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Chapter 1

Introduction

In recent years there has been much work devoted to collecting and analyzing large
amounts of data from scientific experiments. This trend will continue into the future
with even larger amounts of data being collected, stored, and analyzed. A principle
problem facing users of such information systems is finding appropriate data without
detailed knowledge of the structure of the stored data.

Relational databases are designed to deal with limited ranges of data on specific
topics. The form of the data is known ahead of time and the database tables and
their relationships are clearly defined before the data is entered. Scientific databases
[Mic91] contain a much larger amount of data on many different, but related top-
ics. The form of the data is not known ahead of time as the data is collected by
investigators from a wide range of disciplines.

Scientific data is often stored using flat files or relational databases. This huge
amount of interrelated data is forced into the rigid table structure of a relational da-
tabase which can not adequately model the necessary relationships [Kim90]. Unlike
typical relational databases, scientific databases store much larger amounts of infor-
mation, have very few updates, need to maintain the data for longer periods of time,
and contain more complex data. Each discipline sees different relationships between
sets of data so each discipline stores data in its own way, making it very difficult for
investigators in other fields to access the data.

The user of a scientific database is interested in obtaining certain specific infor-

mation as quickly and painlessly as possible. My research involves improving access



to scientific databases by using two methods: using clustering to make the structure
of the database malleable, and using a virtual reality interface to hide the database

completely from the user.

The first solution involves clustering the tables of a scientific database based on the
user’s queries. Instead of forcing the users to conform to the structure of the database,
we can mold the structure of the database to the needs of the individual users, and
thereby reduce their confusion when interacting with the database. Visualizing the
structure of the scientific database and then making that structure malleable allows

each user to mold the scientific database to their own needs.

The user declares what topic they are interested in, and then interacts with the
database as usual. The system keeps track of which parts of the database are accessed.
In this method, the content of the tables is irrelevant, only the fact that the user sees
a relationship between the tables is important. This information can then be used
to cluster the tables of the database. Users from different backgrounds can use these
clusters to quickly index into the database by seeing which areas of the database
are likely to contain information on their topic. This flexibility will be increasingly

important as the size, breadth, and accessibility of scientific databases increases.

The second solution involves using virtual reality and scientific visualization to
hide the database from the user. Typically virtual reality and scientific visualization
are used after data has been extracted from a scientific database, but they can also

be used to make retrieving data from the database easier, and more intuitive.

Much of the data that is stored in scientific databases was collected through experi-
mentation. Using virtual reality an investigator can ‘recreate’ the original experiment,
collecting data from the scientific database in much the same way that the original

data was collected. The user places virtual instruments into a virtual reenactment of



the original experiment and retrieves data from the database without ever directly in-
teracting with the database. I call this interface the SANDBOX: Scientists Accessing
Necessary Data Based On eXperimentation.

The rest of this dissertation is organized as follows: Chapter 2 discusses previous
related work. Chapter 3 discusses my first solution - clustering. Chapter 4 discusses
my second solution - the SANDBOX. Chapter 5 discusses my implementation of the
SANDBOX. Chapter 6 discusses my conclusions and plans for future work in these

areas.



Chapter 2

Related Work

2.1 Introduction to Related Work

This chapter on previous work related to my dissertation is divided into four main
parts. Section 2.2 discusses related work in the field of scientific databases. Section
2.3 discusses related work in the field of hypertext. Section 2.4 discusses related work
in the field of adaptive algorithms. Section 2.5 discusses related work in the field of

virtual reality.

2.2 Scientific Databases

Scientific databases contain very large amounts of information. They tend to have
very long life spans and very few updates. Some of the disciplines which are currently
creating scientific databases include: the earth sciences [HS89, SSAE93, SCN*93],
engineering [LLL89], medicine [ACFT93, FLS89], and physics [BGI1].

It is difficult to visualize the overall structure of scientific databases due to the
large number of files or tables containing the data. A researcher may need information
from several distinct tables in the database, but can not find which tables contain
the required information. Once the current tables have been found, the user must
write an appropriate query linking all these tables together to extract the needed
information. This becomes even more difficult if the user needs to access image data
[Jai92]. There is simply too much information in a scientific database and its users

get lost among all the columns and tables. There is too much information overhead.

4



Scientific databases also contain a large amount of meta-data - data about the
data (notes, drawings, etc.) It is very difficult to include this information in current
databases, yet this meta-data can be a great benefit to those trying to access the

data. It is important to give the user convenient access to this information.

Database management systems provide information using a query-response method-
ology where the information is stored in a set of tables. The user asks for information
using a query language (such as SQL) which performs operations on the tables (com-
bining tables together, selecting specific columns from a table, etc.) and returns the
requested information to the user in a new table. The user is required to learn the
database’s specific query language in order to extract information. The researcher is
not interested in learning a query language. The researcher simply wants to retrieve
information from the database. Allowing the user to build up a query without a query

language means one less obstacle to retrieving the necessary data.

Scientific databases contain an overwhelming amount of information that needs
to be used by a wide variety of researchers. Much of the difficulty in accessing data
in scientific databases comes from the enormous amount of data that is involved; but
the organization of this data is also a large problem. Users from various scientific
communities see different relationships between sets of data. Certain information is

important to certain investigators and certain information is not.

The creator of a scientific database must balance the needs of all the users and
compromise on the storage of the information. The database schema is often designed
around the efficient storage of the information, rather than the users’ concepts of the
information. Every user must then adapt to this generic view of the data. Instead of
each investigator adapting to this single generic view of the information. It would be

better to adapt this view to each user. This way each user sees the same information



in their own unique way. When each user can see the data in their own way, it reduces
the amount of information overhead in the database.

Scientific databases are accessed by users from a wide range of disciplines, mostly
unfamiliar with databases and their associated query languages. These users need to
search for specific pieces of data quickly, and browse through related information to
see if it is of value to them. They need to relate information from different tables in
the database.

For a more thorough introduction to scientific databases and their problems see
[FJP90, Mic91]. These user interface issues are not limited to scientific databases,

but are also important issues in database systems in general [SAD193].

2.2.1 Current Solutions

When an interface to a scientific database is designed, its creator typically imposes
a generic structure on the database - a hierarchical menu system allowing the user
to move through an ordering of the files or tables. This gives researchers from all
backgrounds a way to access the data, but each of the researchers must conform to
this generic structuring of the data. This approach has several shortcomings: 1) The
menu system does not provide enough flexibility for a wide range of researchers, 2)
The users may not know enough about the domain to make appropriate choices, 3)
It does not help the user with ill-defined queries.

Graphical query languages have been proposed to simplify the interface [KM89,
OW93]. Graphical query languages make the database schema more visible, reduce
typing, and allow users to rely on recognition rather than memorization. This ap-
proach has several shortcomings: 1) The schema of scientific databases are so large,

and complicated that the user rapidly runs out of screen real-estate, 2) The graphical



metaphor quickly becomes cumbersome for complicated queries.

loannidis, et all [ILH92, TLH*93] developed a graphical interface for the man-
agement of scientific experiments and data using the Object-Oriented data model
MOOSE. The user interacts with the database through the schema. The system
makes large schemas more manageable by allowing the user to hide parts of the
schema, collapse sections of the schema into nodes, and use reference nodes to elim-
inate long arcs. While useful for scientists involved in the original experiment, this
approach has several shortcomings for users less familiar with the original experiment:
1) The users may not know what data is available, 2) The users may not know enough
about the domain to make appropriate choices, 3) It give users a variety of choices
without sufficient descriptive material to make that choice, 4) The original schema

may not match the relationships seen by all users.

Graphical interfaces to statistical databases have been proposed which represent
the attributes of a statistical database in a graphical form [RR90]. The user can then
browse through this graphical form. These systems have problems similar to those

for graphical interfaces mentioned previously.

Other related work includes replacing current data visualization systems [WRH92]
(e.g. AVS [Ups89], Khoros [RY92]) with visualization tools such as Stonebraker’s
Tioga [SCN193] built on top of more powerful database components. These systems
rely on a data flow visual language to move data through a series of predefined
operations. Of course, before the user can visualize the data, the user must find the

appropriate data in the database.

Ahlberg, et all [AWS92] experimented with using graphical widgets to formulate
database queries. Graphical visualization was used to show the contents of a small

database (the periodic table) and the results of the queries. By hiding the database



schema and allowing the user to interact directly with the data values, they found
that the users gained a faster understanding of the data than with queries based on
textual interfaces. Expanding on this, and allowing the user to have a more realistic
interaction with the data values of a much larger database should give the user a
more intuitive way of accessing their data.

Hypertext has been proposed as a way to give users the capability to browse
through the meta-data associated with scientific databases [Ste88]. This gives the
users better understanding of the contents and organization of the database. FEx-
panding on this, and allowing the user to browse through the data in the database as
well as the meta-data should give the user a better understanding of the relationships

among the various data.

2.2.2 FIFE

FIFE is a scientific database. Developing techniques to determine surface climatology
from satellite observations is the objective of the ISLSCP (International Satellite
Land Surface Climatology Project.) FIFE (First ISLSCP Field Experiment) was
undertaken at a 20km by 20km square site near Manhattan, Kansas in 1987 and
1989. Its purpose was to gather enough data to allow the creation and testing of
models to develop these techniques [SH89, SNO&9].

120 gigabytes of data was collected (300 megabytes textual data, the rest image
data including satellite photos and site photographs taken on the ground.) The
textual data fills over 100 tables in a relational database. Each experiment is given
its own table with the attributes containing the numerical data collected during that
experiment. These tables typically have 10-30 attributes each, and over 100,000 rows.

The textual data is currently available on-line [SHS*90]. A subset of the textual



and graphical data has been made available on a set of five CD-ROMs from NASA

[SLN+91, SLN*92¢, SLN+92a, SLN*92b, SNL*93].

2.3 Hypertext

Year by year we are dealing with more and more information. It is not just the
storage and retrieval of this information that is important, but also the ability to
access related pieces of information. Hypertext systems encourage the user to browse
through information as they would browse through a museum, rather than querying

a database of facts.

2.3.1 Hypertext Definitions

A hypertext system connects information into a graph structure where related nodes
of information are connected by links. Using computer screens to display information
allows the user to interactively browse through these nodes of information using many
different paths.

A node (or information element) is a piece of information. A node can contain
text, a picture, a sound, a piece of animation, or a combination of the above. The
amount of information in a node varies with the flexibility of the hypertext system
and the author of the hypertext itself. A node contains one or more links to other
nodes.

The simplest form of link moves the user from one node to another. A link is
traversed by activating an anchor (a word, picture, or special icon in a node.) When
the link is traversed a new node appears on the screen either in addition to, or
replacing, the previous node. These links connect the nodes into a network (or web,

or information-space.)
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The author of the hypertext creates the nodes and links. The user uses the
hypertext. The author may also be the user of the hypertext. Hypertext systems and
applications vary the amount of power given to the user. Some applications (software
engineering, writing support) give the user the power of the author to change nodes
and links, while others (museum displays) limit the user’s power to browsing through,

but not modifying, the hypertext.

Hypertext systems encourage browsing: using the links to move node by node
through the network until you find the information you are looking for. Many hy-
pertext systems include a limited query feature as an index into the network, but
browsing is the main method of finding information. Browsing allows users to find
something when they don’t know exactly what they are looking for. The user does
not have to learn a query language, or learn how to formulate the request in terms
a query language can process. The user gains knowledge (facts and relationships)
by browsing through the hypertext. This is often described as moving through the

information space (or hyper-space.)

Knowledge is stored not only in the individual nodes of information but in the
relationships between linked nodes. Each user makes their own path through the in-
formation network based on their own interests, allowing for less cumbersome struc-
turing of the information. The user has more direct contact with the information,
and is more involved with structuring the information in their own way, compared to

a traditional database system.

The term hypertext was coined in the mid 1960s, well before the current interest
in multimedia technology. The first implementations of hypertext were limited by
their display hardware to linking text. Newer hypertext systems link images, sound,

and animation, so the term hypermedia has begun to replace hypertext.



11

There are several good introductions to hypertext: [Con87, Nie90a, TKM*91].

2.3.2 Hypertext Applications

Hypertext systems are currently being used for a wide variety of tasks:

Hypertext can be used to relate large amount of different types of information in
Software Engineering [CFG91, GS87], and computer aided design [DS86].

Hypertext has had the most success in data retrieval: a hypertext medical hand-
book [Fri88, FC89], chemistry journals [ELKT91], an electronic form of the Oxford
English dictionary [RT88], a hypertext encyclopedia [Sch87, WB85], a departmental
information system [JFGt94b], and on-line manuals [Wal87].

Hypertext has changed writing [CFCP92, D191, Ess91, LK92] and enhanced col-

laborative work [CBY89, CB88, SCG89].

2.3.3 Hypertext History

Hypertext has had a fairly long history.

In 1945, Vannevar Bush [Bus45] described the memex - a system for managing a
person’s information. Based on microfilm and photography, the ideas for hypertext
were present, but not the necessary technology. In 1965, Theodor Nelson coined the
term hypertext and extended the idea of the personal memex to the global Xanadu.
Xanadu would be a global information space - all the world’s libraries available elec-
tronically.

The first hypertext systems were created in the late 1960s: Engelbart’s NLS in
1968, Nelson and van Dam’s HES in 1968, van Dam’s FRESS in 1969. Work would
continue through the 1970s with Newell, Akscyn, and McCracken’s ZOG, and van

Dam’s Electronic Document Project.



12

Hypertext began to expand out of the research labs in the 1980s: Akscyn and
McCracken’s KMS [AMYS88] in 1981, Halasz’s Notecards [Hal88, Tri88] in 1983,
Delisle and Schwartz’s HAM [CG88a, DS86] in 1984, and Meyrowitz’s Intermedia
[CBY89, YHMDS88]. Commercial packages would appear in the late 1980s. Owl’s
Guide became the first popular commercial hypertext system in 1986. Schnieder-
man’s HyperTTES [Sch87] and Apple’s Hypercard [WK90] followed in 1987. Internet
based hypertext systems appeared in the early 1990s such as WWW and NCSA’s

Mosaic [And93].

For a comparison of current several hypertext systems, see [SLKB88|.

2.4  Adaptive Algorithms

Adaptive algorithms attempt to mimic more ‘natural’ methods of learning.
Adaptive algorithms have been used successfully in information retrieval [Gor88],
classification problems [CG88b, MH88], clustering [AC93, KSB93, Sae90, Sny93] and

‘solving’” NP problems in a reasonable time [AVLS8].

2.4.1 Genetic Algorithms

Genetic algorithms were first developed by John Holland in the mid 1970s [Hol75].
They perform searching in a manner similar to natural selection in nature. By mim-
icking “survival of the fittest,” genetic algorithms try to ‘evolve’ a solution to a search
problem. A population of possible solutions is used. The more fit members of this
population (i.e. those that are nearer to the solution) are more likely to mate and
produce the next generation than those members of the population who are less fit.
As the generations pass, the members of the population should get fitter and fitter

(i.e. closer and closer to the solution.)
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Genetic algorithms accept their input coded as a finite length string (or chromo-
some.) Fach of the elements in the chromosome is a gene, and each gene has an allele
value. The allele values are elements of a finite alphabet. A set of these chromosomes

form a population.

The search problem is coded into the number of genes in a chromosome and the
possible allele values. The space of possible solutions to the search problem is bounded

by the number of permutations of genes that are possible.

The population changes from one generation to the next through reproduction,
crossover, and mutation. The number of chromosomes in each iteration remains con-
stant, but their fitness should generally improve. The fitness of a chromosome is
determined by a payoff function which depends on the allele values of each chromo-

some.

The ‘goal’ of the genetic algorithm is to produce a chromosome with the highest
possible fitness; that is, the sequence of allele values that most closely matches the
optimal point in the search space. The payoff function converts one entire chromo-
some into a single number. When the payoff function has been applied to all of the
chromosomes their relative fitness can be determined. Each of the chromosomes in the
population is initially given random allele values. The more fit chromosomes of the

previous generation reproduce to produce the chromosomes of the next generation.

Sometimes when two chromosomes reproduce, they crossover. When chromosomes
W and X crossover to form chromosomes Y and 7, a certain set of chromosome W’s
genes are copied into identical positions in Y. The remaining genes in chromosome
W are copied into Z. Genes from chromosome X fill in the remaining positions in
Y and Z. That is, each of the children inherits some of the traits of each of their

parents. Crossover occurs frequently, typically 50% to 90% of the time. The result
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of the crossover may be a more fit chromosome, or a less fit chromosome.

Crossover only mixes existing allele values at each gene. Mutation causes random
changes in the allele values, allowing for more variation. Mutation happens rarely,
typically less that 1% of the time. The result of the mutation may be a more fit
chromosome, or a less fit chromosome.

For a more thorough introduction to genetic algorithms see [BBM93a, BBM93b,

Gol89, Whi93).

2.4.2 Neural Networks

A neural network is a distributed network of small processing elements. This large
number of simple processing units (neurons) are connected together forming a minia-
ture version of the human brain. Neural networks have had a good deal of success in
pattern recognition and learning by example.

A self organizing feature map is a neural network developed by Teuvo Kohonen
[Koh90, Koh93a, Koh93b, RMS92]. It is a two dimensional array of processing el-
ements. Fach element contains a weight vector. The input to the self organizing
feature map is a set of weight vectors. The self organizing feature map forms it-
self into a topological ordering of the input data through unsupervised competitive
learning.

In [Koh90] Teuvo Kohonen described his self organizing feature map as follows:

It is a sheet-like artificial neural network, the cells of which become
specifically tuned to various input signal patterns or classes of patterns

through an unsupervised learning process.

The weight vector W;; of each element of the M by M array is initialized with

random values. An input vector I is chosen at random. The neuron whose weight
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vector W;; is closest to I is found (min | Wi; — I |). This neuron and all the neurons
within a certain square neighbourhood (N, by N.) of this neuron have their weights
adjusted, bringing the weights closer to I. Random inputs are repeatedly provided
while the amount of adjustment («), and the neighbourhood shrink in a form of
simulated annealing. The amount of adjustment and the size of the neighbourhood
eventually become negligible and the learning ceases.

When the learning stops, the network has organized the set of n-dimensional
inputs into a two dimensional array. For each input there is one processing element
with the closest matching weight vector. Labeling each neuron with the name of the
input vector that it matches most closely gives the topological ordering of the inputs.

For a more thorough introduction to neural networks in general see [Koh88,

Nie90b].

2.5 Virtual Reality

Virtual Reality makes use of three dimensional computer generated environments
to create an immersive, interactive interface to information. The major difference
between virtual reality and traditional display methods is that virtual reality is im-

mersive. The user is not outside, looking in. The user is inside, looking around.

2.5.1 Virtual Reality Definitions

The goal of virtual reality systems is to provide a totally immersive virtual environ-
ment. This involves the use of three-dimensional computer graphics, motion, and
sound.

In order to create this virtual world there is a great deal of interaction between the

user and the environment. The user moves through the environment, and interacts
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Figure 2.1: Virtual Reality Hardware

with objects in the environment. The system monitors the user’s position and actions.
The system gives feedback to the user. This feedback can be visual, audible, or tactile.

The most obvious feature of virtual reality is its use of wide angle three-dimensional
graphics. Displaying these graphics to the user requires the use of a regular monitor
and stereo glasses (fish tank VR [AB93]), or an HMD (Head Mounted Display [Tei90]),
or a BOOM mounted display (Binocular Omni-Oriented Monitor [MBP*90]), or a
projection based display (CAVE [DSC93]). This display gives the user their perspec-
tive in the three-dimensional world. See Figure 2.1.

Vision is only one of our five senses, so acoustic [GSO91, Ast93, BBK193] and
tactile (haptic) [Iwa90] feedback are also being experimented with.

A virtual reality system also needs to know the user’s head position, head orienta-
tion, and hand location in the virtual world. This tracking can be done mechanically

(with a boom mounted display), or through a set of emitters and sensors (acoustic,
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electromagnetic, inertial, optical, etc.)

The virtual reality system also needs to allow the user to interact with it. This
interaction can be done through devices like the Data Glove [ZLB*87] or the GROPE
system [BOYBK90].

As we go through life, the world does not flicker. At the theatre, still images pass
by our eyes fast enough that we see continuous motion. For virtual reality systems to
be useful they need to display at least 15 stereo frames per second [WS82] (meaning
15 frames for each eye.) Thirty stereo frames per second gives most people jitter-
free vision. This requires very fast graphics hardware and often parallel computer
systems.

There are several good introductions to virtual reality: [AB92, Cru93, Wex93].

2.5.2  Virtual Reality Applications

Virtual reality is currently being used in several applications.

There is much current work in the field of scientific visualization [CRM91, MRC91,
Rib91, RMC91, Web93], taking large amounts of scientific data and using sophisti-
cated computer graphics to visualize the structure and patterns of the data. Scientific
visualization is an effective means of bringing order to an overwhelming amount of
information. However, graphics are not the end product of analysis, they are only
a byproduct. Virtual reality enhances scientific visualization by allowing the user to
move around and through three-dimensional representations of the data giving the
user better interaction with the graphics and a better understanding of what they
represent [Ko0i93] .

Virtual reality is being used to interact with computer generated simulations (e.g.

simulating the flow of virtual air around a virtual airplane in a virtual windtunnel
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[BLI1], simulating virtual weather over a virtual piece of land [HS89], simulating the
excitations of neurons in the brain [LDL*93] or simulating the movements of stars
and galaxies [SN93].) The computer generates the data from models and then virtual
reality is used to interact with the model.

Walkthroughs and virtual design allow a person to walk through a building or see
a design before any construction is begun [FB89].

