“It Went ‘BOING’ !”

by

Andy Johnson

version 1.3

Textbook for

CSC101 - Introduction to Computers
Wayne State University

Detroit Michigan.

Copyright 1990 by Andrew Johnson.

Disclaimer: The author disclaims any damages caused by the use or misuse of in-
formation contained in this text.

Cover art by Gary Thomas Washington.

Lots of thanks to Jason Leigh, who deserves half the credit (or blame) for the ideas
expressed in this text.

I would also like to thank Preston Nevins and Raymond Pelzer for their help in
reviewing this text, and Wayne Brillhart for some of his thoughts that found a home
here.

i

Contents

0.1 Preface e xiii
1 What is a Computer? 1
1.1 Information Age 2
1.2 Personal Computer L 3
1.3 Hardware e 5
1.4 Software e 5
1.5 Personal Computers and You 5
1.6 Questions 6
2 Hardware 7
2.1 Monitor 7
2.2 Speaker 9
2.3 Printer 9
2.3.1 Letter Quality Printers 9
2.3.2 Dot Matrix Printers 9
2.3.3 Ink-jet Printers oo 10
2.3.4 Laser Printers 10
2.3.5 Resolution 11

2.4 Keyboard e 11
2.5 Mouse 12
2.6 Main Unit e 13
2.6.1 Motherboard L 13
2.6.2 CPU e 13
2.6.3 Chip 14
264 Card 15

2.7 Osand Is. o e e 15
2.8 Bits& Bytes 16

i1

v

CONTENTS

29 ROM & RAM o 20
2.10 Floppy Discs o o o o0 21
2.11 Hard Drives e 24
2.12 Modem e 25
213 Backto Byteso 26
214 Variety o o e 26
2.15 Brief History 27
2.16 Comparisono e e e 28
217 Clones o e e e e 30
2.18 Hardware and You 31
2.19 Questionso 32
Software 35
3.1 Programs 35
3.2 Piracy 37
3.3 Public Domain Software 38
3.4 Emulators 39
3.5 Software and You 39
Communicating with the Computer 41
4.1 TJO .o 41
4.2 Command Line Interface 43
4.3 Input Devices L 43
4.4 Graphical User Interface 45
4.5 CompariSon e e 49
4.6 Multitaskingo 49
4.7 BErgonomicso 50
4.8 The Interface and You oL 51
4.9 Questions 51
DOS 53
5.1 Formatting 53
5.2 Files . . o e 54
5.3 Hierarchical File Structure, 56
5.3.1 Directories 56

54 DOS Commands 57
55 DOS and You 58

CONTENTS

6

5.6 Questions oL e

Word Processors

6.1 Typing VS Word Processing
6.2 Features
6.3 Options
6.4 Desktop Publishing 0o oo
6.5 Text Editors e
6.6 Document Processorso
6.7 Comparison e
6.8 Word Processors and You
6.9 Questions

Telecommunications

7.1 Protocol
7.2 BBSs . . .
7.3 BBS Lingo.
7.4 Terminal Program L oo
7.5 Passwords
7.6 Information Services
7.7 O E-Mail ...
7.8 Uploading & Downloading
7.9 Hackers
7.10 Fone Phreaks
T.11 Security oL
T2 VIruses o . o e e e e
713 Worms e e
7.14 Logic Bombs.
7.15 Trojan Horses o e
7.16 Telecommunications and You
717 Questions
Databases

8.1 Terminology e
8.2 Example oL
8.3 Another Exampleo oo

8.4 Query Language L e

60

61
61
62
63
63
65
66
67
67
69

71
71
72
74
74
76
76
77
77
78
79
80
80
81
81
81
82
82

Vi CONTENTS

8.5 Key . o e 91
8.6 Databases and You L oL 91
8.7 Questions 92
9 Spreadsheets 93
9.1 Terminology« . e 93
9.2 Example 94
9.3 Circular Referenceo 95
9.4 Relative Referencing L oo oo 96
9.5 Absolute Referencing Lo o oo 97
9.6 Spreadsheets and You oL 98
9.7 Questions 99
10 Graphics 101
10.1 Painting Programs oL oL 101
10.2 Digitizing 102
10.3 Drawing Programs oo o 104
10.4 Desktop Video. 105
10.5 Rendering Lo 105
10.6 The Making of George 106
10.7 VideoGameso 113
10.8 Graphicsand You oL 114
10.9 Questions 114
11 Hypertext 117
11.1 Hypertext oo 0 0o 117
11.2 Hypermedia 120
11.3 Memex L o 0 121
11.4 Hypertext and You 121
11.5 Questions L 122
12 Programming 123
12.1 Algorithmo 124
12.2 Stepwise Refinement Lo 124
12.3 Portability 129
124 Pascal 130

12.5 Literate Programming L oL 134

CONTENTS vii

12.6 Types of Errors 135
12.7 Programming and You oL 137
12.8 Questions 137
13 Some Pascal 139
13.1 Line by Line 139
13.2 Trace e 144
13.3 Semi-Colons e 144
13.4 Style . . . o o e 146
13.5 Variables 147
13.5.1 Integer oo 148
13.5.2 Real 148
13.5.3 Char e 148
13.5.4 Boolean 149
13.6 Reserved Words 149
13.7 Arithmetic 149
13.8 Write/Writeln 000 L 151
13.9 Some Pascal and You 151
13.10Questions 151
14 More Pascal 153
4.1 IE . o e 154
14.2 If Then Else 156
14.3 Loops . . . o o o o 156
14.3.1 Forloop o 156
14.3.2 Whileloop o 161
14.3.3 Logic o oo 166
14.3.4 Precedence 169
14.4 GOTO e 169
14.5 Procedures 169
14.6 Numbers e 173
14.7 Even More Pascal 174
14.8 Questions 174
15 Programming Languages 175
15.1 Pascal Version 176

15.2 BASIC Version e, 177

viii CONTENTS

15.3 LISP version e, 178
15.4 C Version v v v v e e, 179
15.5 Compiling vs Interpreting Lo L. 180
15.6 Questions 181
16 Neat Stuff 183
16.1 Artificial Intelligence oo oo 184
16.2 Neural Networks 185
16.3 Intelligence Lo 185
16.4 The Future 186
A Other Books 187
B Other Periodicals 189
C Professional Societies 191
D Acronyms 193
E Glossary 197

List of Figures

0.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
217
2.18

3.1
3.2

4.1
4.2
4.3
4.4

Andy Johnson and Jason Leigh Xiv
A Typical Personal Computer 8
Dot Matrix ‘A’ VS Letter Quality “A” 10
Comparison of Printer Types 11
9 DPI 18DPI 36DPI 72DPI 11
IBM-PC(top), and Mac II(bottom) keyboards 12
AChip . . . o 14
ACard . . . oo o 15
Morse Code o 16
ASCIT ..o 17
Conversion e 17
Place Values for Decimal and Binary 19
1 -12 in Decimal and Binary, 19
Types of Memory 21
3&1/27 disc (top view) o Lo o 23
H&1/47 disc (top view) Lo oo 23
Comparison of Computer Types 27
15 Years of Personal Computers 29
Improvements over 15 Years L. 30
Software 36
Ten years of Software oo 38
Interface 42
Input and Output 42
Command Line Interface 43
Graphical User Interface 46

X

4.5
4.6
4.7

5.1
5.2
3.3
5.4
3.5

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3

8.1
8.2
8.3
8.4
8.5

9.1
9.2
9.3
9.4

10.1
10.2
10.3
10.4
10.5
10.6
10.7

LIST OF FIGURES

The Mac’s GUIL 48
The Amiga’s GUL oo oo 48
The Sparcstation’s GUI 49
Tracks and Sectorsonadisc, 54
Formatting a Piece of Paper 55
Without a Hierarchical File Structure 56
With a Hierarchical File Structure 57
Boot Up Screens 59
Typical Word Processor 63
Options e 64
70s memo VS 90s memo e 65
Comparison of Text Manipulation Programs 66
Comparison o e e 68
Telecommunications 72
Terminals 75
Uploading and Downloading 78
Comparison of Data Storage Devices 86
Information in Three Tables 87
Information in One Table 88
Tables for Video Store 89
Database for Video Store 90
Student Grade Spreadsheeto 94
Standard Deviation Needed 97
Standard Deviation Obtained 98
Spreadsheet Functions oL 98
Paint Patterns and Tools, 102
Digitized Image 103
Modified Digitized Image Lo 103
Painted Line VS Drawn Line 104
Ray Traced Desktop 107
Simple George 108

George with Eyeballs 00000000 109

LIST OF FIGURES X1

10.8 Top View Showing the Positions of the Light and Camera 110
10.9 Wireframe Version of George 111
10.10George with Pupils oo oL 111
10.115etting up George’s Attributes oo o oL 112
10.12Ray Traced Version of George 113
10.13Ye Olde Video Game o 114
11.1 Card Catalogue o oo 118
11.2 Text of the Book oo 119
11.3 The Author o 119
12.1 Portability of Pascal to different CPUs 129
12.2 Pascal Program L 134
12.3 Complete Pascal Program 136
13.1 Complete Pascal Program 140
13.2 Complete Pascal Program with Line Numbers 145
13.3 Tracing the Program 146
13.4 Bad Style 147
14.1 Different Statement Orders L. 153
14.2 Complete Pascal Exercise Program 157
14.3 Complete Pascal Exercise Program w/ IF-THEN-ELSE 158
14.4 Simple Hello Program 0L 160
14.5 Better Hello Program L. 160
14.6 Counting from 5 to 10 Program 161
14.7 Counting from 10 to 5 Program 162
14.8 Hello Program Using WHILE Loop 163
14.9 Counting from 5 to 10 using a WHILE Loop 164
14.10Infinite Loop Program Lo L. 165
14.11WHILE Loop Under User Control 166
14.12Rules of Logic o oo 167
14.13Mathematics VS Pascalo oo 167
14.140rder of Precedenceo oL 169
14.15ADDEMUP Pascal Program 171

1416 ADDEMUP Pascal Program with Procedures 172

xii

LIST OF FIGURES

0.1. PREFACE x1il

0.1 Preface

Every ‘real’ textbook has a section called “the Preface.” Of course no one actually
reads the preface except for those people who helped the author while he was writing
it. They read the preface to see if their name is mentioned in the acknowledgements.

Since you took the time to read this, I'll explain why you are holding a course-pak
in your hands and not a ‘real” textbook. To do this we must go back a few years to the
summer of 1989. OK, so that’s not so far back. Dinosaurs didn’t roam freely on the
planet surface then, and Tke wasn’t in the White House, and bell-bottoms weren’t the
fashion of the day ...but its still a few years ago. The summer of 1989 was the first
time that I taught CSC101 at Wayne State University. There were two instructors
for this particular class: Jason Leigh and myself - See Figure 0.1. It was summer and
we were quite bored. We decided to teach this class a little differently. We came up
with a technique which we called ‘stereo teaching.” Basically, we both showed up for
lecture and we both taught the class, though usually not at the same time. This kept
the students awake, kept us awake, and made for some rather entertaining classes.

We quickly found that the students were not satisfied with the textbook and
workbook that we were using. Since we could not find a better one, we gathered our
handouts together and created our own workbook for the Fall Term of 1989. By the
Summer Term of 1990 I compiled our lectures into the first version of this textbook
and made it available to the students. Both books have gone through several revisions
since then as students made comments and suggestions.

CSC101 at Wayne State University serves two purposes. It is the first class in
the Computer Science Curriculum as well as one of the primary was for Liberal Arts
students to satisfy the university’s computer literacy requirement. Students come
into this class, and begin reading this text, knowing nothing about computers. By
the end of the class most are confidently using computers.

Having taken more university classes than I care to remember, and having suffered
through many truly dreadful textbooks; I tried to write this text for the student as

X1V LIST OF FIGURES

Figure 0.1: Andy Johnson and Jason Leigh

well as the instructor. This book ‘sounds’ more like a lecture than it ‘reads’ like a
textbook, and I think you will find it entertaining. I hope you enjoy it.

Chapter 1

What is a Computer?

It went zip when it moved,
and ptht when it stopped,

and whrr when it stood still.
I never knew just what it was,

and I guess I never will.
— Peter, Paul and Mary.

Computers have always enjoyed a certain popularity in the movies. From the
“electronic brains” of the 50’s with the technicians in white lab coats turning dials
and pulling big iron levers, through the blinky-light panels and punch-card readers
of the 60’s that would spark and spew out smoke at the slightest trouble. In the 70’s
theatrical computers moved beyond blinking lights to swirling colour patterns where
technicians wore bell-bottoms and instructed their machines in English. Invariably,
all these machines tried to take over the world and would do very well until the hero
asked them to calculate the value of 7. The computer would then explode in a blaze
of cheap special effects. In real life computers are about as exciting as a toaster, and

1

2 CHAPTER 1. WHAT IS A COMPUTER?

are becoming nearly as common. You don’t need a fancy degree or a white lab coat
to work with one, and they are usually used for much more mundane purposes than
conquering the world. Very simply, a computer is a device used to store, process, and
retrieve information.

A computer is a tool. As human civilization has advanced we have created the
tools that we needed to survive and prosper. As times change, our needs change,
and the tools we require change. New tools are invented, improved, and eventually
discarded. Instead of weaving textiles, or forging metals, we are now manipulating
information.

1.1 Information Age

When computers were first being built during World War Il,there was a belief that
only a handful would be needed around the world. At the time it was true. But
information has become more and more important to our society. We are now in
the midst of the information age - where information itself is an important raw
material to be processed. There is now a vast amount of raw information to sift
through, calculate with, and transform into a finished product. Computers are well
suited to this task.

Today computers are everywhere. Banks use computers to run their ATM ma-
chines. Grocery stores use them to price your food. Wayne State uses them to register
you for classes. Other students are using them to type up term papers and do cal-
culations for their lab reports. Learning to use a computer can make your life as a
student much easier, but taking those initial first steps are difficult. Computers can
be imposing. This class is designed to help you take those first steps and acquire the
skills to use a computer productively.

Computers come in a variety of shapes and sizes, perform a variety of features,
and have a correspondingly wide range in the sticker price. Different computers have
strengths in different areas so there is no such thing as a ‘best’ computer. Unfortu-
nately there are a lot of people out there who earn their living by telling you that
there is a ‘best’ computer, and that their company builds it. The ‘best’ computer
depends on the jobs that you need the machine to perform, how easily you want to
perform them, and the amount of money you are willing to spend. The quality of a
particular machine depends on the person using it. Like automobile manufacturers,
computer manufacturers tend to release different models of their machines depending
on the features the user needs. Ford manufactures automobiles with 2 doors, 3 doors,

1.2. PERSONAL COMPUTER 3

and 4 doors. They manufacture sports cars and delivery vans. So does GM and
Toyota. There is no ‘best’ car, but there can be a ‘best’ car for a given job, and price
range.

