AUTOMATIC TOURING IN A HYPERTEXT SYSTEM

Andrew Johnson and Farshad Fotouhi

Wayne State University
Computer Science Department, Detroit, Mi. 48202, USA

ABSTRACT: A hypertext system connects information
into a graph structure where related nodes of information are
connected by links. The user browses through this network
of links to gain knowledge. In this paper, we propose an au-
tonomous information gathering process which monitors the
user’s progress through the network, and a data structure for
storing information about the user’s activities in a form that
can be used to aid this user, and other users of the hypertext.
This information can be used to suggest anchors to the user;
enhance local and global views; allow the hypertext author
or user to easily create guided tours; create a global body of
information making hypertexts stored across multiple sites
more efficient. We show an implementation of this process
which gathers the information and gives suggestions to the
user on which link to use based on the previously collected
information.

1 Introduction

A hypertext system connects information into a graph struc-
ture where related nodes of information are connected by
links. A node (or information element) is a piece of infor-
mation. A node is typically displayed as a fixed sized page,
or 3byb card. A node can contain text, a picture, a sound, a
piece of animation, or a combination of the above. A node
contains one or more links to other nodes. The simplest
form of link moves the user from one node to another. A
link is activated by selecting an anchor (a word, picture, or
special icon in a node.) When the link is activated a new
node appears on the screen either in addition to, or replac-
ing, the previous node. These links connect the nodes into
a network (or information-space.) For a more thorough in-
troduction see: [5], [8], [11], [12].

Hypertext systems designed for browsing through inter-
related information are supposed to make it easier for their
users to access related data. Unfortunately the very flexibil-
ity of these systems causes the user to become lost in a maze
of information elements. Hypertext systems lack physical
markers so several navigational aids are being experimented
with [10], [13]. The system can show you a history of where
you’ve been. It can let you bookmark selected nodes so you
can go back to them easily. It can give you a bird’s eye view
of the entire network, or a fish-eye view showing near nodes
in more detail than far nodes. It can provide guided tours or
paths [9], [14], [16] to show you around. It can allow higher
level sets of nodes such as clusters [2] to encapsulate ideas.

Histories and bookmarks show the user where she has

been. Bird’s eye and fish eye views of the network show her
what information is nearby. Guided tours and paths give the
author of the hypertext a chance to show the user around.
These navigational aids exist to help the user, so we should
get her involved in the process. By keeping track of the user’s
past behavior, the hypertext system can make predictions of
the user’s future behavior. This information can also be used
to create and enhance the navigational aids listed above.
Other approaches to tracking the user’s behavior [3], [7] rely
on the user explicitly providing information to the system
as 1t runs. We believe that much useful information can be
collected without the user’s conscious intervention.

This paper proposes an autonomous information gather-
ing process, and data structure for storing the user’s activity
in a form that can be used to aid the users of a hypertext
system. The hypertext system can use this information to
suggest which anchors the user should activate; enhance lo-
cal and global views of the system by highlighting previous
paths and landmarks; allow the hypertext author or user
to easily create guided tours through the hypertext; create
a global body of information about which users are visit-
ing which parts of the hypertext, making hypertexts stored
across multiple sites more efficient. This paper then presents
an implementation of this autonomous information gather-
ing process showing how it can help the user.

Section 2 discusses what information is stored and how it
is collected. Section 3 discusses how the collected informa-
tion can be used. Section 4 discusses the implementation of
this data collection system. Section 5 discusses extensions
to this system. Finally, Section 6 gives our conclusions and
plans for future work.

2 Collecting the Information

We want to see what the user is doing without bothering
him too much, ideally without bothering him at all. The
user wants to browse through the hypertext to get answers.
If the system adds on extraneous duties, the user is less likely
to use the system. The simplest way is to keep track of what
nodes the user visits, and what anchors he activates. This
way the user does nothing different, the system simply looks
over his shoulder.