Telepresense makes use of virtual reality to allow a user in a virtual reality en-
vironment to control an actual instrument in an actual environment as though the
user was in the actual environment (i.e. in an inhospitable place such as at the bot-
tom of the sea, or in outer space.) The sensory feedback that the user receives from
the virtual reality hardware gives the user better control over the object than more
traditional interfaces [BF90].

Virtual reality educational tools allow students experience remote, inhospitable,
or even nonexistent places and to perform experiments that would be inconvenient,

expensive, or even impossible to perform any other way [LEB93].

2.5.3 Virtual Reality History

Virtual reality has had a fairly short history. In 1960, Morton Heling created Sen-
sorama where a user can see, hear, smell, and feel several prerecorded experiences.
In the mid 1960’s Ivan Sutherland proposed “the ultimate display” [Sut65] which he

described as follows:

The ultimate display would, of course, be a room within which the
computer can control the existence of matter. ... With appropriate pro-
gramming such a display could literally be the Wonderland into which

Alice walked.
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In the late 1960’s and early 1970’s Ivan Sutherland built the first head mounted
display (“the Sword of Damocles”) and Frederick Brooks built an early force-feedback
system (GROPE I1.) In the early 1980’s several types of head mounted stereoscopic
displays were created at a reasonable cost. In the late 1980’s and early 1990’s Fake
Space Labs developed a boom mounted display (the BOOM [MBP*90]), and the

FElectronic Visualization Lab developed a virtual reality room (the CAVE [CSD192].)

2.5.4 The CAVE

The CAVE (Cave Audio Visual Experience Automatic Virtual Environment) is a
projection based virtual reality system [CSD192]. The user enters a 10 foot by 10
foot by 10 foot room where images are projected onto the three of the walls and the
floor. When the user dons a pair of lightweight StereoView LCD shutter glasses, the
projected images fill the room and surround the user. The user is given the freedom
to move around the room reasonably unencumbered, and can walk around or through
virtual objects in the CAVE. Since they can see their own bodies, users have a true
sense of being inside the virtual environment.

To interact with the virtual objects in the CAVE, the user carries a physical three
button wand. The user’s position and the wand’s position are tracked by Ascension
Technology Flock of Birds trackers. One tracking sensor is mounted on top of the
StereoView glasses giving the position and orientation of the user’s head, and the
other on the wand, giving the position and orientation of the wand. The CAVE is
controlled by a single SGI Onyx/RE?.

See Figure 2.2 for a diagram of the CAVE hardware, and Figure 2.3 for a photo-
graph of the CAVE at the Electronic Visualization Laboratory at the University of

[linois at Chicago. There are currently three CAVEs in operation (Argonne National
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Figure 2.2: Diagram of the CAVE

Laboratory, National Center for Supercomputer Applications, and at EVL) and a
fourth being built.

Scientists at Caltech, the University of Minnesota, the University of Chicago,
Argonne National Laboratory, the National Center for Supercomputing Applications
and the University of Illinois at Chicago use the CAVE in their research [CLB193].

Given the large volumes of data that may need to be displayed, the CAVE has
a great advantage over head mounted display technology. During prolonged data
access the virtual environment freezes. This can cause the user of a HMD to become
disoriented as the movement of their head is no longer reflected by a change in their
3D view. In the CAVE, while the virtual environment is still frozen, users can see
their bodies, and the surrounding CAVE, thereby reducing disorientation and vision
induced nausea. Over 10,000 people have been inside the CAVE and only two have

experienced enough nausea to complain about it.



Figure 2.3: Photograph of the CAVE
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Chapter 3

Clustering

3.1 Introduction to Clustering

As scientific databases grow larger it becomes more and more important to cluster
their tables. Clustering reduces information overhead. It allows for higher level
concepts (groups of tables), allows for the breaking of a single large scientific database
into appropriate modules, allows for views over the database, and allows the user to

make changes at the cluster level without affecting the scientific database itself.

When the database tables have been clustered, the user has the choice of browsing
through the existing generic interface, or using a hierarchy of clusters as an index
to move quickly to the appropriate tables in the database. The original scientific
database remains untouched, however each user now has a personal index into that

database. See Figure 3.1.

As new users begin to work with this database, they can choose from the existing
clusterings. A new user can choose to look at the database from a biologist’s point of
view, or a climatologist’s point of view. This gives each user a starting point nearer
their own needs than the generic interface. Experienced users will also be able to
access their data faster and more conveniently because the database will adapt to

their interests.

Clustering in databases has typically been used to reduce access times to com-
monly used records [FGK78, LY77, YSL85]. The database itself is physically altered

to decrease access time for the current types of queries being issued. Clustering in

22
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Database

Figure 3.1: Hierarchical Index into the Scientific Database

document retrieval systems is typically used to improve the appropriateness of docu-
ments retrieved [FB91, Gor88, ZMSD92].

By monitoring the user’s queries into the database we can cluster the scientific
database based on the connections the user makes between the tables. As each
user generates queries and retrieves relevant information from the scientific database,
the system learns what information in the scientific database is important to this
individual user. The system learns which tables are important, which columns are
important, and what kinds of linkages the user creates. This knowledge is then used to
generate clusters in a form of user-oriented clustering [DR86, RD87, OMS87, YSLTS81].

Those tables that the user has found important are made more visible, and more
easily accessible. In commonly used databases this will give the user quick access
to important blocks of information, and several starting points for beginning new
searches. The clusters can be shared between users. This gives new users a choice of
several ways to view an unfamiliar database, and gives regular users a way to see the
database from different perspectives.

We can use an adaptive algorithm to delineate the clusters. Finding the optimal
clustering of the tables is equivalent to checking every partition of the set of tables.

This is an exponential problem (there are over 5 trillion different clusterings of 19
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tables) so it is too costly to find the optimal clustering for a database with more
than a few tables. Using an adaptive algorithm such as genetic algorithms or neural

networks we can find a very good clustering within a reasonable amount of time.

Once the clusters have been generated, they can be used to reduce the overall
structure of the scientific database and make it easier to find information. This
gives each user simplified, personal access to the parts of the scientific databases
of importance to them. Extraneous information is hidden from the user and the

important information is made readily accessible.

These clusters can then be used by the same user later on to further ease the job of
creating and modifying queries. These clusters can also be used by other researchers
in the same field. While the physical scientific database has a generic structure useful
to no-one, the logical clusters that each user creates will be very useful to other
investigators with similar interests. These clusters can be used to give new users a
starting point. Instead of being overwhelmed by this gigantic database, a new user
can choose to view the database in a particular way. The new user can now see the

scientific database as others in their discipline do.

Section 3.2 discusses how information is collected to generate the clusters. Section
3.3 discusses the two different techniques used to generate the clusters. Section 3.4
discusses my implementation of these two clustering techniques. Section 3.5 discusses
how these clusters, once generated, can be used. Section 3.6 discusses how parallelism
can be used to reduce the clustering time. Section 3.7 gives some conclusions on this

clustering method. Section 3.8 discusses enhancements to these clustering techniques.

Parts of this research were previously published as [JFG94a, JF].
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3.2 Information Collection

Users retrieve data from a relational database using a query language like SQL. 1
am monitoring the user’s queries, and storing information about the tables accessed
in a list. Since the physical database itself is not being clustered, lists can be used
to support multiple sets of clusters over the same database simultaneously. This
allows clustering to be based on topic, or on time. Lists created for different topics,
or lists created at different times can be used to cluster the tables of the database.
Without storing the user information in lists, only a single, current, clustering can be
maintained.

Each line of the list contains information on a single table in the database. This
line lists all of the columns that have been displayed for that table, and all the columns
that have been used to connect this table to other tables in the database. The format

of each line of the list is shown below:

table; : {selectCol;,}*:{joinCol;-joinCol,;@table;,}*.

where:

e table; is the table we are interested in.

e selectCol;s are the columns in table; that have been selected.

e joinCol;s are the columns in table; that have been joined with columns joinCol;

of table table;.

Three small sample SQL queries are converted into their list form as shown in

Figure 3.1.
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Query 1 List 1

SELECT A.¢, B.x, C.e | A:0, a-fAQB. a-~yQC,.
FROM A, B, C By, F-a@A,.
WHERE A.a = B.j C'e, y-a@A .

AND A.a = C.;

Query 2 List 2

SELECT C.p, C.w, DX | Cip,w, :p-c@QD,.

FROM C', D D:A, :o-pQC,.
WHERE C.p = D.o;

Query 3 List 3

SELECT A.« Az, :0-4QB,.

FROM A, B, C B: B-0QA, p-p@C,.
WHERE A.0 = B.j C: p-BAB..

AND B.g = C.p;

Table 3.1: Converting Queries into Lists

When a user begins to search for information in the database they either choose
to work with an existing list or create a new empty list. The user can give this new
empty list an appropriate name. As the user works with the database, the list keeps

track of the tables and columns the user is accessing through their queries.

The mechanism for creating the query (straight query commands, a graphical
query language, etc.) is unimportant. Eventually the query in the form of tables and

columns is given to the database and this query updates the listing.

A user can create one list for all of their queries, or create multiple lists where
each concept the user is interested in is given its own list. The lists can be unioned
together. A user can keep their lists private or share them with other users of the
scientific database. A list can therefore be one of a user’s lists, the union of a user’s
lists, the union of a group’s lists, the union of a site’s lists, or the union of all the lists

available on the system.

[ have used a similar technique to collect information on a user’s browsing through



List 1 List 2 List 3 | Neighbouring
Table | Percent Percent Percent Tables
A 50 0 50 BC
B 50 0 50 AC
C 33 33 33 ABD
D 0 100 0 C
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Table 3.2: Converting Lists into Percentages

a hypertext document to cluster the nodes based on the user’s usage patterns [JF93].
The scientific database user, like a hypertext user, is faced with an overwhelming
amount of interrelated information presented in a generic way. Clustering allows us
to add a personal interface layer on top of the generic interface reducing information

overhead and speeding up access to the underlying data.

3.3 Clustering

The lists that have been created by the information gathering process are used to
cluster the tables of the scientific database. The number of times each table is used in
each list, divided by the total over all the lists, is used to generate usage percentages.
For each table, every joined table in each of the lists is added onto the roster of
neighbouring tables.

The converted versions of the lists created in Table 3.1 are shown in Table 3.2.
Since Table A was used once in List 1, and once in List 3, Lists 1 and 3 have usage
percentages of 50% while List 2 has a usage percentage of 0%. Table A was joined
with tables B and C in the queries so tables B, and C are neighbours of table A.
As the number of lists increases, the usage percentages decrease towards zero for the
commonly used tables. This decreases the effectiveness of the clustering algorithms
as the amount of difference in the usage patterns decreases.

To avoid this pitfall, the percentages are scaled so that the average usage percent-



List 1 List 2 List 3 | Neighbouring
Table | Percent Percent Percent Tables
A 63 0 63 BC
B 63 0 63 AC
C 50 50 50 ABD
D 0 100 0 C

28

Table 3.3: Final Inputs to the Clustering Algorithms

age is set to 50% rather than (100/number of lists)%. The final converted versions of
the lists shown in Table 3.1 are shown in Table 3.3.

Val
100/number of lists x 50

if val < (100/number of lists)
Val =

Val—(100/number of lists)
100—(100/number of lists)

x H0) 4+ 50 otherwise

These values, the usage percentages and the neighbour roster, are used to cluster

the tables.

3.3.1 Genetic Algorithm Clustering

In my approach, I use a population of 10 chromosomes. Each chromosome represents a
set of clusters; each gene represents a table in the database; each allele value represents
a cluster. Genes with the same allele value are in the same cluster. Each table is a
member of at most one cluster, and the number of clusters varies from 1 to n where
n is the total number of tables being clustered. Each table can form its own unique
cluster in the chromosome, if necessary.

Figure 3.2 shows a sample chromosome that would be used to cluster the data in
Figure 3.1. The four genes (A, B, C, D) in the chromosome represent each of the four
tables involved in the clustering. Tables A and B are in the same cluster as they both
have an allele value of a. Table C forms its own cluster with an allele value of 3, and
table D forms its own cluster with an allele value of 6. As there are four tables (A,

B, C, D), there are four possible clusters (o, 3, v, ¢.)
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Figure 3.2: Sample Chromosome

As the ordering of the genes is irrelevant in this problem, I use uniform crossover,
rather than 1-point crossover. Instead of using the standard genetic algorithm tech-
nique of performing crossover by breaking two chromosomes at the same point and
swapping the end parts, I generate a random percentage. Fach gene has that per-
centage chance of being swapped between the two chromosomes.

In addition to crossover and mutation I implemented two other operations to
alter the chromosomes: fusion and fission. Fusion takes two unique allele values and
combines them into a single allele value. Fusion is used to combine two clusters into
one. Fission takes a single allele value and gives it a different random allele value.
Fission is used to break a cluster apart, where each table in that cluster is randomly
assigned to another (possibly empty) cluster.

The percentage possibility of each operation is given below:

Fusion 5%
Crossover 50%

Fission  25%
Mutation 2%

These values were found experimentally to yield good overall results for a variety
of problem sizes.

The payoff function is composed of two separate partial payoff functions: weight
similarity, and neighbourlyness. Each partial payoff function’s values range from 0.0
to 10.0.

Weight similarity, computed by Equation 3.1, promotes clusters containing tables

with similar weight percentages, indicating similar usage patterns. For every cluster,
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the difference between each table percentage and the average percentage of the cluster
is computed and scaled into the range 0 to 10. The closer the percentages are, the
smaller this ratio will be, and the larger the overall payoft will be. Weight similarity

pushes the genetic algorithm to create smaller clusters.

. table% — lust
Ztables lests | able7 — aveCluster |71)) (31)
# of tables

10 x (1 — min(
Neighbourlyness, computed by Equation 3.2, promotes clusters containing neigh-
bouring tables. The roster of neighbours shows which tables have been joined. For
each pair of tables that are connected by a join, at least one user must feel these
two tables are related because that user joined them. Each connection in the input
lists either connects two tables in the same cluster, or two tables in different clusters.
Neighbourlyness sums up the number of connections between tables in the same clus-

ter and divides the total by the total number of connections between tables in the

lists. Neighbourlyness pushes the genetic algorithm to create bigger clusters.

> ctusters I 0f joins between tables in cluster
# of joins
Neighbourlyness tries to bring all the connected tables together. Weight similarity

10 x (3.2)

tries to isolate tables with similar usage patterns. Together, this pulling together and
pushing apart generates the clusters. Equation 3.3 shows how the two partial payoff

functions are combined.

payoff = neighbourlyness x weightSimilarity® (3.3)

This results in an overall payoff function value that ranges from 0 to 1000.
Each table is initially put into its own cluster. The genetic algorithm is started.

After each new generation is created the most fit chromosome of the previous genera-
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tion replaces the least fit chromosome of the new generation. This preserves the best
set of clusters from one generation to the next. The genetic algorithm stops when
the value of the most fit chromosome remains constant over 200 generations, or the
number of generations reaches a set maximum value.

It there is more than one resulting cluster, these clusters are given back to the
genetic algorithm. The weight percentages, and neighbours of the components of each
cluster are used to generate the weight percentage, and neighbours for the cluster as
a whole. Each cluster is now treated like a table. The clusters are clustered forming
a hierarchy until one global cluster remains.

When the clustering is complete, the genetic algorithm will have placed all of the
tables into the leaf nodes of the cluster hierarchy. Now a breadth first traversal is
made of the cluster hierarchy from the leaf nodes to the root. Each table is taken in
turn. If it is a neighbour of all of the tables in its own node and in each of its siblings’
nodes then it is moved up one level in the tree. If this leaves an empty node with no
children, then that node is removed. This way common nodes are moved up the tree

through the internal nodes, and the depth of the tree is reduced.

3.3.2 Neural Network Clustering

In our clustering algorithm the weight vectors contain the usage percentages for the
various usage lists being used to cluster the database. If there are k lists involved in

the clustering, the weight vector will contain k values. The size of the M by M array

is set to [/number of tables ]. Each table can form its own unique cluster in the
array, if necessary.
If we used a self organizing feature map to cluster the data in Figure 3.1, we would

use a 2 by 2 array. Fach element of the array would be a weight vector of length three
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(one for each list.) The set of input vectors would consist of four weight vectors (one
for each table) of length three:

(0.63,0.00,0.63)
(0.63,0.00,0.63)
(0.50,0.50, 0.50)
(0.00, 1.00, 0.00)

The self organizing feature map orders itself with regards to similarity in the weight
percentages and the neighbouring tables.

For each iteration in the learning process, one table is chosen at random. The
neuron with the most similar set of weights is identified. That neuron and all the
neurons within the current neighbourhood have their weights adjusted bringing them
closer to the weights of the chosen table.

The weight vectors are adjusted as follows:

Wi, + 5 x (I = Wy,) if node is within N,
Wiji =

Wi, otherwise
One neighbour of the chosen table is selected at random. The chosen table and all
the neurons within the current neighbourhood have their weights adjusted bringing
them closer to the weights of the selected neighbouring table.
The weight vectors are adjusted as follows:

W _{W@+ﬁxu—w%)ﬁm@gmmmmt
Jt+1 -

i otherwise

The neighbourhood and the amount of adjustment («) are then adjusted. If « is
greater than zero, another iteration is performed.

a is adjusted as follows:
Qg = 1

Qi1 = O — 00001



Abbreviated | Table

Table Name | Description

AEROLOG | measurements from surface flux group
AIR_FLUX | aircraft flux from flights over the konza
AMS 87 ave from ncar’s pams, army corp’s dcps
AMS 89 ave from ncar’s pams, army corp’s dcps
AMS STAT | # of reports from each ams station
BIOMASS plant biomass weight, nitrogen content
BRUT actual radiosonde data observations
CLOUD cloud estimates from liverpool cameras
FIFE SITE | reference info. on the collection sites
GRAV soil moisture readings at 25,75,150mm
NEUTRON | soil moisture with 200cm neutron probe
RAD_FLUX | measurements from surface flux group
RAIN DAY | daily rainfall data by site and date
SOIL_PROP | soil properties measured historically
SOIL_GAS no?2 flux, co2 from soil respiration

VEG SPEC | species composition data by site, date
WIND PRO | noaa lidar wind profile data

Table 3.4: FIFE Table Descriptions

the neighbourhood is adjusted as follows:
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These values were found experimentally to yield overall good results for a variety
of problem sizes.

After the array has been generated each table is taken in turn. Its set of weight
vectors are compared to the elements of the array and the best match is found. Each
array element is then labeled with the set of tables claiming it as their best match.

Thus all of the tables are mapped to their appropriate spot in the array.

3.4 Clustering Implementation

I tested my approach on a subset of NASA’s FIFE scientific database.

Five queries utilizing 17 tables were made to the database showing the kind of
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List Table
Rainfall FIFE SITE, AMS 87, AMS 89, AMS STAT
Meteorological FIFE SITE, AMS 87, AMS 89,

AMS STAT, RAIN DAY, CLOUD
Atmospheric FIFE SITE, WIND PRO, BRUT, AIR FLUX,

RAIN DAY, RAD FLUX, AEROLOG
Surface Biophysical | FIFE_SITE, BIOMASS, SOIL_PROP,
SOIL_GAS, CLOUD, VEG_SPEC

Soil Moisture FIFE SITE, CLOUD, NEUTRON,
GRAV, BIOMASS, SOIL_PROP

Table 3.5: FIFE Queries

queries that researchers in different, but related fields would create. Each of these
queries was stored in its own appropriately named list. The tables which made up
those queries are shown in Table 3.4. The tables used in each of the five queries are

shown in table 3.53.

Figure 3.3 shows how the genetic algorithm creates clusters. The ‘n’, ‘w’, and ‘f’
fields show the values of each of the partial payoff functions (neighbourlyness, weight
similarity) and the final payoff value for each set of clusters. The ‘str’ field shows
the tables and which clusters they are assigned to (each cluster has a unique ASCII
character.) Initially, as each table forms its own cluster, the weight similarity is very
high, but the neighbourlyness very low. As the clustering proceeds the overall payoft

rises as the tables combine into appropriate clusters.

This figure shows how clusters are generated from the individual tables. Once
these clusters are created the process is repeated with the newly formed clusters being
clustered. When only a single cluster remains, the second phase of genetic algorithm
clustering is run to compact the hierarchy and move common tables toward the root.

Figure 3.4 shows how the two phases of the genetic algorithm clustering relate.
Phase 1 results in a very deep tree with all of the individual tables at the leaf nodes.

