
Copyright © 2006 by the Association for Computing Machinery, Inc.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for commercial advantage and that copies bear this notice and the full citation on the

first page. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on

servers, or to redistribute to lists, requires prior specific permission and/or a fee.

Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail

permissions@acm.org.

VRCIA 2006, Hong Kong, 14–17 June 2006.

© 2006 ACM 1-59593-324-7/06/0006 $5.00

Point-based VR Visualization for Large-scale Mesh Datasets by
Real-time Remote Computation

Jinghua Ge, Daniel J. Sandin, Andrew Johnson, Tom Peterka, Robert Kooima, Javier I. Girado, Thomas A. DeFanti

Electronic Visualization Laboratory

University of Illinois at Chicago
jinghua@evl.uic.edu

Figure 1: Point-based view construction of experimental datasets

Abstract

High speed interactive visualization of large-scale mesh datasets
for desktop VR facilities is still a challenge because of the slow
geometry setup and rasterization for huge number of small
triangles. This paper presents a point-based virtual reality (VR)
visualization pipeline for large-scale mesh datasets in a client-
server architecture. Remote server computation which samples the
triangle mesh into discrete 2D grids is steered by the client-end
interactive frustum request. A point-based geometry is built up
incrementally during run time for both server and client. By
organizing the point model into a multi-resolution octree-based
space partition hierarchy, the client-end visualization ensures fast
view reconstruction by splatting the available points onto the
screen with efficient occlusion culling and view-dependent level
of detail (LOD) control. The combination of the high-priority
client side local splatting and server side low-speed view updating
decreases the dependence on remote computation performance
and network requirements for an interactive VR visualization.

Keywords: remote computation, point splatting, occlusion culling,
view-dependent LOD, view reconstruction.

I. Introduction

VR systems with head-tracking that provide a stereo or auto-
stereo visualization experience to interactive end users require fast
view-construction speed, at least 15 frames per second (fps) for
each eye. Current scientific visualizations usually contain
hundreds of millions of primitives, with gigabytes of texture
information. Typical rendering software cannot fulfill VR
performance requirements because of memory and processor
limitations. To address this problem, a 3D Point sample Packing

and Visualization Engine (PPVE) with remote computation is
presented. The PPVE system operates in a client-server
architecture, with a server side process performing point sampling
of the original dataset, and a client side process generating fast
local point splatting for view reconstruction. The point splatting
technique is first introduced in [Westover90] by representing a 3D
point as a 2D footprint in view reconstruction. In PPVE, a most-
recent point-based partial geometry is dynamically built up during
run time based on client’s navigation path. The server and client
processes are loosely linked, so the server’s process frame rate
entirely depends on its computation performance while the
client’s view reconstruction frame rate is determined by its local
point splatting speed. The server’s computation is steered by
client interaction and the result is sent to the client over a high-
speed network for new view updating. For the client, each view
update frame adds more useful point samples into its cached point
geometry, thus providing a more accurate view reconstruction.

Since the PPVE server is completely steered by the client’s
navigation in real-time, the application needs no pre-processing
for geometry simplification and texture segmentation, and only
the visible part of the original dataset needs to be retrieved and
sampled. Other graphics techniques such as occlusion culling and
view-dependent LOD control are used to ensure fast and smooth
view reconstruction at the client side. Figure 2 shows the
workflow of the PPVE application.

Figure 2: workflow of a PPVE system

43

The following section describes related work in the field of large-
scale dataset visualization. Section 3 outlines the architecture of
the PPVE framework. Section 4 explains the demand-driven
perspective point sampling techniques. Section 5 elaborates on the
multi-resolution point model organization and local point splatting.
Results are given in Section 6, and the paper concludes with some
remarks on future activities.

2. Related work

Local real-time visualization of large-scale datasets must typically
address two key problems: view-dependent adaptation of the
model resolution, and efficient occlusion culling [Funkhouser93].
These methods usually involve long preprocessing time to build
multi-resolution geometry and texture hierarchies with space
partitioning. Out-of-core memory loading algorithms are also
critical [Borgeat05]. In the case of remote data resources, the
entire dataset may need to be downloaded in advance.

