
Omegalib: a Multi-View Application Framework for

Hybrid Reality Display Environments

Alessandro Febretti, Arthur Nishimoto, Victor Mateevitsi, Luc Renambot, Andrew Johnson, Jason Leigh

Electronic Visualization Laboratory, University of Illinois at Chicago

ABSTRACT

In the domain of large-scale visualization instruments, hybrid

reality environments (HREs) are a recent innovation that combines

the best-in-class capabilities of immersive environments, with the

best-in-class capabilities of ultra-high-resolution display walls.

HREs create a seamless 2D/3D environment that supports both

information-rich analysis as well as virtual reality simulation

exploration at a resolution matching human visual acuity. Co-

located research groups in HREs tend to work on a variety of tasks

during a research session (sometimes in parallel), and these tasks

require 2D data views, 3D views, linking between them and the

ability to bring in (or hide) data quickly as needed.

In this paper we present Omegalib, a software framework that

facilitates application development on HREs. Omegalib is designed

to support dynamic reconfigurability of the display environment, so

that areas of the display can be interactively allocated to 2D or 3D

workspaces as needed. Compared to existing frameworks and

toolkits, Omegalib makes it possible to have multiple immersive

applications running on a cluster-controlled display system, have

different input sources dynamically routed to applications, and

have rendering results optionally redirected to a distributed

compositing manager. Omegalib supports pluggable front-ends, to

simplify the integration of third-party libraries like OpenGL,

OpenSceneGraph, and the Visualization Toolkit (VTK).

We present examples of applications developed with Omegalib

for the 74-megapixel, 72-tile CAVE2™ system, and show how a

Hybrid Reality Environment proved effective in supporting work

for a co-located research group in the environmental sciences.

Keywords: Multi-view, Tiled Displays, Cluster, Immersive

Environments, Middleware

Index Terms: I.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism – Virtual Reality; I.3.2 [Computer

Graphics]: Graphics Systems – Distributed graphics; K.4.3

[Computers and Society]: Organizational Impacts – Computer-

supported collaborative work

1 INTRODUCTION

Today, most research involves the analysis of scientific

phenomena of ever-increasing scale and complexity, and requires

the concentrated effort of interdisciplinary teams: scientists from

different backgrounds whose work involves large, heterogeneous

data sources. As the scale and complexity of data continue to grow,

large scale visualization instruments like display walls and

immersive environments become increasingly essential to

researchers, letting them transform raw data into discovery. In

particular, immersive systems are an attractive option for exploring

3D spatial data such as molecules, astrophysical phenomena, and

geoscience datasets [1]. On the other hand, display walls with their

high resolution help interpret large datasets, offering both overview

and resolution, or can be used to lay out a variety of correlated

visual data and documents for collaborative analysis [2].

Current technology trends lead to the production of larger,

affordable thin-bezel LCD monitors with built-in support for

stereoscopic 3D [3]. Such recent advancements made it

conceivable to merge the best-in-class capabilities of immersive

Virtual Reality systems, such as CAVEs, with the best-in-class

capabilities of Ultra-high-resolution Display Environments, such as

OptIPortals [4] thus creating conceptually new immersive

environments which we refer to as Hybrid Reality Environments

(HREs), such as the CAVE2 system [5], [6] (Fig. 2)

Naturally, hardware is only half of the equation. To fully take

advantage of these novel technological affordances we need a

matching software infrastructure that facilitates scientific work

within HREs. This infrastructure should be tailored to the real-

world needs of research teams, taking into account the way users

interact with the instrument, with their applications and with co-

located or remote members of their team. So far, software

development for display walls and immersive systems has followed

independent paths. On display walls, the focus has been on

supporting scalable ultra-high resolution visualization, managing

multiple views of heterogeneous datasets and co-located

collaboration. On immersive environments, the effort is to provide

low latency user-centered stereo, naturalistic interaction and remote

collaboration.

