
Copyright © 2006 by the Association for Computing Machinery, Inc. 

Permission to make digital or hard copies of part or all of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for commercial advantage and that copies bear this notice and the full citation on the 

first page. Copyrights for components of this work owned by others than ACM must be 

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on 

servers, or to redistribute to lists, requires prior specific permission and/or a fee. 

Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail 

permissions@acm.org. 

VRCIA 2006, Hong Kong, 14–17 June 2006. 

© 2006 ACM 1-59593-324-7/06/0006 $5.00 

Point-based VR Visualization for Large-scale Mesh Datasets by  
Real-time Remote Computation 

 
Jinghua Ge, Daniel J. Sandin, Andrew Johnson, Tom Peterka, Robert Kooima, Javier I. Girado, Thomas A. DeFanti 

 
Electronic Visualization Laboratory 

University of Illinois at Chicago 
jinghua@evl.uic.edu 

 

 
Figure 1: Point-based view construction of experimental datasets 

 
 
Abstract 
 
High speed interactive visualization of large-scale mesh datasets 
for desktop VR facilities is still a challenge because of the slow 
geometry setup and rasterization for huge number of small 
triangles.  This paper presents a point-based virtual reality (VR) 
visualization pipeline for large-scale mesh datasets in a client-
server architecture. Remote server computation which samples the 
triangle mesh into discrete 2D grids is steered by the client-end 
interactive frustum request. A point-based geometry is built up 
incrementally during run time for both server and client. By 
organizing the point model into a multi-resolution octree-based 
space partition hierarchy, the client-end visualization ensures fast 
view reconstruction by splatting the available points onto the 
screen with efficient occlusion culling and view-dependent level 
of detail (LOD) control. The combination of the high-priority 
client side local splatting and server side low-speed view updating 
decreases the dependence on remote computation performance 
and network requirements for an interactive VR visualization.  

Keywords: remote computation, point splatting, occlusion culling, 
view-dependent LOD, view reconstruction. 

 

I. Introduction 
 
VR systems with head-tracking that provide a stereo or auto-
stereo visualization experience to interactive end users require fast 
view-construction speed, at least 15 frames per second (fps) for 
each eye. Current scientific visualizations usually contain 
hundreds of millions of primitives, with gigabytes of texture 
information. Typical rendering software cannot fulfill VR 
performance requirements because of memory and processor 
limitations.  To address this problem, a 3D Point sample Packing  
 
 
 
 
 
 

and Visualization Engine (PPVE) with remote computation is 
presented. The PPVE system operates in a client-server 
architecture, with a server side process performing point sampling 
of the original dataset, and a client side process generating fast 
local point splatting for view reconstruction. The point splatting 
technique is first introduced in [Westover90] by representing a 3D 
point as a 2D footprint in view reconstruction. In PPVE, a most-
recent point-based partial geometry is dynamically built up during 
run time based on client’s navigation path. The server and client 
processes are loosely linked, so the server’s process frame rate 
entirely depends on its computation performance while the 
client’s view reconstruction frame rate is determined by its local 
point splatting speed. The server’s computation is steered by 
client interaction and the result is sent to the client over a high-
speed network for new view updating. For the client, each view 
update frame adds more useful point samples into its cached point 
geometry, thus providing a more accurate view reconstruction.  
 
Since the PPVE server is completely steered by the client’s 
navigation in real-time, the application needs no pre-processing 
for geometry simplification and texture segmentation, and only 
the visible part of the original dataset needs to be retrieved and 
sampled. Other graphics techniques such as occlusion culling and 
view-dependent LOD control are used to ensure fast and smooth 
view reconstruction at the client side. Figure 2 shows the 
workflow of the PPVE application. 
 

 
Figure 2: workflow of a PPVE system 
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The following section describes related work in the field of large-
scale dataset visualization. Section 3 outlines the architecture of 
the PPVE framework. Section 4 explains the demand-driven 
perspective point sampling techniques. Section 5 elaborates on the 
multi-resolution point model organization and local point splatting. 
Results are given in Section 6, and the paper concludes with some 
remarks on future activities. 
 

2.  Related work 
 
Local real-time visualization of large-scale datasets must typically 
address two key problems: view-dependent adaptation of the 
model resolution, and efficient occlusion culling [Funkhouser93]. 
These methods usually involve long preprocessing time to build 
multi-resolution geometry and texture hierarchies with space 
partitioning. Out-of-core memory loading algorithms are also 
critical [Borgeat05]. In the case of remote data resources, the 
entire dataset may need to be downloaded in advance. 
 