Grid-based visualization [Shalf03] techniques are developed to
enable the visualization of scientific data using remotely available
high-end visualization architectures from any internet-connected
desktop computer. The parallel servers provide some combination
of 2D images, triangulated surfaces, and 3D subvolumes on
demand to every visualization frame of the interactive client. The
client uses modern programmable graphics hardware to provide
combined geometry and volume rendering displays [Engel00a,
Engel00b]. In these techniques, real-time interaction fully
depends on server computation performance, network bandwidth
and latency, and load balance. Special algorithms are used to
address these problems [Bowman04, Xiong05]. Moreover, the
client is limited by memory and CPU performance for viewing
and interacting with the data.

Recently, point based rendering (PBR) techniques have been
used to represent complex objects in a manner that avoids the
large rendering time and computational costs of polygons. Using
points as a modeling and display primitive has certain advantages
such as compact model representation, straightforward
simplification mechanism, and freedom from texture mapping
[Gross01]. Point based rendering is now used widely in very
complex scene rendering where each polygon may only occupy
less than one pixel [Rusikiewicz00], and in volume rendering.
[Zwicher01b]. When point based rendering is used to visualize
large-scale mesh dataset, current PBR techniques usually need to
have a complete point geometry representation of the original
mesh in advance with detailed point sample information such as
sample density and shape. Some applications [Dachsbacher03]
assume uniform point sampling.

In PPVE, we present a real-time point sampling and splatting
algorithm for large-scale triangle meshes in a client-server
architecture. In the application environment, the client is a head-
tracked autostereoscopic VR desktop, and the server is a single
Linux computer connected by the CAVEwave [CAVEwave]
gigabit network. When visualizing large-scale scientific datasets,
the client can achieve at least 15 fps for real-time autostereo
drawing, while the server rendering rate may be only 1 fps. The
PPVE method uses a loosely linked client-server computation
architecture, whereby the client caches a point model for local
splatting in high speed, while new view updates from the server
can be much slower. PPVE enables fast VR view reconstruction
and decreases the dependence on server computation performance

and on network bandwidth and latency for real-time interaction.
PPVE essentially de-couples client performance from server and
network constraints.

3. Functional framework

Figure 3 is a diagram showing the functional framework of the
PPVE system. The framework includes a remote computation
center (server) and a VR desktop (client). The server and client
can be connected by a local area network or high-speed internet,
depending on the location of the data source.

Both server and client processes are multi-threaded so that the
functional modules, such as data communication, server-end point
sampling and client-end point splatting can be running
concurrently, taking advantage of multi-processors if applicable.

Given a frustum request, server side computation includes
sampling the visible part of the original mesh into the discrete 2D
grids of proper resolution and eliminating the redundant sampling
before transmitting the new view to client. Client’s main purpose
is to splat visible 3D points which are stored in the geometry
cache into seamless 2D views. Also for each new view update,
client will extract multi-resolution 3D points from the sampled
view and pack them into the geometry cache.

To keep the most-recent point model in both server and client’s
main memory, obsolete points will be deleted the same time as
new points are added. Obsolete point deletion is originated by
client and needs to be synchronized between server and client to
ensure correct redundancy elimination.

Networking between the server and client provides data
communication, such as view-frustum demanding, map
transmitting and obsolete data notification.

In Sections 4 and 5, each functional module of the server-end and
client-end processes will be discussed in detail.

Figure 3: Framework of a PPVE system

4. Server: remote computation

The remote server waits for frustum demand from the client and
accordingly provides a discrete sampling at a proper resolution of

New view
update

Redundancy elimination

Multi-resolution point packing

Local point splatting
Client side:

Head Tracking

Server side:
Frustum demand

Interactive
steering

Build reference map Point sampling

Point packing and deletion Map compression

Obsolete data
identification

Occlusion culling and LOD control

Obsolete
data

deletion

Map decompression + decimation

Point usage

44

the original continuous triangle mesh. Server also keeps a
compact packing of the previous samplings for redundancy
elimination’s purpose. Obsolete sample deletion which can
prevent memory over-use should be synchronized between the
server and client for correct redundancy elimination.

4.1. Point sampling

The server has direct access to the dataset and provides point
sampling of the dataset in response to the client’s interaction.
Some point sampling techniques [Grossman98] assume uniform
point distribution by sampling orthographic views on an
equilateral triangle lattice. In our point-based visualization
pipeline, the server usually performs perspective sampling
according to the client’s perspective viewing demand. Perspective
sampling causes non-uniform point distribution and irregular
surface coverage. The output point samples from the server
computation are of multiple resolutions by nature.