What is now needed is a convergence in software design for

display walls and immersive environments: we envision the

integration of display wall software, an immersive environment

framework and additional components into an “operating system”

for Hybrid Reality Environments (Figure 1). This operating system

aims to solve two major challenges with alternative approaches:

1) Static spatial allocation of 3D and 2D views: although an HRE

is capable of displaying 2D and 3D content at the same time,

software relies on static configurations describing how the

physical display space should be split into 2D and 3D views.

Multiple predefined configurations give the end users some

flexibility, but require restarting and resetting all running

applications

2) Lack of unified interaction: the 2D and 3D portions on an HRE

often rely on inconsistent interaction schemes: for instance

pointing semantics may use absolute movement on the 3D half

and relative movement on the 2D half. Physically separate

interaction devices may be required. Or, when a single device

is used, interaction may lead to conflicting results (i.e.

navigating a 3D view moves 2D views).

The HRE operating system also needs to satisfy the requirements

of two distinct, but often overlapping, categories of users: scientific

application users (i.e. research teams) and scientific application

developers.

1.1. End-User Requirements

Users need a system that lets them easily manage display space

and content. We can for instance consider a structural engineering

task: engineers wanting to compare different designs of a building

load a digital model and explore it in full-scale in the Hybrid

Reality Environment. They decide to compare two variants of the

design side-by-side, splitting the available screen space in two. The

group then chooses to look at pictures of the target site: they hide

one of the 3D visualizations, and use the now available screen space

to share photographs. The team splits: one group discusses the site

while another user navigates the building model. The user notices

a flaw in the design and interrupts the rest of the team. He generates

a section of the building that gets displayed on a separate 2D view.

The team now brings up the alternate design again, observes the 3D

visualizations and 2D sections, until they agree on one of the design

variants. Before closing the meeting, they display this variant on

the full display again, and mark a few points for future revision.

This kind of work pattern can be observed in research groups in a

variety of disciplines: co-located collaboration often entails

multiple phases that alternate full group work with individuals or

sub-groups working in parallel: moreover the work may focus on a

single issue, on different views into that single issue, or on

independent issues [7]–[9]: the ability to easily re-configure the

display space is fundamental to support such heterogeneous tasks

[10].

1.2. Developer Requirements

Considering the needs of HRE users is not enough: an HRE

operating systems needs to provide an easy, yet powerful

application programming interface (API) that developers can

leverage to implement custom software. Immersive applications are

often created to serve interdisciplinary research teams whose

members may have limited programming experience. Applications

also have a great variance in their complexity: some only need basic

visualization and interaction with 3D models. Others require the

implementation of complex and custom visualization techniques,

need low-level access to the graphics API or need to use specialized

visualization libraries. A way to satisfy these requirements is to

provide a layered API, with multiple levels of access that offer a

tradeoff between complexity and control.

2 RELATED WORK

The benefits of co-located collaborative work have been

investigated in a variety of contexts like design [10], software

development [7], and engineering [8]. Advantages of co-location

include reduced communication friction and distributed cognition:

teammates exploit features of the social and physical world as

resources for accomplishing a task [11].

The requirements for effective visualization in large scale

environments have also been investigated in the past. In terms of

data size and format, some scientists need to display data so

massive that it exceeds the screen resolution of even a large display

[12]. Others find a large display ideal for comparing different data

sets of the same phenomenon. Lastly, large display surfaces can

help aggregate heterogeneous data about a specific phenomenon

[13]. This third scenario (heterogeneous multiple views) is the most

common [9], [14], [15]. In [14], the authors note how large display

surfaces let researchers organize large sets of information and

provide a physical space to organize group work. Part of the work

is spent with each user individually working on a separate part of

the display. Another part is dedicated to collaborative data

consolidation and analysis, so everybody in the group can

aggregate and discuss partial findings. During this kind of work,

researchers often need to bring in new data and documents from

their laptops or from the web: thus, a single pre-packaged

application running on a large display rarely covers the full needs

of a research group.