Grid-based visualization [Shalf03] techniques are developed to 
enable the visualization of scientific data using remotely available 
high-end visualization architectures from any internet-connected 
desktop computer. The parallel servers provide some combination 
of 2D images, triangulated surfaces, and 3D subvolumes on 
demand to every visualization frame of the interactive client. The 
client uses modern programmable graphics hardware to provide 
combined geometry and volume rendering displays [Engel00a, 
Engel00b]. In these techniques, real-time interaction fully 
depends on server computation performance, network bandwidth 
and latency, and load balance. Special algorithms are used to 
address these problems [Bowman04, Xiong05]. Moreover, the 
client is limited by memory and CPU performance for viewing 
and interacting with the data. 
 
Recently, point based rendering (PBR) techniques have  been 
used to represent complex objects in a manner that avoids the 
large rendering time and computational costs of polygons. Using 
points as a modeling and display primitive has certain advantages 
such as compact model representation, straightforward 
simplification mechanism, and freedom from texture mapping 
[Gross01]. Point based rendering is now used widely in very 
complex scene rendering where each polygon may only occupy 
less than one pixel [Rusikiewicz00], and in volume rendering. 
[Zwicher01b]. When point based rendering is used to visualize 
large-scale mesh dataset, current PBR techniques usually need to 
have a complete point geometry representation of the original 
mesh in advance with detailed point sample information such as 
sample density and shape. Some applications [Dachsbacher03] 
assume uniform point sampling.  
 
In PPVE, we present a real-time point sampling and splatting 
algorithm for large-scale triangle meshes in a client-server 
architecture. In the application environment, the client is a head-
tracked autostereoscopic VR desktop, and the server is a single 
Linux computer connected by the CAVEwave [CAVEwave] 
gigabit network. When visualizing large-scale scientific datasets, 
the client can achieve at least 15 fps for real-time autostereo 
drawing, while the server rendering rate may be only 1 fps. The 
PPVE method uses a loosely linked client-server computation 
architecture, whereby the client caches a point model for local 
splatting in high speed, while new view updates from the server 
can be much slower. PPVE enables fast VR view reconstruction 
and decreases the dependence on server computation performance 

and on network bandwidth and latency for real-time interaction. 
PPVE essentially de-couples client performance from server and 
network constraints. 

 

3. Functional framework 
 
Figure 3 is a diagram showing the functional framework of the 
PPVE system. The framework includes a remote computation 
center (server) and a VR desktop (client). The server and client 
can be connected by a local area network or high-speed internet, 
depending on the location of the data source.  
 
Both server and client processes are multi-threaded so that the 
functional modules, such as data communication, server-end point 
sampling and client-end point splatting can be running 
concurrently, taking advantage of multi-processors if applicable.  
 
Given a frustum request, server side computation includes 
sampling the visible part of the original mesh into the discrete 2D 
grids of proper resolution and eliminating the redundant sampling 
before transmitting the new view to client. Client’s main purpose 
is to splat visible 3D points which are stored in the geometry 
cache into seamless 2D views. Also for each new view update, 
client will extract multi-resolution 3D points from the sampled 
view and pack them into the geometry cache.  
 
To keep the most-recent point model in both server and client’s 
main memory, obsolete points will be deleted the same time as 
new points are added. Obsolete point deletion is originated by 
client and needs to be synchronized between server and client to 
ensure correct redundancy elimination. 
 
Networking between the server and client provides data 
communication, such as view-frustum demanding, map 
transmitting and obsolete data notification.  
 
In Sections 4 and 5, each functional module of the server-end and 
client-end processes will be discussed in detail. 
 

 
Figure 3: Framework of a PPVE system 

 
 

4.  Server: remote computation 
 
The remote server waits for frustum demand from the client and 
accordingly provides a discrete sampling at a proper resolution of 
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the original continuous triangle mesh. Server also keeps a 
compact packing of the previous samplings for redundancy 
elimination’s purpose. Obsolete sample deletion which can 
prevent memory over-use  should be synchronized between the 
server and client for correct redundancy elimination.  