Combining neighbouring tables together where possible collapses the tree and moves
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Population Report - Generation: 1

Num n

w

str

W oo JOo UL WNEFE O
H P PP OOOONO

100
84
88
88

100

100
81
94

100
92

el e a a a )

1"#8%&7 () *+,-./01
)"#$%&7 ()*+,7./01
#1987 ()*+,-./01
1"#$%&7 ()*%,-./01
U#S%& () *+,-./01
V"#$%&7 () *+,-./01
1"#S%& (&%+,-.701
LU#SRE Y ()*+, 1. /01
1"#$%& " () *+,-.001
PU#SRE () *+,-./ (1

Population Report - Generation: 400
Num n w £ str
0: 44 70 197 $$111"$"——-$("""$
1: 49 75 229 $$111"g""rig("""s$
2: 40 82 273  $$111"$"-11§("""$
3: 54 62 196  $$111"s$"111ss"""S
4: 39 65 127  $$111"s$"-11$("""$
5: 40 82 273  $$111"s"-t1is("""s
6: 40 67 181 $$111"g -trrsLnns
7: 44 76 233 $$111"$"-""s$(""0$
8: 40 68 185 $$111"$"Stl.("""$
9: 44 61 149 ($111"("———(("""(
Population Report - Generation: 800
Num n w £ str
0: 40 58 133 $$—-L.S.-##s#...$
1: 40 82 273 $$111.$.-11S8#...$
2: 56 62 191 $$111.$.-..81...$
3: 35 57 100 $S111"$"1##s#.."$
4: 49 61 153 $$111.$.11181...8
5: 32 47 67 $)111...1!11S#....
6: 46 74 221 $$111.$.-!181...8
7: 46 64 169 $$111.$.&&-$1...$
8: 39 60 109 0$111.S$.###s#...$
9: 39 48 70 $$111.$.-11$1&..$

Population Report - Generation: 200

Num n A f str
0: 53 64 206 &&(((!&!$11aS!tls
1: 42 42 73 &&,,, ,&#,#1&, 1 1#&
2: 53 64 206 &&,,,!&!+ll&+llls
3: 51 71 251 &&,,,'&!/11&$!ills
4z 51 71 251 &&,,,!&!1/11&$111&
5: 42 64 165 &&,%,!&!$11&SI1L/
6: 70 48 162 &&,,,!&!&ll&&l!lls
7: 39 61 115 /&,,,'&!/110$1110
8: 49 60 145 ..,,,!.!1,11.8111.
9: 53 52 136 /&, ,,'&!/11&&!11E

Population Report - Generation: 600
Num n \ £ str

W o Jo U WNEFEOo

34 82 205 $$111.$."11$)...”
40 49 97 $$111.5.+$$5)...$
40 82 273 $$111.$.+113)...$
54 38 76 $S111+$++11S1+++$
40 71 201 (())Fe(.H 1 (Fen(
60 60 217 ((111.(.(!!((..-(
34 82 205 $$111.$.+11$)...”
32 60 109 $SI+1.$.+11S1...’
28 82 137 $$111.$(+!!$)...)
3276 178 $$111.$.)11$)#.#

The best clustering found is:

$$111.$.-118#...8$

Num:
n:
ws

str:

Chromosome Number
Neighbourlyness Payoff
Weight Similarity Payoff
Overall Payoff Function Value
Allele values of Chromosome

Figure 3.3: Genetic Algorithm Generating Clusters
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common tables to the interior nodes.

Figures 3.5 and 3.6 show how the neural network generates clusters. Figure 3.5
shows the actual numeric contents of the array, and then graphically displays those
values for each of the lists. Zero is shown as black, ten (A) is shown as white. Figure
3.6 shows where the best match for each table can be found. At the beginning the
values are randomized, as are the best matches. As the clustering continues specific

areas of the array become attuned to specific sets of tables.

The genetic algorithm takes 25 seconds to return the clusters shown in Figure 3.7.

The neural network takes 30 seconds to return the clusters shown in Figure 3.8.

The genetic algorithm and neural network create similar clusterings of the data-
base tables. The genetic algorithm generated 6 clusters and formed these clusters
into a hierarchy. The neural network generated 8 clusters and formed these clusters

into one overall cluster.

The tables within those clusters are similar. The two clusters in the center of
the neural network array (FIFE_SITE and CLOUD) each get a cluster at the top
of the genetic algorithm hierarchy. The cluster at the bottom right of the array
(WIND_PRO, BRUT, AIR_.FLUX, RAD_FLUX, AEROLOG) gets its own cluster in
the hierarchy. The cluster at the upper left of the array (VEG_SPEC, SOIL_GAS)
gets its own cluster in the hierarchy. The two clusters at the upper right of the
array (BIOMASS, SOIL_PROP, and NEUTRON, GRAV) are combined into a single
cluster in the hierarchy and the two clusters at the bottom left of the array (AMS_87,
AMS 89, AMS_STAT, and RAIN_DAY) are combined into a single cluster in the

hierarchy.
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a: VEG_SPEC, SOIL_GAS

b: BIOMASS, SOIL_PROP

c: NEUTRON, GRAV

d: CLOUD

e: FIFE_SITE

f: AMS_87, AMS_89, AMS_STAT

g: RAIN_DAY

h: WIND_PRO, BRUT, AIR_FLUX,
RAD_FLUX, AEROLOG

g.e.f all neighbours

Phase 2: Phase 2:
d is neighbour of a,b,c e is neighbour of a,b,c,d,g,h,f
g.e neighbours of h,f

Figure 3.4: Two Phases of the Genetic Algorithm Clustering
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Start:

36772.86867.
58247.45664.
44686.66465.
49A68.44464.
32307.9968A.

1/4 Done:

00047.00047.
11147.11147.
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34336.35355.
56333.46344.
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000A0.00092.
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77000.56222.
67011.67111.

57017.
46645.
44646.
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0001A.
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0000A.
01604.
00A00.
01A00.
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Figure

3.5: Neural Network Generating Clusters
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Start
36772
58247
44686
49768
32307

.86867
.45664

.44464

1/4 Done:

00047
11147
22136
33225
55422

.00047
.11147
.22137

1/2 Done:

01091.
22282.
34336.
56333.
77000.

12174

3/4 Done:

000A0.
000A0.
44040.
67000.
77000.

Done:

010Al.
000A0.
44040.
77000.
67011.

00092

44152
56222

00092
11192
44152
56222

01083.
.03066.01048.01019.
35355.
46344.
57100.

.57017.63174.85157.
.46645.44556.7517A.
.66465.
.54554.64645.35136.
.9968A.

44646.56464.49225.

48441.97477.06357.

.00326.00326.11911.
.00326.00326.11911.
.00326.00326.01911.
.33226.
.45323.

11415.01515.11812.
22711.11812.11812.

01066.01048.0001A.

15255.01712.00802.
16344.01900.01A00.
15600.01A00.01A00.

.00077.00039.0000A.
11192.
.35355.12524.01604.
.26444.12811.01A00.
67111.

12166.11148.0001A.

26622.02900.01A00.

.00077.00039.0001A.
.06066.11148.0000A.
.55555.12524.01604.
.26444.12811.00A00.
67111.

07700.02900.01A00.

h
c
c fg
ab
d
f g
a b
d
f g
a b
d
€
a: VEG_SPEC, SOIL_GAS
T o b: BIOMASS, SOIL_PROP
c: NEUTRON, GRAV
b d: CLOUD
e: FIFE_SITE
a d f: AMS_87, AMS_89, AMS_STAT
o 2: RAIN_DAY
. h: WIND_PRO, BRUT, AIR_FLUX,
RAD_FLUX, AEROLOG
g

Figure 3.6: Neural Network Generating Clusters (another view)




WIND_PRO
BRUT
AIR_FLUX
RAD_FLUX
AEROLOG,

AMS_87

VEG_SPEC s e AMS_89
SOIL_ GAS Ol PROF AMS_STAT
RAIN. DAY

GRAV

Figure 3.7: Clusters Produced by the Genetic Algorithm

VEG_SPEC BIOMASS
SOIL_GAS SOIL_PROP
NEUTRON
GRAV
CLOUD |FIFE_SITE
WIND_PRO
AMS_87 BRUT
AMS_89 RAIN_DAY AIR_FLUX
AMS_STAT RAD_FLUX
AEROLOG

Figure 3.8: Clusters Produced by the Neural Network
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3.4.1 Clustering Stability

Multiple runs were made using each algorithm on the same input data to see how
stable the clustering is. The results from 36 runs of the genetic algorithm are shown
in Figure 3.9. The results of 60 runs of the neural network are shown in Figure 3.10.

In the genetic algorithm clustering the most common hierarchy of clusters was
generated 21/36 times, the second most common 9/36 times, the third most common
3/36 times, and the remaining 3 hierarchies each once. Even among the three major
hierarchy types there is a great deal of similarity. The FIFE_SITE table was common
to all 5 queries, and a neighbour to all 16 other tables so it is always found at the top
of the hierarchy. The CLOUD table was common to 3 queries, and a neighbour to 6
other tables so it is always found at an internal node near the top of the tree.

The final two queries (Surface Biophysical and Soil Moisture) each have 6 tables,
4 tables in common to both queries (FIFE_SITE, BIOMASS, CLOUD, SOIL_PROP)
and 2 unique ones (SOIL_.GAS, VEG_SPEC and GRAV, NEUTRON respectively.)
None of these 4 unique tables are used in any of the other queries, making the two
sets of unique tables equivalent with respect to the clustering algorithms. This can
be seen in the clustering results where table set ‘b’ (BIOMASS, SOIL_PROP) was
combined with table set ‘a’ (VEG_SPEC, SOIL_GAS) roughly half of the time and

with table set ‘¢’ (NEUTRON, GRAV) roughly half of the time.

In the neural network clustering the most common array of clusters was generated
46/60 times, the second most common 7/60 times, the third most common 3/60 times,
and the remaining 4 arrays each once. There is a much wider variety among the
actual arrays generated, as there is no specific orientation for the arrays. Rotating,
flipping horizontally, or flipping vertically maps several different actual arrays into a

single array format. The individual clusters within the array may also shift one array
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a: VEG_SPEC, SOIL_GAS Results of running the Genetic
b: BIOMASS, SOIL_PROP Algorithm clustering routine 36
c: NEUTRON, GRAV times.
d: CLOUD
e: FIFE_SITE 3 other singleton results are not
f: AMS_87, AMS_89, AMS_STAT shown.
g: RAIN_DAY
h: WIND_PRO, BRUT, AIR_FLUX,

RAD_FLUX, AEROLOG

Figure 3.9: Multiple Runs of the Genetic Algorithm
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a: VEG_SPEC, SOIL_GAS

b: BIOMASS, SOIL_PROP

c: NEUTRON, GRAV

d: CLOUD

e: FIFE_SITE

f: AMS_87, AMS_89, AMS_STAT

g: RAIN_DAY

h: WIND_PRO, BRUT, AIR_FLUX,
RAD_FLUX, AEROLOG

Results of running the Neural
Network clustering routine 60
times.

4 other singleton results are not
shown.

Figure 3.10: Multiple Runs of the Neural Network
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position between different runs. Factoring out these differences leads to the three
overall most common configurations of clusters generated.

Figure 3.10 shows both an actual sample clustering, and the general array format
for the three most common array formats. In the most common format table set ‘e’
was in the center, with table set ‘d’” orbiting about it. Table sets ‘b’ and ‘g’ would be
on opposite sides of table set ‘e’. Table sets ‘a’ and ‘c’ are on opposite sides of table
set ‘b’ and table sets ‘f” and ‘h’ are on opposite sides of table set ‘g’. The second
most common format was similar to the most common format except table set ‘d’
replaced table set ‘e’ in the center of the array and table set ‘e’ orbited about ‘d’. In
the third most common clustering table set ‘e’ was at the center of one of the edges

of the array, rather than at the center of the array.

3.4.2  Comparison of Clusters Generated

The genetic algorithm generates a strict hierarchy with an arbitrary number of levels
where the relationships between the clusters are shown by their relative positions
in the hierarchy. The neural network generates only two levels of clustering but the
overview shows more subtle relationships between the clusters. The genetic algorithm
generates deeper, more structured indices than the neural network. The neural net-
work gives a better overall picture of how clusters are related. Figure 3.11 shows how
the some possible clusterings of tables are represented by the neural network and the
genetic algorithm.

The neural network clustering can help a new user see a global picture of the
database. With the neural network clustering, tables used most generally will be
found near the center of the array. Tables with more specific uses will be found

towards the corners. This can be seen in Figure 3.8 where the FIFE_SITE table used



20 unconnected tables

5

4 unconnected sets of 5 tables

2 sets of 4 tables connected to each
of 2 tables connected to 1 central table

Figure 3.11: Common Clusters in Both Implementations
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in all five queries was placed in the center of the array while the VEG _SPEC table
used in only one query was placed in the upper left corner.

The genetic algorithm clustering can help an administrator categorize the clusters
into a hierarchical relationship. General concepts are found in the interior nodes at
the top of the hierarchy while more specific concepts are found at the bottom of the
hierarchy, near the actual tables being clustered. This generates a hierarchy similar
to the generic hierarchy provided by most statistical and scientific databases, but this
one is based on actual user patterns instead of presumed user patterns.

The strict partitioning of the genetic algorithm, like a generic hierarchy, will not
completely satisfy each user. There is no half-way point between clusters. The neural
network clustering does provide these half-way clusters by generating more, smaller,

clusters and using their positions in the matrix to show which clusters are ‘close.’

3.4.3 A Larger Example

Using all 106 tables in the FIFE database, and the hierarchy in the existing generic
FIFE menu interface we can divide the tables into 8 lists. The generic hierarchy was
divided into 8 sections and each of these sections is given its own list. Some tables
were found in multiple sections of the hierarchy generating some overlap. All tables
in the same section are considered neighbours for this test.

The percentages used are shown in Figure 3.13. Each table in the database is
given a number (1-106). The usage percentages are determined by the number of
times each table is found in each section of the hierarchy.

Markers are used to make the clusters generated more visible. Table 3.6 shows
the labels used in the later figures. Two tables are given the same marker if they have

the same neighbours and the same usage percentages.
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Table
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/

1
2

3,6,28,29,32.43

4

5

7
8,9,10,15,17,24,33,34,35,37,
40,41,47.48,49,50,51,52,53,
54,55,68,69,71,78,80,82,84,
85,86,93,94,98,99,100,102,103
11

13,38,74,92.106

14

16

19

20

21,2223

25

12,18,26,36,39,42 45,46,
58,59,60,63,95,96,97
30,31,65,76,77

44,83

56,57

61,62

66,67

70,72

75

79

81

27,64,73,87,88,89,90

91

101

104,105

Table 3.6: Labels for Tables in Larger Example
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Figure 3.12: Results of the Larger Example

Figure 3.12 shows the results of the clustering and how the clusters can be high-
lighted. As in the smaller example, both the genetic algorithm and neural network
generate similar sets of clusters. In the neural network tables with the same usage
percentages are automatically found at the same node in the array, but the genetic
algorithm has also been able to create these sets of tables (in the case of set g, by

combining 32 tables, in the case of set p, by combining 15 tables.)

As can be seen from Figure 3.13 there is a large amount of overlap between the
lists making it very difficult to generate a hierarchy. Each of the sets of tables unique
to a list (c, g, i, p, q, 2, /) were given their own leaf node by the genetic algorithm,

and can be found near the edges of the neural network. Table sets c, e, 1 are near each



49

other in both the genetic algorithm hierarchy and the neural network array. This is
similarly true for table sets a, y, z. The tables which are found in multiple lists are
generally found to the center of the array are are combined into two clusters by the

genetic algorithm.

3.4.4 Comparison of Execution Times

The two algorithms have comparable execution times. Compared to a deterministic
algorithm clustering the tables using an identical payoff function, the genetic algo-
rithm, on average, found a clustering better than 99% of the possible clusterings with
inputs of less than 14 tables. It was impractical to do comparisons with more than 13
input tables due to the running time of the deterministic program. Thus the heuris-
tically based genetic algorithm does the same job as a deterministic algorithm in a
small fraction of the time. For a comparison of running times of the deterministic,
genetic algorithm, and neural network clustering algorithms see Figure 3.14. The

time for running the neural network is directly related to the size of the array. As

the array size is based on the y/number of tables, the time complexity of the neural

network is a step function.

3.4.5 Clustering as an Ongoing Process

Clustering will be an ongoing process in the database. New users will begin using
the database, current users will return to search for new data. Perhaps even new
tables will be added to the database. More and more relationships will connect the
tables together, and more tables will be brought into the clustering. These new
relationships may be very different from the older relationships. Over time the data

in the database will be used for different purposes, so the clustering must adapt. The
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00 00 8.6 0.0 00 14 00 AEROLOGICAL_STATE

00 38 00 00 13 13 00 AIRCRAFT_DOC

00 0.0 0.0 0.0 00 00 00 AIRCRAFT_EXTRACT

00 50 0.0 0.0 1.7 1.7 00 AIRCRAFT_FILE_INV

00 75 0.0 0.0 00 00 00 AIRCRAFT_FLUX_DATA
00 0.0 0.0 0.0 00 00 00 AIRCRAFT_FLUX_INV

00 0.0 0.0 0.0 33 33 00 AIRCRAFT_IMAGE_INV
100 00 0.0 0.0 00 00 00 AMS_DATA _87

100 00 00 00 00 00 00 AMS_DATA_89

100 00 0.0 0.0 00 00 00 AMS_INV

40 6.0 0.0 0.0 00 00 00 ATMOS_COND_INV

00 0.0 0.0 0.0 10.0 00 00 BIOMASS DATA

0.0 100 0.0 0.0 00 00 00 BRUT_SONDE_DATA

2.5 0.0 0.0 50 00 00 00 C130_OPTICAL_DATA

100 0.0 0.0 0.0 00 00 00 CAL_MMR_DAT

50 00 00 00 50 00 00 CAL_SE590_DATA

100 0.0 0.0 0.0 00 00 00 CLOUD_CAMERA_DATA
00 00 0.0 0.0 100 00 00 EXOTECH_TRANSECT_DATA
29 09 1.8 09 1.8 1.5 00 FIFE_SITE_REF

25 0.0 0.0 50 00 00 2.5 FRASER_OPT_DATA

00 0.0 0.0 0.0 00 50 00 GAMMA_RAY_DATA

00 00 0.0 0.0 00 50 00 GAMMA_RAY_GROUND_DATA
0.0 0.0 00 0.0 00 50 00 GAMMA_RAY_SITE_REF
100 0.0 0.0 0.0 00 00 00 GIS_INV

50 00 0.0 0.0 00 00 50 GRAVIMETRIC_DATA

00 00 00 00 10.0 00 00 GROUND_SE590_DATA

00 0.0 10.0 0.0 00 00 00 HEAT_MASS_FLUX

00 0.0 0.0 0.0 00 00 00 HELO_GEMMA_DATA

00 0.0 0.0 0.0 00 00 00 HELO_IRT_DATA

00 00 00 00 00 100 00 HELO_SCATT_DATA

00 0.0 0.0 0.0 00 100 00 HELO_SCATT_INV

00 00 0.0 0.0 00 00 00 HELO_SE590_DATA

10.0 0.0 00 00 0.0 00 00 KSU_EXOTECH_DATA

100 0.0 0.0 0.0 00 00 00 KSU_LIGHT_BAR_DATA
100 0.0 0.0 0.0 00 00 00 KSU_LIGHT_WAND_DATA
00 00 0.0 0.0 100 00 00 KSU_MOW_DATA

100 00 00 00 00 00 00 SAF_ANGLE_DATA

00 100 0.0 0.0 00 00 00 LIDAR_HEIGHT_DATA

00 00 0.0 0.0 10.0 00 00 LIGHT_BAR_DATA

10.0 0.0 00 00 00 00 00 MANHATTAN_AVG_DATA
100 0.0 0.0 0.0 00 00 00 MANHATTAN_DATA

00 00 0.0 0.0 100 00 00 MMR_GROUND_DATA

00 00 0.0 0.0 00 00 00 MMR_HELO_DATA

33 00 00 00 33 00 00 MMR_INV

00 0.0 0.0 0.0 100 00 00 MMR_LEAF_DATA

00 0.0 0.0 0.0 10.0 00 00 MOW_EXOTECH_DATA
10.0 00 0.0 0.0 00 00 00 NEUTRON_PROBE_DATA
100 0.0 0.0 0.0 00 00 00 NMCUPPERAIR_DATA

100 0.0 0.0 0.0 00 00 00 NMCUPPERAIR_INV

100 0.0 0.0 0.0 00 00 00 NOAAMET_STATION_REF
100 00 00 00 00 00 00 NOAARADIO_DATA

100 0.0 0.0 0.0 00 00 00 NOAARADIO_INV

100 00 0.0 0.0 00 00 00 NOAASURFACE_DATA
10.0 00 0.0 0.0 00 00 00 NOAASURFACE_DAY_INFO
100 0.0 0.0 0.0 00 00 00 NOAASURFACE_STATION_INFO
33 00 0.0 6.7 00 00 00 OPTICAL_THICK_DATA
33 00 0.0 6.7 00 00 00 OPTICAL_THICK_INV

00 00 00 00 10.0 00 00 PARABOLA_DATA

00 00 0.0 0.0 100 00 00 PARABOLA_INV

00 00 0.0 0.0 100 00 00 PHOTOSYN_BOX_DATA
00 00 00 00 6.7 00 33 PHOTOSYN_INV

00 0.0 0.0 0.0 50 00 50 PHOTOSYN_LEAF_DATA
00 00 0.0 0.0 100 00 00 PLANT_PRODUCTION_DATA
00 00 100 0.0 00 00 00 RADIATION_FLUX

00 00 00 00 00 10.0 00 RAIN_CMILLY_DATA

50 0.0 0.0 0.0 00 50 00 RAIN_DAILY_DATA

50 00 0.0 0.0 00 50 00 RAIN_INV

100 00 00 00 00 00 00 SATELLITE_EXTRACT

100 0.0 0.0 0.0 00 00 00 SATELLITE_EXTRACT_COEFF
50 0.0 0.0 50 00 00 00 SATELLITE_FILE_INV

100 00 0.0 0.0 00 00 00 SATELLITE_INFO

50 0.0 0.0 50 00 00 00 SATELLITE_INV

00 0.0 10.0 0.0 00 00 00 SIX_MIN_SURFACE_FLUX
00 100 0.0 0.0 00 00 00 SODAR_DATA

00 00 00 00 50 50 00 SOIL_GAS_FLUX_DATA
00 0.0 0.0 0.0 00 100 00 SOIL_IMPEDANCE_DATA
00 0.0 0.0 0.0 00 100 00 SOIL_MOISTURE_TRANSECT
100 0.0 0.0 0.0 00 00 00 SOIL_PROPERTIES_DATA
14 0.0 0.0 0.0 14 57 00 SOIL_PROPERTIES_INV
100 0.0 0.0 0.0 00 00 00 SOIL_SITE_REF

14 00 8.6 0.0 00 00 00 SOIL_STATE

100 00 00 00 00 00 00 SOIL_SURVEY_REF

33 0.0 0.0 0.0 33 00 00 SPECTRO_INV

100 0.0 0.0 0.0 00 00 00 STORMFLOW_DATA

100 00 0.0 0.0 00 00 00 STREAMFLOW_DATA

100 0.0 0.0 0.0 00 00 00 STREAMFLOW_INV

00 00 100 0.0 00 00 00 SURFACE_FLUX_AVERAGES
00 0.0 100 0.0 00 00 00 SURFACE_FLUX_DAILY_TOTALS
00 00 100 00 00 00 00 SURFACE_FLUX_INV

00 00 10.0 0.0 00 00 00 SURFACE_FLUX_VARIABLES
2.5 0.0 0.0 0.0 50 00 00 SURF_RAD_INV

00 10.0 0.0 0.0 00 00 00 TEMP_PROFILE_DATA

100 0.0 0.0 0.0 00 00 00 TOVS_DATA

100 0.0 0.0 0.0 00 00 00 TOVS_SUM

00 00 0.0 0.0 100 00 00 UNL_EXOTECH_DATA

0.0 00 00 0.0 10.0 00 00 UNL_LONGWAVE_DATA
00 0.0 0.0 0.0 10.0 00 00 UNL_SURF_DATA

100 00 0.0 0.0 00 00 00 USGS_15MIN_DATA

100 00 00 00 00 00 00 VEG_BIOP_SUM

100 0.0 0.0 0.0 00 00 00 VEG_BIOP_WTS

33 00 0.0 0.0 6.7 00 00 VEG_INV

100 0.0 0.0 0.0 00 00 00 VEG_SPECIES_DATA

100 00 00 00 00 00 00 VEG_SPECIES_REF

00 0.0 0.0 10.0 00 00 00 ‘WATER_TEMP_DATA

00 0.0 0.0 10.0 00 00 00 ‘WATER_TEMP_INV

00 10.0 00 00 00 00 00 ‘WIND_PROFILE_DATA

Figure 3.13: Percentages Used in the Larger Example
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Figure 3.14: Comparison of Different Clustering Algorithms

clustering should dynamically support both the new and current users.

