to local
or remote tiled displays. The SAGE ImageViewer is
useful for loading high-resolution image files onto a
tiled display. However, scientists who deal with ex-
tremely high-resolution images, such as aerial and
satellite imagery (365K × 365K pixel maps) or tiled
electron microscope images, require an advanced
tool to explore their large-scale image data.

Parallel Real-Time 3D Rendering
ParaView is a parallel application for visualizing
and interacting with large-scale 3D data on a re-
mote visualization cluster through an interactive
client on a laptop or desktop computer.4 How-
ever, the clients’ screen resolution and available
network bandwidth constrain the visualization’s
resolution and interactivity. ParaView itself can
support high-resolution visualization on a tiled
display, but it has two limitations. First, the ren-
dering nodes must directly drive the tiled display;
ParaView doesn’t support remote visualization for
a tiled display. Second, it allows visualizing only
one data set at a time, occupying the entire display.

To overcome these limitations, we integrated
ParaView into the SAGE framework. This integra-
tion enables large-scale remote visualization using
ParaView on a high-resolution tiled display. Para-
View enables distributed visualization of a very
large data set on a remote rendering cluster. SAGE
streams the high-resolution visualization over a

Scientific animation is essential for
teaching and disseminating

scientific-visualization results.

	 IEEE	Computer	Graphics	and	Applications	 57

high-speed network in parallel to a user’s display.
Users can employ a ParaView client to interact with
the visualization.

Accomplishments
Multiple organizations and user communities have
successfully deployed and demonstrated SAGE.

Streaming from Distributed Rendering Sources
At the iGrid 2005 workshop, we simultaneously
streamed various content, including

 ■ real-time parallel volume-rendered images of
the Visible Korean Human from the Korea In-
stitute of Science and Technology Information
(KISTI) over KreoNet2,

 ■ NCSA’s prerendered HD tornado simulation an-
imations from the SARA Supercomputing and
e-Science Support Center in Amsterdam over
SURFnet,

 ■ 1-foot-resolution aerial photographs of New
Orleans in the aftermath of Hurricane Katrina,
and

 ■ live HD video from EVL over CAVEwave/Na-
tional LambdaRail.

We allocated 10 Gbps for this iGrid experi-
ment, which ran for six hours over three work-
shop sessions. SAGE achieved 9 Gbps of sustained
throughput, transferring approximately 24 Tbytes
of dynamic image data. This was the first success-
ful international demonstration showing SAGE
could enable and manage simultaneous real-time
streaming of distributed, high-resolution visual-

ization applications from distributed rendering
sources to a large-scale tiled display.

Visualcasting Experiments and Demonstrations
On 18 April 2008, Visualcasting enabled HD
videoconferences among five international sites.
Figure 6 shows the videoconference from EVL’s
viewpoint. This was the first successful multi-
point videoconference among globally distributed
tiled displays. Visualcasting enabled casual con-
versation among all the participants through its
short-latency uncompressed HD video and audio
distribution. Each end point sent an audio stream
and a full HD camera live feed at a rate of 17 to
18 fps and 0.7 Gbps network bandwidth to two
SAGE Bridge nodes at StarLight. Each end point re-
ceived multiple HD video streams according to its
capacity. The total Visualcasting throughput was
9.2 Gbps. This experiment showed that we could
realize high-resolution image multicasting on the
order of tens of gigabits per second by using a PC
cluster connected to high-speed networks.

At Supercomputing 2008, EVL and some OptI-
Planet Collaboratory partners demonstrated Visu-
alcasting’s full capabilities throughout the week.
We streamed full HD video, audio, and 4K scien-
tific animations among three booths on the show
floor (SARA, KISTI, and EVL/California Institute
for Telecommunications and Information Technol-
ogy/San Diego Supercomputing Center), UIC, the
University of Michigan, Masaryk University, and
the University of Queensland. We thus created a
sustained global teleconference sharing massive-
data-set visualizations (see Figure 7).