Important factors for an efficient co-located collaborative space

are, among others, the physical design of the space (space should

support both the work of the entire team, and separate sub-teams),

and its reconfigurability (both physical and at the software level).

Bowman et al. have conducted extensive research on the

advantages, challenges and best practices on hybrid 2D/3D

visualization, proposing a taxonomy for Information-Rich Virtual

Environments (IRVEs). In [16] the authors categorize

visualizations depending on the physical and logical positioning of

2D and 3D displays, and in [17] they present a hybrid molecular

visualization application for the CAVE system [18] that statically

assigns 2D and 3D content to CAVE walls.

Fig. 1. The high level model for a multi-view operating system for

Hybrid Reality Environments. The core components of the operating

system are: the distributed application runtime; a controller and inter-

process communication manager that handles application lifetime

and communication between application instances; a distributed

input manager capable of handling heterogeneous devices.

Fig. 2. An overview of the CAVE2 Hybrid Reality Environment.

CAVE2 is based on a cylindrical setup composed by 18 columns of 4

displays each. This arrangement provides a panoramic view of 320

degrees. Each display pair is driven by a separate computer, for a

total of a 36 computer cluster, plus a head node. CAVE2 uses an

optical motion tracking system arranged in a circular configuration

above the displays.

2.1. Current Software Approaches

Most research on co-located use of immersive environments

concentrated on supporting multi-user stereo vision in a single

immersive view. Little work has been done on supporting multiple

independent views, or multiple simultaneous applications, within

an immersive environment. VR software toolkits like FreeVR [19],

VRJuggler [20], CAVELib [21] and CalVR [22] support a single

running application at a time. On the other hand, wall display

software like CGLX [23], DisplayCluster [13] and the Scalable

Adaptive Graphics Environment (SAGE) [24] are designed to

allow sharing the available display space between multiple

applications. CGLX works by distributing application execution,

while DisplayCluster and SAGE work on distributing pixels. An

advantage of pixel distribution is flexibility. Since rendering and

display resources are decoupled, applications can run on a single

node, on a local cluster or on a remote location. The wall display

software acts as a distributed compositing manager that routes

pixels between applications and displays. Moreover, SAGE offers

multi-user interaction support and allows input redirection from the

wall to applications. Display wall software solutions are not full-

fledged application development frameworks: the application

developer is still in charge of managing rendering, distribution,

interaction, etc.

The Equalizer framework [25] is an application development

framework that focuses on scalable parallel rendering. It offers

fine-grained, transparent control over rendering resource

allocation, although this control is mostly static, specified through

a rather complex configuration file.

An observation emerging from the review of current software is

that display wall software and scalable rendering software both

have features that are desirable in a multi-view HRE software

framework. We therefore choose to play on these strengths, and

envision a framework based on the integration of successful

designs in both fields. The remainder of this paper will present this

framework, called Omegalib, detailing our integration approach,

and the addition of several novel features (like dynamic

reconfigurability and input filtering) that make this framework

effective in supporting applications in Hybrid Reality

Environments. Moreover, we will present examples of practical use

of these features in a co-located collaborative setting.

3 FRAMEWORK DESIGN

Omegalib acts as an abstraction layer between the HRE hardware

and applications. At the back end, Omegalib uses Equalizer to drive

the display system. In section 2.1, we observed how Equalizer uses

an advanced and verbose syntax to support its flexibility, making it

complex and error prone to write or maintain configuration files.

Omegalib addresses this issue by describing display system

geometry, cluster configuration and input capabilities through a

compact system description file. When applications launch, the

runtime generates and forwards the extended configuration to

Equalizer, which then proceeds to initialize and setup the display

system. At the front end, Omegalib integrates several APIs and

visualization tools through an abstract scene graph and pluggable

render passes. The abstract scene graph makes it possible to

decouple object interaction techniques from concrete object

representations. A concrete object can be an OpenSceneGraph

node, a Visualization Toolkit (VTK) Actor, or some other entity

provided by one of the Omegalib front-ends. Objects can be

attached to nodes of the scene graph: object transformations,

visibility, hierarchy, etc. can therefore be controlled through a

unified API that is independent from the library used to draw the

objects.