For each frustum demand, the server samples the visible part of
the dataset in perspective by projecting it onto discrete 2D grids of
color map and depth map. The color map and depth map are
collectively henceforth termed “depth-image”. The depth image-
based representations (DIBR) as a new family of 3D geometry
representation [Ignatenko03] have been adopted into MPEG-4
Part16: Animation Framework eXtension (AFX).

4.2. Redundancy elimination

To maintain point geometry compactness, repetitive sampling
needs to be deleted among multiple sampling frames. A pixel in a
depth-image becomes redundant when the 3D geometry it
represents gets a higher resolution sampling in another depth-
image. Obviously a complete redundancy elimination within one
depth-image is related to all the sampling frames of an
overlapping 3D geometry coverage. As a real-time point packing
and visualization pipeline, data deletion of an existing point
packing can break the integrity of the current packing and involve
complicated data identification scheme. For simplicity, an
approximate redundancy elimination algorithm is applied in the
current PPVE framework by only deleting redundant pixels in
current sampling maps. This simple redundancy elimination
algorithm is introduced below:

First, build reference maps by rendering the available point
samples without splatting.
Assume there exists a current depth map Z and reference depth
map refZ.
for every pixel i in Z and refZ
{
 if (Z(i) < refZ(i) – ε) keep pixel i in current sampling maps
 else discard pixel i in current sampling maps
}

Here ε is a small threshold to remedy the possible difference of
depth maps sampled from triangle meshes and previously
extracted 3D points.

This algorithm is very simple because it only needs one map
comparison operation per pixel. Also it ensures data integrity after
data is actually packed, because it only deletes redundancy in the
current sampling map. The tradeoff is its inability to delete
previous low resolution data. In the case of previous samplings in

low resolution and a current sampling in high resolution, instead
of deleting the redundant low resolution data in the old data
packing, some new high resolution data is deleted. The resulting
problems in the client-end splatting process and an approximate
solution will be discussed in Section 5.

Figure 4 is an example of new color map, reference color map and
non-redundant color map for one server-sampling frame. From
the maps we can see that all the pixels in the current sampling
map are deleted if they already appeared in the reference map
with same depth value.

(a) Reference color map

(b) Current sampling color map

(c) Non-redundant color map

Figure 4: Example of color maps before and after the redundancy

elimination.

45

4.3. Map compression and network
requirements

After redundancy elimination, the updated maps (depth-image)
are compressed and sent to the client over the network. A lossless
LZW compression [Nelson89] is used for map compression. For a
depth-image with resolution of 1280*800, the original data size is
about 7MB; compression reduces the size to about 2MB. The
compressed maps are sent to the client using reliable TCP/IP
protocol. Because the server sampling rate is expected to be low,
e.g. one frame per second, the network traffic is small and bursty.

4.4. Point extraction and packing

The server samples the triangle mesh into a depth-image
according to a frustum demand from the client. One 3D point can
be extracted from each valid pixel of the sampled depth-image by
un-projection. The server maintains a most-recent point model as
a record of the previous samplings in order to eliminate
redundancy in a new sampling. A basic 3D point has attributes of
its coordinates and color. An approximate normal could be
calculated from the depth map, but this is not included in the
current implementation. Even though point samples do have
different shapes and sizes, these attributes are not saved for each
point at the current point extraction stage.

Because of the conceptual simplicity of using points as the
modeling primitives, the extracted point samples can be packed
together without topological connection enforcement to form a
compact and photorealistic representation of the original 3D
geometry. The point-based geometry is composed of point
patches and reconstructed incrementally and dynamically during
run time. A point patch is a collection of points extracted from
each server sampling frame after redundancy elimination.
Compared to existing point patches, a new point patch has either
new geometry coverage or higher sampling resolution. The client-
side navigation path determines how the point patches are defined.
The dynamic (real-time) patch definition is different from the pre-
processed geometry segmentation because it is completely view-
dependent and will be different every time the application runs.

Figure 5 shows the composing point patches of a point-based
geometry. Points belonged to the same point patch are signified
by same color. Even though a point patch is extracted from a
uniform sampling grid under a certain viewing transformation and
resolution, its irregular distribution can be seen clearly at different
viewing conditions. The point packing stage incrementally
constructs a point based representation of a continuous triangle
mesh from multiple perspective projections.