1.2 Personal Computer

When we talk about a computer in this class, we will usually be talking about a
Personal Computer. Large businesses and government agencies have been using
computers for 40 years, but it is only within the last decade that the ‘average person’
has gotten access to this powerful tool. It was not until the mid to late 70’s that
the technology became available to the people in boxes with names like the TRS-80
Model I, and the Apple |[. Of course, at the time, people didn’t know what to do
with them. Personal computers were like ham radios - neat for tinkering with, and
a diverting hobby. But now we have entered the 90’s, and personal computers are
becoming as common as microwave ovens and VCRs.

As an undergraduate, most of the computers that you will encounter on campus
are personal computers. A personal computer will sit comfortably on a desk, and is
used by a single person (which is why it’s called a personal computer.) There are
many popular brands of personal computers being produced, and you will find several
different types on campus: IBM-PCs, Apple Macintoshes, and Commodore Amigas
to name a few. While these machines may look slightly different, they all operate on
the same basic principles, and have the same basic parts. Once you have learned to
use one personal computer, you have learned about all computers.

Of course, this may not sound very ‘personal,” and you may not want to get
on intimate terms with a computer. But some of them can be quite friendly and

patient. Douglas Adams came up with the most ‘personal’ personal computer in the
Hitchhiker’s Guide to the Galaxy and described it as:

...a device that looked like a largish electronic calculator. This had
about a hundred tiny flat press buttons and a screen about four inches
square on which any one of a million “pages” could be summoned at a
moment’s notice. It looked insanely complicated, and this was one of the
reasons why the snug plastic cover it fitted into had the words DON’T
PANIC printed on it in large friendly letters.

Now the phrase “Don’t Panic” will be very useful in this class, even though it is
not written in large friendly letters on any of the major computer brands. We are

4 CHAPTER 1. WHAT IS A COMPUTER?

going to cover a lot of material, and you are going to see a lot of new terms. You
may feel rather confused at times (as the student saying goes - “speed kills!”) but
computing has its own language, and you need to know the lingo. A good way to
unconfuse yourself is to sit down and work with a personal computer. Let the words
become objects, and actions in the real world. Reading about how to drive a car is
very confusing until you get out there on the road ...and then it all seems to make
sense . . .either that, or you drive off a bridge. That’s one advantage you have learning
about computers ...the computer labs have a very low mortality rate.

That brings us to a topic that is not often addressed ...fear. We are afraid of
the unknown. We are afraid of doing something wrong. We might get hurt, or even
worse ...we might look foolish. Computers are scary. They sit smugly on the desk
waiting for you to make the slightest mistake. You touch a key and then “whoop
whoop whoop” ...sirens, alarms, bells, and everyone turns around to stare at you.
Then you start babbling like an idiot, trying to explain yourself to the heavily armed
“computer police” as the computer chalks up another victory. Now think about this.
Would a company that builds a computer like that actually stay in business for long?
No. Computer companies do not want to scare off prospective customers. They want
customers that will be happy and feel comfortable with their computer. Would a
computer company build a personal computer that could only be used by college
graduates? No. That would tend to limit sales as well. Would a computer company
build a personal computer that falls apart at the slightest touch? No. That would
tend to decrease customer satisfaction. Would a computer company build a personal
computer that explodes when you touch it? No. That would be very bad for business.
So there really isn’t anything to fear, except perhaps that you will find the machine
so useful that you can’t live without it.

So what really is a computer? Computers are made up of two main parts. One
is hardware - the physical parts of the computer. The other is software - the
instructions that control the hardware. Its customary in texts like this to use a lot
of similes and say “a computer is like this,” and “a computer is like that.” I would
hate to break with tradition at this time, so I will say that a computer is like a stereo
system. A stereo system is made up of components such as a tuner, an amplifier, a CD
player or turntable, a cassette deck, and some speakers. These are hardware. They
are physical. You can touch them. A compact disc and a cassette tape are also pieces
of hardware, and they contain music on them. This music is the software. Without
the software, the hardware can’t do anything productive. Without the hardware,
the software can’t do anything productive. I started out by saying a computer is a
device to store, process, and retrieve information. A stereo system is a device used to

1.3. HARDWARE 3

store, process, and retrieve information in the form of music. A stereo stores music
on cassette tape. It retrieves music from a cassette or CD. It probably has a volume
control, and possibly a graphic equalizer to process the music.

1.3 Hardware

Computers are also made up of different components that are connected together.
I'm sure you’ve seen stereo systems where the amplifier is built in with the tuner, or
the cassette deck. Different brands of stereos look different and have different types
of controls. The same is true of computers. Most modern personal computers have
the following parts: Main Unit, Disc Drive, Monitor, Keyboard, and a Mouse.
The main unit holds the guts of the computer ...its like the amplifier. The disc drive
is used to store information for long periods of time .. .its like the cassette deck. The
monitor is just a fancy name for the thing that looks like a TV screen. It is where
we get the main output from the computer. It is like the speakers. The keyboard
and mouse allow us to give commands to the computer ...the input. They're like
the buttons and dials on the components.

1.4 Software

Computers require software to run. Software supplies the instructions for the com-
puter to follow. The most important piece of software a computer has is called its
operating system. This is software that allows the computer to go about its busi-
ness (it allows the system to operate) and lets it talk to all of its components. The
operating system usually comes with the computer, but you will soon need other soft-
ware. Just like your stereo can be used to play different kinds of music, a computer
can run various different types of software. A Word Processor turns your computer
into a very fancy typewriter. A Spreadsheet turns your computer into a very fancy
calculator. A Database turns your computer into a very fancy rolodex.

1.5 Personal Computers and You

The first popular personal computers of the mid 70’s were very primitive by today’s
standards. These had simple keyboards and black& white screens that could only
display letters or numbers. The software was stored on cassette tapes. These machines

6 CHAPTER 1. WHAT IS A COMPUTER?

were very slow, very expensive, and very hard to operate by today’s standards. Within
the last 15 years personal computers have become much more powerful, much faster,
much easier to use ...and the price has actually stayed about the same. One of the
main reasons for this is that more people have found ways to use personal computers
to help them with their work. Personal computers moved beyond hobbyists and into
the mainstream. They moved out of the basement, put on a dull grey suit, and headed
off into the business world.

The question you need to answer is “Why do I need to learn how to use a personal
computer?” One answer comes from Arno Penzias who wrote in his book Ideas and
Information “Success usually comes to those who apply technology to their best
advantage.” My answer is “Because its interesting, and because its fun.”

1.6 Questions

1. What is the difference between hardware and software?

2. Which of your daily activities are affected by computers?

Chapter 2

Hardware

When you go to sit down in front of a computer, it is a good idea to know what each
of the parts is called. This way you can sound cool if you need to ask for help. It is
much ‘cooler’” and much more helpful to say “my floppy disc will not initialize” rather
than “it doesn’t work.” So we are going to take a look at each of the components of
a computer. Figure 2.1 shows a typical personal computer.

2.1 Monitor

The monitor is the part of a computer that looks like a TV screen. The monitor has
a screen just like a TV does. It is used to display visual information to the user.
Computer monitors usually sit on top of the main unit of the computer, though
most can be positioned wherever the user pleases. Monitors look a lot like TV sets
on the inside as well. All use the same “cathode ray-tube” technology that TVs use.
Like TV sets, monitors tend to get hot so they have ventilation slots on top to let
heat out. Its a good idea to keep these slots clear (i.e., don’t put your papers on top
of the monitor.)

Some monitors are colour and some are monochrome (single coloured.) Monochrome
monitors are usually coloured either green (because that’s how computers are sup-
posed to look) or amber (because people were going blind staring at their green
screens.) RGB monitors are high-grade colour monitors. RGB stands for Red Green
Blue (the three primary colors for light), and the intensity of each color can be set
independently for each pixel on the screen. A pixel is a picture element (or ‘dot’ on
the screen.) Pixels are lit up in patterns to form characters and pictures. If you stare

7

8 CHAPTER 2. HARDWARE

Monitor
Main
Unit —
Disc Drives

A AL Vo8,
A AR LLS yaas;
A AL s~

L Mouse

Keyboard

Figure 2.1: A Typical Personal Computer

real close at the monitor screen (and ruin your eyes) you can see the individual pixels.
A typical computer monitor is 640 pixels wide by 480 pixels tall, meaning there is a
total of 307,200 pixels on the screen. These monitors usually have a resolution of 72
pixels per inch. Some computers allow you to use your TV as a computer monitor,
though the picture is not as sharp as a real monitor since TVs do not have as good
a resolution as monitors do.

Today the monitor is the biggest, heaviest, and most power draining part of a
personal computer system. This should change within five years as low power flat
screen displays become better, and replace the current CRT technology. As the
name suggests, flat screens are flat. They do not use the bulky picture tube of current
televisions, but more exotic technologies such as liquid crystal or gas-plasma displays.
Currently these types of displays are in use with lap-top computers. Monochrome
flat screen displays are now quite cheap, and colour flat screen displays are expensive
but available.

When you were a kid your mother probably yelled at you not to sit so close to the
TV set because it would ruin your eyes. Well, moms are always rather paranoid, but
in this case she might have been right. The electromagnetic emissions from CRTs may
be dangerous. Ever since the mid 70’s this has been debated, and we will probably
not know for sure for several more years. Just to be safe you should sit a discrete
distance away from the monitor. Keeping your head at least 2 - 3 feet away from the

2.2. SPEAKER 9

screen is a good idea.

2.2 Speaker

Since you have video, it seems obvious that you should also have audio. All personal
computers have a built in speaker, and most have multi- voice stereo sound, along
with the ability to play the sound through an amplifier.

2.3 Printer

If you wrote your term paper on a computer, it would be very inconvenient for you to
bring your computer to your Professor so he could read the monitor screen. You may
need to get a hard copy or printout of your work onto paper. A printer is a device
that does this. It prints characters, numbers, or graphics onto paper. Printers do not
come with the computer, but are a necessary addition. There are several different
types of printers available including (in ascending order of spiffiness) letter-quality,
dot-matrix, ink-jet and laser printers. Figure 2.3 gives a summary.

2.3.1 Letter Quality Printers

Letter-Quality printers print just like typewriters do with a special print head for
each character. They print text as well as a typewriter, but can not do graphics or
special characters. While these printers were popular in the early 80’s, their inability
to print graphics or special characters is a very big limitation today. They usually
cost around $150.

2.3.2 Dot Matrix Printers

The most common type of printer is a dot matrix printer. Unlike a typewriter which
has an individual print head for each character, a dot matrix printer has a single print
head made up of a matrix (or array) of pins. Depending on what is to be printed,
different pins are pressed into the ribbon creating a pattern of dots on the paper.
The pins can be set to represent a letter, or print out graphics. Common dot matrix
printers are 144 DPI (dots per inch). This is twice as many as the monitor, but
not enough to give really good output as the individual dots are quite visible. The
difference between dot matrix and letter quality letters is shown in Figure 2.2 Colour

10 CHAPTER 2. HARDWARE

00000O0O0
(OGN NON NONG)
(ONON NONON N0
(ONON NONONON)
(ONON NONON NO)
(ONON NON NON©)
00000O0O0

Figure 2.2: Dot Matrix ‘A’ VS Letter Quality ‘A’

ribbons are now becoming quite popular allowing dot matrix printers to produce
multi-colour printouts. Dot matrix printers are very good for general purpose work,
and are fairly inexpensive - around $300.

2.3.3 Ink-jet Printers

Ink-Jet printers do not have print heads. Instead they direct a stream of ink at the
page. This allows them to print very fine text or graphics. These are typically 200
dots per inch, so they are better than dot matrix printers for general work. They also
cost slightly more - $900.

2.3.4 Laser Printers

Dot-Matrix, letter quality, and ink-jet printers print one line at a time. Laser Printers
are the newest form of printer and they print one page at a time like a xerox machine.
Laser Printers have their own computer on board to direct the laser which “draws”
on a photosensitive drum giving the drum a static charge. Particles from a toner
cartridge are attracted to the drum which is then pressed onto the paper. Technically
they are still dot matrix printers but they have a resolution of 300 dots per inch, so
the characters are almost indistinguishable from letter-quality. Since laser printers
are dot matrix, they can print graphics as well as special characters with extreme
precision. Laser printers are very advanced and so they cost quite a bit - $1500.
Color laser printers can cost $5000.

24. KEYBOARD 11

Printer Type | Text Graphics DPI Cost
Letter-Quality | Y N n/a $150
Dot Matrix Y Y 144 $300
Ink-Jet Y Y 200 $900
Laser Y Y 300 $1500

Figure 2.3: Comparison of Printer Types

Figure 2.4: 9 DPI 18DPI 36DPI 72DPI

2.3.5 Resolution

The quality of both monitors and printers is partially measured in terms of their
resolution. A monitor has a certain number of pixels per inch, and a dot-matrix
printer can print a certain number of dots per inch. To show you how important
resolution is, Figure 2.4 shows the same image viewed with an increasing degree of
resolution.

2.4 Keyboard

The keyboard of a computer looks a lot like the typical “QWERTY” keyboard of
a typewriter, except with a few extra keys around the sides. The keyboard allows
the user to type commands, or a term paper into the computer. Most keyboards are
detachable. Detachable keyboards are connected to the main unit by a cable so you
can pull the keyboard away from the main unit and use it in a more relaxed position.

12 CHAPTER 2. HARDWARE

O
o0
00
DI:I

O

O

O

O

O

O

O

0

O

O

O

0000
0000

Figure 2.5: IBM-PC(top), and Mac II(bottom) keyboards

Larger keyboards as shown in Figure 2.5 come with function keys, arrow keys,
and numeric keypads as well as the standard typewriter keys.

Function keys are aptly named as each of these keys is set so that pressing it
causes some function to be performed, rather than some character to appear. Arrow
keys allow the user to move up, down, left, and right around the screen. Numeric
keypads put the number keys, and keys needed for simple arithmetic into a conve-
nient pattern. Standard typewriter keyboards have the numbers across the top in
a row which is very inconvenient if you need to type in a lot of numbers. Now you
might expect that the numeric keypad arranges the number keys in the most intuitive
pattern. It doesn’t. The phone company found the most intuitive way of placing the
numeric keys, and patented it. This left the computer companies to use the second
most intuitive way of placing the keys.