4.1.  Point sampling 
 
The server has direct access to the dataset and provides point 
sampling of the dataset in response to the client’s interaction. 
Some point sampling techniques [Grossman98] assume uniform 
point distribution by sampling orthographic views on an 
equilateral triangle lattice. In our point-based visualization 
pipeline,  the server usually performs perspective sampling 
according to the client’s perspective viewing demand. Perspective 
sampling causes non-uniform point distribution and irregular 
surface coverage. The output point samples from the server 
computation are of multiple resolutions by nature. 
 
For each frustum demand, the server samples the visible part of 
the dataset in perspective by projecting it onto discrete 2D grids of 
color map and depth map. The color map and depth map are 
collectively henceforth termed “depth-image”. The depth image-
based representations (DIBR) as a new family of 3D geometry 
representation [Ignatenko03] have been adopted into MPEG-4 
Part16: Animation Framework eXtension (AFX).  
 

4.2.  Redundancy elimination 
 
To maintain point geometry compactness, repetitive sampling 
needs to be deleted among multiple sampling frames. A pixel in a 
depth-image becomes redundant when the 3D geometry it 
represents gets a higher resolution sampling in another depth-
image. Obviously a complete redundancy elimination within one 
depth-image is related to all the sampling frames of an 
overlapping 3D geometry coverage.  As a real-time point packing 
and visualization pipeline, data deletion of  an existing point 
packing can break the integrity of the current packing and involve 
complicated data identification scheme. For simplicity, an 
approximate redundancy elimination algorithm is applied in the 
current PPVE framework by only deleting redundant pixels in 
current sampling maps. This simple redundancy elimination 
algorithm is introduced below:  
 
First, build reference maps by rendering the available point 
samples without splatting. 
Assume there exists a current depth map Z and reference depth 
map refZ.  
for every pixel i in Z and refZ 
{ 
    if ( Z(i) < refZ(i) – ε ) keep pixel i in current sampling maps 
    else discard pixel i in current sampling maps 
} 
 
Here ε is a small threshold to remedy the possible difference of 
depth maps sampled from triangle meshes and previously 
extracted 3D points.  
 
This algorithm is very simple because it only needs one map 
comparison operation per pixel. Also it ensures data integrity after 
data is actually packed, because it only deletes redundancy in the 
current sampling map. The tradeoff is its inability to delete 
previous low resolution data. In the case of previous samplings in 

low resolution and a current sampling in high resolution, instead 
of deleting the redundant low resolution data in the old data 
packing, some new high resolution data is deleted. The resulting 
problems in the client-end splatting process and an approximate 
solution will be discussed in Section 5. 
  
Figure 4 is an example of new color map, reference color map and 
non-redundant color map for one server-sampling frame.  From 
the maps we can see that all the pixels in the current sampling 
map are deleted if they already appeared in the reference map 
with same depth value. 
 

 
(a) Reference color map 

 

 
(b) Current sampling color map 

 

 
(c) Non-redundant color map 

 
Figure 4: Example of color maps before and after the redundancy  

elimination. 
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4.3. Map compression and network 
requirements 

 
After redundancy elimination, the updated maps (depth-image) 
are compressed and sent to the client over the network. A lossless 
LZW compression [Nelson89] is used for map compression. For a 
depth-image with resolution of 1280*800, the original data size is 
about 7MB; compression reduces the size to about 2MB. The 
compressed maps are sent to the client using reliable TCP/IP 
protocol. Because the server sampling rate is expected to be low, 
e.g. one frame per second, the network traffic is small and bursty. 
 
4.4.  Point extraction and packing 
 
The server samples the triangle mesh into a depth-image 
according to a frustum demand from the client. One 3D point can 
be extracted from each valid pixel of the sampled depth-image by 
un-projection. The server maintains a most-recent point model as 
a record of the previous samplings in order to eliminate 
redundancy in a new sampling.  A basic 3D point has attributes of 
its coordinates and color. An approximate normal could be 
calculated from the depth map, but this is not included in the 
current implementation. Even though point samples do have 
different shapes and sizes, these attributes are not saved for each 
point at the current point extraction stage.  
 
Because of the conceptual simplicity of using points as the 
modeling primitives, the extracted point samples can be packed 
together without topological connection enforcement to form a 
compact and photorealistic representation of the original 3D 
geometry.  The point-based geometry is composed of point 
patches and reconstructed incrementally and dynamically during 
run time. A point patch is a collection of points extracted from 
each server sampling frame after redundancy elimination. 
Compared to existing point patches, a new point patch has either 
new geometry coverage or higher sampling resolution. The client-
side navigation path determines how the point patches are defined. 
The dynamic (real-time) patch definition is different from the pre-
processed geometry segmentation because it is completely view-
dependent and will be different every time the application runs.  
 
