Adaptive Clustering of Scientific Data

Andrew Johnson, Farshad Fotouhi and Narendra Goel

Wayne State University
Department of Computer Science, Detroit, MI 48202, U.S.A.

ABSTRACT: Scientific databases contain large amounts
of interrelated information. This information is often stored
in relational databases with hundreds of tables and thou-
sands of rows per table. Clustering is an effective way to
reduce the information-overhead associated with finding in-
formation among these tables, allowing the user to browse
through the clusters as well as the individual tables. In this
paper, we compare the use of two adaptive algorithms (ge-
netic algorithms, and neural networks) in clustering the ta-
bles of a scientific database. These clusters allow the user to
index into this overwhelming number of tables and find the
needed information quickly. We cluster the tables based on
the user’s queries and not on the content of the tables, thus
the clustering reflects the unique relationships each user sees
among the tables. The original database remains untouched,
however each user will now have a personalized index into
this database.

1 Introduction

Relational databases are designed to deal with limited ranges
of data on specific topics. The form of the data i1s known
ahead of time and the database tables and their relationships
are clearly defined before the data is entered. Scientific da-
tabases [9] contain a much larger amount of data on many
different, but related topics. The form of the data is not
known ahead of time as the data is collected by investiga-
tors from a wide range of disciplines. Scientific data is often
stored using relational databases. This huge amount of in-
terrelated data is then forced into the rigid table structure
of a relational database which can not adequately model the
necessary relationships [7].

Scientific databases are accessed by users from a wide
range of disciplines; mostly unfamiliar with databases and
their associated query languages. These users need to search
for specific pieces of data quickly, and browse through re-
lated information to see if it is of value to them. They need
to relate information from different tables in the database.

When an interface to a scientific database is designed,
its creator can either impose no structure on the database -
there is just a large pool of tables; or impose a generic struc-
ture on the database - a hierarchical menu system allowing
the user to move through an ordering of the tables.

Much of the difficulty in accessing data in scientific da-
tabases comes from the enormous amount of data that is
involved; but the organization of this data is also a major
problem [2]. Users from various scientific communities see

User 2's
Index

User 1's
Index

4%47

Scientific Database

Figure 1: Hierarchical Index into the Scientific Database

different relationships between sets of data. Certain infor-
mation is important to certain investigators and certain in-
formation is not. Typically a generic interface is provided to
the data. This gives researchers from all backgrounds a way
to access the data, but each of the researchers must conform
to this generic structuring of the data.

Instead of forcing the users to conform to the structure
of the database, we can mold the structure of the database
to the needs of the individual users and thereby reduce their
confusion when interacting with the database. Our solution
is to cluster the tables of a scientific database based on the
user’s queries. The user of the database needs the benefits
of clustering so we should involve the user in the clustering
process. The content of the tables is irrelevant, only the
fact that the user sees a relationship between the tables is
important. This flexibility will be increasingly important
as the size, breadth, and accessibility of scientific databases
increases.

Toannidis, et all [5] developed a graphical interface for
the management of scientific experiments and data using
the Object-Oriented data model MOOSE. The system makes
large schemas more manageable by allowing the user to hide
parts of the schema, collapse sections of the schema into
nodes, use reference nodes to eliminate long arcs. This ap-
proach has several shortcomings: The users may not know
what data is available, and may not know enough about the
domain to make appropriate choices. It give users a variety
of choices without sufficient descriptive material to make
that choice.

We collect data on the user’s queries. This information
is then given to a genetic algorithm or to a neural network
which partitions the tables of the scientific database into
a hierarchy of clusters. The genetic algorithm and neural

network generate very good clusterings much faster than a
deterministic exhaustive search algorithm. FEach user now
has the choice of browsing through the existing generic in-
terface, or using a hierarchy of clusters as an index to move
quickly to the appropriate tables in the database. The origi-
nal scientific database remains untouched, however each user
now has a personal index into this document. See Figure 1.

As new users begin to work with this database, they
can choose from the existing clusterings. A new user can
choose to look at the database from a biologist’s point of
view, or a climatologist’s point of view. This gives each user
a starting point nearer their own needs than the generic
interface. Experienced users will also be able to access their
data faster and more conveniently because the database will
adapt to them.