Totally re-clustering the tables will allow the index to show the most effective
clustering based on all of the users’ previous experiences. This will be very useful to
new users, but may be confusing to current users when the clustering patterns change,
possibly dramatically. Instead, the clustering can be performed incrementally. The
current clusters can be used as an input to both the genetic algorithm and the neural
network, instead of starting the clusters from scratch. This will allow the clusters to
change slowly, giving the current users a common framework and adding in each new

user’s contributions.

More than one set of indices can be maintained in the system. New users can
start with the most up-to-date indexing information, while current users can access
the database using their familiar clusters. Since the clusters are derived from the input
lists, different combinations of input lists will yield different orientations. Individuals,

groups, and sites can maintain their own clusters as well as the global clustering
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for the entire database. The global clustering can be updated at regular intervals.
Individuals, groups, and sites can choose how often to update their clusters. They
can also decide to include all the available lists no matter how old, or only cluster
based on recent usage patterns. However the clusters are maintained, the underlying

database remains untouched.

3.5 Clustering Uses

The clusters that have been generated can be used for several purposes. They can
aid both the user and the database administrator.

When users wish to start a new query, they can look through the existing set of
topics that have been queried. One of these topics may match up with their needs
giving them an excellent starting point for their queries. They may find that their
area of interest straddles two existing queries. Using the existing lists the user can
reduce their search time in the database as shown in Figures 3.15 and 3.16.

Users of the existing FIFE database interface must either directly find the nec-
essary tables from among the 106 tables in the database, or use the existing menu
system. This static menu system has 60 nodes in the hierarchy in addition to the 106
tables at the leaves. Users of the existing menu system need to know not only the
topic of the table they are interested in, but also the name of the investigator who
collected the original data, to traverse the hierarchy effectively.

It the user of the existing interface wishes to go back to that table in the fu-
ture then the user must either remember the name of the table itself (was it SOIL-
IMPEDANCE-DATA or SOIL-PROPERTIES-DATA?) or retrace their steps through
the menus. The user is responsible for remembering these details. The only way a

user can convey their experiences to another user is to write down an itinerary of
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Figure 3.15: Sample Index Queries Using the Neural Network
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their travels through the database for the other user to follow.

These clusters act like a filter, highlighting where the user has found valuable
information, or where users in similar fields have found valuable information. This
clustering can be used as an additional layer on top of the scientific database. The
individual tables in the clusters could be linked to tables in the database itself allowing
the user to browse through the clusters using a graphical interface, and drop into the

database itself at the appropriate table.

3.5.1 Highlighting Clusters

Figure 3.15 shows how the clusters in Figure 3.8 can be highlighted. Each of the
arrays in Figure 3.15 is in the same orientation as the larger (and more readable)
Figure 3.8. The user can choose to see the tables important to someone interested
in Meteorological information, or someone interested in Meteorological data but not
Rainfall data. The user might want information related to Soil Moisture or Atmo-
spheric conditions, or they may want information that combines Surface Biophysical
data and Soil Moisture data.

By selecting the appropriate queries the clusters highlight the appropriate areas
of the database. Important areas are shown in white; unimportant areas are shown
in black. The brightness of the region shows how relevant the tables in that region
are to the suggested query areas. Since the neural network forms a topological map
of the input lists, these input lists allow us to find the literal peaks and valleys of
interest.

Figure 3.16 shows how the clusters in Figure 3.7 can be highlighted. As with the
neural network version, the user can choose combinations of the existing queries to

see the tables that are of personal importance.
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3.5.2 Nearby Clusters

As well as highlighting the important tables, the clustering diagram also shows rela-
tionships between the highlighted tables, and how general or specific the highlighted
tables are by their location in the array. Thus it gives much more information to the
user than simply highlighting table names based on the usage percentages directly,

or using a general overview diagram of the database.

It is unlikely that any of the existing topics will exactly match the needs of a
new user so the ability to find ‘nearby’ tables is very important. This can only
be provided by integrating the experiences of many users. This information can be
especially important if the user needs to find intermediate tables to link together the
values from tables of interest. The ability to see ‘nearby’ tables is also important if the
user has an inexact query. The existing topic lists can give the user a good starting

point to begin browsing through the ‘nearby’ tables to see if they are of interest.

3.5.3 Zooming through the Clusters

Since there are complete weight vector values for every element in the neural network
array, the computer can interpolate these values to change the size of the array without
recomputing the weight vectors. This allows the user to ‘zoom in’ to the array to see
an area in more detail, or ‘zoom out’ to see less detail. As the user ‘zooms out’ the
individual clusters form into clusters of clusters; as the user ‘zooms in’ the clusters
break apart. Figure 3.17 shows what the array looks like while zooming into and out

of the meteorological index.
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Figure 3.17: Zooming In and Out of the Array

3.5.4 Highlighting the Clusters in 3D

We can use 3D computer graphics to improve our visualization of the clusters. Fig-
ure 3.18 shows the meteorological index from Figures 3.15 displayed using colour 3D
graphics instead of greyscale 2D graphics. The on-screen version uses colour as well
as height to distinguish the appropriateness of the clusters. As the altitude increases
the colour changes from blue to brown to green to yellow to white simulating a land-
scape from the blue of the ocean to the white of the mountain peaks. The higher the
cluster the more appropriate to the topic, the lower the cluster, the less appropriate
to the topic. The 3D environment also gives the user the ability to rotate the clusters.
Looking down on the clusters from directly above would give the user the same view

as the 2D representation of the clusters shown earlier.

3.5.5 Partitioning the Database

Using the clustering information provided by the users, the database administrator
can find which tables are in common usage among which groups. For example, all the
investigators would require access to the most commonly used tables but perhaps only

the geologists are accessing certain tables, and the climatologists are the exclusive
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Figure 3.18: Visualizing the Clusters Using 3D Graphics

users of another set of tables. Using the clusters the administrator can determine
which tables an investigator will need based on their areas of interest, because those

are the tables that investigators with similar interests have used in the past.

3.6 Parallelism

[ implemented two parallel versions of the neural network clustering algorithm, using
PVM [BDG%91] and Concert/C [AKRY91, Gol93] to see whether parallel processing

could significantly reduce the clustering time.

3.6.1 Parallel Algorithms

The algorithm for the uniprocessor version of an M by M self organizing feature map
is shown in Figure 3.19 and its data structures shown in Figure 3.20.
The algorithm for the parallel version of an M by M self organizing feature map

is shown in Figure 3.21 and its data structures shown in Figure 3.22. In the parallel



for row = 1 to M
for col =1 to M
Net[row][col].weights = random values

Initialize «, neighbourhood

while (o > 0)

Choose one input vector I at random
BestMatch = null, null, null
for row = 1 to M
for col =1 to M
if Net[row][col].weights is a better match
BestMatch = |I - Net[row][col].weights|, row, col
for row” = (row - neighbourhood) to (row + neighbourhood)
for col” = (col - neighbourhood) to (col + neighbourhood)
Adjust Net[row’][col’].weights
Adjust «, neighbourhood

end while

Figure 3.19: Uniprocessor Algorithm

Network
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vectors

Figure 3.20: Data Structures for the Uniprocessor Version
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version the M by M matrix is broken into M 1 by M matrices. Each 1 by M matrix
and a complete set of the input vectors is given its own process.

In each iteration of the main loop in the parallel version, the controller sends the
index of the chosen table’s weight vector to each process. Each process sends back
the ‘goodness’ of the best match in its row and the column of the best match. The
controller then determines the overall best match and sends all appropriate processes
(all those with an element in the affected neighbourhood) «, the neighbourhood, and
the column of the best match. Each appropriate process then updates the appropriate

values.

3.6.2 Parallel Results

I tested both parallel implementations using a network of ten sparcstation 2s con-
nected by Ethernet. I used 53 lists accessing all 106 tables in the FIFE database. 1
created these lists by converting each submenu in the hierarchy of the existing FIFE
menu system into a list. I made 7 runs for each value and averaged the middle 5.
These runs were made late at night and in the early morning to decrease the likelihood
of other users on the machines. I ran tests using 1, 2, 4 and 8 processors though the
number of processors did not have to be a power of two. If there were more processes
than processors, then the processes were distributed as evenly as possible over the
available processors.

The results from running the PVM version are shown in Table 3.7 and graphically
in Figure 3.23. The results from running the Concert/C version are shown in Table
3.8 and graphically in Figure 3.24.

The descriptions of the column headings for both the PVM and Concert/C results

are given below:
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controller creates M processes
controller sends all input vectors to all M processes
in parallel in each process

for col = 1 to M

Net,[col].weights = random values

Initialize «, neighbourhood
while (o > 0)

Choose one input vector I at random

Send the index of input vector I to each process

in parallel in each process
BestMatch = null, null

for col =1 to M
if Net,[col].weights is a better match
BestMatch = |I - Net,[col].weights]|, col
send BestMatch to the controller

controller determines overallBestMatch at Net[row][column]

controller sends «, neighbourhood, column to processes
(row - neighbourhood) to (row 4+ neighbourhood)

in parallel in processes (row-neighbourhood) to (row+neighbourhood)
for col = (column - neighbourhood) to (column + neighbourhood)
Adjust Net,[col].weights
Adjust «, neighbourhood

end while

controller receives the row from each process

Figure 3.21: Multi-Processor Algorithm
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Figure 3.22: Data Structures for the Multiprocessor Version

size - size of the network (m by m)

uni-1

running times of the uniprocessor algorithm on 1 processor in secs.

par-1 - running times of the parallel algorithm on 1 processor in secs.

par-2 - running times of the parallel algorithm on 2 processors in secs.

par-4 - running times of the parallel algorithm on 4 processors in secs.

par-8 - running times of the parallel algorithm on 8 processors in secs.

Using both parallel programming environments there is continuous improvement
as the number of processors is increased from 1 to 2 to 4 to 8. With PVM, even the
parallel version run on one processor eventually outperforms the uniprocessor version
(probably because memory is partitioned to make swapping easier in the parallel
version.) The overhead due to communication costs between the various processors

makes the uniprocessor version more appropriate for small problems and the parallel



size uni-1 | par-1 par-2 par-4 par-8
(m by m) | (secs) | (secs) (secs) (secs) (secs)
1 2 29 29 29 29
2 7 40 42 42 42
3 13 52 52 51 51
4 19 64 61 64 64
5 27 76 73 71 74
6 38 92 83 77 81
7 51 110 94 84 88
8 65 126 101 95 102
9 82 142 112 106 107
10 100 159 123 113 112
11 118 177 143 124 118
12 139 198 158 129 126
13 160 222 177 141 129
14 182 248 196 152 135
15 210 270 213 162 140
16 242 298 228 177 154
17 277 323 238 191 165
18 309 347 254 201 172
19 342 372 265 210 180
20 374 399
21 419 430
22 467 463

Table 3.7: PVM Tabular Results
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size uni-1 | par-1 par-2 par-4 par-8
(m by m) | (secs) | (secs) (secs) (secs) (secs)
1 2 28 25 25 25
2 7 57 40 32 32
3 13 89 56 39 39
4 19 124 77 5d 49
5 27 160 101 68 60
6 38 214 127 80 71
7 51 269 150 95 83
8 65 314 186 110 95
9 82 361 219 130 113
10 100 406 248 145 130
11 118 461 275 162 148
12 139 312 180 162
13 160 339 197 181
14 182 376 219 198
15 210 423 244 220
16 242 474 272 245
17 277 302 269
18 309 331 290
19 342 357
20 374 392
21 419 415
22 467

Table 3.8: Concert/C Tabular Results
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Figure 3.23: PVM Graphical Results

version more appropriate for large problems. The parallel code written in PVM

consistently outperformed the Concert/C version.

3.7 Conclusions

In this chapter I have presented two clustering algorithms which cluster the tables of a
scientific database based on the user’s usage patterns. This clustering was performed
using two types of adaptive algorithms (genetic algorithms and neural networks) to
decrease the clustering time. Once these clusters have been generated they allow
the user to browse through the hierarchy of clusters to see which tables should be
important given their area(s) of interest. The original scientific database remains

untouched allowing multiple different clusterings to exist simultaneously.
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Figure 3.24: Concert/C Graphical Results

3.8 Enhancements

An enhancement that could be used on both clustering algorithms would be to ‘av-
erage’ multiple runs of each. This is difficult due to the variety of clusterings that
are possible with each algorithm. A higher-level description of the clusters generated
may alleviate this problem.

Another general enhancement would be to give a weight to the neighbours. Cur-
rently only the fact that two tables are neighbours is used. Either the tables are
neighbours or they are not. Instead the count of the number of times tables are
neighbours could be used to give a spectrum of neighbourlyness.

Currently the number of tables in a cluster is unbounded. Another possible fac-
tor in the clustering could be cluster size. This would encourage clusters to be a

‘reasonable’ size for easier viewing.

Currently tables that have never been used in any list are not involved in the
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clustering and do not appear in the final clustering. This makes it easy to see tables
that were important and but it completely hides tables that have never been used.
These tables could be given their own cluster separate from the rest after the clustering
is completed, or they could be involved in the clustering if they were all given usage
percentages of (. This would increase the time taken to generate the clusters, but

would make all the tables visible in the final output.

3.8.1 Genetic Algorithm

The payoff function remains constant throughout the run of the genetic algorithm.
It might be better to vary the payoff function. Initially weight similarity could be
emphasized to create the initial clusters. Then neighbourlyness could be emphasized
to bring the clusters together. This could be done by leaving the individual payoff

functions alone and changing the weights for their combination.

As well as using multiple chromosomes in a population, multiple independent
populations of chromosomes could be used. Each of these populations may generate
different sets of clusters. Allowing these populations to merge occasionally may allow

better clusters to be generated in shorter time.

The genetic algorithm clustering code could also be converted to parallel form,
though the genetic algorithm code is much larger than the neural network code. Since
each chromosome has its payoff determined independent of the others this could be
done in parallel. This could allow larger populations to be used, or speed up the

existing population size.
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3.8.2 Neural Network

The size of the neural network is currently set so every table could have its own cell
in the array. A bigger array would allow the clusters to spread out further and more
clearly show which clusters are near each other and which are further apart. This
would increase the clustering time however.

Once the tables have been assigned positions in the array, these relative positions
could be used to cluster the clusters. Using the physical distance between the tables
in the array and the numerical differences between their weight vectors these tables
could be clustered into a hierarchy.

Currently the parallel versions of the neural network clustering code deal with the
input weight vectors one at a time. As the clustering proceeds and the neighbourhood
shrinks it is very likely that multiple weight vectors could be processed simultaneously.

This would further increase the degree of parallelism.



Chapter 4

SANDBOX

4.1 Introduction to the SANDBOX

Much of the data that is stored in scientific databases was collected through experi-
mentation. Using virtual reality an investigator can ‘recreate’ the original experiment,
collecting data from the scientific database in much the same way that the original
data was collected. The investigator places virtual instruments into a virtual envi-
ronment and collects data from the scientific database without ever typing in a query.
Each investigator uses familiar measuring instruments and collects data in a familiar
way. Using virtual reality, visualization, and hypertext we can hide the scientific
database from the user behind a familiar facade. I call this interface the SANDBOX:

Scientists Accessing Necessary Data Based On eXperimentation.

This gives the user a ‘virtual laboratory’ that can be configured for different
experiments on different scientific databases by loading in different sets of instruments,
and environments. The exact instruments, and the way space and time are modeled,
will depend on the individual experiment. The laboratory can become as large as
the universe or small as an atom, it can move through time or space, depending on
the experiments being run inside it. Space can be measured in angstroms, miles, or
light years. Time can be measured in nanoseconds, days, or millennia. Since the
instruments are virtual, they can be calibrated to display their values in whatever

manner or scale the user chooses.
Scientific databases often store information in multiple ways: files, relational da-

69
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tabases, object-oriented databases. The database can contain numeric data, textual
data, or graphical data. The database may also include meta-data (notes, drawings,
diagrams, maps, photographs, sounds, etc.) This data can be seamlessly integrated
into the virtual reality interface, giving the user additional information of any kind.
As the user recreates the experiments the appropriate information is retrieved from
the appropriate source. This allows the user to simultaneously see and relate differ-
ent types of information from different sources. As this information is presented in a

familiar way the user can analyze the data while retrieving it.

Data in the database is accessed through the instruments. As the user places
virtual instruments into the virtual environment, they react as the real instruments
would. These instruments allow the user to visualize the contents of the database
before any actual data is retrieved, so the user can browse through the data. The
instruments give the user feedback. The investigator can use this feedback to add
additional instruments to the experiment, move the instruments to other locations,
or remove unnecessary instruments. Once the user has placed the appropriate instru-
ments into the environment and set the appropriate time interval, the information is
retrieved from the database and stored in an external file for further use. The SAND-
BOX rewards the investigator’s familiarity with the environment, not their familiarity

with the database.

Section 4.2 discusses the definitions used in the SANDBOX. Section 4.3 discusses
the overview of the SANDBOX. Section 4.4 discusses the instruments are defined and
linked to the database in the SANDBOX. Section 4.5 discusses how actual space is
mapped to virtual space in the SANDBOX. Section 4.6 discusses how actual time is
mapped to virtual time in the SANDBOX. Section 4.7 discusses the two modes of

operation in the SANDBOX. Section 4.8 discusses the components of the SANDBOX
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in detail. Section 4.9 discusses the steps to be taken to add this interface to an
existing database. Section 4.10 discusses my conclusions.

Parts of this research were previously published as [JFLD94, JF94b, JF94a].

4.2  Definitions

I am using the following set of definitions:

e actual environment - the region of space and time in which all the actual ex-
periments took place. This is bounded by the space and time boundaries of the

actual experiments.

e virtual environment - the region of space and time in which all the virtual
experiments take place. The total amount of virtual space may be larger than
the space that the investigator has physical access to (e.g. the user may be able
to ‘see’ objects within a 100 foot radius, but may only be able to interact with
objects within a 3 foot radius.) Through zooming and panning the investigator
has physical access to the entire virtual environment. Virtual time is the time
that passes in the virtual environment. Within this time the user has access to

the current moment.

e site - a location in space/time (x, y, z, t) where an instrument can be placed
(either in the actual environment or the virtual environment.) I am assuming
that at any point in time (t) there is at most one location (x, y, z) in the
environment for each site, but the location of that site can change over time (e.g.
a rover conducting experiments). While a site is a single point in space/time
the instrument placed there may collect/display data from a region. Each site

has a unique identifier. If the location of that site does not change over time
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with respect to the environment then the location can be the unique identifier.

e instrument - a device with the ability to convert site, time into values.

e experiment - an instrument at a site (instrument in operation) mapping instru-

ment, site, time into values.

Actual instruments in the actual environment collected data from nature which
was then stored in a scientific database. Virtual instruments placed in the virtual
environment retrieve data from the scientific database.

[ am assuming that actual space is mapped into virtual space, and actual time is
mapped into virtual time. This implies that there can not be more than one copy
of a site in the virtual environment simultaneously. Allowing actual time to map
into virtual space would allow more than one copy of a given site in the virtual
environment simultaneously. A space mapping function converts actual space (in
the actual environment) to virtual space (in the virtual environment.) For example,
20Km of actual space can be mapped into 10 feet of virtual space. A time mapping
function converts actual time (in the actual environment) to virtual time (in the
virtual environment.) For example, 1 day of actual time can be mapped into 30

seconds of virtual time.

4.3 System Overview

An overview of the system is shown in Figure 4.1. The SANDBOX is composed of
three main components: the Virtual Reality (VR) Interface, the Preprocessor, and
Local Memory.