Figure 5 shows the composing point patches of a point-based 
geometry.  Points belonged to the same point patch are signified 
by same color. Even though a point patch is extracted from a 
uniform sampling grid under a certain viewing transformation and 
resolution, its irregular distribution can be seen clearly at different 
viewing conditions. The point packing stage incrementally 
constructs a point based representation of a continuous triangle 
mesh from multiple perspective projections.  
 
For local storage, the point model is partitioned into point clusters 
and organized into a level-limited octree, with each leaf node 
representing a point cluster inside its bounding box.  The original 
point patches extracted from every computation frame are 
partitioned into mosaics to fit into the octree leaf nodes bounding 
boxes, and every mosaic has sequential memory storage for fast 
data access. For a point cluster, its constituent point patch mosaics 
from different server-sampling-frames are linked together. The 
octree-based space partition hierarchy of the point geometry 
enables fast occlusion culling and efficient data access. Figure 6 
shows a space partition of current point geometry. 
 

 
Figure 5: Point patches of a point-based geometry, signified by 

different colors 
 

 
Figure 6: A space partition of current point geometry 

 
 

4.5. Obsolete data deletion 
 
The server side obsolete data deletion is steered by the client. 
When the client wants to delete some point clusters, the 
identification number of the corresponding octree leaf node is sent 
to the server over network. An octree leaf node’s identification 
number is solely decided by it’s bounding box position relative to 
the whole tree. By maintaining  the same octree structure as the 
client, the server’s obsolete data deletion is assured to be 
synchronized with the client. Once a point cluster is marked to be 
deleted, all of its point patch mosaics are to be deleted. 
 

5.  Client: VR visualization 
 
The purpose of client-end visualization is to achieve fast and 
seamless 2D view reconstruction from the irregularly distributed 
point samples. To serve this purpose, the client side software 
introduces its own data updating and point splatting techniques. 
The data updating techniques include multi-resolution point 
generation from existing samples, point clustering in the level-
limited octree structure, and obsolete data deletion. The point 
splatting algorithm assigns a proper splat size for each point 
sample in a view-dependent manner to get a view-reconstruction 
as seamless as possible. 
 
5.1.  Map decompression and decimation 
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At the client side, a data receiving thread is always waiting for 
incoming data from the remote server. After a non-redundant 
depth-image is received, it is decompressed first and 3D points are 
extracted from those maps. To get multi-resolution point samples, 
the depth-image can be decimated.  
 
There are two ways to decimate a depth-image: 
• Re-render the originally extracted 3D points in the same 

frustum but with smaller viewport. Decimated maps with 
arbitrary resolution can be produced in this way. 

• Decimate the maps directly: use a linear filter for the color 
map re-sampling and a minimum point filter for the depth 
map re-sampling.  

 
The direct decimation technique is used in current implementation. 

 

5.2.  Multi-resolution point packing 
 
At the client side, the most-recent point model is organized into 
the same octree structure as the server side, except that from each 
view-sampling-frame we now get a set of multi-resolution point 
patches re-sampled by decimation. The multi-resolution point 
patches extracted from one view-sampling frame represent the 
same data with different level of detail. 
 
Points are clustered based on the octree leave nodes’ bounding 
boxes. For one point cluster, each of its composing point patches 
has an attribute called pixel range indicating its data resolution. 
The term pixel range refers to the projected pixel coverage of a 
point cluster’s bounding box under a certain viewing condition. 
Pixel range is used as a quantified indication of point sample 
resolution for a point patch. Another attribute of a point patch is 
the point number it holds. The octree leaf node keeps the record of 
memory storage of its point cluster. 
 
Figure7 shows the data structure of an octree leaf node at client 
side. 

 
Figure7: data structure of an octree leaf node at client side 

 

5.3.  Obsolete data deletion 
 
An obsolete data deletion mechanism is used based on a point 
cluster’s most recent access time, so that the point model can 

always fit into the client’s main memory. To facilitate the obsolete 
data identification, the access time attribute of the chosen point 
cluster’s octree leaf node will be updated every view-construction 
frame. Below is the obsolete data deletion algorithm: 
 
for every second, search each leaf node of the octree 
{ 
      Assume current time is t and the node’s latest access time is nt 
      if (t - nt) > є 
     { 
             Calculate the current node’s ID number; 
             Delete this node’s point cluster storage; 
      } 
} 
Send all deleted node IDs to the server for synchronization. 
 