Several ideas of tracking user behavior are based on key-
words or descriptors. These keywords or descriptors are
grouped into concepts. The keywords for each node can be
defined by the author, or the hypertext system can look for
occurrences of words in the nodes to define concepts. The

user chooses which concepts he is interested in and the hy-
pertext system starts the user off in the appropriate region of
the hypertext [3], [6], [7]. With hypertexts being created in
many countries these keywords can be in several languages.
New systems deal with sound and video so these keywords
do not even exist. Fither accurate meta-information must
be explicitly stored (giving the author more work to do)
or we must try something else. In our system, we simply
gather information on which nodes are visited, and which
anchors are used, so the actual information stored in each
node 1s unimportant. Instead of concentrating on the con-
tent of the nodes (which depends heavily on the author), we
concentrate on the paths the user takes through the nodes.
The previous systems require their users to make decisions
affecting the promotion and demotion of keywords during
their search. This is an unacceptable burden on the aver-
age user. We believe a truly useful information gathering
process must work without the user’s direct intervention.

Section 2.1 describes what information is stored in a sim-
ple static hypertext system where the destination anchor is
always a complete node. Section 2.2 describes what changes
are necessary for a more complicated dynamic hypertext sys-
tem where the destination anchor can be part of a node.
While there are many different types of hypertext systems
in use, we feel that these two are diverse enough to show the
flexibility of our method.

2.1 Static, Anchor to Node version

This simplified version assumes a static hypertext (destina-
tions are not computed at run time) where the destination
anchor is an entire node. With this assumption we can model
a hypertext as a directed graph as shown in Figure 1 where:

Arabic letters (A, B) represent node IDs. We assume that
each node in the hypertext i1s given a unique ID so
the node ID labels a vertex of the graph. Each node
contains 0 or more source anchors.

Greek letters (o, 3) represent source anchor IDs. We as-
sume that each anchor in a node is given a unique 1D
so the combination of the node ID and source anchor
ID label an outgoing edge of the graph.

Each time the user browses through a particular hyper-
text he creates a path (a sequence of nodes visited and an-
chors activated). If we have a set of paths that a user has
taken through a hypertext as shown in Figure 2 where:

[represents the hypertext system (where each path begins
and ends.) The system includes any common starting
nodes (e.g. Hypercard’s Home Card), system based
query commands, or other means of moving to another
node without using a source anchor within the current
node.

We can break the paths up into their individual ‘node
anchor — node’ transitions and store them graphically as
shown in Figure 3 where:

v

@

\‘
9
4

"~\ @,-’ @

Figure 1: Grap

Figure 2: The Paths a User Takes through the Hypertext

hical Representation of a Hypertext

[—AB—D¢p—Cr—E—[
[—Aa—Bé—Hn—J—[
—Fy—Dy—I—
v

Figure 3: Gra

phical Representation of the Paths

[(a.1-B#3.2-D#),
A(8.1-TT#),
D(r.1-E4#),

Ay 1-1#£¢.1-CH), F(y.1-1),
C(f'l_f#)’ I(f'l_f#)’
D(A1-E# [1-[#),
H(f'l_f#)’

Figure 4: List Representation of the Paths

“=EHEED QT

Arabic numerals (1, 2) represent the number of times that
a source anchor has been activated.

Using the previous node as well as the current node to
give a weight to each anchor has several advantages over
storing full paths, or simply using the current node to give
a weight to an anchor. When a user is browsing through a
hypertext, he may be thinking about one concept or several
concepts. Since we do not want to bother the user by asking
each time he changes concepts it would be inappropriate to
store full paths in the system as each full path may contain
several concepts. Our system of using the current node and
previous node to give a weight to each anchor also allows
the mixing of paths that have one link in common. This
allows different paths to merge. However simply using the
current node to give a weight to each anchor goes too far in
isolating the nodes from the paths that led the user to visit
them. Using only the current anchor, any paths that have
a common node will be linked together and the path infor-
mation will be lost. Our method of using the previous node
and the current node keeps the important path information
while allowing the paths to merge.