The VR interface is responsible for the maintaining the virtual environment, rep-

resenting the virtual instruments visually and audibly, as well as monitoring the user’s
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Figure 4.1: Overview of the SANDBOX

actions within the virtual environment. Based on the user’s actions, the VR interface
sends requests to the preprocessor to obtain the necessary data. Based on the current
virtual time the VR interface displays the appropriate data from the local memory.

The preprocessor is responsible for interfacing with the various components of the
scientific database to quickly retrieve data according the the needs of the VR interface
and store it in local memory.

The local memory maintains all the information necessary to support the VR
interface. This includes information on the user, the various tracking devices, and

instruments that the user has placed in the virtual environment.

4.4 Instruments

As the user recreates the experiments with the virtual instruments, the SANDBOX

retrieves the appropriate information from the appropriate source. Some instruments
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are linked to numeric and textual experimental data; some are linked to graphical,
audio, and other experimental data; some are linked to meta-data. The instruments
give the user a more familiar way of dealing with the data stored in a scientific
database.

Before a virtual instrument can be used to display data values, the instrument
must be linked to the scientific database. This linkage is a combination of an instru-
ment class, an access function, and a set of filter functions. The instrument classes
convert data into visual and audible form; the access functions retrieve data from the

database; the filter functions perform transformations on the data.

4.4.1 Virtual Instruments

Fach instrument is a member of some instrument class (e.g. each individual ther-
mometer instrument is a member of the thermometer instrument class) as shown in
Figure 4.2. The class maintains static information common to all instruments of that
class.

Within the SANDBOX the values an instrument is measuring can be mapped into
both a visual and audible form. This allows the user to see and/or hear the values.
Each instrument class is composed of two functions, a G-function to map values into
graphical form and an A-function to map values into audible form. The G-function
and the A-function function independently, and can be stored independently, allowing
the designer to choose appropriate combinations to create the needed instrument.

Each instrument class has a G-function to represent the instrument and its cur-
rent value(s) in terms of graphics primitives such as cubes, cylinders, spheres, and
pyramids. For example, Figure 4.3 shows a sample G-function for the thermometer

instrument class. A thermometer can be created by graphically created by placing a
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Figure 4.2: Instrument Classes

white cylinder atop a red cylinder atop a red sphere. The hotter the temperature,

the taller the red cylinder and the shorter the white cylinder will be.

Each instrument class has an A-function to represent the instrument and its cur-
rent value in terms of audio primitives. Each instrument can be linked to an external
sound file, or to a function which synthesizes a sound. Instrument sounds can either
be momentary or continuous. With momentary sounds, there is sound only when the
value being monitored changes. With continuous sounds, there is a continuous sound
representing the current value of the value being monitored. Momentary sounds are
appropriate when values change rarely, but by large amounts (e.g. amount of rainfall.)
The amount of change could be reflected by the amplitude, pitch, or length of the
sound. Continuous sounds are appropriate when values change often, but gradually
(e.g. temperature.) For example, the thermometer instrument class could map the
temperature values onto the amplitude of a sound - the higher the temperature, the

louder the sound.
Each instance of an instrument class, that is each virtual instrument placed at a
site, maintains its own dynamic data. The dynamic data includes the data currently

being visualized by this instrument (e.g. a thermometer instrument maintains tem-



void SANDBOX _drawThermometer(float * base, float percent)
// draws a thermometer in the virtual environment
// base is the XYZ coordinates of the base
// percent is the percent that should be red
{
float vertX, vertY, vertZ, sphereDat[4];
float radball, redheight, whiteheight;

if (percent < 0.0) percent = 0;
if (percent > 1.0) percent = 1.0;

#define radther 0.02

radball = 2 * radther;
redheight = 0.2 * percent;
whiteheight = 0.2 - redheight;

vertX = base[0]; vertY = base[l]; vertZ = base[2];

Imbind(MATERIAL, SANDBOX _gred); // draw red sphere
sphereDat[0] = vertX; sphereDat[1] = vertY;

sphereDat[2] = vertZ; sphereDat[3] = radball;

sphdraw(sphereDat);

pushmatrix(); // draw red cylinder
translate( vertX - radther,
vertY + radball + redheight,
vertZ - radther);
scale(radther, redheight,radther);

SANDBOX _drawclosedcylinder();
popmatrix();

Imbind(MATERIAL, SANDBOX white); // draw white cylinder
pushmatrix();
translate( vertX - radther,
vertY + radball + 2 * redheight + whiteheight,
vertZ - radther);
scale(radther, whiteheight, radther);
SANDBOX _drawcylinder();
popmatrix();

}

Figure 4.3: Sample Thermometer G-Function
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peratures for several days at a single site) and the current visualization settings on

this instrument (e.g. the minimum and maximum temperatures to be displayed.)

4.4.2 Access Functions

An access function takes a site identifier, and a time range and retrieves information
in the form {time, data values} from a specified part of the scientific database. This
access function could retrieve data from a tabular file, a file containing a single large
data value (e.g. a satellite photograph), a table in a relational database, or an object
in an object-oriented database.

An access function has the following form:

{source, {time attribute}*, {space attribute}*,
{value attribute}*, S-function, T-function}*

source: file, object, database relation

time attribute: locates the data values in time

space attribute: locates the data values in space

value attribute: data values at that point in space and time
S-function: maps a site into space attributes

T-function: maps a time into time attributes

Given a site and a time, the S-function and T-function convert these values into
appropriate space and time attributes for this part of the scientific database, respec-
tively. An access function may not have any time attributes or space attributes if the
time and/or site uniquely determined the source.

Each access function must have at least one value attribute though this attribute
can be arbitrarily large (e.g. a single site photograph, or a single sound recording.)

Once the space and time attributes are generated by the S-function and T-
function, the appropriate data values in the source for those space and time attributes

can be retrieved. The inverse of the T-function is used to convert each of the time



78

attributes to the internal time representation. This time index is added onto each
{time, data values} data value so that all of the data values in local memory have a
common time index.

Times in the scientific database can have multiple formats, and multiple values
(e.g. minutes and seconds, or month and day and year.) As the actual experiment
took place over a certain bounded range of time, we can convert these multiple time
values to a single time index for the sake of quicker indexing. This way all of the
times in memory have the same format. Time in the SANDBOX is taken as absolute
time from the beginning of the experiment with the granularity of time dependent on
the individual experiment. However, it is important that the actual time values be
stored in memory as well so the user can be assured that the values being output by
the interface are the same values that were recorded during the actual experiment.

For example, if a years worth of measurements were collected, some once per day
(Jan. 15th), some once per hour (Jan. 15th at 2pm), and some once per minute (Jan.
15th at 2:04pm) we could convert all these measurements to a single time index. This
index would start at Jan. 1st at 12:00am and end at Dec. 31st at 11:59pm with a
granularity of one minute. Jan. 1st at 12:00am is set to 0, Dec. 31st at 11:59 is set

to 525,599 (60 minutes times 24 hours times 365 days minus 1.)

4.4.3 Filter Functions

The SANDBOX uses two types of filter functions: access filters and display filters.
Access filters filter the data values as they are retrieved from the scientific database
before they are placed into the local memory. Display filters filter individual data

values before they are displayed by a virtual instrument. See Figure 4.4.

The access filters are applied only once. Access filters are used to ensure all the
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Figure 4.4: Filters

data stored in the local memory has the same format. For example at a given site
some temperatures may have been recorded in degrees Celsius and others in degrees
Fahrenheit. An access filter could insure that all the temperature measurements are
in degrees Celsius. Access filters ensure that null values are consistent. Different
experiments may have different null values (0, "X’, -99, etc.) An access filter could
ensure that all the null values match. Access filters are used to perform time consum-
ing operations on large data sets. For example rotating, cropping, and enhancing a
satellite photograph would be very time consuming to perform for each frame. If the
user does not require interactive control over these operations, it would be better to

perform such operations once and store the altered version for display.

The display filters are applied each time a value is retrieved from the local memory,
before it is displayed by one of the instruments. Display filters are used to give the
users control over the virtual instruments. For example a user could set the minimum

temperature to be displayed, or the maximum temperature to be displayed.

As with the instrument’s G-functions and A-functions, the access filters and the
display filters can range from very specific to very generic. Stored independently, they

allow the interface designer to choose appropriate sequences of filters.
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4.4.4 Linkage

A linkage is a combination of an instrument class and a set of access functions and

associated filter functions:

{instrument class , {site range ,time range ,access function, filters}t}

Each instrument class has a set of access functions and filters based on the range
of sites and times they apply to. A single instrument may be used to visualize data
stored in different ways. For example, rainfall may be recorded as total accumulation,
or as rainfall over the last hour. Wind direction and speed may be recorded as x,
y, z components or as direction and speed. Each instance of an instrument in an
instrument class may have a different access function and set of filters depending on
when and where that instrument is placed.

When the user places an instrument at a site for a given range of times, a new
instance of that instrument class is created. The appropriate access functions for
that instrument class at that site over that range of times read the data values into
that instrument’s local memory, passing them through the access filters. The display
filters are brought into that instrument’s local memory as well, to be used when the

data values are to be displayed.

4.4.5 Generic Instruments

Each scientific database requires its own set of instruments. The more familiar an
instrument is to the user, the more obvious is its function. This may mean that
different users of the same database will use different instruments to access the same
data. Once these instruments’ G-functions and A-functions have been defined, these
instruments can be stored in a library and used again in other scientific databases in

similar fields of study.
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Some generic instruments include:

o fillers - fill/empty according to values

e expanders - expand/contract according to values

e pointers - point in a specific direction

e brighteners - brighten/darken according to values

e enumerators - more/fewer according to values

e colourers - change colour according to values

e spinners - spin fast/slow according to values

o densers - density varies according to values

o texters - display alphanumeric characters according to values

e markers - mark a location the user wants to remember

Examples of some of these instruments can be seen in Figures 4.5, 4.6, 4.7, 4.8,
and 4.9.

Figure 4.5 shows meteorological information. Filler instruments in the form of
a thermometer and a water beaker measure temperature and rainfall. A pointer
instrument in the form of a wind-sock measures the wind direction.

Figures 4.6 and 4.7 show 1992 population data for the Great Lakes states. Figure
4.6 uses expander instruments to visualize the population of each state. The taller the
column, the larger the population of that state. Figure 4.7 uses enumerator instru-
ments to visualize this same information in a different way. Each person-enumerator

represents one million people.



Figure 4.5: Meteorological Information

Figure 4.6: Great Lakes Census Data With Expanders
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Figure 4.7: Great Lakes Census Data With Enumerators
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Figure 4.8: Star System Data Showing Number, Temperature

Figures 4.8 and 4.9 show a 3D representation of the sixteen nearest star systems
to our sun. Both figures show the stars as seen by a person standing (floating) 25
light years away towards the constellation Pisces looking back towards our sun. As its
common for star systems to have more than one star, both figures use enumerators,
one sphere for each star. As the temperature of a star is indicated by its colour,
Figure 4.8 uses colourer instruments to visualize the temperature of each star (from
cool red to hot blue.) Figure 4.9 uses colourer and expander instruments to show not
only the temperature of each star, but also its relative mass compared to our sun.

The more massive the star, the bigger the sphere.

4.5  Space Mapping

The space mapping function maps actual space (x, y, z) into virtual space (x’, y’,

z'.) This function depends on the environment and may be different for the different
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Figure 4.9: Star System Data Showing Number, Temperature, Mass
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dimensions. The user is given control of this function to alter the size of the virtual

space (enlarging it, shrinking it, moving it, rotating

it.)

Virtual Space(2',y',2") = fs(Actual Space(z,y, z))

(4.1)

Mapping the individual actual sites into their virtual locations is straightforward

and generic. However, simply showing the sites floating in space shows only how

the sites relate to each other. This does not give the user a familiar environment.

The more familiar the environment is, the easier it will be to work in. The closer

the interface can come to mimicking the actual experiment, the more natural the

interaction with the data will be. Graphical data from the database and graphical

meta-data can be used to create a spacial context for the sites to reside in. Figure

4.10 shows a set of sites without an environment. Figure 4.11 shows these same sites

with the environment added.
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Figure 4.10: Sites Without Surrounding Environment

Figure 4.11: Sites With Surrounding Environment

4.6 Time Mapping

The time mapping function maps actual time (t) into virtual time (t’.) This function
depends on the environment. The user is given control of this function to modity the

behavior of time (speeding up, slowing down, or stopping virtual time.)

Virtual Time(t') = fi(Actual Time(t)) (4.2)

Virtual Time is then divided into individual frames. However, depending on the
complexity of the scene, the actions of the user, and other executing processes, the
time it takes to generate each frame may vary. In order to keep virtual time passing
at a constant rate in the virtual environment there may need to be a variable number
of frames for every unit of virtual time. The SANDBOX keeps track of both the
virtual time and the actual time. Before each frame is generated the current virtual

time is computed and used to display data from the corresponding actual time. This



86

allows the frame rate to vary while the passage of virtual time remains constant.

Each scientific database requires its own ways of measuring and manipulating
time. The more familiar these methods are, the easier they will be to use. Once these
methods have been created graphically, they can be stored in a library and used again
in other scientific databases in similar fields of study.

Some possible ways of measuring and manipulating time include:

yearly calendar - choose decades, years

monthly calendar - choose months, days, weeks

clock - choose hours, minutes

e enumerators - choose experiment numbers

4.7 Modes of Operation

In the actual experiment the investigators first made decisions about when and where
experiments would be placed, and then conducted the experiments. The SANDBOX

also works in these two modes: Set up mode and Experimentation mode.

4.7.1 Set Up Mode

In set up mode the instruments, sites, and times are interlinked to show how they
affect each other. Choosing an instrument shows which sites it can be placed at,
and in what times it can be placed. Choosing a site shows which instruments can
be placed there and which times instruments can be placed. Choosing a time shows
which instruments can be placed and which sites they can be placed at.

Choosing an instrument and a site shows which times that instrument was placed

at that site in the actual experiment. Choosing an instrument and a time shows at
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which sites that instrument was placed during the actual experiment. Choosing a site
and a time shows which instruments were placed there at that time during the actual
experiment.

Set up mode allows the user to browse through the data at a higher level, not
looking at the individual experimental data values, but rather at when and where
those values were collected. This way the user gets an idea of which instruments to
place, when they should be placed, and where they should be placed before starting to
actually place them. The user can see what sites and times satisfy their requirements.

Set up mode could also be useful to investigators planning the actual experiment
itself. Before investigators go out to the field they can virtually visit the sites and
see where and when other investigators are planning on setting up their experiments.

This should make it easier to avoid conflicts before the experiments begin.

4.7.2  FExperimentation Mode

In experimentation mode the user sets all three parameters: time, site, and instru-
ment to retrieve data from the database. Experimentation mode has two methods:
Independent and Dependent.

The independent method allows the user to choose times independently from
instruments and sites. That is, a user chooses which instruments to place at which
sites, and then independently chooses the time interval to be displayed. This makes
it easier to place instruments and choose times than in the dependent method, but
means that instruments may not be able to access data for the chosen time interval.

The dependent method allows the user to choose the times for which each instru-
ment should be placed at a given site. This makes it easier for the user to request

more complex combinations of information. For a given site the user may want tem-
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repeat
User input (movement and/or actions)
Retrieve data for virtual time t
Visualization and virtual environment update
until user exits

Figure 4.12: Sequence of Actions in the SANDBOX

perature information for the first three days followed by rainfall information for the
next three days. In the dependent method the user would place the temperature
instrument at the site for the first three days, and the rainfall instrument at the site
for the next three days. In the independent method the user would need to place both
the temperature instrument and the rainfall instrument for all six days to gather the

same information.

4.8  System Components

The operation of the SANDBOX is centered around visualizing the appropriate data
for the current frame to be displayed. For each frame the sequence is shown in Figure
4.12.

A more detailed version of the system overview shown in Figure 4.1 is shown in
Figure 4.13. This system diagram shows the primary components of the SANDBOX.
User input and visualization are handled by the VR interface. Data retrieval is
handled by the preprocessor.

The primary component of the VR Interface is the Environment Manager. The
Environment Manager manages the virtual environment. It keeps track of the user’s
position and actions. Based on these actions the Environment Manager sends requests

for data to the Data Manager in the Preprocessor. It also uses Display Data from each
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Figure 4.13: System Diagram of the SANDBOX

of the instruments in Local Memory to display images and sounds in the AudioVisual
Environment.

The primary component of the Preprocessor is the Data Manager. The data
manager receives requests from the Environment Manager and sends requests to the
appropriate database access module (relational database module, object-oriented da-
tabase module, file module) to retrieve that data. This data is then moved to the

appropriate place in the Local Memory.

4.8.1 Data Storage

Current database access methods are not fast enough to support the needs of virtual
reality [GQV 193, RCM93]. Virtual reality requires very fast access times. For smooth
movement of a three dimensional image, at least 15 frames per second must be gen-

erated for each eye [WS82]. Generating a frame involves accessing all the relevant
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information, converting it into graphical form, and drawing it once for each eye. Each
frame must be generated within 67 milliseconds. Relevant portions of the database
need to be brought into local (fast) memory before the visualization can begin, or as
the visualization is proceeding in a form of progressive refinement|[Bro88]. Typically,
during scientific visualization all of the necessary information is loaded into RAM be-
fore the visualization begins [HS89]. This is clearly not possible here given the huge
amount of data involved. Since visualization is used while retrieving information, not
just afterwards, the entire database needs to be accessible.

Data storage is therefore hierarchically organized into four levels:

e Display data - The data currently ready to be converted to graphical and audible

form in the current frame. Each instrument maintains its own display data.

o Instrument data - The data currently being indexed by an individual instrument.
This includes all the data for this instrument at this site for the currently
selected time interval. For each frame, a subset of this data becomes the Display

Data. The instrument data also includes the current instrument settings.

o Workspace - The workspace acts as a cache for the Database data. It holds
data that is not currently Instrument data, but might become Instrument data

in the near future.

e Database data - The scientific database itself. The database may be local, or

remote, and is probably a heterogeneous environment.

As an example, if the user is displaying temperatures at site X over a 3 day period
then the display data holds the individual temperature being displayed in this frame.
The instrument data holds all the temperature values for site X for those 3 days. The

workspace may hold all the temperature values for all the sites where temperature
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can be measured over those 3 days. The database contains temperatures for all the
sites where temperature can be measured for all the days in the database, as well as

lots of other data.

Retrieving data from the database may involve combining information from mul-
tiple sources (multiple files, tables, or objects.) If additional space is available in
secondary storage then these retrievals could be sped up my maintaining views of
the database corresponding to the necessary combinations. This way the appropriate

views could be accessed rather than generating them each time.

The display data, instrument data and workspace are part of the local memory.
They are given priority in that order. The workspace can be sacrificed to make room
for instrument data and instrument data can be sacrificed to make room for display

data.

If all of the instrument data can not be stored in local memory there will be a
moderate performance penalty. The preprocessor would need to divide the instrument
data into blocks based on time. These blocks would be stored on disc as a cache for
the database and brought into local memory as needed. The preprocessor would
then ensure that the appropriate blocks of instrument data are available for the next
several frames for all of the instruments currently placed at sites. Using the previous
frames as a guide, the preprocessor can estimate which blocks of data will be needed
in the future. Blocks from near in the future are given priority over blocks in the far

future. Blocks in the past can be discarded to make room.

If all the visualization data can not be stored in local memory then there will
be a severe performance penalty. Retrieving the the data to draw each frame would
require accessing secondary storage. With each data retrieval taking approximately

10 milliseconds, this additional overhead would make the system unusable.
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4.8.2 Data Retrieval

As the user chooses instruments, times, and other experimental parameters, the VR
interface passes this information along to the preprocessor. In the SANDBOX ‘where’
is determined by the choice of site, ‘when’ is determined by the choice of time, and
‘what’ is determined by the choice of instrument. The preprocessor determines which
parts of the database are likely to be accessed in the near future. Relational tables
can be partitioned vertically and horizontally, objects can be isolated, and files can
be marked. These blocks of information can then be moved into local memory before
they are needed by the visualization system.

When the user selects an instrument, the data manager needs to quickly display
all the possible sites where the selected instrument can be placed. In the independent
method, the list of available sites can be maintained in the static data of the instru-
ment class, and so this list is already available in local memory. In the dependent
method the data manager creates an autonomous process to generate the list of avail-
able sites based on the currently selected time interval and place this information into
the instrument data for the chosen instrument. Once this information is available the
possible sites can be highlighted.

The data manager also creates an autonomous process to begin reading in all of
the appropriate data (ordered ascending my time) into the workspace in local memory

based on the currently selected instrument and time intervals:

Htime,space,value (Utime e current_time_intervals (SOUTC@))

When the instrument is placed at a specific site, the source can be further par-
titioned horizontally using the selected site. Information on the selected site that

was retrieved by the autonomous process is moved from the workspace to memory
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indexed by the chosen instrument (becoming instrument data.) Information on other
sites is kept in the workspace if there is room. Since the user placed one copy of this

instrument, it is likely that they will place another, so this information is retained.

Htime,value (Utime e current_time_intervals,site=spect fic_site (SOUTC@))

If the autonomous process was not able to move all of the appropriate data into
the workspace before the instrument was placed at a specific site, then the first
process is terminated and a second autonomous process is created to read in only
that information for the selected instrument and the selected site and the selected
time. This information is moved directly from the database to memory indexed by

the chosen instrument (becoming instrument data.)

When the user increases the time interval being displayed, additional information

must be loaded into instrument data for all the instruments currently placed at a site.

Htime,value (Utime e additional _time_interval,site=spect fic_site (SOUTC@))

All of these attributes are loaded into instrument data supplementing the existing
information for that instrument at that site. When the user reduces the time interval
being displayed, similar information can be discarded from the instrument data. If

there is room, this information can be kept in the workspace.