The threshold є indicates the no-access period beyond which the 
points will be considered to be obsolete. 
 
Obsolete data deletion is especially important when dealing with 
visualization with data animation or deformation, similar to the 
particle system implementations. [Reeves83] 

 

5.4.  View reconstruction (Local splatting) 
 
The client side visualization is achieved by splatting the locally 
cached point model for interactive view reconstruction. The 
quality of view reconstruction depends on the point splatting 
algorithms. High quality point splatting techniques such as the 
perspective accurate splatting [Zwicher04] use EWA resampling 
filter to achieve perspective correct splat shapes, avoiding artifacts 
such as holes caused by the affine approximation of the 
perspective projection. Instead of using slower high-quality point 
splatting, the fastest and simplest point splatting by rendering 
GL_POINTS with different point width is currently used in the 
PPVE framework due to the critical requirement of visualization 
frame rate in VR applications. Our experiments have shown that 
the viewing quality is good enough.  
 
The octree-based space partition of the point geometry enables 
fast frustum culling, by which the client-end view reconstruction 
can efficiently splat only those point clusters inside the current 
viewing frustum onto the screen.  Back face culling can be used to 
further cull invisible point patches inside a chosen point cluster if 
each point patch has a normal cone[Shirman 93] attribute.  
 
After a point cluster passes the frustum culling, the desired pixel 
range is computed based on its bounding box position and the 
current viewpoint and viewing matrices.  This desired pixel range 
indicates the desired sample resolution for this portion of the 
geometry as if it is directly sampled from the original triangle 
mesh. Based on the desired sample resolution, one point patch of 
the closest resolution will be chosen for each available point 
sampling inside the point cluster. After that, a view-dependent 
splat-size calculation algorithm is applied to splat the chosen point 
samples onto screen with proper point width.  
 
Below is the two-step point splatting algorithm for one point 
cluster: 
 
Step 1. For each sampling frame, choose a proper resolution point 
patch whose pixel range is the closest to the desired pixel range.   

Octree leaf node  

Point patches from 
sampling frame1 

LOD level 0 

LOD level 1 

LOD level 2 

Pixel range 

Point number 

Point patches from 
 sampling frame2 

Point patches from 
 sampling frame3 

47



Step 2. Calculate the splat size of the chosen point patch by 
equation (1): 
 

 
 
Here the scale factor is used to ensure a 2D view reconstruction is 
as seamless as possible by point splatting. 
 
Figure 8 illustrates the view reconstruction algorithm for a point 
cluster which contains point samples from four view-sampling 
frames. Each view-sampling frame has three point patches of 
different resolutions, which are signified by their pixel ranges. 
The whole structure is illustrated by a pyramid filled with colored 
lines, where each line indicates a point patch and all lines with the 
same color are from the same view-sampling frame. The length of 
each line indicates the corresponding point patch’s pixel range. 
For example, the longest light green line at the bottom of the 
pyramid is the originally sampled point patch, and the other two 
lines  with the same color is the decimated version of the original 
point patch. The dashed line simulates the current view-
reconstruction with a desired pixel range. The colored arrow 
indicates that, from each view-sampling frame, one point patch 
which has the closest pixel range to the desired pixel range value 
is chosen and then all the point samples in the chosen point patch 
are either minified or magnified to form a new view 
reconstruction. 
 
 

 
Figure 8: view reconstruction from multi-resolution point patches 
for one point cluster. Each colored line in the pyramid indicates a 
point patch with a certain resolution. Longer line indicates larger 
pixel range or higher resolution. Point patches from different 
sampling frames  are signified by different colors.  
 
There is one more issue in the view reconstruction process. In 
Section 2, the drawback of the redundancy elimination algorithm 
was discussed.  Using the splat size calculated by equation (1), 
sometimes the new view reconstruction will be blurred even if 
there are high-resolution data available. This is because low-
resolution sampling may attempt to get point samples with depth 
value smaller than or equal to high-resolution sampling, so high-
resolution data will  actually be blocked by the depth test stage of 
graphics processing. To remedy this problem, the splat size 
determination algorithm is revised as following:  
 
Let sp_size = splat size of the point patch with closest pixel range 
to the desired pixel range value ; 

for each chosen point patch 
{ 
    compute its splat size cu_size; 
    if(cu_size > ratio * sp_size) cu_size = sp_size + ε * cu_size; 
} 
 
Here ratio > 1, and 0< ε <1. Basically this algorithm means that 
when a low-resolution point patch may block out the higher-
resolution data, its splat size should be set as a smaller value. 
 