For local storage, the point model is partitioned into point clusters
and organized into a level-limited octree, with each leaf node
representing a point cluster inside its bounding box. The original
point patches extracted from every computation frame are
partitioned into mosaics to fit into the octree leaf nodes bounding
boxes, and every mosaic has sequential memory storage for fast
data access. For a point cluster, its constituent point patch mosaics
from different server-sampling-frames are linked together. The
octree-based space partition hierarchy of the point geometry
enables fast occlusion culling and efficient data access. Figure 6
shows a space partition of current point geometry.

Figure 5: Point patches of a point-based geometry, signified by

different colors

Figure 6: A space partition of current point geometry

4.5. Obsolete data deletion

The server side obsolete data deletion is steered by the client.
When the client wants to delete some point clusters, the
identification number of the corresponding octree leaf node is sent
to the server over network. An octree leaf node’s identification
number is solely decided by it’s bounding box position relative to
the whole tree. By maintaining the same octree structure as the
client, the server’s obsolete data deletion is assured to be
synchronized with the client. Once a point cluster is marked to be
deleted, all of its point patch mosaics are to be deleted.

5. Client: VR visualization

The purpose of client-end visualization is to achieve fast and
seamless 2D view reconstruction from the irregularly distributed
point samples. To serve this purpose, the client side software
introduces its own data updating and point splatting techniques.
The data updating techniques include multi-resolution point
generation from existing samples, point clustering in the level-
limited octree structure, and obsolete data deletion. The point
splatting algorithm assigns a proper splat size for each point
sample in a view-dependent manner to get a view-reconstruction
as seamless as possible.

5.1. Map decompression and decimation

46

At the client side, a data receiving thread is always waiting for
incoming data from the remote server. After a non-redundant
depth-image is received, it is decompressed first and 3D points are
extracted from those maps. To get multi-resolution point samples,
the depth-image can be decimated.

There are two ways to decimate a depth-image:
• Re-render the originally extracted 3D points in the same

frustum but with smaller viewport. Decimated maps with
arbitrary resolution can be produced in this way.

• Decimate the maps directly: use a linear filter for the color
map re-sampling and a minimum point filter for the depth
map re-sampling.

The direct decimation technique is used in current implementation.

5.2. Multi-resolution point packing

At the client side, the most-recent point model is organized into
the same octree structure as the server side, except that from each
view-sampling-frame we now get a set of multi-resolution point
patches re-sampled by decimation. The multi-resolution point
patches extracted from one view-sampling frame represent the
same data with different level of detail.

Points are clustered based on the octree leave nodes’ bounding
boxes. For one point cluster, each of its composing point patches
has an attribute called pixel range indicating its data resolution.
The term pixel range refers to the projected pixel coverage of a
point cluster’s bounding box under a certain viewing condition.
Pixel range is used as a quantified indication of point sample
resolution for a point patch. Another attribute of a point patch is
the point number it holds. The octree leaf node keeps the record of
memory storage of its point cluster.

Figure7 shows the data structure of an octree leaf node at client
side.

Figure7: data structure of an octree leaf node at client side

5.3. Obsolete data deletion

An obsolete data deletion mechanism is used based on a point
cluster’s most recent access time, so that the point model can

always fit into the client’s main memory. To facilitate the obsolete
data identification, the access time attribute of the chosen point
cluster’s octree leaf node will be updated every view-construction
frame. Below is the obsolete data deletion algorithm:

for every second, search each leaf node of the octree
{
 Assume current time is t and the node’s latest access time is nt
 if (t - nt) > є
 {
 Calculate the current node’s ID number;
 Delete this node’s point cluster storage;
 }
}
Send all deleted node IDs to the server for synchronization.

The threshold є indicates the no-access period beyond which the
points will be considered to be obsolete.

Obsolete data deletion is especially important when dealing with
visualization with data animation or deformation, similar to the
particle system implementations. [Reeves83]

5.4. View reconstruction (Local splatting)

The client side visualization is achieved by splatting the locally
cached point model for interactive view reconstruction. The
quality of view reconstruction depends on the point splatting
algorithms. High quality point splatting techniques such as the
perspective accurate splatting [Zwicher04] use EWA resampling
filter to achieve perspective correct splat shapes, avoiding artifacts
such as holes caused by the affine approximation of the
perspective projection. Instead of using slower high-quality point
splatting, the fastest and simplest point splatting by rendering
GL_POINTS with different point width is currently used in the
PPVE framework due to the critical requirement of visualization
frame rate in VR applications. Our experiments have shown that
the viewing quality is good enough.