The actual queries generated will depend on the specific way the data is stored.
This means that traditional query optimization practices can be applied to the in-
dividual queries to reduce the amount of access to the database and speed the data

retrieval.
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4.8.3 Instrument Data

The SANDBOX requires rapid access to the data values in memory based on time.
Given a time index, the data structure must be able to quickly find the nearest stored
time and its associated data values. In order to achieve fast access to the instrument
data values we are using a modified version of the T-tree data structure proposed by
Lehman and Carey [LC86a, LC86b]. This was originally proposed to aid in indexing
in main memory databases [DIKO*84, Sin88, AP92, Ulu92].

In the SANDBOX, each instrument placed at a site keeps its own T-tree of instru-
ment data as shown in Figure 4.14. Each node in that tree is shown in Figure 4.15.
A T-tree is a modified AVL tree that holds multiple data items in each node. Each
data item contains the time values and the data values for a particular instrument at
a particular site at a particular time. As well as the data items, each node stores the
minimum and maximum time values, and a count of the number of data items in the
node. These T-trees are ordered by time index.

By storing multiple data values in a single node the T-tree reduces the amount
of extra information that needs to be maintained in memory compared to a standard
AVL tree. This frees up more space in memory to hold data values. Each node of the
T-tree has twice as much supplementary information as a node in the AVL tree. An
AVL tree has two child pointers and a balance factor. A T-tree has all of that plus
a pointer to the first data item, a pointer to the last data item, and a count of the
data items. If there are more than two data items in the T-tree then the T-tree will
take up less space in memory.

Data values are retrieved from the database for a set of time intervals (e.g. a day’s
worth of data, or an hour’s worth of data.) Each of these time intervals is given its

own node, and inserted into the T-tree. In an AVL tree each tuple of data would need
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Figure 4.14: Enhanced View of Local Data
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Figure 4.15: Each Node of Instrument Data

to be given its own node and inserted independently. As there are fewer nodes in the
T-tree, keeping it balanced requires fewer operations, speeding up the data retrieval
process. Removing a time interval worth of data values from memory is easier in a
T-tree as an entire node can be removed at one time, rather than removing all of the
data values independently in an AVL tree. As data is commonly retrieved from a
database in chunks, rather than as individual tuples the T-tree has a more natural
storage structure. The T-tree does require that all the data values for a given time
interval be retrieved from the database before that interval can be inserted into the

tree.

Other internal data structures such as arrays and hash tables are not practical in
this environment. As the data must be kept in sorted order for eventual output the
time to insert data into an array is unacceptable. As data values could have been
collected at varying time rates, and the VR system needs to display the value taken

at the nearest time, searching for the appropriate data using a hash table would be

difficult.
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Unlike indexing in full main memory databases here there are very few possible
transactions. FEach time a new interval of data for a particular instrument at a
particular site is brought into memory, it is given its own node and inserted into the
T-tree for that instrument at that site. If the new interval of data overlaps an existing
interval then the data is merged. Fach time an interval is removed from memory that
node is deleted from the T-tree. If necessary, after each insertion or deletion the
T-tree is re-balanced. If an instrument is removed from its site then the entire set of

instrument data for that instrument at that site is removed from the local data.

4.8.4 Visualization

The environment manager tracks the user’s current position in the virtual environ-
ment to adjust the users viewpoint. It monitors the user’s interaction with the virtual
environment and sends appropriate requests to the data manager for display data.

Each instrument placed at a site maintains its own instrument data indexed by
time. Measurements in the various original experiments could have been taken at
various time rates (e.g. temperature readings taken once per hour, wind direction
taken once per minute.) With the instrument data indexed by time, measurements
taken at different time rates can be quickly retrieved and related by the visualization
system.

Every time a new frame is to be generated, the virtual time is converted into actual
time. For each instrument currently placed at a site, its instrument value taken at
the time nearest to the current actual time becomes the display value or values for
that instrument. These display values are then sent to the environment manager to
be converted into visible and audible form. If this nearest value is a null value then

that null value is displayed.
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If the appropriate instrument data is not available in local memory to become
display data (because it has not been loaded into memory yet) then the visualization
component will not display any readings for that instrument. Instead it will display
a special value to indicate that the data is unavailable. When data becomes available
(in a future frame) the appropriate data for that frame will be displayed. All of
the other instruments with their display data available in local memory would still
remain active. It should be noted that unavailable data is not the same as null data.
If the database contains null values then those null values will be displayed by the

visualization component.

The only other alternative would be to freeze the virtual environment until the
requested data is available. The previous frame would remain visible, but the user
would not be able to interact with the environment. This can be very disorientating

as the user’s actions no longer have an immediate effect on the virtual environment.

Searching for the data for a particular instrument at a particular site at a particular
time is performed by starting at the root of the T-tree for that instrument at that site
and making comparisons with the minimum and maximum time values to determine
which node contains the requested values. Binary search is then used to search
through the individual data items within the chosen node to find the data item with
the nearest time value. If no node contains an appropriate range, then the data value
in the tree with the nearest time is used. If the T-tree is a balanced tree with n nodes
and v values per node then the maximum number of memory accesses is log(n) +

log(v.) The data retrieval algorithm is shown in Figure 4.16.
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Done = FALSE
BestMatch = NULL

currentNode = root
while (not Done)
// Match not found within a node, return best found so far

if (CurrentNode == NULL)
Done = TRUE
return(BestMatch)

// Match not found within node with unavailable data

if (CurrentNode == UNAVAILABLE)
BestMatch = UNAVAILABLE
Done = TRUE
return(BestMatch)

// Match found within a node

if (CurrentNode.min.Timelndex < t < CurrentNode.max.Timelndex)
BestMatch = binsearch(CurrentNode)
Done = TRUE
return(BestMatch)

// Match can only be found to the left of this node

if (t < CurrentNode.min.time)
if ([t-CurrentNode.min.Timelndex| < |t - BestMatch.Timelndex])
BestMatch = CurrentNode.min
CurrentNode = CurrentNode.left Child

// Match can only be found to the right of this node

if (CurrentNode.max.time < t)
if ([t-CurrentNode.max.Timelndex| < |t - BestMatch.Timelndex])
BestMatch = CurrentNode.max
CurrentNode = CurrentNode.rightChild

end while

Figure 4.16: Retrieving a Value from the Instrument Data
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4.8.5 User Input

The user can interact with the environment in several ways. The user can change the
behavior of objects within that environment, or change the environment itself.

The SANDBOX gives the user a generic way of choosing instruments, while the
instruments themselves will be database specific, or from a set of general instruments.
The SANDBOX provides a generic way of choosing sites while the environment those
sites reside in will be database specific. The SANDBOX provides a generic way of
choosing times from a set of general options.

The user primarily interacts with the environment by placing and moving instru-
ments. Where the user can place the instruments is determined by the space mapping
function and the location of the sites. A menu, or pallet, of virtual instruments in
the virtual environment allows the user to see the instruments, identify them, and
physically grab them off the pallet, and place them at a site in a very natural way.

The user also interacts with the instruments by changing the settings on the virtual
instruments. Depending on the instrument the user could set the range of values to
be displayed, or the set of values to be displayed. The user manipulates graphical
option menus for each of the instruments which in turn modify the parameters of the
display filters.

The user also interacts with the instruments by choosing the times that the instru-
ments are in operation. As well as the pallet of instruments in the virtual environment
there needs to be a way for the user to choose appropriate time ranges (e.g. through
a clock, or a calendar.)

As well as being able to choose which sites to place instruments at, the user
can change the behavior of virtual space (how big it is, or where it is.) The user

manipulates graphical space menus which in turn modify the parameters of the space
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mapping function.

As well as being able to choose the times that the instruments are active, the user
can change the behavior of virtual time itself (speeding it up, slowing it down, or
stopping it.) The user manipulates graphical time menus which in turn modify the

parameters of the time mapping function.

4.8.6 Data Output

Once the user has placed all of the appropriate instruments into the virtual envi-
ronment, set the appropriate times, and adjusted the appropriate settings on the
instruments the user can output the data.

All of the instrument data that is displayable (i.e. instrument data that is within
the displayable range for a given instrument) is output. Each instrument class is taken
in turn and given its own external file. Each instrument at a site is taken in turn.
As the instrument data for each instrument is stored in a binary search tree ordered
by time, with each node internally sorted into ascending order by time, a depth first

inorder search of the tree will produce the data in ascending order by time.

4.9 Creating the Interface

In order to use the SANDBOX to interact with a scientific database, the designer

must go through the following sequence of actions:

1. create the space and time mapping functions.

2. use the existing meta-data in the database to create a familiar environment.

3. choose the instrument classes, access functions, and filler functions from an

existing library, or create them as needed.
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4. create the linkages as needed.

The first two steps are necessary to set up the virtual environment. After that,

the instruments can be created and linked to the database as they are needed.

4.10 Conclusions

In this chapter I have described the general design of the SANDBOX. I have shown
how the instruments are created and then linked to a scientific database; how the
data is stored and accessed; and how the user interacts with the interface. The next

chapter will show an implementation of this paradigm.



Chapter 5

SANDBOX Implementation

5.1 Introduction to the SANDBOX Implementation

[ have implemented a prototype of the SANDBOX in C++ [KP90, Poh94] and GL
[McL91] under Unix [Ste92] using the CAVE [CSD93, Ele94] virtual reality theatre
at the Electronic Visualization Lab at the University of Illinois at Chicago as shown

in Figure 5.1.

I implemented this prototype on a subset of the FIFE scientific database. In this
reenactment of the FIFE field experiments, the user is surrounded by an elevated 3D
plane showing the 20km by 20km square site, a pallet of instruments to choose from
on the right wall, and a calendar to choose dates from on the left wall. The 3D plane
initially shows an enhanced satellite view of the experiment site showing roads, and

rivers. See Figure 5.2.

Figure 5.3 shows an experiment in progress in the SANDBOX. The user has placed
a water beaker, a thermometer, and a wind-sock into the virtual environment. The
water beaker shows 6 millimeters of rainfall has collected at its site. The thermometer
shows a temperature of 22 degrees Celsius at its site. The wind-sock shows a northerly
wind blowing at 2 meters per second at its site.

Section 5.2 discusses how the instruments are chosen, placed, and modified. Sec-
tion 5.3 discusses how the wand is used. Section 5.4 discusses the graph wall. Section
5.5 discusses the 3D plane. Section 5.6 discusses the calendar. Section 5.7 discusses

how meta-information is viewed. Section 5.8 discusses how external information is
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Figure 5.1: Photograph of SANDBOX in the CAVE

Figure 5.2: The SANDBOX in the CAVE
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Figure 5.3: Overview of the Interface

viewed. Section 5.9 discusses a desktop version of the interface. Section 5.10 com-
pares usage times in the SANDBOX to the real world. Section 5.11 compares the
SANDBOX to more traditional access methods. Section 5.12 discusses reaction to
the SANDBOX implementation. Section 5.13 gives some conclusions about this im-

plementation. Section 5.14 discusses enhancements to the SANDBOX.

5.2  The Instruments

The user interacts with the data in the scientific database through the instruments.

5.2.1 The Instrument Pallet

Figure 5.4 shows a close-up view of the instrument pallet. Some of the instruments
(thermometer, wind-sock, and water beaker in the left hand column) are linked to
attributes in the relational database. Some (LANDSAT satellite, airplane, helicopter
in the center column) are linked to graphics files [SLN192¢]. Some (notepad, camera,

in the right hand column) are linked to meta-data [SNL*93]. The instruments on
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Figure 5.4: The Instrument Pallet

the pallet are 3D and animated (the beaker fills with water, the solar panels on the
satellite spin, etc.) to improve their recognizability. The instruments have obvious
affordances [Nor88]. All temperatures are measured with the thermometer, all rainfall

amounts are measured with the beaker, no matter how they are stored in the database.

5.2.2  Placing Instruments

As the user moves the wand over an instrument, the area around it highlights to yellow
showing the user that the instrument can be selected. The user chooses an instrument
by moving the wand to the instrument on the instrument pallet, pressing a button on
the wand, and carrying a three dimensional copy of the instrument off the pallet. All
of the sites where the user can place that instrument are then highlighted in yellow on
the 3D plane as shown in Figure 5.5. When the user moves the wand (and the virtual

instrument) over one of the available sites it highlights in red as shown in Figure 5.6.
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Figure 5.5: Available Sites Highlight in Yellow Based on Held Instrument

The user places an instrument at this site by pressing a button on the wand as shown

in Figure 5.7. The instrument immediately begins taking measurements.

This gives the user a very natural method of placing instruments as the user
can literally pick up an instrument, carry it over to a site, and place it there. The
user directly manipulates the objects in the virtual environment [Sch83]. There is
a continuous visual representation of objects and actions; physical actions replace
complex syntax; the impact of an action is immediately visible. This allows a novice

user to quickly begin using the system.

The user can move instruments from one site to another using a similar method.
When the user moves an empty wand over a site with an instrument, the site highlights
in yellow. The user picks up the instrument by pressing a button on the wand. As
before, all of the sites where the user can place that instrument are then highlighted

in yellow on the 3D plane.

As it would require a lot of bending down if the user had to physically place

the virtual instrument onto the 3D plane, I have implemented a limited form of



Figure 5.6: Selected Site Highlights in Red When Wand is Overhead

Figure 5.7: Instrument Placed at Site Begins Operating
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raycasting. With raycasting, a virtual beam emanates from the wand and the user
can select anything in the path of the beam. In my implementation a vertical ray
extends downward from the wand. The user can select a site by moving the wand
over the site at any altitude, allowing the user to ‘drop’ an instrument onto the 3D
plane or ‘grab’ an instrument off the 3D plane from high above it. This allows the
user to make selections at a distance, and has been shown to reduce arm fatigue
[JE9I2, SGLSI3].

While the amount of data in this database is very large, the number of sites for each
experiment is typically small (usually around 10 to 15 sites), giving sparse coverage
of the total experiment area. Because of this, conventional visualization techniques
can not be employed (i.e. there is not enough information to draw meaningful colour

mapped surfaces over the 3D plane.)

5.2.3 Instruments Under Operation

Once the instrument is placed at a site, it begins to operate. The mercury level in
the thermometer rises and falls with the temperature. The water level in the beaker
rises and falls with the rainfall. The orientation of the wind-sock changes with the
direction, and speed of the wind. This allows the user to see how the measurements
inter-relate (e.g. the mercury level dropping in a thermometer as a beaker begins to
fill.)

The user can also hear the instruments. A beaker makes a ‘drip’ sound when
its water level rises. The faster the water level is rising, the louder the ‘drip.” A
wind-sock makes a ‘whoosh’ sound. The stronger the wind, the louder the ‘whoosh’.
A thermometer makes a ‘cicada’ sound. The higher the temperature, the louder the

‘cicada.” (The cicadas do double duty as crickets during the night.) This way, a
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Figure 5.8: Quantitative Values Rotate to Follow the User

user doesn’t have to watch all the instruments all the time. An instrument draws
attention to itself when there is a change in the value it is monitoring. A user busy
placing a thermometer in one corner of the experiment, will hear the sound of the
rain beginning to fall. Since the sound is 3D the user can easily turn around and

locate which instrument is calling attention to itself.

If the user needs to see a record of how the measured values change over time, the
values can be displayed in a graph on the graph wall. If the user requires quantitative
numeric, as well as qualitative graphical values, they can be displayed above each
instrument. These quantitative values rotate horizontally and vertically to follow the
user. They are always readable no matter where the user is standing in the CAVE as

shown in Figure 5.8.
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Figure 5.9: Menu for an Individual Instrument

5.2.4 Changing Settings on Instruments

The user can change the settings on the virtual instruments using the menu shown
in Figure 5.9. The user moves the wand over to the instrument, and then brings
up the menu using the wand button. The user can set the minimum and maximum
values displayed by the instrument (and at the same time change the minimum and
maximum values displayed on the graph for this instrument.) The user can turn on or
off whether the instrument displays quantitative values overhead, whether its values
are shown on the graph, and whether the instrument makes sound. Each instrument

maintains its own individual settings.

The interface employs an object-oriented paradigm. Existing virtual reality sys-
tems [SLGS92, SGLS93] allow for the creation of sliders, menus, and button panels.
These are simply transferences of 2D systems into the 3D virtual environment where
operations on objects are performed using a separate detached interface control panel.
In our approach each object in the virtual environment maintains its own state, and
has its own interface control panel. This reduces user errors during interaction by

giving users access only to those functions which are appropriate to the object [Nor88].
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5.3 The Wand

The current position of the wand in the cave is shown by a translucent 3D cross as
shown in Figures 5.5, 5.6, and 5.7. In the CAVE the position of this 3D cross should
correspond to the actual position of the physical wand, but due to errors in the tracker
this position may be slightly off. The 3D cross allows the user to see where the VR
system believes the wand actually is. This is also useful in the desktop version of the
SANDBOX where there is no physical wand within the virtual environment.

The SANDBOX only uses two of the three buttons on the wand. One button
is used for making selections, and the other is used to display menus. The selection
button allows the user to pick up or drop instruments. It is used to select and deselect
dates from the calendar. It is used to choose options from menus. The menu button
is used to display or hide the various menus in the system.

The user receives audio feedback (a ‘thunk’ sound) when making selections with
the wand. Whenever the user grabs an instrument, drops an instrument, chooses a
date, activates a menu, or deactivates a menu the user receives this audio feedback

as well as visual feedback.

5.4 The Graph Wall

Figure 5.10 shows the graph wall. The graph wall of the CAVE shows the user’s
position on the right, and the graphs on the left. The user’s position (marked by a
small blue square) is shown relative to the 3D plane (a large green square) and the
physical CAVE boundaries (a large white square.) The position of the wand (marked
by a small red square) is similarly shown.

The user can tell at a glance whether the 3D plane is entirely inside the CAVE

walls, and entirely accessible, or whether parts of it lie outside the walls and are
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Figure 5.10: The Graph Wall

currently unaccessible. If the user loses track of the wand, this will make it much
easier to find. For example, Figure 5.10 shows the 3D plane extending beyond the
edges of the CAVE. The user is standing in the left, back corner and the wand is right

of center in the CAVE.

The graph shows values over the last six hours. The right edge of the graph shows
the current time of day, and the values at the current time of day. The left edge of
the graph shows the time six hours previous, and the values six hours previous. All
of the valid instrument readings within the last six hours are connected by lines. The
colour of the lines matches the colour of the instruments (red for the thermometer,

blue for the beaker, yellow for the wind-sock) for ease of identification.

The minimum and maximum values on the graph are set to match the minimum
and maximum values each instrument is set to display. For example, if a thermometer
is set to display values from 10 degrees to 30 degrees then the graph values range from
10 to 30. Watching the values change over time the user can see trends that are not

apparent from the data itself.
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Figure 5.11: The 3D Plane

5.5 The 3D Plane

Figure 5.11 shows the 3D plane. The user can alter how the 3D plane is displayed.
The user can enlarge or shrink the 3D plane. The entire 3D plane can be displayed
within the CAVE, or parts of it can lie outside the walls of the CAVE, depending on
whether the user wants an overview of the entire experiment, or a close-up view of
a certain area. The user can turn the grid lines on to break the 3D plane up into
kilometer square blocks, or turn them off to get a better view of the landscape. The
user can raise or lower the 3D plane. The 3D plane could be placed on the floor
to look down at it from high above, or at waist height to get a better sense of the
topography, or above the user’s head to look at the terrain from below. The menu

for the 3D plane is shown in Figure 5.12.

The boundaries of the 3D plane match the boundaries of the actual environment.
Information on the latitude, longitude, and elevation of each site in the actual en-
vironment was recorded. Interpolating the elevation information from the various
actual sites, I constructed the 3D plane in the virtual environment. Kansas is rather

flat, so I enhanced the elevation information to allow the user to see the variation in
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Figure 5.12: The Plane Menu

Figure 5.13: Viewing the Experiment in a Different Light

elevation more clearly.

When the user grabs the satellite instrument and places it in the sky above the
3D plane, the user can choose which band to view the 20km by 20km landscape in.
The user can choose to see the landscape in visible light, infra-red, or the 5 other
LANDSAT bands. LANDSAT photographs from the database are mapped onto the
3D plane as shown in Figure 5.13 where the user is viewing the landscape in the
infra-red. The menu for the satellite is shown in Figure 5.14.

In the actual scientific database the user must refer to a site using its site 1D

number. In our system the user can see where the sites are located. If the user wishes
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Figure 5.14: The Satellite Menu

to measure the temperature near a river, or at high altitude, or where the satellite
shows lots of activity in the infra-red, the user can see exactly where to place the
instrument by looking at the 3D plane. The graphical information is integrated with
the numeric information. In the actual scientific database the user would have to

integrate this information manually.

The greyscale satellite photograph must be processed before it can be texture-
mapped onto the 3D plane. As the CAVE is rather dim, I enhance the contrast
of the satellite photos before storing them in local memory. Only the center of the
photograph matches the area of the 3D plane, and that part of the photograph must
be rotated 10 degrees clockwise to match the orientation of the 3D plane. A sample
satellite photograph is shown in Figure 5.15 with the area corresponding to the ex-
periment 3D plane highlighted. As all of the satellite photographs were taken from
the same location in space, this processing is the same for all of the photos. In the
actual scientific database the user would have to do this processing for each satellite

photo to match the photo to the experiment sites.

By grabbing the helicopter instrument and placing it in the sky above the 3D
plane, the user can see information on soil moisture obtained from the air during the
experiment. The satellite photographs are mapped onto the 3D plane itself. The soil
moisture data collected from the air is coloured transparent blue and then mapped on
top of the greyscale satellite photograph. This allows the landscape to show through

the soil moisture information. The graphical information from space can be combined
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Figure 5.16: Integrating Multiple Views of the Landscape

with the graphical information from air as shown in Figure 5.16.