Figure	6.	Multipoint	videoconferencing.	The	team	at	the	Electronic	Visualization	Laboratory	in	Chicago	holds	
an	HD	videoconference	using	Visualcasting	with	(clockwise	from	top	left)	the	Gwangju	Institute	of	Science	and	
Technology,	University	of	Michigan,	SARA	Supercomputing	and	e-Science	Support	Center,	and	Korea	Institute	
of	Science	and	Technology	Information.

58	 May/June	2010

Ultrascale	Visualization

We used UDP for all the experiments and dem-
onstrations we describe in this section.

SAGE User Communities
More than 40 OptIPlanet sites have built high-
resolution display walls and adopted SAGE (Figure
8 shows a few). These sites include universities, re-
search institutions, and companies, both nation-
ally and internationally.

Texas Advanced Computing Center. The Texas Ad-
vanced Computing Center (TACC) at the University
of Texas at Austin has built Stallion, the world’s larg-
est high-resolution tiled display. It’s a 307-Mpixel
display comprising 75 (15 × 5) Dell 30-inch flat-
panel monitors (see Figure 8b). TACC adopted SAGE
as the tiled-display manager and became one of the
most active SAGE user sites.

SAGE has successfully supported scientific vi-
sualizations on Stallion. TACC’s Ranger, one of
the world’s largest computing systems for open
science research, and Spur, the high-end remote-
visualization system tightly coupled with Ranger,
generate these visualizations. TACC is interested
in expanding SAGE’s capability and has recently
started a partnership with EVL to investigate op-
portunities as SAGE development progresses.

University of Michigan. The university’s School of
Information (SI) has been an OptIPlanet Collabo-
ratory partner since 2005. As such, SI has enthu-
siastically participated in various international
research experiments and demonstrations of Visu-

alcasting. SI researchers have investigated how SAGE
can support collaboration in research and education
on the campus using the Virtual Space Interaction
Testbed (VISTI; http://visit.si.umich.edu). This SI ini-
tiative aims to apply advanced CI capabilities to the
challenges of effective distance collaboration.

SI has deployed four OptIPortals across three
departments. This implementation lets research-
ers and students interact with remote collaborators
and visualization on a total of 235 Mpixels of digi-
tal canvas. SAGE has allowed collaboration in such
disciplines as atmospheric science, computational
social science, civil engineering, and humanities.

SARA Computing and Networking Services. An OptI-
Planet partner since 2004, the e-Science Support
Center of SARA, the Dutch supercomputer cen-
ter, has contributed greatly to SAGE development,
transatlantic tests, and demonstrations. SARA
also supports SAGE use in the broader Dutch
e-science community. For example, the Dutch
Climate Research Institute has performed sev-
eral extremely large-scale climate simulations on
numerous European supercomputers. These sim-
ulations created hundreds of terabytes of data,
which SARA stored. Climate institute researchers
selectively visualize the data sets at SARA and use
SAGE to stream and display the results to their
tiled displays. This practice has become a part of
their daily workflow.

The University of Amsterdam’s Bioinformatics
Institute uses SAGE to stream and display very-
large-scale microarray data over optical networks.

HD video

Figure	7.	Three	remote	participants,	(clockwise	from	bottom	right)	Masaryk	University,	the	University	of	
Illinois	at	Chicago,	and	the	University	of	Michigan,	collaborate	through	Visualcasting	at	Supercomputing	
2008.	The	participants	can	view	each	other	as	well	as	the	scientific	visualization	in	the	top-right	pane.

	 IEEE	Computer	Graphics	and	Applications	 59

SARA, the European Space Agency, and the Dutch
Air Force are collaborating on a project to reduce
collision danger between migrating birds and air-
planes using a complex simulation. They use SAGE
to remotely disseminate simulation results to het-
erogeneous tiled displays at various institutes.