The octree-based space partition of the point geometry enables
fast frustum culling, by which the client-end view reconstruction
can efficiently splat only those point clusters inside the current
viewing frustum onto the screen. Back face culling can be used to
further cull invisible point patches inside a chosen point cluster if
each point patch has a normal cone[Shirman 93] attribute.

After a point cluster passes the frustum culling, the desired pixel
range is computed based on its bounding box position and the
current viewpoint and viewing matrices. This desired pixel range
indicates the desired sample resolution for this portion of the
geometry as if it is directly sampled from the original triangle
mesh. Based on the desired sample resolution, one point patch of
the closest resolution will be chosen for each available point
sampling inside the point cluster. After that, a view-dependent
splat-size calculation algorithm is applied to splat the chosen point
samples onto screen with proper point width.

Below is the two-step point splatting algorithm for one point
cluster:

Step 1. For each sampling frame, choose a proper resolution point
patch whose pixel range is the closest to the desired pixel range.

Octree leaf node

Point patches from
sampling frame1

LOD level 0

LOD level 1

LOD level 2

Pixel range

Point number

Point patches from
 sampling frame2

Point patches from
 sampling frame3

47

Step 2. Calculate the splat size of the chosen point patch by
equation (1):

Here the scale factor is used to ensure a 2D view reconstruction is
as seamless as possible by point splatting.

Figure 8 illustrates the view reconstruction algorithm for a point
cluster which contains point samples from four view-sampling
frames. Each view-sampling frame has three point patches of
different resolutions, which are signified by their pixel ranges.
The whole structure is illustrated by a pyramid filled with colored
lines, where each line indicates a point patch and all lines with the
same color are from the same view-sampling frame. The length of
each line indicates the corresponding point patch’s pixel range.
For example, the longest light green line at the bottom of the
pyramid is the originally sampled point patch, and the other two
lines with the same color is the decimated version of the original
point patch. The dashed line simulates the current view-
reconstruction with a desired pixel range. The colored arrow
indicates that, from each view-sampling frame, one point patch
which has the closest pixel range to the desired pixel range value
is chosen and then all the point samples in the chosen point patch
are either minified or magnified to form a new view
reconstruction.

Figure 8: view reconstruction from multi-resolution point patches
for one point cluster. Each colored line in the pyramid indicates a
point patch with a certain resolution. Longer line indicates larger
pixel range or higher resolution. Point patches from different
sampling frames are signified by different colors.

There is one more issue in the view reconstruction process. In
Section 2, the drawback of the redundancy elimination algorithm
was discussed. Using the splat size calculated by equation (1),
sometimes the new view reconstruction will be blurred even if
there are high-resolution data available. This is because low-
resolution sampling may attempt to get point samples with depth
value smaller than or equal to high-resolution sampling, so high-
resolution data will actually be blocked by the depth test stage of
graphics processing. To remedy this problem, the splat size
determination algorithm is revised as following:

Let sp_size = splat size of the point patch with closest pixel range
to the desired pixel range value ;

for each chosen point patch
{
 compute its splat size cu_size;
 if(cu_size > ratio * sp_size) cu_size = sp_size + ε * cu_size;
}

Here ratio > 1, and 0< ε <1. Basically this algorithm means that
when a low-resolution point patch may block out the higher-
resolution data, its splat size should be set as a smaller value.

Furthermore, the viewpoint’s moving velocity can also be
considered in the LOD control algorithm. In this case, the desired
pixel range in equation (1) will be divided by the moving velocity
first for the splat size calculation. The viewpoint’s moving
velocity is computed by the client every frame as the head
tracking position change divided by the passing time.

(a) View reconstruction by splatting available points

(b) View reconstruction after new view update

Figure 9: 2D view reconstruction by point splatting before and

after new view update from remote server.

The view reconstruction by splatting locally cached 3D points
with constant head movement will introduce holes and gaps
because of data incompleteness, and splatting artifacts because of
low data resolution. By replenishing new points every view
updating frame, a better view will be constructed in exchange for
a short waiting period. The interactive VR visualization
experience is expected to be quite smooth if the waiting time for
the new view updating is no more than 2-3 seconds since the user
can still move their head and see the existing splats at about 15fps.