5.6 The Calendar

The user selects days from the calendar by clicking on them with the wand. Virtual
time only passes when at least one day is selected. The current virtual day cycles
through the selected days. Selected days are shown highlighted in blue; the current
day is shown highlighted in red. As the user moves the wand over a day it highlights

in yellow (including current day’s blue being yellow highlighted to green, and the
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Figure 5.17: The Calendar

selected day’s red being yellow highlighted to orange) to show that the day can be
selected or deselected. Figure 5.17 shows a close-up view of the calendar where the
3rd, 4th, and 5th if August 1987 are selected for display and the current day is the

5th.

A virtual sun orbits the 3D plane rising out of the east each morning at 6am, and
setting in the west at 6pm. As the sun dips below the western horizon, the moon rises
in the east and continues to orbit the 3D plane opposite the sun. While the Earth’s
moon does not exhibit this behavior, it gives the user better control over their virtual
environment. By grabbing the sun or moon with the wand, the user can adjust the
behavior of time, speeding it up, slowing it down, or stopping it. The menu for the

Sun/Moon is shown in Figure 5.18.

The sky changes color as the virtual day progresses, changing from black at mid-
night, to purple at dawn, to bright blue at noon, to purple again at dusk, and back

to black at midnight. This gives the user additional temporal feedback. The user can
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Figure 5.18: The Sun/Moon Menu

clearly see and hear how the instruments behave as the hours pass by.

5.7 Viewing Meta-Information

The user views textual meta-data (e.g. site information, notes) with the notepad,
and graphical meta-data (e.g. photographs taken a site) with the camera. If the
user wishes to see information about a site (its latitude, longitude, and elevation) the
user grabs the notepad instrument and places it at a site. A page with the text then
appears above it. If the user wishes to see a photograph taken at a site, the user grabs
the camera instrument and places it at a site. The picture of that site then appears
above it. The meta-data is integrated with the numeric information and the graphic
information. In the actual scientific database the user would have to integrate this

information manually.

Other possible meta-data instruments include a microphone instrument to listen
to recorded audio and a movie projector instrument to play back video. Like the quan-
titative values in Figure 5.8, the notepad, camera and movie projector instruments
rotate so the user can see their values from anywhere in the virtual environment.

Figure 5.19 shows an assortment of meta-data instruments: Notepad, Camera, Mi-
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Figure 5.19: Meta-data Instruments

Figure 5.20: Viewing Meta Information in the SANDBOX

crophone, and Movie projector. Figure 5.20 shows three cameras displaying their

respective site photographs.

Figure 5.21 shows four instruments placed in the virtual environment: a beaker
measuring rainfall, a wind-sock measuring wind speed and direction, a thermometer
measuring temperature, and a camera displaying a photograph taken of a site. The
beaker, wind-sock, and thermometer have their current values displayed graphically,
audibly, and numerically. Their values over the last six hours are shown in the graph.
The user is simultaneously seeing numeric data from the database visualized by the
instruments, graphical data showing the features of the 3D plane, and meta-data

showing an actual photograph of a site.
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Figure 5.21: The Instruments Giving Feedback

5.8 Viewing External Information

All of the information that an investigator needs to run their experiments may not
be in the scientific database. Since the user is not isolated from the real world while
interacting with the virtual world inside the CAVE, the user can bring items into the
virtual environment. The user may want to bring in a list of experiments to run, or

a map of sites to examine.

Unfortunately the CAVE must be kept dark so that the projected images appear
bright. This makes it difficult to see anything brought into the CAVE. To alleviate
this problem, the user can turn on a virtual spotlight in the SANDBOX as shown in
Figure 5.22. This spotlight illuminates the area surrounding the user. The spotlight
follows the user’s movements around the CAVE, allowing the user to see and read

whatever they are holding while interacting with the virtual environment.
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Figure 5.22: Spotlight in the CAVE

5.9 Desktop Version

This method of extracting data through recreation of experiments, and the integration
of the meta-information does not rely on virtual reality. While virtual reality provides
more of a direct manipulation immersive environment, these same techniques could

be applied to more common, and less costly, hardware.

5.9.1 2D Desktop Version

The original proof of concept demo of the SANDBOX is shown in Figure 5.23. This
was a hypercard stack running on a Macintosh Powerbook. The user could place up
to four thermometers and water beakers into the environment and choose any dates
in August 1987 to display. The instruments showed their values graphically as well
as numerically.

This interface relied on a standard two dimensional desktop interface, making

three dimensional features such as the elevation of the plane hard to visualize. The
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Figure 5.23: Original Desktop Hypercard Prototype

user has a static view of the experiment sites. In this case the plane is viewed from
directly above hiding the elevation information. Head tracking and 3D displays have
been experimentally shown to improve the user’s interactions with virtual worlds

[Akk93, AB93, MHRO1, Wic91].

5.9.2 3D Desktop Version

The code that comprises the SANDBOX prototype is not limited to the CAVE. This
same program can be run in a desktop environment that retains the three dimensional
interaction of the CAVE. Unfortunately this desktop interface is not immersive, and
the user has less direct manipulation than in the CAVE.

The SANDBOX code was written so that it could adapt to the number of available
walls in the CAVE. This way it could be run in CAVEs with fewer than three walls and
a floor. For example, Figure 5.24 shows the SANDBOX running in the CAVE with
only two walls and a floor. For the desktop version the calendar and the instrument
pallet are moved from their respective walls to join the graph wall, and the 3D plane

is moved up to appear on the wall instead of the floor. See Figure 5.25.
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Figure 5.24: Two-Wall SANDBOX

AUGLET 1987

2mm /s

Figure 5.25: Desktop Version of the SANDBOX
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The SANDBOX code could also be adapted to a Head Mounted Display or a
BOOM, however the affordable Head Mounted Displays do not have enough resolution
to handle the detail involved in the SANDBOX, and a colour BOOM is excessively
expensive. Both of these hardware platforms also isolate the user from the real world
making it impossible to see external information while interacting with the virtual
environment. A ‘Fish Tank’ desktop system would probably be the best alternative

for those wanting a currently affordable hardware platform.

5.9.3 Desktop Hardware Requirements

Table 5.1 shows the average frames per second generated by several different hardware
platforms running the desktop version of the SANDBOX. Faster platforms are obvi-
ously better than slower ones, but special graphics hardware is also necessary for the
interface to maintain an acceptable frame rate. This special hardware could include
a hardware z-buffer to speed up the drawing of overlapping polygons, or hardware to
speed up the drawing of textures onto polygonal surfaces.

The frame rate is also important as it relates to the lag between a user performing
an action, and the user seeing that action reflected in the virtual environment. This
lag time includes the time it takes the trackers to notice a change, and the time to
draw the next frame to reflect this change. If this lag time is too long the user will
feel disoriented as actions no longer have immediate consequences.

The Onyxs were able to generate frames faster than their display hardware could
display them. The VTX was able to maintain acceptable frame rates with texture
mapping on or off. The Indigo? Extreme and the Indigo Elan were able to maintain
acceptable frame rates with texture mapping off, but not with texture mapping on.

The Personal Iris and the two Indys were not able to provide acceptable frame rates.
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Machine Hardware | Hardware | Frames/sec | Frames/sec
Z-buffer texture | w/o texture | w texture

mapping mapping mapping

Onyx/4 RE? yes yes >60 >60
Onyx/2 VTX yes yes >30 >30
VTX yes yes 10 9
Indigo? Extreme yes no 20 2
Indigo Elan yes no 10 2
Personal Iris 4D /35 yes no 3 -
Indy SC 24 no no 4 1
Indy PC 8 no no 2 1

Table 5.1: Comparison of Desktop Platforms

In the current implementation of the SANDBOX interface to the FIFE database,
the time taken to texture map the satellite photograph onto the 3D plane is a very
large amount of the time it takes to draw a single frame. Texture mapping is also
used to display the site photographs. Texture mapping is a computationally intensive
operation, but a necessary one, if we want to integrate the graphical data, and meta-

data into the environment.

Other scientific databases with large amounts of graphical information, or those
needing a graphically enhanced environment would have similar needs. Therefore
the hardware chosen to run this desktop version should be able to perform real-time

texture mapping to keep the frame rate above 15 frames per second.

One option is to give the user control over the texture mapping. Users of hardware
without real-time texture mapping could turn texture mapping off when it wasn’t
necessary, and improve their interaction with the system. When they need to look at
the landscape, or a site photograph they can turn texture mapping on. This increases

the burden on the user, but makes the system available to a wider audience.

Another option is to use a form of progressive refinement. Whenever the user
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Figure 5.26: Desktop Version Hardware

remains stationary, the environment is drawn in full detail using texture mapping.
Whenever the user moves, or turns their head, the texture mapping is turned off to

improve interaction speed.

The components of the typical desktop version are shown in Figure 5.26. They
include the following hardware: an SGI Indigo? Extreme and StereoGraphics-ready
monitor, a pair of StereoGraphics’ CrystalEyes glasses with infra-red emitter, a head
tracker, and a Logitech 6D mouse with ultrasonic emitter. The monitor and glasses
allow the user to see the SANDBOX in 3D. The 3D plane appears to extend into and
out of the monitor screen. The head tracker allows the scene to shift appropriately as
the user moves their head, increasing the illusion of 3D. The 6D mouse replaces the
wand in the CAVE allowing the user to interact with objects in the 3D environment.
Holding the 6D mouse in the air the user can move it in all three dimensions (up/down,
left /right, and in/out) as well as using roll, pitch, and yaw. In effect, this hardware

set up brings one of the CAVE walls to your desktop as shown in Figure 5.27.
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Figure 5.27: Photograph of Desktop SANDBOX

5.9.4 Comparison of CAVE and Desktop Versions

The CAVE and the desktop version each have their advantages and disadvantages.

These are described in detail below and summarized in Table 5.2.

Immersion

The CAVE is immersive, the desktop version is not. A user sitting a comfortable
distance away from the desktop version will have the monitor display filling 45 degrees
of their field of view. A user standing in the CAVE will have the CAVE walls filling
approximately 120 degrees of their field of view (limited by the glasses being worn,
not the CAVE walls.) The CAVE user is also given the ability to turn their head and
look around the environment; the desktop user must look at the screen. The CAVE

is superior in this regard.
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Visual Acuity

Visual acuity is most popularly measured using the Snellen fraction (e.g. 20/20 is
average vision, 20/200 is legally blind.) When looking at the desktop version the
user has a visual acuity of 20/45. When inside the CAVE the user has a visual
acuity of 20/110 [CSD*92]. While a user standing at the center of the CAVE can see
approximately twice as many pixels as the desktop user, these pixels are spread over
a much larger field of view causing the drop in visual acuity. The desktop version is

superior in this regard.

Sound

Both the CAVE and the desktop version can generate 3D sound, that is sounds that
appear to emanate from a particular point in space. The CAVE however has a much
more natural mapping between the visual space and the audio space. If the sound
is coming from an instrument on your right, you can turn to the right and see the
object generating that sound. With the desktop system all of the visual cues are in
front of you on the screen. Sounds can still come from behind you, but you must
turn the virtual environment to see the object generating it. The CAVE is superior

in this regard.

Cost

The desktop version is overwhelmingly cheaper than the CAVE. A desktop version
of the system capable of doing real-time texture mapping would cost about $50,000
while the CAVE costs $1,000,000. There is a also range of possible hardware for the
desktop version allowing the user to pay for only the performance which they need.

The desktop version is more mobile, less prone to hardware failure, and built from
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more common hardware components. The desktop version is clearly superior in this

regard.

Fase of Control

Even with a stereo display and devices such as a spaceball or a 6D mouse, the user
of the desktop system can not have the same ease of control or degree of direct
manipulation that the CAVE user enjoys. There is a more natural mapping between
the users actions and their effects in the CAVE than in the desktop version. The

CAVE is superior in this regard.

Ergonomics

The stereo glasses and head tracking equipment are virtually the same in the CAVE
and desktop versions. The CAVE’s wand is slightly less comfortable than a 6D mouse
since the user must hold onto the wand, rather than being able to set it down on the
desk. Desktop users also have the ability to sit down while interacting with the
virtual environment. If the user is going to be conducting a large experiment, this

extra comfort can be very important. The desktop version is superior in this regard.

Multiple Users

Both the CAVE and the desktop version allow any number of users. Fach user wears
a pair of stereo glasses, but only one user is tracked and carries the wand/6D mouse.
It is slightly easier to accommodate multiple users in the CAVE since all the desktop

user must sit or stand directly in front of the screen to see the stereo effect.
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Criteria Desktop | CAVE
Immersion +
Visual Acuity +

Sound +
Hardware Cost +

Fase of Control +
Ergonomics +

Multiple Users +
Ability to Integrate +

External Material

Table 5.2: Comparison of Desktop and CAVE Implementations

Ability to Integrate External Material

As discussed previously, the CAVE gives the user a rich virtual environment to work
in, but it is difficult to interact with external material into that virtual environment.
The user can bring items into the CAVE but it may be difficult to see them. The
user of the desktop system has easy access to external information through the books
on their desk, their notes, their telephone, other computer programs, etc. If most
of the information that the investigator needs to work with is in the database (in
either numerical, textual, or graphical form) then the CAVE gives a much richer
environment to interact with that information. On the other hand if the investigator
needs access to a lot of external supplementary material, then the desktop version
gives the user more restricted access to the virtual environment without limiting their

access to the supplementary material.

5.10  Comparison of Usage Times

[ employed several user interface evaluation techniques (heuristic evaluation, cogni-
tive walkthroughs, and usability testing) [Mon84, IMWU91, Joh92] to determine the

effectiveness of this interface. The amount of testing I could do in the CAVE itself
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was limited due to its geographic distance away and its popularity as a research tool.
I was able to perform some testing in the CAVE itself, some testing of the desk-
top version of the CAVE, and some testing of the paradigm itself independent of its
implementation.

It the SANDBOX is truly a ‘natural” way of interacting with a scientific database
then users should be able to interact with the SANDBOX as quickly and easily as
they interact with objects in the real world.

To test this I ran several experiments using objects in the real world and virtual
objects in the CAVE and in the desktop version of the interface. The CAVE envi-
ronment has already been described. The desktop environment tested here made use
of a regular 2D monitor and standard mouse. That is, no head tracking, no Stereo-
Graphics glasses, and no 6D mouse. Thus this test was performed using ‘common’
workstation technology. A user working with the complete 3D desktop version should
perform better than with the version tested here.

For the ‘real world’ part of this experiment a portion of the database lab in the
WSU Department of Computer Science the size of the CAVE was cleared. A real
calendar was used as well as real objects to represent the various instruments. Plastic
cups were used for the beakers. The thermometers and wind-socks were constructed
from paper, wood and plastic. A desk covered with a blow-up of one of the satellite
photographs took the place of the 3D plane. See Figure 5.28.

The first experiment dealt with the time needed to perform the three basic actions

in the SANDBOX for the FIFE database, which are listed below:

e Placing an instrument at a site

e Choosing a date from the calendar



133

Figure 5.28: ‘Real World’ Instruments

o Adjusting the settings on an instrument

To test the time needed to place an instrument at a site, the user casually walked
5 feet to the instrument pallet, chose the beaker tool, walked back the same distance
and placed the beaker at a certain site. As there is no physical distance in the desktop
version, the desktop pointer was initially set to the center of the 3D plane.

To test the time needed to choose a date from the calendar, the user casually
walked 5 feet to the calendar, and selected the 15th of August. In the ‘real world’
test the user touched the date to select it. As there is no physical distance in the
desktop version, the desktop pointer was initially set to the center of the 3D plane.

To test the time needed to adjust the settings on an instrument, the user stood next
to a thermometer on the 3D plane. The user activated the menu for the thermometer
and increased its maximum temperature displayed by 10 degrees. In the ‘real world’
this test was not performed due to the nature of the virtual menus.

FFive feet was used as the test distance as the CAVE is a ten foot cube. This is the
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‘Real World’ CAVE Desktop™
(times in seconds) min ave max | min ave maxX | min ave Imax
Placing an Instrument | 3 4 6 6 7 7 13 15 22
Choosing a Date 2 2 3 3 3 4 6 9 13
Adjusting Settings - - - 5 8 11 11 16 26

Table 5.3: Comparison of ‘Real World’, Desktop, and CAVE

same distance the user would walk from the center of the CAVE to one of the walls.

Several users performed each of the tests. The results of the first experiment
are shown in Table 5.3. As expected the users of the ‘real world” version of the
interface performed the fastest. People have been performing these kinds of actions
all their lives. Users in the CAVE were slower, but much faster than the users of the
desktop version. Users perform very similar actions in the CAVE but have the extra
encumbrance of the LCD glasses and the wand. Users of the desktop version have
a much less direct and natural interface to the data leading to significantly longer

access times.

Users of all three versions of the interface improved their performance through
repeated use. The least improvement over time was seen with the ‘real world.” There
was moderate improvement over time with the CAVE and a large amount of improve-
ment in the desktop version. As people have been taking and placing objects all their
lives, there is little room for improvement. There is some room for improvement in
the CAVE as the users become accustomed to the glasses and the wand. The desktop
environment used here is very different from the ‘reality” of grabbing and placing ob-
jects so there is great room for improvement as the user becomes more familiar with

the controls.
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5.11  Comparison of SANDBOX and Traditional Access Methods

In this section I will use several examples to illustrate how the SANDBOX can be
a more effective data retrieval tool than traditional access methods. It is difficult to
do direct comparisons because traditional access methods are designed to retrieving
data for specific queries, where the SANDBOX is designed to provide an environment
were the user can browse through related data.

While traditional access methods (i.e. query languages) favor those who are fa-
miliar with the structure and content of the database, the SANDBOX favors those
who are familiar with the original experiments. Traditional access methods are ap-
propriate for those who know what data they want, where it is in the database and
how to retrieve it. They are appropriate for those who need to retrieve data based on
complicated combinations of information. The SANDBOX is appropriate for those
who are not sure what data they are interested in and need to browse through the
data to find appropriate data to retrieve. The SANDBOX is appropriate for those
who need to integrate graphical and meta-data with numeric and textual data.

The query language used in this section was SQL running on an Oracle database
on a Macintosh Quadra 700. This was compared against the ‘real world” environment
described previously. Users taking part in the SQL tests were familiar with data-
bases in general and with SQL, thus avoiding the training time that investigators less
familiar with databases would need to incur.

Users of both SQL and the ‘real world” interface were given a general introduction
to the experiment in general and an overview of the interface. They were told which
tables were important in the SQL interface and what their attributes meant, and how
instruments were placed and dates selected in the ‘real world.’

The SQL queries were performed twice. The first time, the user was unfamiliar
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with the database, being given only the information discussed above. The second

time took place several days later, to see how fast the user could repeat the query.
In the ‘real world” version of the SANDBOX test it was necessary for a person to

‘play computer.” That is, a person performed all those activities that the environment

manager would perform in the actual system.

5.11.1  Example 1: Visualizing Numeric Data

Let us assume an investigator is interested in knowing what directions the wind was
blowing on August 28th, 1987. With the existing interface the user must go through

the following sequence of actions:

1. Finds that the AMS_DATA 87 table contains the appropriate wind data

2. Finds the appropriate columns in the AMS DATA 87 table

DESCRIBE AMS_DATA_87;

3. Queries database for a list of all sites in the AMS_DATA_87 table on August

28th, 1987

SELECT UNIQUE STATION_ID
FROM AMS_DATA_87

WHERE OBS_DATE = ’28-AUG-87;

returning a list of 10 sites

4. Chooses site 3

5. Queries database to extract wind information from site 3 on August 28th, 1987

from the AMS_DATA _K7 table
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SELECT 0OBS_TIME, U_WIND, V_WIND, W_WIND
FROM AMS_DATA_87

WHERE 0BS_DATE

?28-AUG-87"

AND STATION_ID

3

ORDER BY O0BS_TIME ASC;

With the SANDBOX the user goes through the following sequence of actions:
1. Clicks on August 28th from the calendar

2. Grabs wind-sock instrument. All of the sites where wind measurements were

taken are displayed
3. Places wind-sock at one of the sites

Looking at the resulting file, the user of the query language will find information
in the form of x, y, and z components of the wind speed (e.g. 1.23, 4.27, 0.85.) The
user must now compute the actual wind direction from these values.

Placing a wind-sock at site 3, the user of the SANDBOX would immediately see
the direction that the wind was blowing and how that direction changes throughout
the day.

User testing showed users familiar with SQL took an average of 5 minutes to get
their results the first time, and 2 minutes the second time. Novice ‘real world” users

took only 26 seconds on average.

5.11.2  Example 2: Integrating Numeric Data and the Environment

Let us assume an investigator is interested in measuring rainfall at the highest point
on August 4th, 1987. With the existing interface the user must go through the

following sequence of actions:
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1. Finds that the AMS _DATA 87 table contains the appropriate rainfall data

2. Finds the appropriate columns in the AMS DATA 87 table

DESCRIBE AMS_DATA_87;

3. Queries database for a list of all sites in the AMS_DATA_87 table on August

Ath, 1987

SELECT UNIQUE STATION_ID
FROM AMS_DATA_87

WHERE OBS_DATE = ’4-AUG-87’;

returning a list of 10 sites

4. Finds that the FIFE_SITE_REF table relates site numbers to elevations

5. Finds the appropriate columns in the FIFE SITE_REF table

DESCRIBE FIFE_SITE_REF;

6. Queries database to find elevations of all the sites in the AMS_DATA 87 table

SELECT STATION_ID, ELEVATION
FROM FIFE_SITE_REF
WHERE STATION_ID IN
(SELECT UNIQUE STATION_ID
FROM AMS_DATA_87
WHERE OBS_DATE = ’4-AUG-87’)

ORDER BY ELEVATION DESC;
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7. Chooses site 11

8. Queries database to extract rainfall information from site 11 on August 16th,

1987 from the AMS_DATA _K7 table

SELECT 0BS_TIME, ACCUM_RAINFALL

FROM AMS_DATA_87

WHERE 0BS_DATE ’4-AUG-8T’

AND STATION_ID

11

ORDER BY O0BS_TIME ASC;

With the SANDBOX the user goes through the following sequence of actions:

1. Clicks on August 4th from the calendar

2. Grabs beaker instrument. All of the sites where rainfall measurements were

taken are displayed

3. Looks at the 3D plane to see where the highest site is

4. Places beaker at the highest site

The SANDBOX allows the user to deal with familiar instruments such as beakers
and familiar concepts such as elevation as opposed to artificial concepts such as tables
and site IDs.