We can take the path information shown in Figure 3 and
store it in a list structure as shown in Figure 4. With this
list structure, it is the size of the user’s exploration that
determines the size of the lists. Each element of the list has
the form:

CNID : {PNID({CAID.weight — NNID#}*), }+

CNID - Current Node ID
PNID - Previous Node ID
CAID - Current Anchor 1D
NNID - Next Node ID
It is tempting to store the amount of time a user spends
at a node, but we decided against this. We can tell which
node is being displayed on the screen, but we can not tell
if the user is looking at the screen. If more than one node
is on the screen we can not tell which node is being looked
at. We could assume that if the pointer or cursor is within a
node then the user is looking at that node, but then we are
asking the user to help us gather the information. To keep
the information gathering process autonomic we only store
the nodes visited and the anchors activated.
It is important to store both the source anchor, and the
destination node (anchor.) The source anchor tells us what

link to use, and the destination node tells us our destina-
tion. This gives us flexibility. If a single anchor can lead
to multiple destinations (e.g., using a pop-up menu) each
combination of source anchor and destination node will be
given its own weight.

2.2 Dynamic, Anchor to Anchor Version

This version assumes a dynamic hypertext (destinations can
be computed at run time, e.g. goto next node) where the
destination anchor can be an entire node, or part of a node.
A source anchor may have many different destination an-
chors over its lifetime. The same information is stored, but
the system must do more processing with it.

For example, if a node ‘A’ has a dynamic link (e.g., goto
next node) rather than a static link (e.g., goto node ‘B’) then
the next node depends on the current state of the hypertext
(i.e., which node is the next node from node ‘A’.) If we travel
from the system to node ‘A’ and then take anchor « to its
next node, our list contains: “A: [(a.1-B#),” The nodes in
the hypertext are then sorted or altered so that when we
again travel from the system to node ‘A’ anchor « will take
us to its next node which is no longer node ‘B’, but node
‘C.” In our system the & — C combination has a weight of
0 since anchor « has not been used to get to node C.

This same situation can arise if an anchor or node is
deleted. By giving the combination of source anchor and
destination anchor a weight we store values on combinations
which may not currently exist in the hypertext but may
exist again in the future. In a static hypertext where the
destination anchor is the entire node, the source anchor —
destination anchor combination never changes so the static
anchor — node version of Section 2.1 is just a subset of this
version.

Even when the destination anchor is part of a node, we do
not store the destination anchor, only the destination node.
Destination anchors are commonly used when the user wants
to go to a specific part of a very large node. The user can
then view all the information in that entire node and choose
from any of the source anchors within that node. Since the
entire node is available, the destination anchor within that
node is extraneous information.

3 Using the Information

Now that we have this listing of the user’s past experience
we can use it for several purposes. The system can be used
to enhance local and global navigation, easily create guided
tours, aid in the creation of clusters, and generate statistics
on the usage of the system.

3.1 Local Navigational Aids

When a user arrives at a node, the hypertext system accesses
the list based on the current node and the previous node to
see what anchors in the current node have been used and
how often they have been used.

If the user has come to this node on a familiar path the
system can lowlight any of the anchor(s) used to leave this
node previously, and highlight the most common anchor(s)
used to leave this node previously.

If the user has come to this node from a new direction the
system can highlight the most popular anchor(s) regardless
of the previous node.

If the user has never been to this node there will be no
entries in the list for this node and all the destinations are
equally likely, so no anchors will be highlighted.

3.2 Guided Tours

This list gives us a mechanism for creating and following
simple guided tours. A hypertext can come with several
predefined lists. We can use different lists for different tours
or different types of users: new user, manager, student, etc.
These tours can also be used as defaults for a user so he has
a starting point in his searches.

Vannevar Bush [4] proposed the idea of trails where a
user can link information together in his memex and then
give this trail to another person to include in their memex.
If two users have copies of the same hypertext, one user only
needs to create a new, empty list and ‘walk through’ the trail
he wishes to save. He can then send this list to his friend
who can follow the same trail in his own hypertext.