View reconstruction
from available point
patches

Multi-resolution
point patches with
different pixel
range

Desired
pixel range

scale factor * point patch pixel range
 desired pixel range Splat size = (1)

48

Figure 9 shows the 2D view reconstruction by point splatting
before and after a new view update from remote server. In image
(a), the view reconstruction contains holes, gaps and fat splats, but
they will disappear in image (b) after new view update without
any noticeable artifacts.

6. Experiments and results

The experimental server computer is a Linux machine with Intel
Xeon 1.8 GHz CPU, Quadro4 900 XGL graphics card and 2 GB
main memory. The client computer is also a Linux machine with
dual 64 bit AMD Opteron 246 2 GHz processors, Quadro FX
4400 graphics card and 4 GB main memory.

The client computer drives a VarrierTM autostereo VR display. To
achieve the autostereo effect, a virtual linescreen and the
visualization scene need to be drawn twice (once for each eye) in
every frame. [Sandin05]

The server sampling is at 1280*800 resolution, and the client
visualization is at 2560*1600 resolution. The client and server
resolutions are independent; they do not need to be integral
multiples of each other nor have the same aspect ratio.

Table 1 lists the description of the experimental datasets and
results. All datasets are non-transparent surface triangle meshes.

Figure 1 at the start of this paper shows the client-side point-based
view reconstruction of those datasets.

Dataset Size
(triangles)

Avg. server
sampling
rate

Avg. client
visualization
rate

Crater lake 5M 1 fps 17 fps
Skull 0.45M 12 fps 20 fps
Bone, skin,
head together

1.2 M 4 fps 18 fps

Table 1: dataset description and experimental results

The overall performance of the client-end view reconstruction is
more than 15 fps, independent of the original dataset complexity.
Although the above experiments only show the visualization
results of triangle mesh surfaces, the server computation is not
limited to the traditional rendering of triangle meshes. Ray tracing
computation and volume sampling can also be accommodated in
the PPVE framework.

7. Conclusion and future work

The combination of the server-sampling and client-splatting
techniques makes smooth interactive VR visualization of large
datasets possible. Transparency handling is still a challenge, since
correct point sampling of a transparent dataset is not a
straightforward task.

The average server computation time per frame is expected to be
no more than 2-3 seconds for a reasonable view update rate in
client visualization. So, for scientific dataset sizes on the order of
terabits, the server computation itself requires accelerations which
are not covered in current PPVE framework.

In the next step, the framework is expected to be extended to
support computer cluster-based multi-processor server
computation and client-side tiled display.

GPU-accelerated splatting techniques [Botsch03] will be
implemented later for faster and higher-quality point splatting.
A normal cone attribute will be added to every point patch in a
point cluster, making efficient backface culling and client side
lighting possible.

Finally, a more sophisticated algorithm is under design to deal
with dataset transparency and deformation.

8. Acknowledgement

The Electronic Visualization Laboratory (EVL) at the University
of Illinois at Chicago specializes in the design and development of
high-resolution visualization and virtual-reality display systems,
collaboration software for use on multi-gigabit networks, and
advanced networking infrastructure. These projects are made
possible by major funding from the National Science Foundation
(NSF), awards CNS-0115809, CNS-0224306, CNS-0420477,
SCI-9980480, SCI-0229642, SCI-9730202, SCI-0123399, ANI
0129527 and EAR-0218918, as well as the NSF Information
Technology Research (ITR) cooperative agreement (SCI-0225642)
to the University of California San Diego (UCSD) for "The
OptIPuter" and the NSF Partnerships for Advanced
Computational Infrastructure (PACI) cooperative agreement (SCI
9619019) to the National Computational Science Alliance. EVL
also receives funding from the State of Illinois, General Motors
Research, the Office of Naval Research on behalf of the
Technology Research, Education, and Commercialization Center
(TRECC), and Pacific Interface Inc. on behalf of NTT Optical
Network Systems Laboratory in Japan. Varrier and CAVELib are
trademarks of the Board of Trustees of the University of Illinois.

9. References

[Borgeat05] Louis Borgeat, Guy Godin, Francis Blais, Philippe
Massicotte, Christian Lahanier: GoLD: Interactive Display of
Huge Colored and Textured Models, In Proceedings SIGGRAPH
2005, pages 869-877. ACM SIGGRAPH 2005.

[Botsch03] Mario Botsch and Leif Kobbelt. High-quality point-
based rendering on modern GPUs. In Proceedings Pacific
Graphics2003, pages 335–343. IEEE, Computer Society Press,
2003.