3.1. Application Model

The default execution and rendering mode for Omegalib is

replicated execution: each node in a display cluster runs an instance

of the target application, while a master instance synchronizes the

updates and buffer swaps across the nodes. It is also possible to

control execution on a node-by-node basis (the API offers functions

to check on what node the application is executing), and

synchronize custom data objects between master and slave

instances. Omegalib extensions and applications are implemented

as three component types that communicate with the Omegalib

runtime and with each other, as represented in Fig. 3: Event

Services, Application Modules and Render Passes.

Event Services implement input processing. A service may

implement support for a physical input device (like a keyboard or

mouse controller), or it can aggregate and reprocess events

generated by other services. Event services can also receive input

data from a remote server, making it possible to have a separate

machine as the hub for all input devices in an HRE installation.

Event services run only on the master instance of a distributed

application. The Omegalib runtime takes care of serializing and

distributing events to slave instances.

Application Modules contain the core of an Omegalib

application logic. Modules can receive input events, update the

abstract scene graph (or other custom scene representations), and

communicate with other modules. Modules run on both master and

slave instances of Omegalib regardless of whether they display

content or not.

Render Passes implement all the functionality needed to render

scenes to cluster tiles or to secondary image streams. Render passes

are typically implemented by integration front-ends: application

developers don’t need to access them, unless they need to perform

custom low-level drawing operations. Render Passes expose a

GLUT-like callback interface that can be used to execute OpenGL

operations. Render passes can be prioritized and can perform 2D or

3D drawing. For instance, a high priority 2D rendering pass can be

used to overlay 2D content on top of an interleaved-stereo 3D

scene. Render Passes run only on nodes in charge of drawing: a

headless master configuration will not run render passes on the

master application instance. The rendering system can also be

configured to render to additional outputs: applications can

generate secondary views whose pixels can be streamed to

compositing managers such as SAGE, displaying an Omegalib

secondary view as a 2D window on a portion of the tiled display.

Fig. 3. An overview of the communication flow of a distributed

Omegalib application. In this example, the Master node runs in

headless mode, and only takes care of application and input event

processing.

3.2. Dynamic Configuration

As mentioned in the introduction, one of the objectives of

Omegalib is the creation of user-defined and reconfigurable

workspaces: areas of the display that are dedicated to a 2D or 3D

application, that can be re-defined while the application is running

and can be independently controlled. To support this feature, we let

users specify an optional 2D display region as a startup argument.

The runtime uses this information to find the subset of rendering

nodes that drive displays in the selected region: it then adjusts the

system configuration to launch the application only on the

identified nodes. Multiple applications can be launched on the

system in this fashion. The runtime also manages networking setup,

guaranteeing that each application instance uses an independent set

of ports for master/slave communication.

To increase the flexibility of workspaces, we also let users

expand or shrink the visible area of each workspace within the

runtime bounds. When a user shrinks a workspace, the runtime

disables rendering on the nodes whose tiles are not covered by the

workspace active area (Fig. 4). While GPU resources are de-

allocated, the application remains available on the machine: if the

user later decides to expand the workspace again, rendering on the

inactive tiles can be reset almost instantaneously.

It is therefore possible to run applications on overlapping regions

of the display system: the display space shared by multiple regions

can be associated to any of the overlapping applications at runtime.

This double level of dynamic configuration (launch-time and

runtime) provides a good level of control over cluster resource

usage versus workspace flexibility. On one end, applications can be

launched on non-overlapping regions, optimizing cluster resource

allocation (each node is dedicated to a single application) but giving

up dynamic display allocation. On the other end, applications can

be launched on fully overlapping regions covering the entire

display space: in this case the workspaces have the full runtime

flexibility, at the cost of sub-optimal cluster resource allocation

(each node needs to keep one active instance of each application).