Unlike the guided tours proposed in [14] and [9], our
tours do not require a separate interface, the anchors in the
nodes themselves are highlighted and the user can choose to
continue the tour, or leave the tour at any point. Should the
user return to the tour at the current node, or a later node,
the tour will automatically continue from the user’s current
position. The user could also set the hypertext on ‘auto-
matic pilot’ and allow the system to cycle through the path
taking the highest weighted anchor at each node. Our tours
are simply a walk through of the hypertext, rather than the
full author enhanced guided tour proposed by [9] and [14].
While our tour offers less commentary on the hypertext, it
i1s much simpler to create. Anyone can create a guided tour
simply by creating a new, empty list and moving through
the hypertext.

Our lists create branching guided tours. Given a current
node, and a previous node there can be more than one source
anchor with the maximum weight. The user can choose
which path to take depending on his interests. Our lists
are also path based rather than node based so the user can
repeatedly travel back through the same node on different
paths and move on to different destinations.

Zellweger states [16] that “An effective path mechanism
must satisfy three major requirements: 1) It must bring ex-
pressive power to authors. 2) It must help authors create
and modify paths. 3) It must help readers find paths and
follow them in flexible ways.” We believe our past experi-
ence lists satisfy these three requirements and gives both the
author and the user the ability to easily create guided tours.

3.3 Global Navigation Aids

Bird’s eye and fish eye views will be enhanced by using infor-
mation from the list. By showing the user’s previous paths,
the system gives better landmarks. With bird’s eye views,
rather than just showing the ‘important sights’ in the hy-
pertext, the user can see where he has been in relation to
them. With fish eye views, rather than showing the local
area in more detail than the remote areas, the area around
the paths the user takes most often can be shown in more
detail than the less explored regions.

3.4 Clustering

As hypertexts get larger there is a greater need for organiz-
ing the information into clusters - groups of highly connected
related nodes loosely connected to other clusters. Currently
the author decides how his hypertext will be clustered, if at
all. Work being done by [2] uses the degree of connectivity
among nodes to partition the hypertext into clusters. This
method still relies on the number and position of links that
the author has set up. Each user may have a very different
idea of which nodes of information are related. We can use
the previous experience lists from many users to see which
nodes they move between frequently. This information al-
lows us to combine the user’s view of the information with
the author’s view to obtain more appropriate clustering.

If the user wants to take full advantage of this method she
could create several lists for each hypertext. Each list will
represent one type of work being done in that hypertext.
When the experienced user starts up the system she can
specify which list to use, depending on the kind of work she
will be performing. The experienced user will also be able
to choose a new list whenever she switches contexts. This is
similar to the idea of choosing a context at the beginning of
a session described in [3].

3.5 System Usage Information

For a given hypertext we can use the files from many differ-
ent users to create a global usage file to get an overall view
of how the hypertext is being used. We can UNION several
users lists from the same hypertext together to get a picture
of how people move through this hypertext (which nodes are
visited most, and which anchors are used most). This infor-
mation will be valuable in determining how to partition a
large hypertext across several sites. These lists will also be
useful 1n finding ‘highways’ and ‘side streets’ in the hyper-
text. This can be used to create new shortcut paths. We
can INTERSECT two or more user’s lists to find what they
have in common. This will be useful to see whether people
in the same group, or location, access the hypertext in the
same way.

3.6 Serendipity

One of the fears about navigational enhancements is that
they will limit the user’s desire to explore and dilute one of

the primary advantages of a hypertext system. We can use
where the user has NOT been to act as ‘serendipity’ pointers.
At a given node, the system can show the user which anchors
she has not used. We want to encourage the user to explore
and find new information. Performing a NOT on the anchors
of a single node is a reasonable operation since there will
usually be no more than 10 source anchors in a node.

4 Implementation

Each user will need a previous experience data file for each
hypertext she uses. This data file is stored as an appro-
priately named text file in the user’s directory so it can be
deleted, copied, moved, or renamed from the host operating
system. Each record in the file has the format:

CNID : {PNID({CAID.weight — NNID#}*), }+

When the data file 1s first created it is empty. A source
anchor — destination anchor combination that hasn’t been
taken is given weight 0 by not being in the file. As the
user moves through the hypertext, the hypertext system will
update the file. In order to update the data file we need to
store four pieces of information in memory: PNID, CNID,
NNID, and CAID. All four IDs are required to update the file
since the entry for the CNID is updated when the user moves
to the NNID using the CAID. Each time the user moves to a
new node: the CNID becomes the PNID, the NNID becomes
the CNID, the new node becomes the NNID, and the anchor
we used to get to the new node becomes the CAID.