Section 2 discusses how we collect information from the
user. Section 3 discusses clustering in scientific databases.
Sections 4 and 5 respectively discuss how we use a genetic
algorithm and neural network to create the hierarchy of clus-
ters. Section 6 discusses our implementation of both clus-
tering methods. Section 7 discusses uses for this clustering.
Finally, Section 8 gives our conclusions and plans for future
work.

2 Information Collection

Users retrieve data from a relational database using a query
language such as SQL. We monitor the user’s queries, and
store information about the tables accessed in a list.

Each line of the list contains information on a single ta-
ble in the database. This line lists all of the columns that
have been displayed for that table, and all the columns that
have been used to connect this table to other tables in the
database. The format of each line of the list is shown below:

table; : {selectCol;, }*:{joinCol;-joinCol;@table; , }*.

where:
e table; 1s the table we are interested in.

o selectCol;s are the columns in table; that have been
selected.

e joinCol;s are the columns in table; that have been
joined with columns joinColumn; of table table;

Three small sample SQL queries are converted into their
list form as shown in Figure 2.

When a user begins to search for information in the da-
tabase they either choose to work with an existing list or
create a new empty list. The user can give this new empty
list an appropriate name. As the user works with the data-
base, the list keeps track of the tables and columns the user
1s accessing through their queries.

The mechanism for creating the query (straight query
commands, a graphical query language, etc.) is unimpor-
tant. Eventually the query in the form of tables and columns
is given to the database and this query updates the listing.

Query 1 List 1

SELECT A.¢, B.x, C.e | A:¢, a-fAQB a-y@l,.
FROM A4, B, C B:x, P-a@A,.
WHERE A.ao = B.§ C'e, y-a@A

AND A.a = Cy;

Query 2 List 2

SELECT C'.p, Cw, DA | Cip,w, :p-c@D,.

FROM C, D DA :o-p@d,.
WHERE C'.p = D.o;

Query 3 List 3

SELECT A.« A, :6-pAB,.

FROM A4, B, C B: B-6@A, G-p@(.
WHERE A.6 = B.j3 C: p-pAB,.

AND B.g = C.p;

Figure 2: Converting Queries into Lists

A user can create one list for all of their queries, or create
multiple lists where each concept the user is interested in 1s
given its own list. The lists can be unioned together. A user
can keep their lists private or share them with other users
of the scientific database. A list can therefore be one of a
user’s lists, the union of a user’s lists, the union of a group’s
lists, the union of a site’s lists, or the union of all the lists
available on the system.

We have used a similar technique to collect information
on a user’s browsing through a hypertext [10] document to
cluster the nodes based on the user’s usage patterns [6].
The scientific database user, like a hypertext user, is faced
with an overwhelming amount of interrelated information
presented in a generic way. Clustering allows us to add a
personal interface layer on top of the generic interface re-
ducing information overhead and speeding up access to the
underlying data.

3 Clustering

As scientific databases grow larger it becomes more and more
important to cluster their tables. Clustering reduces infor-
mation overhead. Tt allows for higher level concepts (groups
of tables), allows for the breaking of a single large scientific
database into appropriate modules, allows for views over the
database, and allows the user to make changes at the cluster
level without affecting the scientific database itself. Cluster-
ing has been found to be a very effective means of reduc-
ing information overhead in other large information systems
with related components such as hypertext systems [1, 4].
By monitoring the user’s progress through the database
we can cluster the scientific database based on the connec-
tions the user makes between the tables. Those tables that
the user has found important are made more visible, and
more easily accessible. In commonly used databases this
will give the user quick access to important blocks of infor-
mation, and several starting points for starting new searches.

List 1 List 2 List 3 | Neighbouring
Table | Percent Percent Percent Tables
A 50 0 50 BC
B 50 0 50 AC
C 33 33 33 ABD
D 0 100 0 C

Figure 3: Converted Inputs to the Clustering Algorithms

The clusters can be shared between users. This gives new
users a choice of several ways to view an unfamiliar data-
base, and gives regular users a way to see the database from
different perspectives.