2.5 Mouse

A mouse looks very little like its mammalian namesake. It doesn’t have a face, or legs,
or fur, but it does have a tail. It looks much more like a bar of soap with one or more
buttons on top, and a ball on the bottom. One assumes that the person who named
the little critter had been working just a little too hard that day. Mice are used for
drawing and making selections from alternatives displayed on the monitor screen, by

2.6. MAIN UNIT 13

moving the beast around and clicking the button(s). The number of buttons on the
top of the mouse varies with the brand of computer. Some mice have one button
(such as the Macintosh,) some have two buttons (such as the Amiga, and the IBM-
PS/2) and some have three buttons (such as the Apollo, and the Sun.) One mouse
has been released with 40 buttons on it. Since mice are relatively new, there has
not been enough research done to really say how many buttons is “best”, so different
companies have chosen to use different numbers of buttons. The question is not likely
to be resolved soon. After all, automobile manufactures still can’t agree where to put
reverse in a manual transmission.

2.6 Main Unit

The monitor, printer, keyboard, and mouse are all attached by cables to the Main
Unit of the computer. This is the expensive box that contains the guts of the machine.
Most importantly, this box contains the CPU, the RAM, and the ROM. Since the
computer does a lot of heavy thinking in here, the main unit gets quite hot. Most
have a fan inside to keep air circulating around the box.

2.6.1 Motherboard

When we open up the main unit (and possibly void the warranty on our machine) we
see one large green printed circuit board with chips, and possibly some cards,
plugged in to it. The main board is called the motherboard. This is where the actual
computing is done by the machine. Looking down on a motherboard one is reminded
of looking down on a small city from an airplane. The chips are arranged in neat
rows, like buildings on grassy streets. Information in the form of electrical impulses
moves through these “streets,” into, and out of the various chips like so many little
delivery vans.

2.6.2 CPU

In the center of our grassy town lies one big important building - the CPU. CPU
stands for “Central Processing Unit.” The CPU is what controls the operation of
the computer. In the 50’s terminology it would have been called the “electronic
brain.” The two most common CPUs today are made by Intel Corp. and Motorolla
Corp. Intel makes CPUs for IBM machines and gives them wonderfully descriptive

14 CHAPTER 2. HARDWARE

Figure 2.6: A Chip

names like 8088 (“eighty eightyeight”), 80286 (“eighty two eightysix”), 80386, and
80486. Motorolla makes CPUs for machines like the Macintosh and gives them equally
memorable names like 68000 (“sixtyeight thousand”), 68020 (“sixtyeight thousand
twenty”), and 63030.

CPUs are rated by how fast they can do their work. There are several ways to
measure the speed of a CPU chip, but most of them are useless since it is not just
the brand of CPU that determines the speed of a computer. However, when you look
at ads for computers they will usually say the computer runs at 8 Mhz or 15 Mhz or
40 Mhz. This is the clock rate of the CPU. The larger the number of Megahertz,
the faster the machine should be able to do its work. Other companies rate their
machines in some number of MIPS, meaning “ Millions of Instructions Per Second.”
A more realistic definition of MIPS is “ Meaningless Indication of Processor Speed.”

2.6.3 Chip

The CPU is a chip. Chip is short for DIP chip, and DIP stands for “Dual In-Line
Package.” These are the things that look like boxy black centipedes. They have a
thin rectangular body, and two rows of legs on their sides (i.e. each chip is a package
with a “dual” set of legs that are “inline.”) This strange insect has a plastic body,
metal legs and silicon innards. The actual guts of the chip is a very small wafer of
silicon, smaller than your fingernail. Something this small is hard to work with, so
the silicon wafer is encased in this large plastic body. The metal legs connect the chip
to the motherboard so electricity can flow into the wafer. A chip is shown in Figure

2.6.

2.7. 0S AND 15 15

Figure 2.7: A Card

2.6.4 Card

Most motherboards have slots in them. These slots allow you to plug cards into the
motherboard. A card is another printed circuit board containing chips which expand
the capabilities of your machine. FExpandability is a good feature to look for in a
computer. By the time you buy a personal computer it is already years out of date.
There is always something new and better coming out, and its nice to be able to plug
some of these new and better things into your machine instead of buying a whole new
computer every six months. A card is shown in Figure 2.7.

2.7 Os and 1s

At this point we need to have a brief but painful discussion as to how computers
actually work. Computers run on electricity. A computer can be thought of as a
large number of switches that are either set to on or off. Because of this, computers
work in this world of 0s (off) and 1s (on). That is all that they know. All the CPU
does is work with these 0s and 1s. Combining strings of 0s and 1s together allows
computers to manipulate a vast amount of information. For example: Morse Code
conveys a lot of information by stringing together 0s and 1s in the form of dots and
dashes as shown in Figure 2.8.

Morse code was designed so the more commonly used letters have fewer 0s and
1s than less frequently used letters so the overall transmission speed is faster. With

16 CHAPTER 2. HARDWARE

a= ®- j= ®--- s= eee
b= -eee k= -e- t= -

c= -e-e0 |= o-00 U= eooo-

= -oe m= -- V= e ee-
e= o n= -e w= - -

f= ee- o= --- Xx— _eoe®-
g= -- o p= e--e y= -e--
h= eeee = --e- z= --e0e
1= ee@ r= °o-90

Figure 2.8: Morse Code

a computer, the number of 0s and 1s for all the typeable characters is 8, so we can
arrange the letters in alphabetical order. One such standard ordering is called ASCII
(“askey.” short for American Standard Code for Information Interchange) Figure 2.9
shows only the lower case letters. The full ASCII table has 128 entries (from 00000000
to 01111111) containing upper-case letters, lower case letters, numbers, punctuation,
and more.

2.8 Bits & Bytes

In a computer, a single 0 or 1 is called a bit. Bit is short for Binary diglT. Like inches,
bits are a little small if we want to measure something large; so we can convert bits
into larger units of measure. A string of 8 bits (such as 01100101) is called 1 byte.
In order to represent a character such as “e” the computer needs 1 byte. When we
measure the length of a paper, we do not count letters. We need larger units of
measure such as words, or pages. A string of 1024 bytes is called 1 kilobyte (which
you would think means 1000 bytes, but computer science people are a little weird so
1 kilobyte is 1024 bytes.) 1024 K (or 1024 x 1024 bytes) is called 1 M (megabyte.) As
the technology improves every year, larger units of measure become commonplace,
and new even-larger units of measure are then needed. Figure 2.10 summarizes.

So lets do a sample conversion. Lets say we want to find out how many bits are
in 20M. Here’s how we do it:

2.8. BITS & BYTES

01100001 j=
01100010 k=
01100011 1=
01100100 m=
01100101 n=
01100110 o=
01100111 p=
01101000 q=
01101001 r=

01101010
01101011
01101100
01101101
01101110
01101111
01110000
01110001
01110010

01110011
01110100
01110101
01110110
01110111
01111000
01111001
01111010

Figure 2.9: ASCII

1 bit = Oorl

8 bits = 1 byte

1024 bytes = 1 K (kilobyte)
1024 K = 1 M (megabyte)
12 inches = 1 foot

3 feet = 1 yard

1760 yards = 1 mile

Figure 2.10: Conversion

17

18 CHAPTER 2. HARDWARE

20M x MR x 10EDUES 5 B0 — 167,772, 160bit s

Now I should briefly say where the number 1024 comes from. Given that we have
ten fingers and ten toes we commonly work with a number system that is base 10
(decimal.) We have the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. If we need to represent a
number larger than 9 we have a problem. We do not have a symbol for ten. To solve
this problem we need to assign a value to each position in the number. The decimal
system has the ones place, then the tens place, then the hundreds place, then the
thousands place, etc. We can then reuse the symbols 0-9. For example:

The decimal number 809 is 8 hundreds and 0 tens and 9 ones, or

8 x 102 +0 x 10" + 9 x 10° =800 + 0 + 9 = 809

Each position is ten times greater than the position immediately to its right, and
ten times less than the position immediately to its left.

Computers only have 0 and 1 so they work with a number system that is base 2
(binary.) In a base 2 system there is no symbol for two. Again we need to assign a
value to each position in the number. Just as the number 10 is very important in our
number system, the number 2 is very important in the computer’s number system.
The binary system has the ones place, then the twos place, then the fours place, then
the eighths place, then the sixteenths place, etc. For example:

The binary number 1011 can be thought of as:
Ix224+0x22+1x2" +1x2°=840+24+1=11

Each position is twice as great as the position immediately to its right, and twice
as small as the position immediately to its left.

Figure 2.11 shows the different places for the decimal and binary number systems:

This explains why humans commonly use numbers like 10, 100, and 1000, while
computers commonly use numbers like 64, 512, and 1024. 1024 is 2'° or 2 multiplied
by itself 10 times (2X2Xx2x2x2x2Xx2x2x2x2.) Now the numbers in Figure 2.11
got rather large. Figure 2.12 shows the numbers 1-12 represented in both decimal
and binary.

Now it is not necessary to remember these numbers beyond the ability to convert
between bits and bytes and K and M, but it is important to realize that computers
do not work with the same number system that we do. Computers do not do math
the same way that we do. In the past, the user of a computer needed to know these

2.8. BITS & BYTES

decimal binary
10° = 1 20 = 1
10 = 10 2! = 2
102 = 100 22 = 4
10° = 1000 22 = 8
10* = 10000 24 = 16
10° = 100000 25 = 32
10° = 1000000 26 = 64
107 = 10000000 27 = 128
10® = 100000000 28 = 256
10° = 1000000000 | 2° = 512
100 10000000000 | 2'° = 1024

Figure 2.11: Place Values for Decimal and Binary

19

decimal

binary

01 =
02 =
03 =
04 =
05 =
06 =
07 =
08 =
09 =
10 =
11 =
12 =

0x 10" +1 x 10°
0x 10" +2 x 10°
0 x 10" 4+ 3 x 10°
0 x 10" +4 x 10°
0 x 10" +5 x 10°
0 x 10" +6 x 10°
0x 10" +7 x 10°
0 x 10" +8 x 10°
0x 10" +9 x 10°
1 x 10" +0 x 10°
1 x 10" +1 x 10°
1 x 10" +2 x 10°

= (0001 =
0010 =
0011 =
0100
0101
0110
0111
1000
1001 =
1010 =
1011 =
= 1100 =

O0Xx24+0x224+0x214+1x2°
O0Xx24+0x224+1x204+0x2°
O0Xx24+0x224+1x204+1x2°
O0x24+1x2240x214+0x2°
O0Xx24+1x2240x204+1x2°
O0x24+1x224+1x204+0x2°
O0x24+1x224+1x204+1x2°
Ix224+0x224+0x2V40x2°
Ix224+0x224+0x2041x2°
Ix224+0x224+1x2040x2°
Ix224+0x224+1x2041x2°
Ix224+1x224+0x2040x2°

Figure 2.12: 1 - 12 in Decimal and Binary

20 CHAPTER 2. HARDWARE

other number systems to operate the computer. Today you can use normal decimal
arithmetic and the computer will worry about doing all the work of translating it to
binary. If you decide to continue with computer science courses there are two MORE
number systems you have to learn - base 8 (octal) and base 16 (hexadecimal.)

2.9 ROM & RAM

Computers have two kinds of memory stored in chips on the motherboard. ROM
stands for Read Only Memory. RAM stands for Random Access Memory (though
you should remember it as Read And write Memory.) ROM is used by the computer
to store things that it doesn’t want to forget ...things like what to do when the
power switch is turned on. ROM contains a lot of very basic information that the
computer needs everyday. As people we have information on tasks like breathing,
and pumping blood that we need every day. It would be very bad if we went to
Math class and by learning 24+2=4 we wrote over the part of our memory that told
us how to pump blood. Similarly, in a computer we don’t want the user to be able
to accidentally destroy important information. The ROM is there only for the use
of the computer. It can only be read from. The RAM, on the other hand, is there
to be used by the user. (In computer jargon, the person who uses the computer is
known as ...the user’) As you type your term paper into the computer, the words are
stored in RAM. The word processing program you are using to write the term paper
is also temporarily stored in RAM giving the computer instructions. RAM can be
modified by the computer. It can be read from or written to. Both types of memory
are measured in bytes. Personal computers today have about 128K of ROM and 1M
of RAM.

There is one big difference between ROM and RAM, and that is what happens
after you turn the power off. The information stored in the ROM chips will still be
there. ROM is involatile. The information on the RAM chips will disappear. RAM
is volatile. The electrical power supplied to the computer keeps the information in
RAM. When that power is cut off, the computer “forgets” everything that was in the
RAM. ROM is like your textbook. Information has been stored in there permanently
by the publisher. You can not alter it. RAM is like the blackboard. A blackboard is
written on, modified ...and eventually the janitor comes in and washes all the chalk
off of it. The blackboard is there for temporary storage while the ideas are being
discussed. The textbook is there for permanent storage.

RAM is also referred to as Primary Storage or Main Memory, since it is

2.10. FLOPPY DISCS 21

ROM read only permanent
RAM (PRIMARY STORAGE) | read/write temporary
SECONDARY STORAGE read/write permanent

Figure 2.13: Types of Memory

the place where the computer does most of its processing. We use our brains as
primary storage, to hold things we are working on and thinking about. You can
think of turning the computer off in the same way that we go to sleep. Some of
the information we had before went to bed is gone ...forgotten. When we wake
up we can still remember basic important things, but we occasionally forget about
appointments or phone numbers. What do we do about this? We write those things
down in a more permanent form on a piece of paper, or in an address book. We use
Secondary Storage. Computers also make use of secondary storage in the form of
disc drives.

So let’s expand our classroom analogy a bit. We have the textbook as ROM
(assume that you are a good boy or girl who does not write in your textbooks so you
can get high resale value.) We have the blackboard as RAM. We have our notebook
as secondary storage. While we are sitting in class we can “read” information from
the textbook, the notebook, or the blackboard. We can “write” information on the
blackboard or in our notebook. Both the textbook and the notebook are permanent
forms of storage. After we leave the classroom we can still “read” information from
the textbook or the notebook. The blackboard is only used for temporary storage,
while we are discussing something. When we leave the class or the board is erased,
we can no longer “read” that information. Now your notebook has a big advantage
over your textbook in that you can erase your old notes, and write new ones in their
place. You can “read” from and “write” to your notebook, where you can only “read”
from your textbook. Figure 2.13 shows the same thing in computer science terms.

2.10 Floppy Discs

When we buy a record album it comes on a compact disc. We put this disc into our
CD Player to listen to it. When we obtain a piece of software, it usually comes on a
floppy disc. Floppy discs come in two popular sizes. They are called 5&1/4” (“Five

22 CHAPTER 2. HARDWARE

and a quarter inch”) and 3&1/2” (“Three and a half inch.”) They are appropriately
named since the 5&1/4” disc is 5&1/4 inches on each side and the 3&1/2” disc is
3&1/2 inches on each side. 5&1/4” floppy discs were the standard in the early 80’s,
but the 3&1/2” became the new standard in the late 80’s since they are smaller, more
durable, and hold MORE information than their 5&1/4” siblings. Figures 2.14 and
2.15 show what they look like.