Louisiana State University. In 2009, Louisiana State
University (LSU) placed first at the IEEE Interna-
tional Scalable Computing Challenge at the IEEE/
ACM International Symposium on Cluster, Cloud,
and Grid Computing. LSU demonstrated a scal-
able, end-to-end, interactive system for simulating
and visualizing black holes.

The LSU researchers ran the simulation on 2,048
cores of TACC’s Ranger cluster for 160 hours, gen-
erating 42 Tbytes of data. They transferred this
data over the 10-Gbps Louisiana Optical Network
Initiative network to rendering nodes at an LSU vi-
sualization cluster. A parallel renderer at LSU used
GPU acceleration to render images. The researchers
used SAGE to stream the visualization result to the
final display.

Future Challenges
SAGE is a research prototype that must now transi-

tion to a hardened technology because it’s in high
demand in the SAGE user community. To achieve
this goal, we must address several problems.

Enhancing 3D Parallel Visualization in SAGE
Although SAGE is designed to support 3D parallel
visualization applications for large-scale data visu-
alization, its users face two primary hurdles to fully
using this capability. First, the variety and number
of SAGE-enabled 3D parallel visualization appli-
cations is limited, and they require complex user
configurations. Second, users prefer to stay with vi-
sualization tools they’re familiar with rather than
switch to a new SAGE-enabled visualization tool.

To address these problems, we’ll integrate widely
used, massively parallel visualization tools such as
VisIt (https://wci.llnl.gov/codes/visit/home.html)

(a) (b)

(c) (d)

Figure	8.	OptIPortals	and	SAGE.	(a)	At	EVL’s	CyberCommons,	a	user	is	directly	interacting	with	the	SAGE-
driven	tiled	display.	(b)	The	TACC’s	SAGE-driven	Stallion	is	the	world’s	largest	tiled	display.	(c)	The	University	
of	Michigan’s	collaborative	ultraresolution	environment	uses	SAGE.	(d)	At	SARA’s	National	Science	Day	
demonstration,	SAGE	shows	scientific	animations	and	4K	movies	on	SARA’s	tiled	display.

SAGE is a research prototype that must
now transition to a hardened technology
because it’s in high demand in the SAGE
user community.

60	 May/June	2010

Ultrascale	Visualization

in addition to ParaView. All these visualization
packages are based on the Visualization Tool Kit
(VTK), a cross-platform and open source software
system for 3D computer graphics, image process-
ing, and visualization.5 We’ll develop a VTK out-

put module for SAGE so that researchers can use
potentially any VTK-based visualization tool with
SAGE. We expect these solutions will help sci-
entists and engineers use high-resolution display
walls and CI for their ultrascale visualizations.

Several well-known tiled-display middleware systems ex-
ist, including Chromium,1 DMX (Distributed Multihead

X Project; http://dmx.sourceforge.net), Equalizer,2 and
CGLX (Cross-Platform Cluster Graphic Library).

In Chromium, one or more servers intercept OpenGL
graphics primitives from an unmodified application and
stream them to clients driving the tiled-display wall. These
clients then must render the graphics primitives on their GPUs.

DMX provides a single unified X Window desktop
by coupling multiple X servers on multiple machines. In
DMX, a master node distributes X Window primitives to
other client nodes, which render the visualization. This
lets users view general X applications on a tiled display,
but not hardware-accelerated OpenGL-based applications.
However, DMX can work with Chromium to provide a
complete desktop solution across multiple displays. DMX
renders an application’s original GUI on the tiled display
without any source code change, whereas Chromium
renders the 3D graphics windows.

Equalizer offers a hybrid approach in which the user can
combine various rendering techniques. It supports screen-
space, database, time-multiplex, pixel, and stereo task dis-
tribution. Users can select parallel compositing algorithms.