We use a genetic algorithm, and a neural network to de-
lineate the clusters. Finding the optimal clustering of the
tables is equivalent to checking every partition of the set of
tables. This is an exponential problem so 1t is too costly to
find the optimal clustering for a database with more than
a few tables. Using an adaptive algorithm such as genetic
algorithms or neural networks we can find a very good clus-
tering within a reasonable amount of time.

The lists that have been created by the information gath-
ering process described in Section 2 are used to cluster the
tables of the scientific database. The number of times each
table 1s used in each list, divided by the total over all the
lists 1s used to generate usage percentages. For each table,
every joined table in each of the lists is added onto the roster
of neighbouring tables.

The converted versions of the lists created in Figure 2
are shown in Figure 3. Since Table A was used once in List
1, and once in List 3, Lists 1 and 3 have usage percentages
of 50% while List 2 has a usage percentage of 0%. Table A
was joined with tables B and C in the queries so tables B,
and C are neighbours of table A. The usage percentages and
the neighbour roster are used to cluster the tables.

4 Genetic Algorithm Clustering

Genetic algorithms accept their input coded as a finite length
string (or chromosome) over a finite alphabet. Fach of the
elements in the string is a gene, and each gene has an allele
value (one of the values from the finite alphabet.) Several
of these chromosomes form a population.

The population changes from one generation to the next
through reproduction, crossover, and mutation. The number
of chromosomes in each iteration remains constant, but their
fitness should generally improve. The more fit a chromosome
is, the more likely it is to reproduce and survive until the
next generation. The fitness of a chromosome is determined
by a payoff function which depends on the allele values of
each chromosome.

Each of the chromosomes in the population is initially
given random allele values. The more fit chromosomes of
the previous generation reproduce to produce the chromo-
somes of the next generation. Sometimes when two chro-
mosomes reproduce, they crossover. When chromosomes A

and B crossover to form chromosomes C and D, a random
crossover percentage is generated. That percentage of chro-
mosome A’s genes are copied into identical positions in C.
The remaining genes in chromosome A are copied into D.
Genes from chromosome B fill in the remaining positions
in C and D. The result of the crossover may be a more fit
chromosome, or a less fit chromosome.

Crossover only mixes existing allele values at each gene.
Mutation causes random changes in the allele values, al-
lowing for more (uncontrolled) variation. The result of the
mutation may be a more fit chromosome, or a less fit chro-
mosome. For a more thorough introduction to genetic algo-
rithms see [3].

In our approach, each chromosome represents a set of
clusters; each gene represents a table in the scientific data-
base; each allele value represents a cluster. Genes with the
same allele value are in the same cluster. Each table is a
member of at most one cluster, and the number of clusters
varies from 1 to n where n is the total number of tables being
clustered. Each table can form its own unique cluster in the
chromosome, if necessary.

The payoff function is composed of two separate par-
tial payoff functions: weight similarity, and neighbourlyness.
Each partial payoff function’s values range from 0.0 to 10.0.

Weight similarity, computed by Equation 1, promotes
clusters containing tables with similar weight percentages,
indicating similar usage patterns. For every cluster, the dif-
ference between each table percentage and the average per-
centage of the cluster is computed and scaled into the range
0 to 10. The closer the percentages are, the smaller this ratio
will be, and the larger the overall payoff will be. Weight simi-
larity pushes the genetic algorithm to create smaller clusters.

> vabies 2 ises | table% — aveCluster% |
7t of tables

10 x (1 — min(1))

(1)
Neighbourlyness, computed by Equation 2, promotes clus-
ters containing neighbouring tables. The roster of neigh-
bours shows which tables have been joined. For each pair of
tables that are connected by a join, at least one user must
feel these two tables are related because that user joined
them. FEach connection in the input lists either connects
two tables in the same cluster, or two tables in different
clusters. Neighbourlyness sums up the number of connec-
tions between tables in the same cluster and divides the total
by the total number of tables in the lists. Neighbourlyness
pushes the genetic algorithm to create bigger clusters.