All personal computers come with at least one built in Floppy Disc Drive (or
Floppy Drive for short.) Usually this drive is built into the main unit so only a small
slot is visible for inserting the disc into. This is an internal drive. You can also buy
floppy drives that sit outside of the main unit. One of these is called an external
drive. As with the floppy discs, the drives come in 5&1/4” and 3&1/2”. You then
go out and buy floppy discs that you can insert into the drive. Computer users often
have hundreds of floppy discs laying around in shoeboxes and scattered in drawers
with various information stored on them, but only one at a time can be used in the
floppy disc drive. Floppy discs allow you to “write” information onto them, and
“read” information off of them. You can also write over any information currently
on the disc with new information. They are a lot like cassette tapes in this regard,
and early personal computers used cassette tapes instead of floppy discs because they
were cheaper.

The price of floppy discs has also dropped dramatically over the last decade. In
1981 a box of ten 5&1/4” discs would cost $50. Today a box of ten 5&1/4” discs costs
$2.50 (unless you buy them at the bookstore where you can expect to pay $1.50 per
disc. Ain’t capitalism wonderful) In 1984 a box of ten 3&1/2” discs would cost $50.
Today a box of ten 3&1/2” discs costs $4.50 (unless you buy them at the bookstore
where you can expect to pay $2.00 per disc.)

Like record albums or cassette tapes, floppy discs must be handled with a certain
amount of care. Each floppy disc contains a circular piece of mylar coated with mag-
netic oxide. With a 5&1/4” disc this magnetic media is encased in a flexible plastic
sleeve with openings so the disc drive can read from, and write to the disc. These
openings also allow you to touch the magnetic media. Do not touch the magnetic me-
dia. 3&1/2” discs are an improvement on this since the plastic sleeve isn’t as flexible
as the 5&1/4” variety, so the disc is harder to bend. In fact a 3&1/2” “floppy” disc
is not floppy at all. The slots for reading and writing are covered by metal covers to
keep out the dust and your fingers.

We need to keep discs away from static electricity, magnetic fields, and dust. So
don’t rub your cat with a disc, don’t put it next to the television, and don’t use it
as a dust-pan. You also shouldn’t set it next to the phone if you think it might ring.

2.10. FLOPPY DISCS

O

Figure 2.14: 3&1/2” disc (top view)

Figure 2.15: 5&1/4” disc (top view)

23

24 CHAPTER 2. HARDWARE

Don’t do anything with a floppy disc that you wouldn’t do with a record album or a
cassette tape. Don’t leave it in the sun, don’t bend it, and don’t use it as a frishee
on the beach (at least until the class is over.)

Cassette tapes and video tapes have write-protect notches. This is a small piece
of plastic that allows you to write on the tape. When the notch is popped out you
can no longer write information on to the tape. The tape is “write protected” so you
do not accidentally erase the information that is stored on it. Floppy discs have a
similar feature. The 5&1/4” disc has a square notch cut in its side. When this notch
is visible you can write on the disc. When the notch is covered up you can not write
on the disc. The notch is usually covered using a small piece of adhesive tape, so
it can be removed at a later time. 3&1/2” discs have a similar, but slightly more
convenient approach. They have a slot on the back with a small slider. When this
slider is moved so that the write-protect hole is covered, the disc can be written on.
When the slider is moved so that the hole is open, the disc can not be written on.

2.11 Hard Drives

One floppy disc can store approximately one Megabyte of information depending on
the drive that it is used in. This may seem like a lot of space, and it was only a few
years ago ...but not now. Now most personal computers come with Hard Drives (or
Hard Disc Drives.) Like floppy drives, hard drives can either be internal or external.
Hard drives for computers commonly hold 40 to 100 Megabytes of information. Hard
drives are about the same size as floppy disc drives, so how come they hold so much
more information? The aluminum platters that hold the information are not remov-
able from a hard drive. The platters are held within a sealed environment so no dust
can get onto them. This allows the Hard Drive to spin the disc much faster (floppy
drives spin at 300 RPM, hard drives spin at 3000 RPM, where as old 33&1/3 LPs
spun at 33&1/3 RPM.) The information can be packed much more densely on the
solid platters so they can store more information. Floppy discs are carried around
in your pocket, bumped and scraped during normal use, and rubbed against cats by
gullible first year students. Hard discs are kept safe within their drive. This means
that Hard discs have faster access, longer lifetimes, and lower failure rates than floppy
discs.

You may be wondering why are floppy discs called floppy discs and hard discs
called hard discs. Floppy discs have a piece of mylar inside. Hard discs have an
aluminum platter inside. The mylar is floppy. The aluminum is hard.

2.12. MODEM 25

Both floppy discs and hard discs have their advantages. Floppy discs don’t hold as
much information, and are not as fast, but they are portable, and are cheaper. Hard
discs are not as portable, and cost more, but they store a lot of information, and
are very fast. As with the cost of floppy discs, the cost of hard drives is decreasing
rapidly Ten years ago a 10 megabyte hard drive would have cost $5,000. Today you
can get a 40 megabyte hard drive for $400. Most serious personal computer users use
both a floppy drive and a hard drive. This allows them to have the advantages of
both kinds of drives, with the only disadvantage being felt in the pocketbook.

The future of disc drives for computers lies with technology closer to that of a com-
pact disc. Compact discs, and their larger siblings Laser discs can store a phenomenal
amount of information. One compact disc can hold a gigabyte of information. One
gigabyte is 1024 megabytes. That’s a lot. Most personal computers today have a CD
ROM drive as an optional accessory. This drive reads programs (and music) stored
on compact discs. They are called CD ROM because, like musical compact discs, the
ability to write on them is reserved for companies. This should soon change. 3&1/2”
optical discs that you can read from and write to are already on the market and can
store 128 Megabytes on a single disc. The big disadvantage of this system right now
is that the Disc Drive costs $3000, and each individual disc costs $130. But as we
have seen, prices have a tendency to drop very quickly.

2.12 Modem

Personal computers do not come with a built in modem, but it is one of the more
useful pieces of hardware you can add to a computer system. A modem is a piece
of hardware that allows your computer to “talk” to other computers. The modem is
used to convert the information in the computer into sounds that can be sent over the
phone line. The person on the other end of the phone line needs a modem to convert
the sound back into information for her computer to understand. Fax machines are
currently becoming very popular, and they work on a similar principle. Some modems
sit inside the main unit on cards, while others are boxes that sit next to the phone
and are attached to the computer with a cable.

Memory and discs are measured in bytes, but modems are measured in terms of
their Baud Rate. A typical modem in the early to mid 80’s was 300 (“three hundred
baud”), in the mid to late 80’s was 1200 (“twelve hundred baud”), and in the late
80’s and early 90’s 2400 (“twenty-four hundred baud”). The higher the baud rate the

faster the modem can send information across the phone line.

26 CHAPTER 2. HARDWARE

2.13 Back to Bytes

You may think that all this bits and bytes and K and M talk is just here so we can
ask exam questions. Its not. If you open up the Detroit News or Free Press you
will see ads for computers, and they will all say how many K of this or how many
Megs of that their computers have. Obviously each company is going to try to make
their computer look better by picking the best unit of measure. Its good to be able
to compare these machines on common ground. The machine with 512K of main
memory may sound better than the one with 2M of main memory. After all, 512 is a
much bigger number than 2, but the 2M computer has four times as much memory
as the 512K computer.

Today, the number of colours a computer can display on its monitor is usually
described in terms of bits. Some computers have “8 bit colour” which means they
can display 2® colours simultaneously. That is 2 x 2 x 2 x 2 x 2 X 2 x 2 x 2 = 256
colours on the screen at one time. More expensive personal computers can display
“24 bit colour” which means they can display 2** colours simultaneously. That is
2X2X2X2X2X2X2X2X2X2X2X2IX2IX2IX2IX2IX2IX2IXZ2IX2IX2IX2X2X2 =
16,777,216 colours on the screen at one time. Do you really need 16 million colours?
Probably not, but they sure look pretty.

2.14 Variety

So far we have talked only about personal computers. Computers range in power,
size, and price from MicroComputers to MiniComputers to Mainframes and
up to SuperComputers. Personal computers are usually Microcomputers but some
are getting near the power of MiniComputers. Personal computers are designed to
be friendly. Mainframes and Super computers are designed for raw computing power.
While you can sit down in front of a Microcomputer or a minicomputer and bang on
the keyboard, you can only talk to Mainframes and Supercomputers through other
smaller computers. Complex calculations and sophisticated graphics require the use
of a lot more computing power than a personal computer can offer. A personal
computer could do the same job, but it would take much longer to do it. Figure 2.16
compares these different types of computers.

2.15. BRIEF HISTORY 27

Criteria Micro Mini Mainframe Super

Price $2,500 $100,000 $1 million $10 million

Users 1 10 500 ?

Power 1 x10 x 100 x 1000

Made by Apple Apollo IBM Cray
IBM Sun

Commodore DEC

Used By anyone CS students ~ Wayne State Pentagon
Ford IRS NASA
Comerica
Used For Writing Research Databases weather prediction

Budgeting CAD/CAM big calculations large simulations

Figure 2.16: Comparison of Computer Types

2.15 Brief History

The first big computers were built in the early 30’s, but were mostly curiosities un-
til World War II. The US Army wanted a device to perform trajectory calculations.
In 1946 the ENIAC was completed. ENIAC stood for ‘Electronic Numerical Inte-
grator And Calculator.” It weighed 30 tons and occupied 1500 square feet. It was
programmed by moving wires and throwing switches. John vonNeumann improved
on this design with the EDSAC in 1949. EDSAC stood for Electronic Delay Storage
Automatic Calculator and was the first computer to use a program stored in memory.
Since then the government, universities, and big businesses have used computers and
big companies such as IBM have supplied them. The first experience most people had
with computers in their home came when Atari began making the “Pong” game in
1971. None of the companies making large computers at the time thought there was
any market for a personal computer. Personal computing was a hobby. You bought
the kit and tinkered the machine together and then you tried to figure out some use
for the thing. The first machine to actually be called a “personal computer” was the
MITS (Model Instrumentation Telemetry Systems) Altair 8800. It was released in
January 1975 and it sold for $400. It had a whopping 256 BYTES of memory, no

28 CHAPTER 2. HARDWARE

monitor, no keyboard, no secondary storage. The machine was sold by mail-order
and you could buy the kit like most other “micro computers” of the time, or, and
here was the new concept, you could buy it pre-assembled. It did cause a bit of a stir
among hobbyists.

The industry really didn’t get started until 1977 (the year “Star Wars” was re-
leased,) with the introduction of the Apple][, and a few months later the TRS-80
Model T (TRS standing for Tandy Radio Shack) and the Commodore PET (PET
standing for Personal Electronic Transactor.) These computers had the advantage of
being sold in stores. Imagine that - a personal computer sold in stores. IBM entered
the market four years later and almost immediately became the de-facto standard (the
“big blue” light blinds many businessmen.) With the introduction of the IBM-PC,
businesses began to take personal computers seriously, and by 1983 IBM practically
owned the market. In 1984 the Macintosh arrived and computers became ‘intuitive’
to computer illiterates. In 1985 the Amiga came on the scene with enhanced graphics,
sound and the ability to run more than one program at the same time. Since then,
improvements in personal computers have come at a slow and steady pace. In 1990
there were 9 million personal computers sold in the United States. 18/Apple, 6/

The last 15 years have seen a huge number of personal computers being released.
Some would rapidly fade into obscurity (the Apple 111, the Osborne, the Adam, and
the PCJr), and some would hit the big time (the Apple II, the TRS-80, the Atari
800, the VIC-20, the IBM-PC, the Macintosh, and the Amiga). Figure 2.17 lists
many of the personal computers that have been released over the last fifteen with the
more important machines are shown in bold-face. Figure 2.17 also lists some popular
theatrical released in the same years to give you some bearings.

2.16 Comparison

To give you some idea of how fast computers are improving we will compare a few
different models. Figure 2.18 shows the features of several “low end” (i.e. under
$2000) personal computers which were released at approximately three year intervals.
Computers are one of the few areas where you get more features year after year and
the price continues coming DOWN as the machines become more popular. Figure
2.18 shows the features at the time of initial release, although all of these machines
have gone through various upgrades.

2.16. COMPARISON

29

Year | Movie Apple Commodore IBM Tandy
76 Robin & Marian Apple 1
77 Star Wars Apple |[PET Model I
78 Animal House
79 Alien |[plus Model 11
80 Blues Brothers Apple 111 Model II1
Color Comp.
81 On Golden Pond VIC-20 IBM-PC
82 Poltergeist C-64
83 Right Stuff Lisa PC XT Model IV
IE PCjr. Tandy 2000
84 Buckaroo Banzai | Macintosh PC AT Tandy 1000
I[c Tandy 1200
85 Fright Night C-128
Amiga 1000
86 Top Gun Mac Plus Tandy 3000
J[gs
87 Princess Bride Mac II Amiga 500 PS/2 Tandy 4000
Mac se Amiga 2000
88 Die Hard Mac Ilcx Amiga 2500
Mac se/30
89 Glory Mac Ilci
90 Ghost Mac Ilfx Amiga 3000 PS/1
Mac IIsi
91 Mac lc

Figure 2.17: 15 Years of Personal Computers

30 CHAPTER 2. HARDWARE

Release Clock Secondary
Date Speed RAM ROM Storage Price
Altair 8800 | Jan 75 7 /4K 0K none $400
Apple] Apr’77 1 MHz 16K 8K Cassette $1,200

IBM-PC Aug 81 5 MHz 64K 40K 5&1/4”7 160K $2,500
Macintosh | Jan '8¢ 8 MHz 128K 64K 3&1/2” 400K $1,800
Amiga 500 | Feb 87 8 MHz 512K 128K 3&1/2” 880K $1,400
IBM PS/1 | Jul’90 16 MHz 1M 256K 3&1/2” 1.44M $1,600

Figure 2.18: Improvements over 15 Years

2.17 Clones

You may have heard of clones. While the ability to clone human beings is still a “few”
years off, clones of computers have been among us for almost a decade. There have
been Apple][clones and IBM-PC clones. A clone is a computer built by company X
that runs just like a machine built by company Y. Usually the clones run even better
than the original, and cost less as well. Is company Y upset about this? Damn right
they are, and out comes their legal department. Unfortunately for company Y, most
clones are perfectly legal. The IBM-PC has many, many, many clones out there, and
they sell extremely well.

Most computer companies do not build their own hardware, but buy it from other
companies that specialize in a certain product (such as a CPU or a monitor, or a disc
drive.) The computer company puts all these parts together, writes the operating
system, and then announces to the world what they have created. A company that
manufactures clones can buy the same parts from the same companies, write their
own operating system (throwing in a few new features,) and they have a ready made
market for their machine.