CGLX doesn’t distribute graphics primitives, but it runs
the same copies of an OpenGL-based application on all
clients and replicates visualization data on all the clients.
Users must modify applications to support CGLX. The
amount of graphics data it can render is limited to the
GPUs’ and onboard main memory’s capacities.

Table 1 summarizes the key differences among SAGE and
the middleware we just described. Chromium’s chief advan-
tage is that it requires no modification to an existing OpenGL
program. However, it works only with OpenGL-based appli-
cations, and the entire tiled wall can run only one application
at a time. DMX works with various applications but supports

only Unix-based (Linux) applications. Furthermore, the master
node becomes a bottleneck as the number of running applica-
tions increases. In all cases, the local graphics card’s capability
constrains a clients’ ability to visualize large-scale data.

SAGE has four chief advantages:

 ■ The resolution and frame rate of visualization streams can
scale with the number of rendering and display nodes.3

 ■ Multiple applications can run simultaneously, and users
can organize them as windows on a tiled display.

 ■ Applications needn’t be OpenGL-based.
 ■ SAGE works for Linux, Mac, and Windows applications.

SAGE doesn’t require powerful graphics cards at the
clients; rather, it leverages networked shared CI to per-
form ultrascale visualization. Moreover, SAGE is completely
independent of the method for generating applications’
pixels (software or hardware rendering, GPU or many-
core systems, or Mac/Windows/Linux OS). So, it’s future-
proof in a rapidly changing technology landscape. Finally,
Visualcasting enables simultaneous visualization distribu-
tion to multiple tiled displays.

References
 1. G. Humphreys et al., “Chromium: A Stream-Processing

Framework for Interactive Rendering on Clusters,” Proc.

Siggraph, ACM Press, 2002, pp. 693–702.

 2. S. Eilemann, M. Makhinya, and R. Pajarola, “Equalizer: A

Scalable Parallel Rendering Framework,” IEEE Trans. Visualization

and Computer Graphics, May 2009, pp. 436–452.

 3. B. Jeong et al., “High-Performance Dynamic Graphics

Streaming for Scalable Adaptive Graphics Environment,”

Proc. 2006 ACM/IEEE Conf. Supercomputing (SC 06), IEEE CS

Press, 2006, article 108, doi:10.1145/1188455.1188568.

SAGE versus the Competition

Table 1. Comparing Tiled-Display Middleware Systems.

SAGE Chromium DMX* Equalizer CGLX*

Supports multiple applications simultaneously Yes No Yes No No

Supports non-OpenGL applications Yes No Yes No No

Application transparency No Yes Yes No No

Supports distance collaboration Yes No No No No

Platforms Linux, Mac,
Windows

Linux, Mac,
Windows

Linux Linux, Mac Linux,
Windows

Open source Yes Yes Yes Yes No

* DMX stands for Distributed Multihead X Project; CGLX stands for Cross-Platform Cluster Graphic Library

	 IEEE	Computer	Graphics	and	Applications	 61

Another solution is to integrate commonly used
parallel-rendering systems for tiled displays, such as
Chromium or Equalizer, with SAGE (see the “SAGE
versus the Competition” sidebar). These tools would
feed SAGE rather than drive a tiled display directly.
This integration will let users run several instances
of these tools at one time on a display and benefit
from the expertise invested in the systems’ devel-
opment. Furthermore, integration with Chromium
or Equalizer will let users of OpenGL-based visual-
ization applications use parallel rendering without
modifying their applications. They’ll also be able to
harness SAGE’s ability to show results from these
multiple applications side-by-side.

Developing a Persistent Visualcasting Service
The international Visualcasting demonstrations
confirmed that Visualcasting is a requirement for
display-rich global collaboration. However, users
still lack the capability to easily share, discover,
browse, and initiate collaboration sessions. In ad-
dition, Visualcasting resources must be able to
automatically scale as the number of streams and
resolution grow. We plan to leverage the accumu-
lated knowledge from the Access Grid project, which
supports distributed collaborative interactions over
computational grids, to develop a persistent, more
robust Visualcasting service.6 We’ll initially deploy
it at the StarLight international communications
exchange facility in Chicago. Subsequently, we’ll
work with OptIPlanet partners to create more Vi-
sualcasting service points internationally.