> ctusters 7 0f joins between tables in cluster

7 of joins

Neighbourlyness tries to bring all the connected tables
together. Weight similarity tries to isolate tables with simi-
lar usage patterns. Together, this pulling together and push-
ing apart generates the clusters. Equation 3 shows how the
two partial payoff functions are combined.

10 x

payoff = neighbourlyness x weight Similarity® (3)

This results in an overall payoff function value that ranges
from 0 to 1000.

Each table is initially put into its own cluster. This
generates better clusters than randomly generating initial
clusters. The genetic algorithm is started. After each new
generation is created the most fit chromosome of the previ-
ous generation replaces the least fit chromosome of the new
generation. This preserves the best set of clusters from one
generation to the next. The genetic algorithm stops when
the value of the most fit chromosome remains constant, or
the number of generations reaches a set maximum value.

If there is more than one resulting cluster, these clusters
are given back to the genetic algorithm. The weight per-
centages, and neighbours of the components of each cluster
are used to generate the weight percentage, and neighbours
for the cluster. Each cluster is now treated like a table. The
clusters are clustered forming a hierarchy until one global
cluster remains.

5 Neural Network Clustering

A neural network is a distributed network of small process-
ing elements. This large number of simple processing units
is connected together forming a miniature version of the hu-
man brain. Neural networks have had a good deal of success
in pattern recognition and learning by example.

We are using a self organizing feature map, a neural net-
work developed by Teuvo Kohonen [8]. A self organizing fea-
ture map is a two dimensional array of processing elements.
Each element contains a weight vector. The input to the
self organizing feature map is a set of weight vectors. The
self organizing feature map forms itself into a topological
ordering of the input data through unsupervised learning.

The weight vector W;; of each element of the N by N
array 1s initialized with random values. An input vector I
is chosen at random. The neuron whose weight vector W;;
is closest to I is found (min | W;; — I |). This neuron
and all the neurons within a certain neighbourhood (N, by
N.) of this neuron have their weights adjusted, bringing the
weights closer to I. Random inputs are repeatedly provided
while the amount of adjustment (&), and the neighbourhood
shrink in a form of simulated annealing. The amount of
adjustment and the size of the neighbourhood eventually
become negligible and the learning ceases.

When the learning stops, the network has organized the
inputs into a two dimensional array. For each input there
is one processing element with the closest matching weight
vector. Labeling each neuron with the table that it matches
most closely gives the topological ordering of the inputs. For
a more thorough introduction to neural networks see [11].

In our clustering algorithm the weight vectors contain
the usage percentages for the various usage lists being used
to cluster the database. If there are k lists involved in the

Abbreviated | Table

Table Name | Description

AEROLOG | measurements from surface flux group
AIR_FLUX aircraft flux from flights over the konza
AMS_87 ave from ncar’s pams, army corp’s deps
AMS_89 ave from ncar’s pams, army corp’s deps
AMS_STAT | # of reports from each ams station
BIOMASS plant biomass weight, nitrogen content
BRUT actual radiosonde data observations
CLOUD cloud estimates from liverpool cameras
FIFE_SITE | reference info. on the collection sites
GRAV soil moisture readings at 25,75,150mm
NEUTRON | soil moisture with 200cm neutron probe
RAD_FLUX | measurements from surface flux group
RAIN_DAY | daily rainfall data by site and date
SOIL_PROP | soil properties measured historically
SOIL_GAS no2 flux, co2 from soil respiration
VEG_SPEC | species composition data by site, date
WIND_PRO | noaa lidar wind profile data

Figure 4: FIFE Table Descriptions

clustering, the weight vector will contain k values. The size
of the array N = [/number of tables |. Each table can
form its own unique cluster in the array, if necessary.

The amount of adjustment, and the neighbourhood are
adjusted as follows:

Qg = 1
[@ —0.001 ifa;> 07
Qi+l = a; — 0.0001 otherwise
th =N X ¢

The weigh vectors are adjusted as follows:

Wi, +ar x (I — Wiy,)
Wij,

W = { if node is within N,,
Mt otherwise

For each iteration in the learning process, one table is
chosen at random. The neuron with the most similar set
of weights is identified. That neuron and all the neurons
within the current neighbourhood have their weights ad-
justed bringing them closer to the weights of the chosen
table. Each neighbour of the chosen table is taken in turn.
The neuron with the most similar set of weights to the neigh-
bouring table is identified, and its weights are adjusted to
bring it closer to the original table chosen. The self orga-
nizing feature map orders itself with regards to similarity in
the weight percentages and the neighbouring tables.