If the user visits a new node, the new line CNID : PNID
(CAID.1 - NNID#), is added into the data file. If the user
visits a new node from an old direction, item PNID(CAID.1-
NNID#), is added into the line for the CNID. If the user vis-
its an old node from a old direction via a new anchor, item
(CAID.1-NNID#), is added into the line for the CNID. If
the user visits an old node from an old direction via an old
anchor, the weight of that anchor is incremented. FExplo-
ration increases the file size; repeated use does not. The
actual size of the file grows linearly with the amount of the
user’s exploration, not the size of the hypertext. This is very
important as hypertexts become much larger in the future.

We implemented this data gathering system using Hy-
percard. While this method is applicable to all hypertext
systems we felt that the availability of Hypercard and its
many stacks made it the natural choice for our initial imple-
mentation. We created a new stack called “Control” and in-
serted 1t into Hypercard’s message passing hierarchy. When
the ‘Collect Information’ switch is turned on, the Control
Stack will monitor the currently open stack waiting for new
cards to be opened. When a new card is opened the list is
updated. The processing of the data file is performed with a
combination of HyperTalk [15] code and compiled external
C functions [1]. The Control Stack is only 23K including all
of its external C functions.

A sample run of our data collection process is shown in
Appendix A. For this example we chose Jakob Nielsen’s Hy-

percard stack of the “Hypertext 87 trip report” [10][11].
We chose this stack because of its general availability, and
its complexity. We needed to add two lines to Mr. Nielsen’s
stack to ensure that Hypercard’s ‘openCard’, ‘closecard’ mes-
sages make i1t to our monitoring stack. No other changes
were necessary. The user navigates through Mr. Nielsen’s
stack normally, clicking on buttons and moving through the
hypertext. When the user quits out of the stack the list
shows his movements based on the id’s of the cards (nodes)
he opened and the buttons (anchors) he activated.

This Control Stack also implements the two uses men-
tioned in Sections 3.1 and 3.2. Appendix B shows the system
suggesting which anchor the user should activate based on
the previous trip though the “Hypertext ’87 trip report” hy-
pertext. The Control Stack makes suggestions by flashing
the suggested button on and off. The user can take this sug-
gestion and follow that path by clicking on the highlighted
button, or ignore the suggestion and click on another button.

5 Extensions to the List

Section 2.1 discusses why we decided not to store full paths,
or simply current nodes. We created a method in between
these extremes, however our method can be adapted to to
store full paths, or only current nodes.

The weighting of the anchors in a node is currently based
on one previous node. This can be extended (at considerable
cost in time and space) to any number of previous nodes.
This will allow us to assign a weight to an anchor in the
current node based on the entire previous path. Each single
PNID becomes a list of PNIDs. Alternatively, instead of in-
creasing the number of PNIDs beyond one, we can decrease
them to zero, so only the CNID is important. Each line of
the list then has the form:

CNID : {{PNID =}*({CAID.weight — NNID#}*), }*

We currently assume that all links are between nodes in
the same hypertext. Inserting a hypertext ID (HTID) in
front of each node ID, will allow the list to work with more
than one hypertext. Each line of the list then has the form:
HTIDQCNID :
{HTIDQPNID({CAID.weight—HTIDQN NID#}*), }*

6 Conclusions and Future Work

In this paper we have proposed, and implemented an au-
tonomous information gathering process. This information
aids (1) the first time user through predefined lists, or tours
through the hypertext; (2) the common user by enhancing
local and global navigation by showing the user where he has
been, and where he most likely will go; (3) the system ad-
ministrator by giving useful statistics about who is exploring
which areas of the hypertext. We are currently enhancing
our implementation to include the other features mentioned
in Section 3.

References

(1]
[2]

[14]

Bond, G. “XCMDS for hypercard.” MIS:Press, 1988.