Clone manufacturers can charge less because they do not have to support the
research and development costs to actually design the machine. They know that the
machine works because it has already been built by someone else. Now all they have
to do is build their own.

Now there are several drawbacks to buying a clone. The first is that you do not
get the support that a big company can offer. Companies like IBM, Apple, Tandy,
Compaq, and Commodore have large networks of dealers to service their products.

2.18. HARDWARE AND YOU 31

The clones do not have this kind of support. The companies that build clones are
also much more likely to disappear than the major personal computer manufactures.
Upgrades are harder to come by for clones as well. Clones can be cheaper in the short
run, but possibly more expensive in the long run.

2.18 Hardware and You

So what have we learned so far. We now know that mice do not have legs, but chips
do; that floppy discs are not necessarily floppy; and that personal computers are sold
in stores. We also suspect that computer scientists spend most of their time thinking
up acronyms so no one will know what they’re talking about. Who says computer
scientists don’t live in the real world?

Around this time, computer science students begin to ask me what kind of com-
puter I think they should buy. This is actually a very difficult question because it
goes far beyond tables of numbers and lists of features. The following are a list of
questions in descending order of most importance in choosing a personal computer.

1. Can I afford it? - Don’t let anyone kid you. Price is the most important thing
to keep in mind when buying anything.

2. Will I be compatible? - If the place where you work or go to school uses mostly
one type of computer, and you want to work at home, that is the brand you
will probably have to buy.

3. Can it do what I need it to do? - You are buying a personal computer to help
you in some way. Be sure that it has the hardware and the software (coming
next chapter) necessary to do what you need it to do. Are you buying the
machine to do word processing, or graphics, or to run business applications?
Each personal computer has strengths in different areas.

4. Is it easy to use? - You want to spend time doing your work not figuring out
how to do your work

5. Do I have a friend with this kind of computer? - You usually end up buying a
computer because you know someone else who has one. Asking your friends is
the best way to get good advice about a particular machine before and after you
buy one. Friends are also good sources for “borrowing programs to try them
out.”

32 CHAPTER 2. HARDWARE

6. Is it expandable? - This will be more important in the long-term, than the
short but you should look for machines with expansion slots, and other ways
you can upgrade in the future. This way you can buy only what you need now,
and expand later.

You should try a computer out before you buy it, preferably not with a salesperson
lurking over your shoulder. This is where having friends with computers really helps
because you can go over and bang on their machine for a while. The important thing
is to keep an open mind . . .look around ... see for yourseltf. We all have different tastes
in movies and music. Computers are no different. You should buy the computer that
will help YOU the most. Keep in mind that this may not turn out to be a computer
at all. Maybe all you need is a typewriter, or a address book, or a big pad of paper
and a handful of coloured markers.

2.19 Questions

1. What is the difference between RAM and ROM? What is each used for?
2. Why is it necessary to have part of memory be ‘read only’?
3. How can a dot matrix printer print out both text and graphics?
4. How many bits are in 40M?
5. What do we measure in bytes?
(a) the speed of the computer
(b) the amount of memory in the computer
(c) the weight of the computer
(d) the number of CPUs in the computer

6. What is secondary storage?

2.19. QUESTIONS 33

7. What does the RGB in RGB monitor stand for?

(a) Randomly Generated Bandwidth
(b) Raymond Gerald Brown (the inventor)
) Red Green Blue

C

(
(d) Rotating Gauss Band
8. A 3&1/2” disc is called a 3&1/2” disc because

a) it holds 3.5 times as much information as a 5&1/4” disc

)
b) its length and width is 3&1/2 inches
)

(
(

(
(
c¢) you can fit 3&1/2 of them into a single drive at the same time

d) it spins 3.5 times faster than a 5&1/4” disc

9. Which of the following is volatile?

(a) RAM
(b) ROM
¢) Floppy Disc

(
(d) Hard Disc
10. Why are floppy drives better than hard drives?

(a) floppy discs are made of aluminum

(b) floppy discs can be removed from the drive
(c¢) floppy discs can store more information
(

d) floppy discs are faster
11. What does a MODEM allow your computer to do?

(a) access hard drives larger than 1024M
(
c) print out graphics

)
b) display colour graphics on your monitor
)
) talk to other computers over telephone lines

(
(d

34

CHAPTER 2. HARDWARE

Chapter 3

Software

Software is information. It is words and numbers. Like music on a cassette tape,
it is invisible. So far we have been a little vague on how the software connects to
the hardware. The computer’s operating system is a piece of software. This set
of instructions is stored in the ROM chips. When the computer is turned on, the
computer knows to look at the ROM chips for instructions as to what to do first. It
then follows these instructions. The computer is now ready for you to give it some
specific job to do. To give it these new instructions, we need to supply it with more
software.

3.1 Programs

When you get a piece of software, it will usually come on a floppy disc. You put
this floppy disc into your disc drive. The computer’s operating system will allow
the computer to read the program on the floppy disc and put the copy of it into
the RAM. This program could be a word processor. It could be a spreadsheet. It
could be “Space Invaders.” Whatever the program is, it needs to be in RAM for
the computer to execute the instructions contained in it. Now we have the ROM
controlling the basic, “lower level” functions - and the RAM containing a program to
do some “higher level” functions - like writing a term paper. The program (in RAM)
talks to the operating system (in ROM) when it needs to, so you do not have to.
Figure 3.1 illustrates.

Why are things set up this way? The answer is generality. We could have one
computer specializing in word processing, another specializing in spreadsheets, and

35

36 CHAPTER 3. SOFTWARE

Word Term RAM
Processor Paper
'
Operating System ROM

Figure 3.1: Software

another specializing in database where all the necessary information is stored in the
ROM. Machines such as these do exist, but it would be expensive to buy all three.
What we want is one all purpose computer that can do all of the above and more.
Think about your stereo system. When you buy your components they do not come
with built in music. You don’t have a rock stereo, and a classical stereo, and a rap
stereo. You have one stereo that can be used to play all different kinds of music. This
gives you the added advantage of being able to play new music just by buying the
CD and popping it into your player. When we want to run a new piece of software
we buy the floppy disc, pop it into our disc drive, and run the program.

The computer’s ROM contains instructions that all programs need to run .. .instructions
like how to run the disc drive, monitor and keyboard. The RAM is used to store the
specific program that is being used. We can put a word processor into the RAM, or
a database, or a spreadsheet or “Space Invaders.” You need to open this Course-Pak
and read the words into your brain before you can think about them. Once you have
read the words in you can process what you have read. The computer must read the
program off the disc and store it in it’s RAM so it can process it.

The size of software programs has grown dramatically in the last decade. Ten
years ago a good word processor might take up 100K. Today a good word processor
takes up T00K. Since we need to be able to load the program into memory it is
important that we have enough RAM to store it. But when we are writing a term

3.2. PIRACY 37

paper with our word processor, the word processor is not the only thing in the RAM.
The term paper is stored in the RAM as well while we are working on it. The RAM
holds the data being processed - the term paper, as well as the program doing the
processing - the word processor.

More and more features are added to programs each year to attract new buyers.
Usually a software company will continue to offer new versions of their program
for several years. People who bought the early older version are usually given the
opportunity to upgrade their program (for a small fee, of course) to give them access
to all of the new features. Software companies tend to work very closely with the
computer manufacturers since the software company wants to be ready when a new
model arrives.

Usually a specific piece of software is written for one specific machine, and if the
product does well, the program will be rewritten for another machine. For example,
Microsoft wrote Excel for the Macintosh. It was a big hit. Then they wrote Excel
for the IBM-PC. Conversely Word Perfect was a big hit on the IBM-PC, so a version
was written for the Macintosh. While these programs look similar to the user, they
are running on computers with different CPUs.

People use personal computers for many different reasons so there is a wide variety
of software available. Some programs are business oriented such as Word Processors,
Spreadsheets, and Databases. Some are creativity oriented such as Paint Programs,
Animation Programs, and Music Programs. Some help you write programs yourself
such as Compilers and Interpreters. Some help you communicate with other comput-
ers such as Terminal Programs and BBS Programs. Some help you to relax such as
videogames.

Figure 3.2 lists some of the more important pieces of software that have been
released within the last ten years. These programs were either the first of their kind,
or the standard that was followed for similar programs.

3.2 Piracy

Piracy has been a problem for the computer industry since the first programs came
out. A pirate is someone who illegally copies a piece of software. Software companies
charge hundreds or thousands of dollars for their programs, and there are people who
do not feel like paying that much. In fact they do not want to pay anything. It is easy
to make an exact copy of a program stored on disc, all you need is a copy program
and a blank disc. Of course you would have to go and photocopy the instruction

38 CHAPTER 3. SOFTWARE

Year | Word Proc. Database Spreadsheet Graphics Hypertext
79 Word Star VisiCalc

80
81 DBase 11

82 Lotus 1-2-3
83
84 MacWrite MacPaint

85 Excel

86 HyperCard
87
88

Figure 3.2: Ten years of Software

manual, but that doesn’t slow the pirates down much.

The software companies and the pirates were soon locked into a vicious circle. The
companies would add better copy protection to their programs to make the programs
harder to copy. They would then charge more for the program to pay for this new
protection. The pirates would soon find a way around the new protection. Users felt
less inclined to pay the higher price - so more people pirated the software. Eventually
the copy protection schemes got to be intolerably annoying to every user, including
those who payed for the program. Most users make a backup copy of the discs they
buy, or move the programs onto their hard drive. Many copy protection schemes
made this impossible. The companies came up with a new strategy: sell the program
cheaply without any protection and people will be more inclined to pay for it. This
new strategy has worked very well.

3.3 Public Domain Software

One of the reasons that the software companies decided to drop their expensive pro-
tection schemes was that public domain programs were taking their business. A
public domain program is free for you to use, copy, and give to anyone you know.
The program is literally in the public domain. There is a large amount of public
domain software out there, and some of it is as good or better than professional

3.4. EMULATORS 39

programs. Public domain programs are most often written by “average” people who
need a program for a certain task, and then allow others with the same need to use
it.

3.4 Emulators

We said before that the computer’s operating system handles all the nitty gritty,
low-level work while the programs you buy deal with more high- level work. One
interesting program you can buy is called an emulator. An emulator is a program
that converts your brand of computer into another brand of computer. You do not
need any extra hardware, because the software is fooling the programs into thinking
that they are running on the machine they are supposed to be running on. In effect
you get two computers in one. You can run software for your machine, and software
for the machine you are emulating. Software emulators usually run slower than the
machine they are emulating, but the emulator software is much cheaper than the
corresponding amount of hardware.

Another type of emulator requires hardware from the computer that you are em-
ulating. Commonly the CPU and the ROMs from the machine you wish to emulate
are put on a card that you can plug into your computer. These emulators work
much faster than the plain software emulators, but you have to pay more to get the
necessary hardware.

3.5 Software and You

Software is just as important as hardware. One of the reasons that there is no such
thing as a ‘best’ personal computer is that they all run different software. It is
the combination of hardware and software that is important when selecting what
computer to use for a specific job.

40

CHAPTER 3. SOFTWARE

Chapter 4

Communicating with the
Computer

We said before that computers operate in a world of 1 and 0, true and false, yes and
no, on and off. Human beings operate in a world of “maybe” and “kind of.” The
computer is digital. We are analogue. In order to communicate with the computer
and tell it what to do we use what is called an interface. The interface “sits”
between us and the machine as show in Figure 4.1. The keyboard and monitor are
the most common interface. Information passes through this interface between us
and the machine. In the past this interface has been very close to the machine’s way
of working, and very far from the way human beings work. Graphical User Interfaces,
and alternate input devices were created to move the interface closer to us, to make
the machine easier to use.

4.1 I/O

[/O is short for Input/Output. We give input to the computer and it responds
by giving us some output. This is pretty straight-forward since input goes INto the
computer and output comes OUT of the computer. The keyboard is the most common
input device, and the monitor is the most common output device. Modems and Disc
Drives are used for both input and output. Figure 4.2 lists several others.

41

42

CHAPTER 4. COMMUNICATING WITH THE COMPUTER

Output

Input

—»

INTERFACE

o

Figure 4.1: Interface

Hardware | Input Output
Keyboard yes

Mouse yes

Joystick yes

Monitor

Speaker

Printer

Modem yes

Disc Drive yes

Tape Drive | yes

yes
yes
yes
yes
yes
yes

Figure 4.2: Input and Output

4.2. COMMAND LINE INTERFACE 43

e
/N

Prompt Cursar

Figure 4.3: Command Line Interface

4.2 Command Line Interface

The personal computers of the 70’s and early 80’s used the keyboard as the main way
for the user to tell the computer what he wanted to do next. The computer displayed
a blank screen with a small prompt and a flashing cursor. The prompt prompts you
for a command and the cursor sits there blinking, telling you that the computer is
waiting for you to type something in, as shown in Figure 4.3.

The user types in some command and the computer then goes off and executes
it. There is a big problem with this method - the user must either memorize the
command or constantly be looking through the manuals that came with the machine.
This saved the computer a lot of work since the user was forced to be very exact and
very specific. Computers are very fast, but they are not very “smart.” They must
be told exactly what to do. Typing commands at a prompt is called a Command
Line Interface (CLI), and remains very popular today with operating systems such as
UNIX and MS-DOS. Once you have learned all the commands you can work very
quickly, but it is very frustrating for beginners.

4.3 Input Devices

The standard alphanumeric keys on the keyboard are just one way of telling the
computer what to do. They are very good for typing in papers. They are not very
good for drawing artwork or playing games. There was soon a need for devices beyond
the standard keyboard. Some of these devices included Arrow Keys, the Joystick,
the Light Pen, the Graphics Tablet, the Touch Sensitive Screen, the Mouse,
and the Trackball. Each of these devices has its own advantages and disadvantages

44 CHAPTER 4. COMMUNICATING WITH THE COMPUTER

depending on what job they are asked to perform. Currently most personal computers
on the market make use of arrow keys, joysticks, and mice as well as the standard
keyboard. Eventually we will be able to add speech and writing recognition to this
list, but those are some years away.

Videogames are generally best played with a joystick or a trackball. These devices
allow rapid, if imprecise, movement.

Drawing artwork is generally best done using a graphics tablet. A graphics tablet
is a board that sits on your desk, and drawing on the board causes a similar event to
appear on the computer screen. For example, if you pick up the stylus for the graphics
tablet and draw a line, a similar line will appear on the computer screen. Graphics
tablets allow very fine control since we are physically drawing using a pencil-like
object.

Selecting objects on the screen is best done with a light pen, a touch sensitive
screen or a mouse. A light pen is a pen-shaped object that is held up to the screen.
The light pen reads signals sent out by the monitor and tells the main unit, based on
the signal it is receiving, what option is being selected. Light pens do not work very
well in bright rooms, and need to be held at specific angles to the screen.