Furthermore, the viewpoint’s moving velocity can also be 
considered in the LOD control algorithm. In this case,  the desired 
pixel range in equation (1) will be divided by the moving velocity 
first for the splat size calculation. The viewpoint’s moving 
velocity is computed by the client every frame as the head 
tracking position change divided by the passing time.  
 

 
(a) View reconstruction by splatting available points 
 

 
(b)    View reconstruction after new view update 

 
Figure 9:  2D view reconstruction by point splatting before and 

after new view update from remote server. 
 
The view reconstruction by splatting locally cached 3D points 
with constant head movement will introduce holes and gaps 
because of data incompleteness, and splatting artifacts because of 
low data resolution. By replenishing new points every view 
updating frame, a better view will be constructed in exchange for 
a short waiting period.  The interactive VR visualization 
experience is expected to be quite smooth if the waiting time for 
the new view updating is no more than 2-3 seconds since the user 
can still move their head and see the existing splats at about 15fps. 
 

View reconstruction 
from available point 
patches 

Multi-resolution 
point patches with 
different pixel 
range 

Desired 
pixel range

scale factor * point patch pixel range 
 desired pixel range  Splat size =            (1)

48



Figure 9 shows the 2D view reconstruction by point splatting 
before and after a new view update from remote server. In image 
(a), the view reconstruction contains holes, gaps and fat splats, but 
they will disappear in image (b) after new view update without 
any noticeable artifacts.        
 

6.  Experiments and results 
 
The experimental server computer is a Linux machine with Intel 
Xeon 1.8 GHz CPU, Quadro4 900 XGL graphics card and 2 GB 
main memory. The client computer is also a Linux machine with 
dual 64 bit AMD Opteron 246 2 GHz processors, Quadro FX 
4400 graphics card and 4 GB main  memory. 
 
The client computer drives a VarrierTM autostereo VR display. To 
achieve the autostereo effect, a virtual linescreen and the 
visualization scene need to be drawn twice (once for each eye) in 
every frame. [Sandin05] 
 
The server sampling is at 1280*800 resolution, and the client 
visualization is at 2560*1600 resolution. The client and server 
resolutions are independent; they do not need to be integral 
multiples of each other nor have the same aspect ratio. 
 
Table 1 lists the description of the experimental datasets and 
results. All datasets are non-transparent surface triangle meshes. 
 
Figure 1 at the start of this paper shows the client-side point-based 
view reconstruction of those datasets.   
 

Dataset Size 
(triangles) 

Avg. server 
sampling 
rate 

Avg. client 
visualization 
rate 

Crater lake 5M 1 fps 17 fps 
Skull 0.45M 12 fps 20 fps 
Bone, skin, 
head together 

1.2 M 4 fps 18 fps 

Table 1: dataset description and experimental results 
 

The overall performance of the client-end view reconstruction is 
more than 15 fps, independent of the original dataset complexity. 
Although the above experiments only show the visualization 
results of triangle mesh surfaces, the server computation is not 
limited to the traditional rendering of triangle meshes. Ray tracing 
computation and volume sampling can also be accommodated in 
the PPVE framework. 
 
7.  Conclusion and future work 
 
The combination of the server-sampling and client-splatting 
techniques makes smooth interactive VR visualization of large 
datasets possible. Transparency handling is still a challenge, since 
correct point sampling of a transparent dataset is not a 
straightforward task. 
 
The average server computation time per frame is expected to be 
no more than 2-3 seconds for a reasonable view update rate in 
client visualization. So, for scientific dataset sizes on the order of 
terabits, the server computation itself requires accelerations which 
are not covered in current PPVE framework.  
 

In the next step, the framework is expected to be extended to 
support computer cluster-based multi-processor server 
computation and client-side tiled display. 
 
GPU-accelerated splatting techniques [Botsch03] will be 
implemented later for faster and higher-quality point splatting.  
A normal cone attribute will be added to every point patch in a 
point cluster, making efficient backface culling and client side 
lighting possible.  
 
Finally, a more sophisticated algorithm is under design to deal 
with dataset transparency and deformation.  
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