3.3. Input Filtering

When the HRE is running multiple applications, it is necessary

to let users interact with any of them without requiring switching to

a different physical device or other complex interactions. It is also

desirable to let different users control different workspaces and let

them easily switch between them. In Omegalib, this feature is

implemented through ray-based event filtering. We assume that the

main interaction device in the environment offers 6DOF tracking

(as is the case for most large scale immersive environments). We

use the tracking data to generate a 3D ray starting at the device, and

compute whether the ray intersects one of the display tiles. Only

the application that is controlling the tile (based on its runtime

configuration) will process the event stream generated by the

devices. This scales to multiple devices controlling independent

applications. It is also possible to choose another 6DOF tracking

source as the input to the event filter: for instance, a pair of tracked

glasses can be used to filter input events based on gaze direction.

Each application has control over its own event filtering policy. An

application can also decide to disable filtering if it needs to let users

interact with it regardless of its display state.

3.4. Panoptic Stereo

Since Omegalib is aimed at supporting co-located collaborative

groups, it is fundamental to provide stereo-viewing capabilities to

multiple users in the system. One issue with standard user-centered

stereo is eye reversal when the tracked user looks 180 degrees away

from a given screen. This is acceptable for a single user, since he

or she is no longer looking at the screen, but it makes the stereo

view unusable for other team members. To solve this issue,

Omegalib supports panoptic stereo. Techniques similar to Panoptic

stereo have been implemented in the past to support multi-user

stereo without generating multiple views [26]. When Panoptic

stereo is enabled, the system tracks the main viewer’s position, but

generates head orientation information based on each display plane

normal. The stereo frustum is projected outward to each display

panel, preserving stereo separation for each user in the system.

Another benefit of Panoptic stereo is its independence from frame

latency: When users move their head around, stereo will look

correct regardless of the application frame rate, leading to a more

comfortable viewing experience. This comes at the price of a

slightly incorrect overall projection, particularly when users rotate

their head sideways. Panoptic stereo can be turned on and off at

runtime.

3.5. Scripting

The Omegalib API is exposed through a C++ and python

interface: the Omegalib runtime embeds a script interpreter that can

be used to launch standalone script applications, or can be used to

control running applications through a runtime console. Scripting

support facilitates development access to non-technical users, and

has the added advantage of simplifying application portability. A

script application can run on a personal computer or on a HRE

without requiring recompilation or reconfiguration. Researchers

can work on a visualization script on their own computer, save it to

a flash drive, plug the drive into the HRE system and re-launch the

visualization during a collaborative research session.

3.6. Application Control and Message Passing

We have so far discussed two of the software components of the

HRE operating system model presented in Fig. 1: the application

runtime and input manager. The third and final component is the

controller and Inter-Process Communication (IPC) manager. The

purpose of the controller is to manage the execution of applications,

providing users with an interface to start and stop application

instances and manage their workspace areas. The IPC (whose

Omegalib implementation is called MissionControl) runs as a

server to which applications connect once started. Connected

applications can exchange messages with each other (typically

Fig. 4. An example of dynamic workspace configuration for

two running applications. Each machine controls one display

column. Applications are launched with overlapping workspaces

on the central column. In this example, the runtime configuration

allocates the central column to Application 2.

script commands), or receive messages from third party software

through an external interface. MissionControl allows multiple

views in the HRE to communicate with each other, for instance to

coordinate the information they display. Since views run as

separate processes, their frame rates are independent: this is a

desirable feature when one of the views is computationally or

graphically intensive, while others require real-time interactivity.

4 APPLICATIONS

To evaluate the effectiveness of Omegalib in supporting co-

located collaborative work, we used it as the development platform

for a geo-science application for the visualization and analysis of

sonar data. This application was first used during a two-day

meeting of the multidisciplinary team working on the NASA

ENDURANCE project.