6 Implementation

We tested our approach on NASA’s FIFE scientific database.

The objective of the ISLSCP (International Satellite Land
Surface Climatology Project) is to develop techniques to
determine surface climatology from satellite observations.
FIFE (First ISLSCP Field Experiment) was undertaken at a
15km by 15km square site near Manhattan, Kansas in 1987

RAIN_DAY
WIND_PRO
BRUT
AIR_FLUX
RAD_FLUX

FIFE_SITE

AMS_87 BIOMASS
AMS_89 VEG_SPEC
AMS,_ STAT -

CLOUD SOIL_PROP

Figure 5: Clusters produced by Genetic Algorithm

and 1989. Its purpose was to gather enough data to allow the
creation and testing of models to develop these techniques
[12]. 120 gigabytes of data was collected (300 megabytes
textual data, the rest images.) The textual data fills 100
tables in a relational database.

Five queries utilizing 17 tables were made to the database
showing the kind of queries that researchers in different, but
related fields would create. Each of these queries was stored
in 1ts own appropriately named list. The tables which made
up those queries are shown in Figure 4. The tables used in
each of the five queries are shown below:

1. Rainfall: FIFE_SITE, AMS_87, AMS_89, AMS_STAT

2. Meteorological: FIFE_SITE, AMS_87, AMS_89,
AMS STAT, RAIN DAY, CLOUD

3. Atmospheric: FIFE_SITE, WIND_PRO, BRUT,
ATIR_FLUX, RAIN_.DAY, RAD_FLUX, AEROLOG

4. Surface Biophysical: FIFE_SITE, BIOMASS,
SOIL_PROP, SOIL_GAS, CLOUD, VEG_SPEC

5. Soil Moisture: FIFE_SITE, CLOUD, NEUTRON,
GRAV, BIOMASS, SOIL_PROP

The genetic algorithm takes 25 seconds to return the
clusters shown in Figure 5. The neural network takes 70
seconds to return the clusters shown in Figure 6.

The genetic algorithm and neural network create similar
clusterings of the database tables. The genetic algorithm
clusters the database into 3 clusters, which are clustered into
2 clusters which are then clustered into one global cluster.
The neural network clusters the databases into 8 clusters
which are clustered into one cluster. The three clusters at
the top of the neural network form the central cluster in the
genetic algorithm. The two clusters at the bottom right of
the neural network form the rightmost cluster in the genetic
algorithm. The three clusters in the center and lower left of
the neural network form the leftmost cluster in the genetic
algorithm.

The genetic algorithm generates a strict hierarchy with
an arbitrary number of levels where the relationships be-
tween the clusters are shown by their relative positions in

VEG_SPEC BIOMASS
SOIL_GAS SOIL_PROP
NEUTRON
GRAV
CLOUD FIFE_SITE
'WIND_PRO
AMS_87 BRUT
AMS_89 RAIN_DAY AIR FLUX
AMS_STAT RAD FLUX
AEROLOG

Figure 6: Clusters produced by Neural Network

the hierarchy. The neural network generates only two levels
of clustering but the overview shows more subtle relation-
ships between the clusters. The genetic algorithm generates
deeper, more structured indices than the neural network.
The neural network gives a better overall picture of how
clusters are related.

The neural network clustering can help a new user see
a global picture of the scientific database. With the neural
network clustering, tables used most generally will be found
near the center of the array. Tables with more specific uses
will be found towards the corners. This can be seen in Figure
6 where the FIFE_SITE table used in all five queries was
placed in the center of the array while the VEG_SPEC table
used in only one query was placed in the upper left corner.