Botafogo, R., Schneiderman, B. “Identifying aggre-
gates in hypertext structures.” In Proceedings of the
Hypertext "91 Conference, (San Antonio, Texas, Dec
15-18, 1991), 63-74.

Boy, G. “Indexing hypertext documents in context.”
In Proceedings of the Hypertext '91 Conference, (San
Antonio, Texas, Dec 15-18, 1991), 51-62.

Bush, V. “As we may think.” The Atlantic, (July
1945), 101-108.

Conklin, J. “Hypertext: an introduction and survey.”

IEEE Computer, 20, 9 (September 1987), 17-41.

Croft, W., Turtle, H. “A retrieval model incorporat-
ing hypertext links.” In Proceedings of the Hypertext
89 Conference, (Pittsburgh, Penn., Nov 5-8, 1989),
213-224.

Frisse, M., Cousins, S. “Information retrieval from
hypertext: update on the dynamic medical handbook
project.” In Proceedings of the Hypertext ‘89 Confer-
ence, (Pittsburgh, Penn., Nov 5-8, 1989), 199-212.

Leggett, J., Schnase, J., Kacmar, C. “A short course
on hypertext.” Texas AEGM Technical Report,

Marshall, C., Irish, P. “Guided tours and on-line pre-
sentations: how authors make existing hypertext in-
telligible for readers.” In Proceedings of the Hypertext
89 Conference, (Pittsburgh, Penn., Nov 5-8, 1989),
15-26.

Nielsen, J. “The art of navigating through hyper-
text.” Communications of the ACM, 33, 3 (March
1990), 296-310.

Nielsen, J. “Hypertext and hypermedia.” Academic
Press, 1990.

Tomek, I., Khan, S., Mildner, T., Nassar, M., Novak,
G., Proszynski, P. “Hypermedia - introduction and
survey.” Journal of Microcomputer Applications, 14,

63-103.

Travers, M. “A visual representation for knowledge
structures.” In Proceedings of the Hypertext ‘89 Con-
ference, (Pittsburgh, Penn., Nov 5-8, 1989), 147-158.

Trigg, R. “Guided tours and tabletops: tools for
communicating in a hypertext environment.” ACM

TOOIS, 6, 4 (Oct. 1988) 398-414.

Winkler, D., Kamins, S. “Hypertalk 2.0: the book.”
Bantan Books, 1990.

Zellweger, P. “Scripted documents: a hypermedia
path mechanism.” In Proceedings of the Hypertext 89
Conference, (Pittsburgh, Penn., Nov 5-8, 1989), 1-14.

Appendix A

Control

[]Make Suggestions

A1l. Turn on information collection

HyperTEXT'87 tangle if
Trip Report s is the firs

Jakob Nielsen

vHUperTEXT &7 Worksho|

A3. Select "Definition of 'Hypertext' "

Definition

“Hypertext” is non-sequentially linked pieces of text or

other information. If the focus of such a system is on
whon-textual lgnes* of information, the term hypermedia

is often used instead. In traditional printed documents,

practically the only such link supported is the footnote, so

hypertext is often referred to as “the generalized

The things which we can link to or from are called nodes, and the whole system

will form a network of nodes intersonnected with Tinks. Links may be typed

andfor have atributes, snd they may be one or bi-directional. The user sccesses

ion in the nodes by navigatin

9 the links [v/Fr ank Halasz |would add to

the definition that this navigation should be sided by 3 Struciural overview

Cwhich e.g. f/HyperCard] does not have!