User testing showed users familiar with SQL took an average of 16 minutes to get
their results the first time, and 7 minutes the second time. Novice ‘real world” users

took only 18 seconds on average.
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5.11.3  Example 3: Integrating Numeric and Graphical Data

Let us assume an investigator is interested in comparing ground temperatures to
the infra-red LANDSAT photograph on August 16th, 1987 to see how they correlate.

With the existing interface the user must go through the following sequence of actions:

1. Finds that the AMS _DATA 87 table contains the appropriate temperature data

2. Finds the appropriate columns in the AMS DATA 87 table

DESCRIBE AMS_DATA_87;

3. Queries database for a list of all sites in the AMS_DATA_87 table on August

16th, 1987

SELECT UNIQUE STATION_ID
FROM AMS_DATA_87

WHERE OBS_DATE = ’16-AUG-87;

returning a list of 10 sites

4. Finds that the FIFE_SITE_REF table relates site numbers to site locations

5. Finds the appropriate columns in the FIFE SITE_REF table

DESCRIBE FIFE_SITE_REF;

6. Queries database to find site locations of all the sites in the AMS DATA 87

table

SELECT STATION_ID, LATITUDE, LONGITUDE

FROM FIFE_SITE_REF
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WHERE STATION_ID IN
(SELECT UNIQUE STATION_ID FROM AMS_DATA_87

WHERE OBS_DATE = ’16-AUG-87’);

7. Finds the IR LANDSAT photo for August 1987

8. Finds the site locations on the IR, LANDSAT photo

9. Chooses sites 3, 7, 25, and 29

10. Queries database to extract temperature information from the chosen sites on

August 16th, 1987 from the AMS_DATA 87 table

SELECT STATION_ID, OBS_TIME, DRY_BULB_TEMP
FROM AMS_DATA_87

WHERE OBS_DATE = ’16-AUG-87’

AND STATION_ID IN (3, 7, 25, 29)

ORDER BY O0BS_TIME ASC;

With the SANDBOX the user goes through the following sequence of actions:

1. Clicks on August 16th from the calendar

2. Grabs satellite instrument and places it in the sky

3. Clicks on satellite to activate its menu and selects the IR band. The 3D plane

now displays the landscape as seen in infra-red

4. Grabs thermometer instrument. All of the sites where temperature measure-

ments were taken are displayed

5. Places thermometer at appropriate sites
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Looking at the resulting file, the user of the query language will find that site 7
was out of action for most of the day and sites 25 and 29 never gave any results at
all on the 16th of August. Only the measurements from site 3 are valid. The user
must now go through the same sequence of actions again to re-query the database for
information from other sites.

Placing thermometers at sites 7, 25, and 29, the user of the SANDBOX would
immediately see that those instruments were not giving any feedback. The user
could then move those thermometers to other nearby sites where the instruments
give feedback. The SANDBOX allows the user to easily browse through the data

itself, not just the structure that has been imposed on the data.

5.11.4  Example 4: Integrating Meta-Data and the Environment

Let us assume an investigator is interested in seeing which sites were on grassy planes.

With the existing interface the user must go through the following sequence of actions:

1. Finds the site photographs

2. Converts photographs to viewable form

3. Chooses sites whose photographs show grassy planes

4. Queries database to find elevation of those sites and the surrounding sites (as

photographs do not show full 360 degrees)

SELECT STATION_ID, LONGITUDE, LATITUDE, ELEVATION
FROM FIFE_SITE_REF

ORDER BY STATION_ID DESC;
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5. Plots the locations and elevations of the chosen sites and surrounding sites to

see which are indeed on flat grassy planes.
With the SANDBOX the user goes through the following sequence of actions:

1. Clicks on the camera instrument. All sites where site photographs were taken

are displayed
2. Looks at the 3D plane to see which sites are on flat planes
3. Places camera at flat plane sites

4. Looks at displayed photographs to see which of those sites were grassy

5.11.5 User Comments

Users of the SQL interface were frequently frustrated by that interface. They needed
scrap paper to remember table names and attribute names, and even then mistyped
names and commands were common. They were constantly scrolling back through
their previous queries to see what they had done already, and trying to get an overview
of the data they were dealing with. Mistakes often meant screenfulls of useless data
scrolling by or terse error massages. The interface was described as ‘annoying.’

The users felt their primary problem was that they did not know the overall
structure of the database. The felt the secondary problem was that they were familiar
with SQL but not everyday users. Finally, there was the problem of typing (and
frequently mistyping) in the queries themselves.

It should be noted that these tests were performed with only 2 of the 106 tables in
the FIFE database, and only with the appropriate columns, and only with the data
for a single month. In these tests the users were given a very good idea of where the

data was, their job was only to retrieve it.
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On the other hand, the ‘real world” version of the SANDBOX paradigm seemed
very natural to the users and they were able to retrieve the necessary data much
quicker, and easier.

The earlier experiments indicated that users performed actions in the ‘real world’
faster than they performed them in the CAVE and in turn faster than they performed
them in the non-3D desktop version. While I was unable to attempt these experiments
in the CAVE itself, a couple users did try them in the non-3D desktop version of the
previous experiments. The first query took users 26 seconds on average in the ‘real
world” and 53 seconds in the non-3D desktop version. The second query took users 18
seconds in the ‘real world” and 29 seconds in the non-3D desktop version. The CAVE
and 3D desktop version should fall between the ‘real world” and non-3D desktop

values.

5.11.6  Cognitive Load

Data retrieval is only one aspect of the scientific analysis process [Mar84, SBM92].
The SANDBOX integrates data retrieval with some visualization ability and rep-
resents them using familiar metaphors, reducing cognitive load and enhancing the
scientific analysis process.

Investigators using the traditional interface must first take their understanding of
the experiments and convert it into an understanding of the database schema. As
the schema is designed to facilitate efficient storage of information it may be very
unrelated to the way users naturally think of the data. Then the investigators need
to learn the query language to retrieve the data they require. Then, once they have
the required data, they need to visualize that data in a way that is meaningful to

them.
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Investigators using the SANDBOX have several advantages. The database schema
is hidden from the user, while still giving the user access to all the data. They deal
with familiar concepts and instruments in a more natural environment. They can

perform visualization while retrieving data.

5.12 Reaction

While testing the SANDBOX in the CAVE I received a lot of feedback from the users.

5.12.1 Reaction to the SANDBOX in the CAVE

My initial testing in the CAVE suggests that users find this paradigm to be very
natural. Picking up and placing instruments appears to be very easy and intuitive.
I’ve observed users bending down to place their instruments onto the 3D plane, even
when they can just stand over the site and push the button on the wand. The
environment and the instruments are realistic enough that the users are treating
them as real objects.

Unfortunately this ‘realism’ can be physically tiring. Users must walk over to the
instrument pallet to choose instruments, must walk over to the calendar to choose
dates. This interface currently uses a limited form of raycasting, allowing the user
to select a site by positioning the wand over the site, not forcing the user to actually
place the instrument on the virtual 3D plane. Implementing raycasting to a greater
extent, allowing the user to choose or instruments or dates from anywhere in the
CAVE should further reduce this fatigue.

The wand may also not be the appropriate tool for the SANDBOX in the CAVE.
Since the user is pointing at dates on the calendar, or carrying instruments off of the

instrument pallet, the user’s hand itself may be more appropriate. The CAVE also
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has a modified driving glove that can be used instead of the wand. This seems to
give the user an even greater feeling of direct manipulation as now there is nothing
between the user’s actual hand and the virtual instrument they are carrying, or the

menu they are activating.

Currently when the user is carrying a virtual instrument, the instrument is placed
at the location of the physical wand. This can cause a couple of problems. First
the wand itself visually occludes the walls so the entire virtual instrument can not
be seen. Second, the focal point for all objects in the CAVE is at the walls. If the
user is focusing on the virtual instrument then the wand is out of focus; if the user
is focusing on the wand then the virtual instrument is no longer 3D. Future versions
of the SANDBOX should move the location of the virtual instrument slightly away
from the physical wand to avoid both the problem of occlusion and focus. This would

be slightly less ‘realistic’, but more effective.

Some users have found the calendar and instrument pallet to be uncomfortably
high. These currently extend from four to six feet off the ground. As discussed in
Section 5.5, [ allow the user to change the height of the 3D plane - initially positioned
three feet above the floor. In future versions I will allow the user to change the height
of the entire environment to make it more accessible and comfortable for users of
different heights. In general, this suggests that the virtual environment should be

more flexible.

Originally I positioned the calendar, graph, and instrument pallet just inside their
respective physical walls. This gave the users a visual boundary to the environment so
they would not accidentally walk into the CAVE walls. Unfortunately, the tracker’s
accuracy drops off near the walls forcing us to move all three of them one foot into

the CAVE. This reduces the user’s effective physical work area to 8 by 8 by 8 feet.
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As the accuracy of the tracker improves the user’s work space will increase.

Sound appears to be very useful in small doses (especially the water droplet when
the rain is falling), but becomes overwhelming when overused. This is especially
true when multiple cicadas are making noise. Since the temperature is usually quite
constant across the 3D plane, one alternative may be to average the readings of all
active thermometers. One cicada would then announce this average value. In general,

this may be the most appropriate way to deal with continuous sounds.

5.12.2 Reaction to the FIFE Implementation

Several users, upon first entering the CAVE asked “Is this the moon?” The greyscale
satellite photographs do not give the user the impression that they are in Kansas.
This suggests that other images should be available for the 3D plane such as a colour
picture from an atlas, or a local roadmap. These would give the user’s a more familiar
landscape to deal with. Even the existing satellite photographs might be enhanced
using false colour. In general, this suggests that there is a greater need for supple-
mentary environmental information in the SANDBOX.

There is also a need for some reference material beyond the information mapped
onto the plane. There is currently no legend to tell the user what black or white
represents on the satellite photograph. The user should be able to bring up more
supplementary information on the graphics.

Even with additional graphical environmental information it would also be in-
formative to place that environment in a larger context. In this case the user is
standing in the middle of a 20km square block of Kansas, but where in Kansas? This
contextual information could be supplied in several ways. When the SANDBOX for

the FIFE data is started it could position the user in orbit above the site with the
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Unites States outlined. It could then zoom the user into Kansas and finally into the

experiment site.

A couple users have objected to the moon orbiting the 3D plane opposite the sun,
as the Earth’s moon does not do this. They did like the idea of the sun orbiting
the 3D plane, and the ability to alter the behavior of time using the sun, but they
felt that the behavior of the moon was not realistic. Removing the moon would only
allow the user to change the behavior of time when the sun is above the 3D plane,
which seems to be an unreasonable limitation. An alternative may be to use the same
direct manipulation technique on the hands of a virtual analogue clock. The rotating

hands of the clock would then serve the same function as the rotating sun and moon.

The sun rising in the east each morning is enough information to tell a user where
north, south, east, and west are. However several users did have to think before being
able to say which way was north. This suggests that a compass should be part of
the virtual environment. This could simply be the letters ‘N’ ’S’, "E’. "W’ floating
at the appropriate sides of the 3D plane, or a much more elaborate overlay of the
plane showing not only the compass directions but latitude and longitude values (or

northing and easting values if the user prefers.)

The coloured lines on the graph make it easy to distinguish between the lines for
the various instruments (thermometers in red, water beakers in blue, wind-socks in
yellow.) However when two or more instruments of the same type are placed on the
3D plane there are multiple lines of the same colour, making it very difficult to see
which line belongs to which instrument. Currently the user has the ability to turn
the graph lines on or off for each instrument individually, but the user may need
to see the values of several instruments of the same type over time. This suggests

that the each of the lines and their associated instruments should be labeled to avoid
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confusion. Each line could be given a number or letter that could also then be placed,

floating, alongside the proper instrument.

5.13 Conclusions

In this chapter I have described an implementation of the general design of the SAND-
BOX using the CAVE virtual reality theatre. I have shown how the user interacts
with the virtual reality interface: placing instruments, choosing times, viewing data
(numeric, graphical, meta-data), and extracting data. 1 have described a desktop
version of this interface and discussed how it compares to the CAVE implementation.
I have shown some initial reaction and the results of tests on the usefulness of this

interface

5.14 Enhancements

While the SANDBOX makes interacting with a database more natural, there are
still problems of information overhead to deal with. In the current implementation
it would be very tiresome and repetitive to place many instruments at many sites,
or to choose many days from the calendar. Clustering can be an effective means of

reducing this burden.

5.14.1 Clustering Instruments

In the actual experiment scientists could place clusters of instruments simultaneously
(e.g. a thermometer and a water beaker and a wind-sock.) Future versions of the
SANDBOX should have this ability as well. The user should have the ability to
combing existing instruments into instrument packages. These packages would then

be available on the instrument pallet like any other instrument. Each of the individual
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instruments would function independently but they could be placed and removed as
a single package.

In a large scientific database there would be many possible instruments, far too
many to display conveniently on a single instrument pallet. An investigator doesn’t
take all their instruments with them when they go into the field, they only take those
instruments that are necessary for the task at hand and leave the others behind. A
second, much larger instrument pallet would be needed to hold all of the possible
instruments. The user would be able to activate this pallet, scroll through it to the
appropriate instruments, and then carry instruments from it over to the smaller pallet.
This pallet could also contain additional meta-information about the instruments
themselves.

Currently the user must adjust the settings on each instrument independently
(their minimum and maximum values, whether they make sound, etc.) Future ver-
sions of the SANDBOX should allow to make changes to the instrument on the
instrument pallet which would affect all future copies of that instrument pulled off of

the instrument pallet.

5.14.2  Clustering Sites and Times

Being able to select multiple sites and times simultaneously would also be useful. How
this would be done would depend heavily on the specific implementation of space and
time in the virtual environment.

Giving the user a specific marking instrument, such as a small flag, would help
the user remember sites. As in the field, the user might want to survey the landscape
before placing any actual instruments. The user could place the marker instrument

at likely looking sites and then come back later to place the instruments. These flags
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could have different colours for different topics. This way the SANDBOX remembers

the sites for the user.

5.14.3 Initial Setup

Clearly the users would want the ability to save off their current virtual environment
to come back to it later. We can also use this information to help first time users of
the SANDBOX. As with the clustering that was described in Chapter 3, we can use
the usage patterns of previous users to help new users.

The clustering algorithms of Chapter 3 clustered based on the tables accessed.
When instruments are placed into the environment their definitions are converted
into queries based on tables. By keeping track of these tables, they can be converted
back into likely instruments.

When a user begins to use the SANDBOX they could choose from an pre-existing
setup. This set up could include which instruments are automatically placed on
the instrument pallet and their initial settings, what times are selected, or what

instruments are already placed into the environment.



Chapter 6

Conclusions and Future Directions

In this chapter I will discuss my conclusions for the work overall and my plans for

future work in these areas.

6.1 Conclusions

In this dissertation I have investigated two ways of improving access to scientific da-
tabases: clustering the tables of the database based on individual usage patterns, and
using virtual reality to allow the user to access the scientific database by recreating
the original experiments. Both methods allow the user to bypass the current struc-
turing of the data. The adaptive clustering allows the user to bypass the structuring
of the tables and deal with the concepts they are involved in. The SANDBOX allows
the user to bypass the structure of the data completely and interact with the data

directly.

6.2 Future Directions for Clustering

The clustering can be enhanced in several ways:

1. Clustering based on on attributes as well as tables,

2. Adapting the information collection to other database models (e.g. object-

oriented),

3. Naming the clusters.

152



153

6.2.1 Clustering Based on Attributes

Currently the clustering treats a table as the smallest unit of information. This could
be extended to the attribute level. Information is being collected not only on the
tables accessed but on the attributes that being displayed, and the attributes used to
join the tables together. This information could be used to cluster the attributes of
the tables as well as the tables themselves. The user could then see which tables are
appropriate to there area of interest and be able to look below the table level to the

attribute level to see which attributes of those tables may be appropriate.

6.2.2 Adapting the Information Collection

The clustering is performed based on the lists created by the information collection
process. Currently this process parses SQL queries. This can be extended to deal
with query languages in other types of databases without affecting the clustering

algorithms.

6.2.3 Naming the Clusters

Currently the clusters are identified by the tables they contain. It would be useful to
be able to name these clusters to describe the concept that each cluster represents.
This would require more data than the list names that are currently available. This
could involve creating a list of keywords for each table in the database, or the user

supplying keywords before beginning their queries.

6.3 Future Directions for the SANDBOX

The SANDBOX can be enhanced in several ways:

1. Increasing the visualization capabilities,
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2. Allowing multiple investigators using CAVEs at geographically distant sites to

cooperate on setting up a virtual experiment,

3. Decreasing the data retrieval time from the database using various access meth-

ods

4. Allowing the user to make annotations.

5. Creating a graphical toolkit to interface the SANDBOX to existing databases.

6.3.1 Visualization

Virtual reality is already being used to visualize information once it has been removed
from scientific databases. The SANDBOX allows an investigator to employ virtual
reality to retrieve data from a scientific database. Combining these, and giving the
SANDBOX more features of a visualization system would give the user a total envi-
ronment in which to do their work. These visualization features range from enhancing
the graphing capabilities of the system to integrating existing visualization packages.

Currently the graph wall is limited to colour coded line charts for the various
instruments placed in the virtual environment. Different types of charts (bar charts,
pie charts, etc.) and multiple charts could be allowed. A better system of labeling
the charts should also be used so that multiple instances of the same instrument can
be differentiated on the chart wall.

One way to increase the visualization capabilities of the SANDBOX is to allow
the interpolation of sites and times. In the current implementation the value for
each instrument is the data value with the nearest time. The SANDBOX could
be set to interpolate the data values from the set of nearest times. In our current

implementation the user can only place a virtual instrument at any or all of those sites
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where a real instrument was placed during the actual experiment. The SANDBOX
could allow the user to place the instrument anywhere and interpolate the values
at that site from the values at the actual sites stored in the database. This added
visualization capability would need to be carefully controlled so the user knows what

data is real and what data is interpolated.

6.3.2 Cooperation

Investigators from many geographically distant sites came together to cooperate on
setting up the actual experiments. The SANDBOX could similarly allow investigators
to come together to set up large virtual experiments. This could involve some users
with desktop systems and others with CAVEs. Users at different sites could place
instruments in their own virtual environments and have them appear in all of the
other virtual environments.

This would also require giving the users a way to communicate with each other.
This could be done through a common ‘blackboard’” within the virtual environment,
or through external communication channels (e.g. a cellular phone that the user

brings into the CAVE or sits on their desk.)

6.3.3 Decreasing Data Access Times

Current databases are not well suited to supporting virtual reality applications. VR
systems require very fast data access but little or no transaction management or
updates to the database. Access time could be decreased through traditional query
optimization techniques, through precompiled views for common groups of data, or
through more exotic large data storage structures (i.e. persistent object stores) which

stress retrieval speed. Decreasing the data access time would be especially important
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if each user did not have all of the data stored locally, but had to access it across a

network from a remote site.

6.3.4 Annotations

The SANDBOX currently is designed to integrate the existing meta-information. This
could be expanded to allow a user to add meta-information to the database, lists of
sites, graphical visualizations, recorded messages, etc. This would give each user a
more flexible environment to work in, and a way to pass along their findings to other

users.

6.3.5 Graphical Toolkit

The SANDBOX gives the user an intuitive environment to retrieve data from a sci-
entific database. In order to use this interface a designer must first create the virtual
environment and link it to an existing database. Creating a graphical toolkit to help
the designer do this will make it easier to adapt the SANDBOX to various data-
bases. This toolkit would allow the user to choose the appropriate functions for each

instrument and link them to the database in a direct graphical manner.



Appendix A

3D Ilustrations

This appendix contains three stereo pictures from the SANDBOX. It is very difficult
to get a true feeling for 3D environments using only 2D paper. These illustrations
give you an opportunity to see how the environment looks in 3D. The first set of
pictures shows the instrument pallet. The second set show the 3D plane. The third
set shows the great lakes states population information.

The following stereoscopic pairs are arranged to be viewed by crossing your eyes.
Your right eye should look at the picture on the left and your left eye should look at
the picture on the right.

The easiest way to do this is to place the pictures on a table in front of you. Place
your index finger between the two pictures and slowly move your finger towards your
face. Focus your eyes on the finger. The two images will break into four and the
middle two will merge together. When the middle two images have merged into one
blurry image you are almost there. The trick then is to refocus your eyes on the

middle 3D image.
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Figure A.1: 3D Image of the Instrument Pallet
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Figure A.2: 3D Image of the 3D Plane



160

Figure A.3: 3D Image of the Great Lake State Populations
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Scientific databases contain very large amounts of data accessed by investigators
from many disciplines. Much of the data that is stored in scientific databases is
collected through experimentation. I propose a new interface to scientific databases:
the SANDBOX: Scientists Accessing Necessary Data Based On eXperimentation. The
SANDBOX is a virtual reality tool which allows an investigator to recreate the original
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database using the CAVE virtual reality theatre.
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