A touch sensitive screen looks just like a regular monitor, except that it is sensitive
to pressure. If you press on the screen, the screen can locate the point you pressed
and relay this information back to the main unit. It you saw “Die Hard,” you might
remember that the Nakatomi Plaza complex had a touch sensitive screen in the lobby
that Bruce Willis used to locate his wife. Touch sensitive screens have the problem
that you really don’t want people touching the monitor. Fingers tend to be greasy so
the screen must be cleaned more often. Someone may press a little too hard. Fingers
are also fairly bulky, so they are not good for very fine work on the screen.

One of the most recent attempts at a friendlier interface is a combination of the
light pen and the touch sensitive screen. These new pen interfaces use handwriting
recognition and gestures with the pen to interact with the computer.

The mouse is currently the best compromise device for doing general work. Along
with the mouse on your desk there is a small pointer on the monitor screen. This
pointer moves on the screen as you move the mouse on your desk. You move the
mouse to the left, the pointer moves to the left. This pointer acts like your surrogate
hand on the desktop. Pressing the button(s) on the mouse is like using your hand to
select, or grasp something on the monitor screen.

Say you wanted to draw a circle on the screen. With only a command line interface
this would probably involve typing a cryptic command such as DRCIRC(214, 56, 7)
giving the center points coordinates and the radius we desire. Well, that’s not really

4.4. GRAPHICAL USER INTERFACE 45

very intuitive. This is not the way that we draw circles. It makes things very easy
on the computer, but not easy on us.

Some improvement can be obtained using arrow keys. Arrow keys would allow us
to draw a circle made up of horizontal and vertical lines on the screen. This is much
closer to what we think of when someone asks us to draw a circle. Even though we
are still typing keys on the keyboard. It is much more analogue.

The mouse, or a graphics tablet makes the job even more intuitive. With these
tools we actually draw a circle - we move the mouse on the table or the stylus on the
graphics tablet in a circular motion as if we are drawing with a real pencil. There
is no longer a difference between drawing on the computer screen and drawing on a
piece of paper. The computer is now “letting us” do things the way that is easy for
us.

Very slowly the interface has been moving away from the computer and closer to
the user. The computer becomes easier to use, because now the computer expects us
to do things the human way. Learning how to use a computer is easier now because
we do not have to learn very many new things. As with hardware and software there
is no ‘best’ interface. The ‘best’ interface depends on the job being done and the
person doing it.

4.4 Graphical User Interface

The most noticeable improvement in user interfaces for personal computers came
in 1984 when Apple introduced the first Macintosh. The Macintosh was the first
successful personal computer with a mouse, and a Graphical User Interface instead
of the then standard Command Line Interface. The Graphical User Interface (GUI
for short) concepts were developed in the 70’s at Xerox’s Palo Alto Research Center.
Xerox released the Star Information System with a GUI in 1981 and charged $30,000
for it. It didn’t sell. Apple released the Lisa in 1983 and charged $10,000 for it.
It didn’t sell. Finally, in 1984, Apple released the Macintosh at $2000. It sold. It
sold very well. More importantly, it influenced other personal computers. Today,
all personal computers offer a graphical user interface as an option. This type of
interface has many advantages, all designed to make the act of computing easier and
more obvious.

Instead of a prompt and a cursor, a GUI gives you a small pointer which mimics
the motions you make with the mouse. This is used to make selections from the menus
or move “objects” around the screen as shown in Figure 4.4. These GUI systems are

46 CHAPTER 4. COMMUNICATING WITH THE COMPUTER

@] "My signature * at 100%

Window Pointer Menu ICon

Figure 4.4: Graphical User Interface

occasionally called WIMPs (Windows, Icons, Menus, and a Pointer.) This term was
probably coined by someone who thinks ‘real” computer users only use command line
interfaces.

What are some of the advantages of a GUI?

e Pictures (called icons) replace words for representing ideas.

o Different programs have similar controls.

e Options are presented, and the user chooses from those options
e The user is less aware of the computer’s existence.

Companies have used icons for many years, except they call them logos. These
pictures represent a product or a company. The benefit of pictures for representing
ideas has been shown for years on America’s roads. A stop sign has a distinctive
shape and colour, as does a yield sign. We do not need to read the words on the sign,
because they are not necessary. The picture says it all. Similarly for a traffic signal.
We see the colours red, yellow, and green. These coloured lights have a meaning to
us, yet no words are there. Imagine if all the road signs were white square signs with

4.4. GRAPHICAL USER INTERFACE 47

black letters ...some say “stop”, some say “yield”, and some say “Danger! Blasting
Ahead!”. We would have to actually read all the signs. People find icons easy to work
with on a computer. GUIs have icons. CLIs do not.

There is consistency among stop signs and traffic lights. When you go to another
state, stop signs still look the same; a green light still means go. This makes the
“rules of the road” much easier to learn. Imagine if we had to learn a whole new set
of rules when we cross a state line. That is why having a consistent set of controls in
different computer programs makes learning to use the programs easier. GUIs have
much more consistent controls than CLIs.

Along with the consistent controls came consistent formats for storing data. This
allowed the user to move information between programs, such as copying a picture she
drew in a paint program and pasting it into a paper written with a word processor.
GUIs make moving information between programs much easier.

When we go into a restaurant we are given a menu listing what is available. We
then make selections from that menu. Imagine entering a restaurant for the first time
and being forced to blindly guess what they are offering. We might get very hungry
before we actually found an item that was available. Allowing the user to choose from
options makes learning how to use a computer easier. GUIs have much better menus
than CLIs. The menus of a GUI are more consistent than those of a CLI as well.

The user usually doesn’t care how the computer does its job just as long as he
can get his job done using it. The user wants to feel comfortable interacting with the
machine. The user wants to feel like he is on familiar ground, doing familiar things.
Most GUIs make use of a desktop. This desktop is designed to look like a real desktop
with icons representing physical objects on the real desktop. Icons representing discs
and documents have similar looking counterparts in the real world. To throw away
a piece of paper in the real world you pick it up, and throw it in the trash can. To
throw a document away with a GUI you often move your surrogate hand over the
document on the desktop, click the mouse button to grab it, drag over to the trash
can, and release the mouse button to let go of it. The actions are familiar. The user
doesn’t care that the computer is deleting the file from the directory on the disc, he
just knows that he has thrown away that document. The user is less aware of the
computers existence allowing him to concentrate on the work he wants to do, rather
than the fact that he is doing the work on a computer.

Now you may have noticed that many of the advantages of a GUI have little to
do with graphics, but graphical user interfaces are much more than icons and menus.
This is why they have become so popular recently. Figures 4.5, 4.6, 4.7 show several
different graphical user interfaces in use today.

48

CHAPTER 4. COMMUNICATING WITH THE COMPUTER

& File Edit View Special]

CSC101 Disc
520K in disk

20 items 259K available

| <&
O Documentation |

System

Paint

4 items S20K in disk 259K available

Docs 1

Documentation

Figure 4.5: The Mac’s GUI

Horkbench Screen

[l [W]
Sriuathell 1
.info 78 ———-»ruwed
c Dir —-———-rwed
Prefs Dir —-———rwed
Systen Dir —-———rwed
1 Dir ———-p

C|Horkbenchi .3

6 ————-rwed 13-
Dir —-———rwed Tod
)) Diyr —-—--—-rwed 88—
13 directories - 39 blocks used

Figure 4.6: The Amiga’s GUI

4.5. COMPARISON 49

workspace 5 File Manager: /home/pandora/aej
Programs

Utilities S Programs) (Eit v) (Props v) (Home ¥) (Gotor ¥) o

Properties... | (Command Tool)
Exit. Text Editor... —

Clock... install.p libraries mmore

Calculator..,

Print Tool... Ij lj
Icon Editor... smore.c tex util
Shell Tool...

File Manager... i - 115
Mail Tool... D : E

Figure 4.7: The Sparcstation’s GUI

4.5 Comparison

There are some people out there who like command line interfaces. There are some
people out there who like bell-bottoms, disco, wide collars, and other dated relics
of the 70’s as well. I am a great believer in graphical user interfaces, but I must
admit that there are times when a GUI is a little too helpful and makes my job more
time consuming. A graphical user interface acts like an automatic transmission on
a car. It allows you to forget about the details of switching gears, and makes a car
easier to drive. You may become an expert at driving and decide you would rather
have a stick-shift and do the shifting manually. You can do things a little faster, and
probably increase your performance.

Each person has the choice of which kind of operating system they prefer. Most
students find the graphical user interface much easier, and faster to use. If at a later
date, you become more comfortable with computers, you may want to switch over to
a command line interface.

4.6 Multitasking

Another improvement in interacting with the computer is a feature called multitask-
ing. Multitasking allows the computer to run several programs (or tasks) at the same
time. As human beings, we tend to be working on more than one thing at a time.

50 CHAPTER 4. COMMUNICATING WITH THE COMPUTER

We may be writing a term paper and doing some calculations for a lab report. With
a multitasking computer we can have the computer calculating the results for our
lab report in the background at the same time we type in our term paper in the
foreground. This allows for a more efficient use of the machine.

Now “officially” you can not multi-task without having more than one CPU, where
each CPU runs a different task. The term has come to include computers which give
each task a share of the CPU in turn. The programs are not actually running at the
same time, they are taking turns using the CPU. But these turns each last a fraction
of a second, so from the users point of view the programs are running at the same
time. Since the CPU is being shared, each task will run slightly slower than it would
if it were alone. The more tasks you ask the computer to do at once, the slower they
will be done, since each will get less time with the CPU.

There are two different types of this ‘fake multitasking’ in use on personal comput-
ers today. The Amiga uses Preemptive Multitasking where the operating system
assigns how much priority each process will receive. The Macintosh uses Coopera-
tive Multitasking where the foreground process decides how much time it will give
to the background processes.

4.7 Ergonomics

Of course the purpose of all of this is to make you want to use the computer. This
brings up the topic of ergonomics, or human engineering. Human beings design
things to be easy for human beings to use. Think about door-knobs, and telephones,
automobiles, and a mouse. These devices are designed to be easily used by the average
person. The computer manufacturers can not deal with everything however, and there
are some simple things you can do to improve your relationship with your computer.

Eye strain and muscle strain can both cause problems. All monitors have controls
so that you can adjust their brightness. The “correct” brightness depends on the
individual user, and how bright her room is. You should also adjust the monitor
so that you don’t have a bright light either in front of you or behind you. This
causes glare which in turn causes headaches. Another problem comes from sitting,
and staring at the screen too long. At least once an hour you should stand up, and
walk around a little. This will help your muscles and your eyes. It can also help relax
you. These suggestions should sound familiar if you have ever driven a car for long
distances at a time - which brings up another important suggestion. If you get tired
- get off the computer, rest, have something to eat, and come back later. This way

4.8. THE INTERFACE AND YOU 51

you won’t hurt yourself or your project.

4.8 The Interface and You

Using a computer should not be a painful experience, either mentally or physically.
Learning how to use the machine may challenge your mind and your muscles for a
short time but there is no substitute for experience, and experience only comes with
practice. Newer and more intuitive interfaces should continue to decrease the time it
takes for you to become proficient with a new machine, or a new piece of software.

The interface is where we can expect to see the biggest improvements in the near
future. Three-D displays are already being demonstrated. Primitive handwriting and
voice recognition systems are in use today. While the hardware is constantly being
upgraded, most of these improvements are invisible to the user. Improvements to the
user interface are immediately apparent to the user, and the easier a machine is to
control - the more likely a novice will want to use it.

A new buzzword is ‘virtual reality’ where the computer generates and manages
a nonexistent world that we can interact with. In most videogames, the player has
a persona on the screen that we move around and control. We are moving this
character through a virtual world, but its not very impressive because the only contact
we have with that world is through the monitor screen and possibly some speakers.
Enhancements such as the ‘power glove’ bring us further into that imaginary world,
allowing us to interact at a much finer level. The ultimate realization of virtual reality
would be something like the holodeck on “Star Trek.” Of course that kind of system
is a ways off, but important steps are being made in that direction. Computers are
become more interactive every day.

4.9 Questions

1. What are two differences between a command line interface and a graphical
user interface?

2. What are two similarities between a command line interface and a graphical
user interface?

3. What are the benefits of being able to move information between different pro-
grams? Can you give an example of where this would be helptul?

52 CHAPTER 4. COMMUNICATING WITH THE COMPUTER

4. What is the pointer used for?

Chapter 5

DOS

Given that we have some information stored on the disc, it would be helpful if the
computer could access it for us. We need the computer to be able to read from the
disc and write to the disc. The physical part of this reading and writing is done by
the disc drive, but the CPU must give the disk drive instructions as to what to store
and where on the disc to store it. We said that a computer has an operating system.
Well, every computer has another operating system to manage information stored on
discs. This is called the DOS (rhymes with boss), which is short for Disc Operating
System.

5.1 Formatting

While the types of discs used by different companies are the same, each brand of
computer stores data on disc in a unique way. Imagine if each VCR manufacturer
had their own speed. One company uses SP, one uses LP, and a third uses SLP(EP),
but none of the machines can read the other’s format. You can use the same blank
videotape in each of the machines, but once you have recorded on it you can not play
it back on one of the other machines. This is true for floppy discs and hard discs.
Each brand of computer “Formats” its discs in a special way. Formatting a disc
sets it up to receive information. Information on discs is stored in concentric rings
called tracks. Fach track is divided up into several sectors as shown in Figure 5.1.
Formatting a disc sets up these tracks and sectors. Once a disc has been formatted
for a certain brand of computers, it can not be used in a different brand until it has
been formatted for this new machine. Formatting the disc erases all the information

33

54 CHAPTER 5. DOS

Track
Sector

Figure 5.1: Tracks and Sectors on a disc

that is currently stored there.

You can think of formatting (or Initializing) a disc as drawing lines on a blank
sheet of paper to act as guides for the writing that will come later. For English we
write the lines horizontally, and expect to write on each page left to right and then
down to the next line. For Japanese we write the lines vertically, and expect to write
on each page top to bottom and then left to the next line. It would be very difficult
to write on the wrong style of paper as Figure 5.2 shows.

Some companies are currently manufacturing drives that will read discs initialized
for many brands of computers, so the problem of discs only being readable on certain
machines should soon disappear.