A4. Select the return arrow

wHUPErTEXT 87 Workshol

AS. Select "Systems"

TTime sihoe you were here: 2 days

Classification of HT systems|:

2% Hypertest systems |

[writers using NoteCards i S
4 vHyperCard (Apple) [i5:

Definition

“Hypertext” is non-sequentially linked pieces of text or

other infarmation. I the focus of such a sgstem isan
wnon-textual types® of information, the term hypermedia

is often used instead. In traditional printed documents,

Dractvcallg the omg such link supported is the footnote, s0

hypertext is often referred to as “the generslized

The things which we can Tink te or from are called nodes, and the whole system

el 0P 3 netork of nodes terconneated with Tinks. Links may be 1yped

snd/or hawe sttributes, snd they may be one or bi-directional. The user accesses

the information in the nodes by nvigating the Tinks |/Frank Halasz]would sdd to

the definition that this navigation should be aided by 3 sEructural overview

Cuhich e.9. fHyperCard] does not havet)

Further dimensions for classifying HT systems are:

Stope of the user target

3 & Single user : Guide, HyperCard,
the original MoteCards.
Work group: InterMedia,
HoteCards recent version
Corpor ste division: Augment,
206 [Carnegis-HeTlon].

5 * Vhole World: Hanadu

D Bravsing ve.suthoring
® Focus on information presentation: Document
Exaniner Tehnedarmen]

= Facus on network sreation and manipulation:
Augment, Heptune [Tektronix], NoteCards.

Task spesificity
» General: Guide, HuperCard, Heptune, 205

S Some task inclination: Augment , NoteCards,
InterMedia,

® Task spesifio:

A10. Select "Front cover"

6440:S(2.1-6161#),
6161:6440(25.1-15324#),15324(15.1-31314#),
31314:6161(4.1-62480#),
15324:6161(23.1-6161#),62480(23.1-62480#),
62480:31314(14.1-15324#),15324(1.1-38994#),
38994:62480(15.1-6440#),

A12. The resulting list

Time =ince you were hers: 2 minutes

per TEXT'S
Trip Report

Jakob Nielsen

B2. The cover of the book flashes.
We follow the suggestion and
select the cover of the book

Hypertext systems
hupertext systems (Frank Halasz
Frank Halasz firom MCC gavwe the last tlk 3t the
warkshop. He and the organizing committes should be
sriticized for not making it the first talk AND the last
talk: Part of the talk was a very good survey of what
HT reslly i and & classificstion of current systems
= This materis] could have filled 2 whale talk with no
problems but was presented with such speed that it left
3 the audience breathless. 1t would slso have made good
platform Tor the discussions during the conférence if it
had been presented at the beginning instead of at the

3 end s

" wDefinition of HyperText
3 HT systems can be divided s on e ane hand e

“original * gensr ation of
[Vanavar]. LS/ Augment™
Engetbartl, Hanadu [Ted Nelsond, sto

3nd on the sther hand the *current” generation
cansisting of e.g.

' Research systems [Tntermedia] [Erown
University], THerox]

& PC Produsts: Guide (0wl | vHupsrcara]lappie]
D & Varkstation praducts - v/Document Examine
[symboios].

ETirne Sinee you were here: 2 days

7 Classifieation of HT sustems

v Hyperext systems

] vDooument Examiner

] HuperCard (Apple)

Frank Halasz from MCC gave the last talk 3t the
workshop. He and the organizing committes should be
eriticized for not making it the first talk AND the last
talk: Part of the talk was a rery good survey of what
HT really is and 3 classification of current systems
This material could have filled 2 whole talk with no
problems but was presented with such speed that it left
the audiznce breathless. It would alse have made 3 gaod
platform for the discussions during the canference 1f it
had besn presented at the beginning instead of at the

end- ~Definition of HyperText

HT systams can be atvided into on the one hand the

121" gener stion of
o] o BTl HLS/dugment®
[Engetbart], Kanady [Ted Nelson, et

3nd on the other hand the *current ® qeneration
ety ote

® Research systems [Brewn
University], Terax]
 PC Progucts: Guids 0wl HuperCard]lAppts]
® Workstation products
[Symbolios .

Time since you were hers: & minutes

HyperTEXT'87
Trip Report

Jakob Nielsen

All. Select "Quit"

Appendix B

B collect Information
IZIMakuggeslions

B1. Turn on suggestions

Time since you were here: 4 mites

|

Literature reference
~The workshop itself|

\“Hyper TEXT*B7 orkshop

-
vapplications

B3. "Definition of Hypertext" flashes
We ignore the suggestion and select "Quit"