Another problem in building a persistent Visu-
alcasting service is supporting the heterogeneous
end points in network and display capacity. Be-
cause of this heterogeneity, end points consume
(display) streamed data at different rates, and a
slow end point might degrade overall Visualcasting
performance. For example, the maximum frame
rate of an uncompressed 4K animation at an end
point with 6 Gbps of network bandwidth is 30 fps;
the maximum frame rate at another end point
with 1 Gbps of network bandwidth is only 5 fps.
We’ll address this problem by developing multilay-
ered Visualcasting. This idea is analogous to lay-
ered multicasting—that is, distributing a version of
the same image data with different image quality
or resolution through each data layer.7 Each end
point subscribes to a layer appropriate to its data
bandwidth and display resolution without affect-
ing the streams to other end points.

Enhanced Support for Interactivity
Although SAGE applications run on remote serv-
ers and stream visualizations to tiled displays,

SAGE doesn’t forward an application’s GUI to
the displays. This is important because a GUI of-
ten carries information about the visualization.
Without access to the application GUI, users at
remote sites can only view the application output,
rather than interact with it. Leveraging Virtual
Network Computing (VNC), we’ll develop a ser-
vice that lets users view and control an interface
directly on the tiled display as well as through a
wireless laptop.

To fully exploit increased display resolution,
SAGE’s current API lets application developers pass

interaction gestures as events to their applications.
However, SAGE still needs a more complete set of
interaction capabilities, including a widget library
to create visual interfaces for tiled displays. These
widgets will be smart enough to resize themselves
appropriately according to the tiled display’s size
and resolution. We’ve built an early prototype of a
widget framework to validate the concept. A com-
prehensive set of widgets will require additional
work. The next step would be extending these wid-
gets so that collaborating users can control them
from different tiled displays.

Today, ultra-high-resolution display environ-
ments are fast becoming the lenses of virtual

microscopes and telescopes, enabling researchers
to observe data in CI repositories. Using SAGE
and OptIPortals, scientists can create visualiza-
tion pipelines from multiple sources to access and
share information, in various resolutions and for-
mats. This capability lets users access up-to-date
and related information sets to display them si-
multaneously, quickly see context as well as detail,
and make more informed and timely decisions.
This technology will have a profound, transforma-
tive effect on ultrascale collaborative visualization,
making CI more accessible to end systems and us-
ers, in both the laboratory and classroom.

The SAGE software, including full source code,
user manuals, and applications, is available at
www.sagecommons.org.

Using SAGE and OptIPortals, scientists can
create visualization pipelines from multiple
sources to access and share information, in
various resolutions and formats.

62	 May/June	2010

Ultrascale	Visualization

Acknowledgments
We appreciate the time and effort OptIPlanet Collab-
oratory partners contributed to SAGE’s development
and enhancement. We also thank Paul A. Navratil,
Greg Abram, and Kelly P. Gaither for editing our
manuscript. US National Science Foundation awards
CNS-0420477, OCI-0441094, OCI-0225642, and
OCI-0943559 partly supported our research.

References
 1. L.L. Smarr et al., “The OptIPuter,” Comm. ACM, vol.

46, no. 11, 2003, pp. 58–67.
 2. B. Jeong et al., “High-Performance Dynamic Graphics

Streaming for Scalable Adaptive Graphics Environ-
ment,” Proc. 2006 ACM/IEEE Conf. Supercomputing
(SC 06), IEEE CS Press, 2006, article 108, doi:10.1145/
1188455.1188568.