The Environmentally Non-Disturbing Under-ice Robotic

Antarctic Explorer (ENDURANCE) is an autonomous underwater

vehicle (AUV) designed to explore the extreme environment of the

perennially ice-covered lakes of the McMurdo dry Valleys,

Antarctica. ENDURANCE operated during two Antarctic summer

seasons (2008 and 2009). The AUV operated depending on 3

distinct science objectives: Water chemistry profiling, Bathymetry

scanning, and glacier exploration [27].

Over the course of the full two-day ENDURANCE meeting, the

research group had to complete multiple tasks: discuss new vehicle

designs for a future mission, analyse mission logs and cross-

reference them to water chemistry readings, and generate a new 3D

map of the lake based on the collected sonar data. As shown in Fig.

5, the team used the display in different configurations during the

meeting. During the initial evaluation of sonar data, the entire

display was dedicated to a 1-to-1 scale, immersive visualization of

the sonar point cloud. This visualization allowed the team to

identify issues in the data, compare depth measurements from

different data sources and iterate through data collected for each

mission. Later in the meeting, the 3D workspace was shrunk to

make space for additional 2D views representing satellite imagery

from Lake Bonney and different versions of the lake bathymetry

represented as a contour map. One of the 2D views was controlled

by an Omegalib script running a VTK pipeline and was linked to

the 3D view. As researchers picked points in the immersive

environment (effectively making ‘virtual measurements’ of the

lake depth at points they deemed relevant), the 2D view would

update, regenerating the contour information to take the new points

into account. A researcher could use the hand-held interaction

device (a tracked game controller) to navigate the 3D view, pick

depth points or rearrange and resize the 2D views by pointing in the

desired direction on the screen. Other users could control the view

arrangement and content from their laptops.

4.1. Other Applications

Another advantage for multiple workspace support is specifically

targeted at application developers. As many other large scale

display environments, HREs like CAVE2 are expensive and offer

limited availability: they are often a highly contended resource,

with multiple application developers scheduling access to the

system to make sure their work does not conflict with others’.

Emulators and smaller system replicas help, but are not a perfect

substitute. For instance, estimating the performance of an

application in an emulated environment is complex, due to the

difference in hardware and display geometry between the two

environments. Thanks to runtime workspace configuration,

multiple developers can use an HRE system concurrently. We

observed this usage pattern multiple times in the CAVE2 system.

Developers join a work session and negotiate display allocation

with others, so that each developer has a section of the display

exclusively available to him/her. Developers then use a command

line switch to start their application on their workspace. Developers

occasionally ask others to control the full display for a brief time,

usually to test a specific feature. Omegalib has also been used to

create ‘classic’ immersive applications, and has been used as a

development platform for smaller hybrid environments like the

OmegaDesk [28], a hybrid 2D/3D work desk with a multitouch

surface. The Omegalib source code is available online1 and the

framework runs on Windows, Linux and OSX. Extensive

documentation is available on a wiki site, and there is a small but

growing community of Omegalib users, evaluating the framework

on new Hybrid Reality Environments, display walls, and classic

CAVE systems. Omegalib is also being used for a graduate-level

Visual Analytics course, as the development platform for class

projects.

5 DIRECTIONS FOR FUTURE WORK

One of the research directions for Omegalib involves improving

the integration with SAGE. In its current version, Omegalib is able

to output 2D views to a SAGE workspace, while 3D views need to

run on a dedicated workspace. The latest version of SAGE can

receive and visualize stereo pixel streams. A challenge to stereo

SAGE views is that the physical properties of the output viewport

Fig. 5. Two photographs taken during a co-located collaborative meeting in CAVE2. On the left, an Omegalib immersive visualization is

running on the full display. On the right, CAVE2 is split into two workspaces to display additional 2D views. Switching between the two modes

can be done at runtime, without resetting running applications.

1https://github.com/uic-evl/omegalib

determine the shape of the off-axis frustum for stereo projection.

Since users in SAGE can freely move and re-size windows, the

Omegalib runtime needs to be notified of such changes and re-

compute the projection transformations accordingly. Another

challenge is related to rendering resource management for SAGE

views: on a cluster-based HRE, multiple applications are running

on (possibly overlapping) node subsets, and each application may

want to send one or more secondary views to the SAGE workspace.