5.2 Files

When we store information onto a floppy disc we store it in files which take up a certain
number of bytes on the disc. When we store music on a cassette tape, we store sounds
in songs which take up a certain number of minutes. There are two main types of files.
Files can be applications, or they can be documents. Applications are programs
like a word processor or a spreadsheet. They do things. Documents are files that
are created by programs. You may create a psychology term paper (document) with

5.2. FILES
?J] |
|2
"CAMELQT - Camelot,” said | ; i}
to myself. "I don't seem to =2k
remember hearing of it before. =
Name of the asylum, likely.” l‘{l
Y75 | IN
%N
N\ &
I?
v
&
|

The beginning of The ending of

A Connecticut Yankee — Maison Ikkoku

in King Arthur’s Court by Rumiko Takahashi
by Mark Twain

Figure 5.2: Formatting a Piece of Paper

)

56 CHAPTER 5. DOS

-] =]

Humanities Term Paper Math Homework #3 Math Homework #1

o

Picture of Dog Math Homework #2 Map of Campus

Figure 5.3: Without a Hierarchical File Structure

your word processor (application.) You can store several applications and documents
on a floppy disc, and a lot of applications and documents on a hard drive. What is
needed is a convenient way to organize these files.

5.3 Hierarchical File Structure

The current way of organizing files on a disc is through the use of a hierarchical file
structure. When you use a file cabinet, you tend to group like papers together in a
folder. You may have a folder called “tax info” or “Winter ’90 papers.” These folders
allow you to organize your file cabinet. If you really get into the organization you
can put folders inside other folders to further subdivide your categories. This same
system is used by computers.

5.3.1 Directories

Computers store files in a cluster within a directory. A directory stored within another
directory is called a subdirectory. A directory performs the same function as a folder
in a file cabinet. For example, Figure 5.3 shows how files would be stored without a
hierarchical file structure.

Instead of keeping these all in one directory it would be better to divide them up
according to their subject matter. In this case we create two subdirectories called
“Graphics” and “Text.” In this case we put another subdirectory within the text-
subdirectory to divide the text files into those for our Math class and those for our

5.4. DOS COMMANDS 57

Graphics Text

=

Humaniteg Term Paper

Picture of Dog Map of Campus / Math

Math Homework #1 Math Homework #2 Math Homework #3

Figure 5.4: With a Hierarchical File Structure

Humanities class. Figure 5.4 shows how the files would be grouped.

It you have ever tried to find something in someone else’s file cabinet, you know
that each person has a unique way of organizing information. Directories allow each
person to organize their files in a way that is most comfortable to them.

54 DOS Commands

Currently there are two major types of DOS available. One kind uses a command line
interface (UNIX, and MS-DOS) while others use a graphical user interface (Finder,
0S-2, Workbench, and Windows.) Both types have their advantages, but the graph-
ical versions are becoming much more popular as files are displayed using icons, and
you do not have to remember what commands you need to type to manipulate the
files. Whichever type of DOS we use, there are certain commands that we are likely
to need.
For most purposes we will need only need the following:

e Run an application

38 CHAPTER 5. DOS

e Copy a file

e Rename a file

e Delete a file

e (Create a directory

e Delete a directory

e Display a directory

e Go to another directory

5.5 DOS and You

Now that we have talked about hardware and software, the interface and DOS, we
can finally describe what happens when you turn on a computer. This process is
referred to as “booting up” the machine. This phrase comes from “pulling yourself
up by your own bootstraps” since the computer is able to start itself up after you
turn on the power switch.

As soon as you turn on the power switch the personal computer will look in its
ROM to see what it is supposed to do first. Usually the machine will do a quick
diagnostic check to make sure all its systems are in working order. Then it will look
for a hard disc and if it can’t find one it will look for a floppy disc in the disc drive and
read some of the DOS into RAM. The screen will then show you that the machine
awaits your command. At this point you can go about your business.

Now lets say we put a floppy disc into a Macintosh running the Finder (the Mac’s
graphical interface,) and put a floppy disc into an IBM-pc running MS- DOS (the
IBM’s command line interface.) When we boot-up the machines (turn the machines
on) we see Figure 5.5:

Both of the machines are currently waiting for instructions, but I think you will
agree that the graphical user interface shown on top looks much more friendly than
the command line interface shown beneath it. Up until 1984 all personal computers
looked like the bottom screen when you booted them up. A lot of black screen, a
small prompt, and a blinking cursor. You can see why all newer personal computers
come with a graphical user interface.

5.5. DOS AND YOU

® File Edit Diew Special

System Disk

3 items 731K in disk S5K available

miRCE

System Folder MacPaint my picture

A>_

Figure 5.5: Boot Up Screens

39

60 CHAPTER 5. DOS

The DOS is simply a large program that helps us manage the files (both appli-
cations and documents) on our discs. It acts as our home base when we use the
computer. This is where we start after we boot the computer, and it is where we will
return to after we have finished running an application.

5.6 Questions

1. What happens when you format a disc?
2. What is the difference between an application and a document?
3. Hierarchical file structures are used to organize:

a) your computer hardware

)
b) files on a disc
)

(
(

(
(

c) 'c’ is for Cookie. That’s good enough for me.

d) the RAM and ROM
4. What does formatting/initializing a disc NOT do?

Frase the disk

a

(
(b) Rename all previous directories to ‘untitled’

c) Make all previous files on the disc inaccesable

)
)
)
d)

(
(d) Reorganize the entire disc to store information on the disc for the first
time.

5. What is a DOS and what does it do?

Chapter 6

Word Processors

Learning how to use a word processor is the most useful thing you will do in this class.
A word processing program turns your computer into a very fancy typewriter with a
lot of extras. With a typewriter you hit a key, and a letter appears on your piece of
paper. With a word processor you hit a key and a letter appears on the screen. This
allows you to go back later and make changes on the screen. Only when you have the
paper exactly the way you want it do you send it to the printer to get a copy of it on

paper.

6.1 Typing VS Word Processing

As the pen before it, the typewriter allows us to convert our thoughts into printed
material for others to read. The typewriter is a general improvement over the pen
as readable text can be created much faster. One of the major problems human
beings have with typewriters is that we make make mistakes or we change our minds
frequenty. Many of us prefer to use pencils over pens because we can erase our
mistakes and correct them. With a typewriter it is not so easy to correct mistakes.

When we type a paper we tap away on the keyboard until a little bell sounds
telling us that we are running out of space on the current line. We then must hit the
carriage return key to tell the platen to rotate and move us back to the left margin
on the next line down. We then repeat this procedure until we are finished. If we
want to move back up the page we need to turn the knob on the side of the platen.
It we need to work on a different page we must take out the current page and put in
the one we want to work on, and hope we line up the page correctly.

61

62 CHAPTER 6. WORD PROCESSORS

Typewriters enjoyed a century without competition until word processors ap-
peared on the scene. Today its almost impossible to find a typewriter without some
features of a word processor built into it. Word processors allow us to have more
more control over the document that we are preparing. As we type on the keyboard
letters are displayed on the screen. The entire 'paper’ is stored in memory. The
computer allows us to scroll through the pages of this document on the screen and
make changes to it: adding in a paragraph here, taking out a word there, and these
changes are immediately reflected in the 'paper’ shown on the screen. Being able to
make changes before you get a print out is a tremendous advantage. If you find you
have made a spelling mistake, you only need to go back and retype that word, not
the entire page. Word processors allow you to move blocks of text from one place to
another. If you think a paragraph would be better if it was moved back a couple of
pages, you can easily move it without retyping it. I'm sure you’ve been asked to type
a paper that’s 5 pages long, and when you are finished typing it is only 4 and a half
pages long. With a word processor you can go back and push the margins in until
the paper becomes 5 pages long.

Most word processors today are WYSIWYG (“Wizzywig”) which stands for
“What You See Is What You Get.” That means that what you see on the monitor
screen is ‘exactly’ the way the text will look on the page when you finally print it
out. There is no guesswork involved so word processors save you time and paper.
You also have the ability to store your paper on disc. No need to make carbon copies
anymore. You can print out another copy any time you want to.Figure 6.1 shows the
screen of a typical word processor.

6.2 Features

Word Processors offer you a lot of extra features. Most people are very bad at spelling,
but computers are pretty good at it, so most word processing programs have a spell
checker built in. You tell the computer to check your paper and it will go through the
paper comparing each word in your paper to the words in its built in dictionary. If it
can’t find a word it will ask you if that word is spelled correctly, and possibly give you
some alternate (correct) spellings for the word. More advanced word processors have
thesauri which will allow you to pick more impressive sounding words. Others have
grammar checkers to make sure that your grammar is correct. Some Word processors
come with special legal or medical dictionaries as well as those words for everyday
use. A common computerized dictionary will have 50,000 words in it, and most let

6.3. OPTIONS 63

" 6 File Edit Format Font Document Utilities Window

S(==—————sSomethig=>Z"e———
o__ ., .. ., 2 . B b 4 . P ., . .6
r > _ 4
[Hormal |@ L SR | == EE - =1 L

First of all, it was October, a rare month for boys. Not that all months aren’t rare.
But there be bad and good, as the pirates say. Take September, a bad month: school
begins. Consider Avgust, a good month: school hasn’t begun wet. July, well July’s really
fine: there’s no chance in the world for school. June, no doubting it, June’s best of all, for
the school doors spring wide and September’s a billion years away.|

Ray Bradbury, Sumesha FREded TRty ey Olunay

Paye | ki@ Normal+... Kalki

Figure 6.1: Typical Word Processor

you add your own words.

6.3 Options

With a typewriter you can make words all capitals, or go back and underline, or type
them again for emphasis. A word processor gives you these options and more. They
allow you to type in different colours, fonts, font sizes, and styles. They allow you
to set the spacing between the lines and what kind of justification the paragraphs
will have. You can type in a header once and have it automatically put on top of
every page. You can have indices and tables of contents generated automatically. All
of these are shown on the screen of a WYSIWYG system. All of these options can
be changed whenever you ask for them to be changed, even after you have finished
typing. The combined effect of all these options allows you to create documents like
this text. Several of these options are shown in Figure 6.2

6.4 Desktop Publishing

A “buzzword” of the late 80’s was Desktop Publishing. Desktop Publishing is the
use of a personal computer to produce professional looking documents. With this in
mind, most word processors allow you to insert illustrations or diagrams into your
text, giving you the power of a small print shop. Many magazines, newspapers, and

64 CHAPTER 6. WORD PROCESSORS

left centered right
justified text justified
text text
Diﬂerent Styles Different Sizes
Different Styles Different Sizes
Different Styles Different Sizes
DIFFERENT STYLES Different Sizes
Different Styles Dlﬁerent Sizes
Different Styles Dlﬂerent SIZGS

Figure 6.2: Options

publishing houses now use computers to do their layout work, and in some cases to
print out the final product. The desktop publishing market was given a great boost
by the introduction of low-cost Laser Printers in 1985.

In ‘ye olden days’ if you wanted to combine some printed material and a diagram
you would use a typewriter to type up your words on one sheet of paper (where you
hope tyou don’t mistype anything) and draw your diagram on another sheet of paper.
Then you cut out the diagram with a pair of scissors, and get some celophane tape
and tape the diagram onto the page with the text. You try to align it correctly and
tape it down flat. You then feed this Frankenstein’s monster of a document into the
photocopier and hope it doesn’t jam. Finally you receive a page with blurry text and
celophane tape marks clearly visible around the diagram. O well, you were living in
the 70s, so you didn’t expect much. Today you can produce this entire document
on a personal computer. You type in the text using a word processor, and draw the
diagram with a drawing program. You use the computer to merge the two documents
and print out the final document on a laser printer. Figure 6.3 shows the difference.

As you can see, there are a lot of bonuses with word processors. The fancier you
need to get, the more useful a word processor is to you, but the converse is also true.
If you are going to write a grocery list, then you should use a pencil and a piece of
paper. If you are going to fill out a tax form, then use a pen or a typewriter. Again,
it is important to use the correct tool for the job.

6.5. TEXT EDITORS 65

Spiffo Sprockets Co. Spiffo Sprockets Co.
Hey boss, I have a

Hey boss, I have a reelly realy great idea for

great idea for a new a new project.

project.

O

Figure 6.3: 70s memo VS 90s memo

A Word Processor is not the only tool available on a computer for manipulating
text. There is also the Text Editor and the Document Processor. A text editor
is a word processor without a lot of the special features. Text editors are mostly
used to write computer programs and create files for use with document processors.
While word processors are good for writing papers, they do not have enough features
for writing long papers or textbooks. Document processors are good for writing long
papers and textbooks. The names of the three products suggest their power: Text
Editor, Word Processor, Document Processor. A processor is more powerful than
an editor and processing a document takes more power than processing a few words.
Figure 6.4 shows this in a pictorial form.

6.5 Text Editors

Text editors are usually used for writing computer programs. Computer programs
do not require fancy fonts, or fancy page layout options. The word processors of the
early 80’s had the same power as today’s text editors. Text editors are somewhere in
between typewriters and word processors.

66 CHAPTER 6. WORD PROCESSORS

Word Term
Processor P
aper
Computer
Program
Text /
Editor \
Typesetting Document » Text
Instructions Processor Book

Figure 6.4: Comparison of Text Manipulation Programs

6.6 Document Processors

Document processors are different from text editors and word processors in that the
user does not use a document processor directly. A document processor acts like a
human typesetter. You tell him what you want typeset, and you give him instructions
as to how it should look, and then you leave him alone to do the job. That is how
document processors work. The user will commonly use a text editor to type in a file
of information containing the words to be typeset as well as instructions as to how to
typeset them. This file is then sent through the document processor which returns
to you the typeset version ready for printing.

Why would we want to use a document processor over a word processor? The
key is generality. With a word processor you must manually set up the style for
your paper. If you need to change that style you must go in and change it yourself.
With a document processor you simply change the command that set up the style. For
example, lets say you want to submit your article on Elvis being a Martian to Scientific
American. Scientific American expects a very specific style. After they reject your
article, you may want to try the Weekly World News. You will have to change the
article to fit the new style. With a word processor you may have to go in and adjust
the style of each paragraph independently. With a document processor it can be as

6.7. COMPARISON 67

simple as changing the command {.style “SCIAMER”} to {.style “WWNEWS”} and
that’s it. The document processor will change all the paragraphs for you. The big
trend today is to enhance word processors to give them the flexibility of document
processors, but keeping their WYSIWYG interface.

6.7 Comparison

Figure 6.5 compares some of the basic features of Word Processors, Text Editors and
Document Processors. The availability of some of the features depend on the specific
software being used, so this table should only be used as a general guide.

6.8 Word Processors and You

So what can you really do with a word processor?

e Write term papers and lab reports

Write letters (especially form letters)

Write your resume
o Write notices with huge letters

How about a text editor or a document processor? Well, if you are a CS major you
will use a text editor a lot when you write computer programs. You will probably use
a document processor to write your thesis or dissertation, or any textbooks you feel
inspired to write. If you are not a CS major, and do not plan on being a published
author, then you will probably not have a need to use these other two products.