 3. B. Jeong, “Visualcasting: Scalable Real-Time Image
Distribution in Ultra-high Resolution Display Envi-
ronments,” doctoral dissertation, Dept. of Computer
Science, Univ. Illinois at Chicago, 2009.

 4. A. Cedilnik et al., “Remote Large Data Visualization
in the ParaView Framework,” Proc. Eurographics Work-
shop Parallel Graphics and Visualization (EGPGV 06),
Eurographics, 2006, pp. 162–170.

 5. W. Schroeder, K. Martin, and B. Lorensen, The
Visualization Toolkit: An Object-Oriented Approach to
3D Graphics, 4th ed., Kitware, 2006.

 6. L. Childers et al., “Access Grid: Immersive Group-
to-Group Collaborative Visualization,” Proc. 4th
Int’l Immersive Projection Technology Workshop (IPT
00), 2000; http://academic.research.microsoft.com/
Paper/181952.aspx.

 7. S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-
Driven Layered Multicast,” Proc. ACM Sigcomm,
ACM Press, 1996, pp. 117–130.

Byungil Jeong is a research associate with the Texas
Advanced Computing Center at the University of Texas
at Austin and a primary Scalable Adaptive Graphics
Environment architect. His research interests include
scalable parallel graphics architecture, collaborative
remote visualization, large-scale data visualization,
and high-resolution display systems. Jeong has a PhD
in computer science from the University of Illinois at
Chicago. Contact him at bijeong@tacc.utexas.edu.

Jason Leigh is an associate professor of computer sci-
ence and the director of the Electronic Visualization
Laboratory at the University of Illinois at Chicago.
His research interests include tele-immersion, high-
performance transport protocols, and collaboration
and visualization technologies for application sup-
port, such as remote large-scale-data exploration,

education, and entertainment. Leigh has a PhD in
computer science from the University of Illinois at
Chicago. Contact him at spiff@uic.edu.

Andrew Johnson is an associate professor of com-
puter science and a member of the Electronic Visu-
alization Laboratory at the University of Illinois at
Chicago. His research and teaching interests include
interaction and collaboration using advanced visu-
alization displays and applying those displays to en-
hance discovery and learning. Johnson has a PhD in
computer science from Wayne State University. Con-
tact him at ajohnson@uic.edu.

Luc Renambot is a research assistant professor at
the Electronic Visualization Laboratory at the Univer-
sity of Illinois at Chicago. His research interests in-
clude high-resolution displays, scientific visualization,
and high-speed networking. Renambot has a PhD in
computer science from the University of Rennes. Con-
tact him at renambot@uic.edu.

Maxine D. Brown is an associate director of the Elec-
tronic Visualization Laboratory at the University of
Illinois at Chicago. Her research interests include com-
puter graphics, scientific visualization, collaboration,
human-computer interfaces, petascale computing, and
optical networking infrastructure. Brown has a mas-
ter’s degree in computer science from University of
Pennsylvania. Contact her at maxine@uic.edu.

Ratko Jagodic is a PhD candidate in the Department
of Computer Science at the University of Illinois at Chi-
cago and a research assistant at the university’s Elec-
tronic Visualization Laboratory. His research interests
include human-computer interaction and computer-
supported cooperative work in large, high-resolution
display environments. Jagodic has a bachelor’s degree
in computer science and chemistry from Lake Forest
College. Contact him at rjagodic@uic.edu.

Sungwon Nam is a PhD student at the Electronic
Visualization Laboratory at the University of Illinois at
Chicago. His research interests include high-resolution
displays, high-performance computing, and high-speed
networks. Nam has a master’s degree in computer sci-
ence from University of Southern California. Contact
him at snam5@uic.edu.

Hyejung Hur is a PhD student in the Department of
Computer Science at the University of Illinois at Chi-
cago. Her research interests include human-computer
interaction, visualization, and collaboration. Hur has
a master’s degree in computer science from Duksung
Women’s University. Contact her at hhur2@uic.edu.