We want to identify what nodes are responsible for rendering each

secondary view for each application. An optimal allocation policy

needs to take into account view size, node loads and possibly

priority based on user interaction. We plan to extend the Omegalib

application controller to support research in these directions.

REFERENCES

[1] C. Cruz-Neira, J. Leigh, M. Papka, C. Barnes, S. M. Cohen, S. Das,

R. Engelmann, R. Hudson, T. Roy, L. Siegel, C. Vasilakis, T. A.

DeFanti, and D. J. Sandin, “Scientists in wonderland: A report on

visualization applications in the CAVE virtual reality environment,”

in Proceedings of 1993 IEEE Research Properties in Virtual Reality

Symposium, 1993, pp. 59–66.

[2] C. Andrews, A. Endert, and C. North, “Space to think: large high-

resolution displays for sensemaking,” Proceedings of the 28th

international conference on Human factors in computing systems,

2010.

[3] T. a. DeFanti, D. Acevedo, R. a. Ainsworth, M. D. Brown, S. Cutchin,

G. Dawe, K.-U. Doerr, A. Johnson, C. Knox, R. Kooima, F. Kuester,

J. Leigh, L. Long, P. Otto, V. Petrovic, K. Ponto, A. Prudhomme, R.

Rao, L. Renambot, D. J. Sandin, J. P. Schulze, L. Smarr, M.

Srinivasan, P. Weber, and G. Wickham, “The future of the CAVE,”

Central European Journal of Engineering, vol. 1, no. 1, pp. 16–37,

Nov. 2010.

[4] T. A. DeFanti, J. Leigh, L. Renambot, B. Jeong, A. Verlo, L. Long,

M. Brown, D. J. Sandin, V. Vishwanath, Q. Liu, M. J. Katz, P.

Papadopoulos, J. P. Keefe, G. R. Hidley, G. L. Dawe, I. Kaufman, B.

Glogowski, K.-U. Doerr, R. Singh, J. Girado, J. P. Schulze, F. Kuester,

and L. Smarr, “The OptIPortal, a scalable visualization, storage, and

computing interface device for the OptiPuter,” Future Generation

Computer Systems, vol. 25, no. 2, pp. 114–123, Feb. 2009.

[5] A. Febretti, A. Nishimoto, T. Thigpen, J. Talandis, L. Long, J. D.

Pirtle, T. Peterka, A. Verlo, M. D. Brown, D. Plepys, D. Sandin, L.

Renambot, A. Johnson, and J. Leigh, “CAVE2 : A Hybrid Reality

Environment for Immersive Simulation and Information Analysis,”

1992.

[6] K. Reda, A. Febretti, A. Knoll, J. Aurisano, J. Leigh, A. Johnson, M.

E. Papka, and M. Hereld, “Visualizing Large, Heterogeneous Data in

Hybrid-Reality Environments,” IEEE Computer Graphics and

Applications, vol. 33, no. 4, pp. 38–48, Jul. 2013.

[7] S. Teasley, L. Covi, M. Krishnan, and J. Olson, “How does radical

collocation help a team succeed?,” Proceedings of the 2000 ACM

conference on Computer supported cooperative work, 2000.

[8] D. Angelo, G. Wesche, M. Foursa, M. Bogen, and D. d’Angelo, “The

Benefits of Co-located Collaboration and Immersion on Assembly

Modeling in Virtual Environments,” Advances in Visual Computing,

pp. 478–487, 2008.

[9] R. Jagodic, “Collaborative Interaction And Display Space

Organization In Large High-Resolution Environments,” Ph.D.

Dissertation, 2012.

[10] M. M. P. Nieminen, M. Tyllinen, and M. Runonen, “Digital War

Room for Design,” Lecture Notes in Computer Science, pp. 352–361,

2013.

[11] E. Hutchins and L. Palen, “Constructing meaning from space, gesture,

and speech,” NATO ASI Series F Computer and Systems Sciences,

1997.