The genetic algorithm clustering can help a user familiar
with the system categorize clusters into a hierarchical rela-
tionship. General concepts are found in the interior nodes
at the top of the hierarchy while more specific concepts are
found at the bottom of the hierarchy, near the actual tables
being clustered.

The two algorithms have comparable execution times.
With inputs of less than 14 tables our genetic algorithm, on
average, found a clustering better than 99% of the possi-
ble clusterings. It was impractical to do comparisons with
more than 13 input tables due to the running time of the
deterministic program. For a comparison of running times
of the deterministic, genetic algorithm, and neural network
clustering algorithms see Figure 7. The time for running the
neural network is directly related to the size of the array. As
the array size is based on the \/number of tables, the time
complexity of the neural network is a step function.

Clustering will be an ongoing process in the database.
New users will begin using the database, current users will
return to search for new data. Perhaps even new tables will
be added to the database. More and more relationships will
connect the tables together, and more tables will be brought

300 T
250 T~
~200 T
3
=
19)
Q
2150
L [
E
F
100 =T~
______ Neural Network
50 Genetic Algorithm
s Deterministic
| | | | | |
0 (1 1 1
10 20 30 40 50 60 70 80 90
Number of Tables

cLouD

AMS 87
AMS 89
AMS_STAT

RAIN_DA

RAIN_DAY|

Meteorological
but not Rainfall

Meteorological

VEG_SPEC

BIOMASS
SOIL_GAS SOIL_PROI

BIOMASS
SOIL_PRO}

NEUTRON NEUTRON
oy GRAV

cLowD | pig SiTE

RAIN_DAY|

Figure 7: Comparison of Different Clustering Algorithms

into the clustering. These new relationships may be very
different from the older relationships so the system should
dynamically support both the new and current users.
Totally re-clustering the tables will allow the index to
show the most effective clustering based on all of the users’
previous experiences. This will be very useful to new users,
but may be confusing to current users when the clustering
Instead the clus-
tering can be performed incrementally. The current clus-
ters can be used as an input to both the genetic algorithm

patterns change, possibly dramatically.

and the neural network, instead of starting the clusters from
scratch. This will allow the clusters to change slowly, giving
the current users a common framework and adding in each
new user’s contributions.

More than one set of indices can be maintained in the
system. New users to start with the most up-to-date index-
ing information, while current users can access the database
using their familiar clusters. However the clusters are main-
tained, the underlying database remains untouched.

7 Uses

The clusters that have been generated can be used for several
purposes. They can aid both the user and the database
administrator.

When a user wishes to start a new query, they can look
through the existing set of topics that have been queried.
One of these topics may match up with their needs giving
them an excellent starting point for their queries. They may
find that their area of interest straddles two existing queries.
Using the existing lists the user can reduce their search time
in the database as shown in Figures 8 and 9.

Figure 8 shows how the clusters in Figure 6 can be high-

WIND PRC
BRUT
AIR FLUX
RAD FLUX|
AEROLOG

Soil Moisture
or Atmospheric

Surface Biophysical
and Soil Moisture

Figure 8: Sample Index Queries using Neural Network

lighted. Each of the arrays in Figure 8 is in the same orien-
tation as the larger (and more readable) Figure 6. The user
can choose to see the tables important to someone interested
in Meteorological information, or someone interested in Me-
teorological data but not Rainfall data. The user might want
information related to Soil Moisture or Atmospheric condi-
tions, or they may want information that combines Surface
Biophysical data and Soil Moisture data.

By selecting the appropriate queries the clusters high-
light the appropriate areas of the database. Important areas
are shown in white; unimportant areas are shown in black.
The brightness of the region shows how relevant the tables
in that region are to the suggested query areas. Since the
neural network forms a topological map of the input lists,
these input lists allow us to find the literal peaks and valleys
of interest.

As well as highlighting the important tables, the cluster-
ing diagram also shows relationships between the highlighted
tables, and how general or specific the highlighted tables are
by their location in the array. Thus it gives much more
information to the user than simply hilighting table names
based on the usage percentages directly, or using a general
overview diagram of the database.

Figure 9 shows how the clusters in Figure 5 can be high-
lighted. As with the neural network version, the user can
choose combinations of the existing queries to see the tables
that are of personal importance.