[Bowman04] Ian Bowman, John Shalf, Kwan-Liu Ma, and Wes
Bethel, "Performance Modeling for 3D Visualization in a
Heterogeneous Computing Environment" (June 30, 2004).
Lawrence Berkeley National Laboratory. Paper LBNL-56977.

[CAVEwave] CAVEwave™ End-to-End 10 Gbps Wavelength
Inaugurates National LambdaRail, www.evl.uic.edu

[Dachsbacher03] Carsten Dachsbacher, Christian Vogelgsang,
and Marc Stamminger. Sequential point trees. In Proceedings
ACM SIGGRAPH 03, pages 657–662. ACM Press, 2003.

49

[Engel00a] K.Engel, Ove Sommer, T.Ertl: A Framework for
Interactive Hardware-Accelerated Remote 3D-Visualization, Data
Visualization 2000, Springer Computer Science, Pages 67-177,
291

[Engel00b] Engel, K., Hastreiter, P., Tomandl, B., Eberhardt, K.,
Ertl, T. : Combining local and remote visualization techniques for
interactive volume rendering in medical applications. In Proc. of
IEEE Visualization 2000, 449–452.

[Funkhouser93] FUNKHOUSER, T.A., SEQUIN, C.H.: Adaptive
display algorithm for interactive frame rates during visualization
of complex virtual environments. In Proceedings of ACM
SIGGRAPH 93, pages 247-254. ACM SIGGRAPH 1993.

[Gross01] Markus H. Gross. Are points the better graphics
primitives. In Computer Graphics Forum 20(3), 2001. Plenary
Talk Eurographics 2001.

[Grossman98] J.P. Grossman and William J. Dally. Point sample
rendering. In Proceedings Eurographics Rendering Workshop 98,
pages 181–192. Eurographics, 1998.

[Ignatenko03] Alexey Ignatenko, Anton Konushin. A Framework
for Depth Image-Based Modeling and Rendering, 13-th
International Conference on Computer Graphics and Vision
GraphiCon-2003 Moscow, September 5 -10, 2003. Conference
Proceedings, pp.169-172.

[Nelson89] Mark Nelson. LZW Data Compression. Dr. Dobb's
Journal. October, 1989

[Reeves83] W. T. Reeves. Particle systems - a technique for
modeling a class of fuzzy objects. ACM Transactionson Graphics,
2(2):91–108, Apr. 1983.

[Rusinkiewicz00] Szymon Rusinkiewicz and Marc Levoy. Qsplat:
A multiresolution point rendering system for large meshes. In

Proceedings SIGGRAPH 2000, pages 343–352. ACM
SIGGRAPH, 2000.

[Sandin05] D. Sandin, T. Margolis, J. Ge, J. Girado, T. Peterka, T.
DeFanti. “The VarrierTM Autostereoscopic Virtual Reality
Display”, In Proceedings SIGGRAPH 2005, pages 894-903,
SIGGRAPH 2005, July 2005

[Shalf03] John Shalf, E. Wes Bethel: The Grid and Future
Visualization System Architectures. IEEE Computer Graphics and
Applications 23(2): 6-9 (2003)

[Shirman 93] Shirman, L. and Abi-Ezzi, S. “The Cone of Normals
Technique for Fast Processing of Curved Patches,” Proc.
Eurographics, 1993.

[Westover90] L. Westover. Footprint Evaluation for Volume
Rendering. In Computer Graphics, Proceedings of SIGGRAPH
90, pages 367–376. August 1990.

[Xiong05] C.Xiong, J.Leigh, E.He, V.Vishwanath, T.Murata,
L.Renambot, T.DeFanti: LambdaStream – a Data Transport
Protocol for Streaming Network-intensive Applications over
Photonic Networks, Proceedings of The Third International
Workshop on Protocols for Fast Long-Distance Networks, Lyon,
France. February, 2005

[Zwicher01] M. Zwicker, H. Pfister, J.v.Baar, M.Gross, Ewa
volume splatting, IEEE Visualization 2001, pp 29-36, 2001.

[Zwicher04] ZWICKER, M., REN, J., BOTSCH, M.,
DACHSBACHER, C., AND PAULY, M. 2004. Perspective
accurate splatting. In Proceedings of Graphics Interface 2004.
247–254.

50