[12] R. Wilhelmson, P. Baker, R. Stein, and R. Heiland, “Large Tiled

Display Walls and Applications in Metereology, Oceanography and

Hydrology,” IEEE Computer Graphics And Applications, pp. 12–14.

[13] G. P. Johnson, G. D. Abram, B. Westing, P. Navr’til, and K. Gaither,

“DisplayCluster: An Interactive Visualization Environment for Tiled

Displays,” 2012 IEEE International Conference on Cluster

Computing, no. Figure 1, pp. 239–247, Sep. 2012.

[14] M. Beaudouin-Lafon, “Lessons learned from the wild room, a

multisurface interactive environment,” 23rd French Speaking

Conference on Human-Computer Interaction, 2011.

[15] G. S. Schmidt, O. G. Staadt, M. a. Livingston, R. Ball, and R. May,

“A Survey of Large High-Resolution Display Technologies,

Techniques, and Applications,” IEEE Virtual Reality Conference (VR

2006), pp. 223–236, 2006.

[16] N. F. Polys and D. A. Bowman, “Design and display of enhancing

information in desktop information-rich virtual environments:

challenges and techniques,” Virtual Reality, vol. 8, no. 1, pp. 41–54,

Jun. 2004.

[17] N. Polys and C. North, “Snap2Diverse: coordinating information

visualizations and virtual environments,” SPIE 5295, Visualization

and Data Analysis 2004, 2004.

[18] C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V. Kenyon, and J. C.

Hart, “The CAVE: audio visual experience automatic virtual

environment,” Communications of the ACM, vol. 35, no. 6, pp. 64–

72, Jun. 1992.

[19] W. Sherman, “FreeVR,” 2005.

[20] A. Bierbaum and C. Just, “VR Juggler: A virtual platform for virtual

reality application development,” Virtual Reality, 2001. Proceedings.

IEEE, 2001.

[21] D. Pape, “A hardware-independent virtual reality development

system,” IEEE Computer Graphics and Applications, vol. 16, no. 4,

pp. 44–47, Jul. 1996.

[22] J. Schulze, A. Prudhomme, P. Weber, and T. A. Defanti, “CalVR: an

advanced open source virtual reality software framework,” SPIE 8649

The Engineering Reality of Virtual Reality, 2013.

[23] K.-U. Doerr and F. Kuester, “CGLX: a scalable, high-performance

visualization framework for networked display environments.,” IEEE

transactions on visualization and computer graphics, vol. 17, no. 3, pp.

320–32, Mar. 2011.

[24] L. Renambot, A. Rao, and R. Singh, “SAGE: the scalable adaptive

graphics environment,” Proceedings of WACE, vol. 9, no. 23, 2004.

[25] S. Eilemann, “Equalizer: A scalable parallel rendering framework,”

IEEE transactions on visualization and computer graphics, vol. 15,

2009.

[26] T. Holtkämper, S. Scholz, A. Dressler, M. Bogen, and A. Manfred,

“Co-located collaborative use of virtual environments,” Proceedings

AAPG Annual Convention and Exhibition., pp. 1–6, 2007.

[27] K. Richmond, A. Febretti, S. Gulati, C. Flesher, B. P. Hogan, A.

Murarka, G. Kuhlman, M. Sridharan, A. Johnson, W. C. Stone, J.

Priscu, P. Doran, C. Lane, D. Valle, C. Science, S. M. St, L. J. Hall,

and W. T. S. Chicago, “Sub-Ice Exploration of an antarctic lake:

results from the Endurance Project,” in 17th International Symposium

on Unmanned Untethered Submersible Technology (UUST11), 2011.

[28] A. Febretti, V. Mateevitsi, D. Chau, A. Nishimoto, B. McGinnis, J.

Misterka, A. Johnson, and J. Leigh, “The OmegaDesk: towards a

hybrid 2D and 3D work desk,” Advances in Visual Computing, pp.

13–23, 2011.