Using the clustering information provided by the users,
the database administrator can find which tables are in com-
mon usage among which groups. For example, all the inves-

FIFE_SITE
AMS_87

BIOMASS

A?AI\SAS§T82T VEG_SPEC Surface
CLOUD SO IR0 Biophysical

Figure 9: Sample Index Query using Genetic Algorithm

tigators would require access to the most commonly used
tables but perhaps only the geologists are accessing certain
tables, and the climatologists are the exclusive users of an-
other set of tables. Using the clusters the administrator can
determine which tables an investigator will need based on
their areas of interest, because those are the tables that in-
vestigators with similar interests have used in the past.

8 Conclusions and Future Work

In this paper we have proposed, implemented, and compared
two adaptive clustering algorithms for scientific databases.
These algorithms hierarchically cluster tables according to
each user’s view of the scientific database, rather than the
database administrator’s view of the data. This hierarchy of
clusters gives each user a personal index into the scientific
database. New and experienced users can use the existing
indices to speed up their access to the database.

Both the genetic algorithm and the neural network create
clusters within a reasonable amount of time. The genetic
algorithm generates a strict multi-level hierarchy of clusters.
The neural network generates a two dimensional map of the
clusters. Both algorithms allow the user to view the scientific
database in a personalized way.

We are currently enhancing our implementation in the
following ways: 1. Improving cluster visualization using 3d
graphics, 2. Applying this approach to other database sys-
tems (e.g. object oriented scientific databases), 3. Using the
stored list information to suggest appropriate join and dis-
play columns, 4. Decreasing clustering time through paral-
lelism, and 5. Considering alternative clustering techniques.

Acknowledgements

We gratefully acknowledge the assistance of John Norman
of the University of Wisconsin, and Don Strebel of NASA
for their insight into the FIFE database.

References

[1] Botafogo, R., Schneiderman, B. “Identifying aggre-
gates in hypertext structures.” In Proceedings of the
Hypertext "91 Conference, (San Antonio, Texas, Dec
15-18, 1991), 63-74.

[2] French, J., Jones, A., Pfaltz, J. “Summary of the
final report of the nsf workshop on scientific database
management.” In SIGMOD RECORD, vol 19, no. 4,
(Dec. 1990), 32-40.

[3] Goldberg, D.
mization, and machine learning.” Addison-Wesley,

New York (1989).

“Genetic algorithms in search, opti-

[4] Hara, Y., Keller, A., Wiederhold, G. “Implement-
ing hypertext database relations through aggrega-
tions and exceptions.” In Proceedings of the Hyper-
text "91 Conference, (San Antonio, Texas, Dec 15-18,
1991),

[5] Toannidis, Y., Livny, M., Haber, E. “Graphical user
interfaces for the management of scientific experi-
ments and data.” In SIGMOD RECORD, vol 21, no
1, (March, 1992), 47-53.

[6] Johnson, A., Fotouhi, F. “Automatic touring in a
hypertext system.” In Proceedings of the IEEE In-
ternational Phoeniz Conference on Computers and
Commaunication, (Tempe, Arizona, Mar 23-26, 1993),
524-530.

[7] Kim, W., “Object-Oriented Approach to Managing
Statistical & Scientific Databases” In Proceedings of
the Fifth International Conference on Statistical &
Scientific Database Management, (Charlotte, N.C.,
April 1990).

[8] Kohonen, T. “Self-organizing feature map, the.” In
Proc. IEEE, vol 78, no. 9, (September, 1990), 1464-
1480.

[9] Michalewicz, Z. (ed) “Statistical and scientific data-
bases.” Ellis Horwood, (1991).

[10] Nielsen, J. “Hypertext and hypermedia.” Academic
Press, San Diego (1990).

[11] Nielsen, R. “Neurocomputing.” Addison-Wesley,

New York (1990).

[12] Strebel, D., Newcomer, J., Ormsby, J. “Data manage-
ment in the FIFE information system.” In Proceed-
wngs of International Geoscience and Remote Sensing
Symposium, (Vancouver, B.C., Canada, July, 1989),
42-45.