After all this hype you might be ready to chuck the ol’ typewriter right out the
window. Well don’t. First of all it might hit somebody on the head and injure them
severely, and second of all you will still need it. When you learned to type you didn’t
throw away your pencil. It is still a very useful device. The same is true with a
typewriter. You will still need a typewriter to do the following things:

e Type an address on an envelope

e Type information into forms

63

CHAPTER 6. WORD PROCESSORS
Criteria Word Proc. Text Editor Document Proc.
Cut, Copy, Paste Yes Yes No
Search, Replace Yes Yes No
Center, Justify Yes No Yes
Indent, Tab Yes Yes Yes
Bold, Underline Yes No Yes
Italics, Subscript,
Superscript
Print previewing Yes No Yes
Thesaurus Yes No No
Spell Check
Footnote Yes No Yes
Endnote
Inclusion of Yes No Yes
Mustrations
Programming No Yes Yes
language
formatting
Consistent Some No Yes
and automatic
formatting
WYSIWYG Mostly No No
Programmable Macros Macros, limited Completely
only editor commands programmable
Good uses Composing Writing Composing
letters, short programs long term
term papers papers,
textbooks
Popular titles Word Star, VI, NROFF,
Word Perfect, Emacs Scribe,
MacWrite, TEX,
Microsoft Word IATRX

Figure 6.5: Comparison

6.9. QUESTIONS 69

6.9 Questions

1. What does WYSIWYG stand for?

2. What are the different primary uses for a word processor, a text editor, and a
document processor? Be specific.

3. Desktop Publishing is:

(a) running a word processor on a GUI computer
(b) posting messages from your computer to a BBS
)

(
(

c) using a personal computer to produce professional looking documents

d) not possible using a personal computer
4. Why is WYSIWYG good to have in a word processor?

a) It allows you to see what will be printed before we actually print

(
(b) It allows full justification of paragraphs
c

d

)

)
(c) It ensures correct spelling in a document
(d)

It ensures you always have a backup copy of your document

70

CHAPTER 6. WORD PROCESSORS

Chapter 7

Telecommunications

We have said before that different brands of computers have different CPU chips
and different ways of storing information on disc. This makes it difficult for different
brands of computers to exchange information. One of the ways computers can ex-
change information is over the telephone lines using a modem (short for MODulator
DEModulator.) Since the information is encoded into sounds for transmission over
the phone lines, different brands of computers can ‘listen’ to that sound and translate
it into their own format. This allows users of different computers to send each other
electronic mail. Computer users can also use electronic bulletin board systems
to talk with people all over the world.

If you want your computer to be able to talk to other machines, you need a
modem. The modem attaches to your computer, and to a standard phone line. The
modem gives the computer the same ability you get with a telephone. The computer
can dial phone numbers, it can send information, or it can receive information. Your
computer can then talk to anyone else’s computer which is also hooked up to a phone
line as shown in Figure 7.1.

7.1 Protocol

Different computers have different CPUs and different operating systems etc. They
are like people. We could just walk around grunting and growling at each other, but
that would not help us advance civilization. We are able to convey ideas to each
other because we have settled upon certain conventions. We call them languages.
Computers call them Protocol. In order for you to communicate with a friend you

71

72 CHAPTER 7. TELECOMMUNICATIONS

/ |£E /l— Iodem Dodem

Figure 7.1: Telecommunications

must decide on a common language. In order for your computer to communicate
with another computer, you must decide on a common protocol that their modems
will use. This way the computer receiving the information knows how the sending
computer converted the information into sounds, so it can be converted back. Without
a common protocol the computers will simply be sending meaningless sounds back

and forth.

7.2 BBSs

When you walk through the halls of Wayne State, or walk into a grocery store you will
see bulletin boards on the walls. People use these bulletin to post announcements or
leave messages for people. The telecommunications equivalent is called, surprisingly
enough, a “bulletin board.” Using your modem, you call up a bulletin board system,
or BBS for short. There you can read public messages left by other people, leave
public messages of your own, send private mail to other users, and hold conversations
with people you have never seen nor heard. The first personal computer BBS was
written in 1978 by Ward Christensen and Randy Suess, and was called CBBS.

You would actually be surprised to know how many small bulletin boards are out
there today. Its really incredible. Within the Detroit area there are almost 400, and
some of them have been running for almost a decade. Most of these are free to use,
except you have to pay the phone bill if its not a local call. Calling BBSs can be very
addictive. I have known people who ran up $500 phone bills calling different BBSs
all over the country. There are a lot of people out there to talk to, and a lot of topics
to talk about.

BBSs are usually divided into three areas: Public Messages, Private Mail, and a

7.2. BBSS 73

File Section. In the public message areas people leave messages for others to read.
This is where all the discussions go on. You can leave a message, or respond to
someone else’s message publicly. All of the other readers can read your message when
they call the BBS again. You may want to leave another user private mail, so only she
can read it. You would leave private mail in the private mail section. Most BBSs also
allow their users to leave messages anonymously. The File Sections contain various
programs and BBS phone numbers. The bulletin board program keeps track of the
messages and the users. All of this information is stored on disc at the BBS computer,
so usually the BBS computer has a large hard drive.

The owner, and manager of the bulletin board is called the sysop, short for system
operator. The sysop decides what kind of system to run and what rules the users will
have to obey. Many small BBSs are computer specific, that is only Amiga users would
find things of interest on an Amiga bulletin board. Users of these systems talk about
new software and hardware that is available for their machines. Used software and
hardware is bought and sold. These computer specific boards are also good places
to get hold of (free) public domain software for your computer. Many small BBSs
are not computer specific. Their users discuss a wide range of topics not necessarily
computer related (e.g. Star Trek, politics, books, ham radio etc.) These BBSs tend
to be much more interesting. Very little actual “computing” is done on either type

of BBS.

All you need to set up and run a small bulletin board is a personal computer, a
modem, a phone line, and bulletin board program. The computer running the BBS
will be running its BBS program all the time, waiting for someone to call. As soon
as the phone rings, the computer will answer the phone and begin talking with the
computer on the other end. If a human being attempts to call a BBS, he will hear
a very loud beeeeeeeeep and that’s about all. Usually people put in a second phone
line for the BBS, so they have one phone line for the BBS users to use and one for
their human friends to use. As with a regular phone, only one person can call at a
time.

Now BBSs aren’t listed in the phone book, so how do you find out what their
phone numbers are? Well, you could just randomly call phone numbers and see if a
computer answers the phone, but that’s not very polite. A better way is to ask at
a local computer store. The people there can usually give you a couple of numbers.
Each BBS will usually list the numbers for several other BBSs, and very soon you
will find a BBS with a very large list of other BBS phone numbers, and then you’re
all set.

74 CHAPTER 7. TELECOMMUNICATIONS

7.3 BBS Lingo

Like CB radio users (remember them from the late 70’s?) BBS users have their own
lingo that they use to enhance conversation.

For example a normal conversation on a BBS would look this this. BUT IF YOU
WERE REALLY, REALLY ANGRY YOU WOULD TYPE IN ALL CAPS LIKE
THIS TO SIMULATE SHOUTING! You often find people typing in all caps when
they are ‘flaming’ another user of the BBS. When you ‘flame’ someone, you insult
them.

Of course there are more acronyms to ‘simplify’ conversation:
BTW - By the way

IMHO - In My Humble Opinion

IOTTMCO - Intuitively Obvious To The Most Casual Observer
RSN - Real Soon Now

RTFM - Read the F*ck*ng Manual

WRT - With Respect To

There is also a large menagerie of faces that you can make. Faces are used be-
cause typed words have no tone of voice, so others may not be able to tell whether
you are being sarcastic, or serious. Faces help clarify your feelings on the subject.

:) - happy face, or smiley. Used to indicate humour.

(- frowning face. Used to indicate sadness or displeasure.
;) — winking face.

etc.

BTW, the Japanese draw their faces this way:

~ o~

7.4 Terminal Program

In order to communicate with these electronic bulletin boards you need four things:
A phone line, a computer, a modem, and a terminal program. The first three are
the necessary hardware, and the terminal program is the necessary software. Just as
a word processor turns your computer into a fancy typewriter, a terminal program

7.4. TERMINAL PROGRAM 75

] y— L []

Figure 7.2: Terminals

turns your computer into a fancy telephone. Using the terminal program you give
commands to your modem. You set the protocol you need, and the phone number
you want to call and the modem will make the connection. Usually when you buy a
modem it comes with a free terminal program.

Back when the only computers were mainframes, the mainframe would be locked
away in a special room. The users communicated with the mainframe using a terminal
as shown in Figure 7.2. A typical terminal would have a keyboard and a monitor,
and a small circuit board, but no disc drives. Its only function was to allow a person
to communicate with the mainframe. The name has stayed with us, so now when
you call a BBS, you are turning your personal computer into a terminal. You use it
only as a gateway to this other computer. Just as there are many different brands
and models of personal computers there were/are many different brands and models
of terminals. A terminal program allows you to choose which type of terminal you
wish to emulate.

As well as calling BBS systems, you can also use your modem to call some Main-
frame computers. Wayne State is part of MTS (the Michigan Terminal System.) You
can call up Wayne State and access computer accounts on the local Amdahl main-
frame, or the mainframe computers at other Michigan universities. Where BBSs are
usually used for BS’ing, mainframe computers are used for computing. Mainframes
will typically have several hundred users calling in and working at the same time. To
each user, it seems that he is alone on the machine. The mainframe gives each user
in rotation a small slice of time working with the CPU, but mainframes are so fast
that you can not notice any delay.

76 CHAPTER 7. TELECOMMUNICATIONS

7.5 Passwords

Bulletin boards have more than one user (or it would get pretty lonely,) so each user
has her own mailbox for receiving private messages. It would not be good for other
people to be able to read your mail without your approval. For this reason each user
is assigned a unique identification code, and a secret password. Your identification
code is public knowledge ... like your name and phone number are listed in the phone
book. The password allows you to verify your identity. Each computer system you
belong to will assign you an identification for that system. FEach user is given an
identification code for the same reason the government gives you a social security
number. There may be two users of this BBS with the same name, but each will have
his own unique identification code.

Mainframes also make use of identification codes and passwords. Each of the
mainframe’s many users is allocated a certain amount of disc space to use. It would
be rather annoying to have other people reading your files without your permission.
Like a BBS, a mainframe provides the capability for the various users to send messages
to each other. Mainframes also allow many users to have access to a very large, fast,
and powerful computer to do their work on.

Personal computers do not usually employ a system of passwords. It is assumed
that either only one person uses the computer, or that each person keeps his own files
on his own floppy disc. Some public personal computers do have security measures
so that only appropriate users can access certain files on the Hard Drive.

7.6 Information Services

As well as thousands of small bulletin boards spread across the country, there are a few
large national bulletin boards, though they tend to give themselves more impressive
sounding names such as information services. These larger bulletin boards tend to
charge you a certain amount of money per hour you use them, in addition to the
money you pay your local phone company for the call. They are usually divided into
sections for various computers, and various general topics of discussion. Small bulletin
boards are usually run on personal computers and can usually only handle one caller
at a time. The larger systems run on mainframes and can handle hundreds of users
simultaneously. One of the oldest services, CompuServe (CIS), started operation in
August of 1979 and now has 500,000 users. GEnie started up in October of 1985
and now has 200,000 users. Recently IBM’s Prodigy system has been getting a lot of

7.7. E-MAIL 77

hype. It is one of the newer information systems to appear.

7.7 E-Mail

Electronic mail (E-mail) is a lot like regular US-Mail. You type in your message,
address it to a certain other user, and then send it off. Everything is electronic
...there is no paperwork. Some computers are connected via phone networks so
that you can send mail to other computer systems in other states and other countries.
These networks allow you to send E-mail to a local computer but address the message
to a user of a computer far away. The computer will then send your message through
the network of other machines until it reaches its destination. The response time for
electronic mail is substantially faster than that for the US Mail (actually the response
time for an armadillo with a backpack is faster than the US Mail.) Electronic mail
can usually be delivered within minutes.

FEach time a user calls (or “logs in”) to a BBS or a mainframe, he is told whether
there is any new mail waiting for him. He can then choose to read this mail, or read
it later. When he does finally read it he may want to store the message on his disc,
or reply to the person who sent the message. In effect, its just like regular paper mail
being sent to a post office box, except that the computer handles all the work.

7.8 Uploading & Downloading

Just as we can move messages from place to place without using paper, we can move
programs from place to place without using discs. Usually we get a new program by
buying it on disc at a store that sells software. Public Domain software is not sold in
stores. It is usually distributed electronically. Most BBSs have file sections where you
can download or upload programs. When you download a program you make a copy
of the program that is stored on disc at the BBS, and put it on one of your floppy
discs. The program is sent through the phone lines from the BBS to your computer.
Uploading is just the opposite. You take a program stored on one of your floppy discs
and put a copy of it on the BBS’s disc, so others will have access to it. Figure 7.3
illustrates.

78 CHAPTER 7. TELECOMMUNICATIONS

Terminal
Program

ﬁ ? BBS
‘ /l— IModem Modem

Lol Uploading
[1]
LO

O] Downloading
[1]

= DED

Figure 7.3: Uploading and Downloading

7.9 Hackers

As with all things there is a good side and a bad side. Allowing people to communicate
freely with these systems on a wide range of topics is certainly good. Of course there
are some people who wish to take advantage of this. Over the last few years there
has been an interest in “hacking” in the media. A hacker is someone who really
gets to know the nitty-gritty details of a system and pushes it to its limits (for an
excellent discussion of hackers see Hackers - Heroes of the Computer Revolution by
Steven Levy.) Now this term has gotten a very bad connotation. Today hackers
are people (usually around 13 years old) who gain unauthorized access to computer
systems (usually by pretending to be one of its users.) Some hackers are benign and
only want to look around. Some are clumsy and destroy data by accident. Some are
malicious and intentionally destroy information. While this is not a big deal with a
local BBS, it can be if the computer system is for a hospital, or NASA.

Mainframe computers are like apartment buildings. Each tenant leases some space
to use. Each tenant has their own space which is separate from everyone else’s. Each
tenant has a key (password) which allows him to get into his space, and prevents
others from getting into his space. Now each apartment building (mainframe) also
has a manager (system operator). This manager is responsible for keeping the tenants
(users) happy, and keeping the apartment secure. Someone could walk into your
apartment building and go to various apartments twisting the doorknobs to see if the
rooms are locked. If the door is unlocked, he could go in and look around ...maybe

7.10. FONE PHREAKS 79

search through some closets and drawers and then leave. Now this person hasn’t done
any damage, but I don’t think you would be too happy it you were the tenant. The
word ‘trespassing’ comes to mind. That is what most hackers are doing. Now there
are some that go even further. Why go around rattling doorknobs when you could
steal the managers master keyring. Then you could go into any room you wanted for
whatever reason. If a hacker can get a hold of the mainframe’s master password list
he would have that ability.

Currently most computer systems are very open. Their purpose is to allow people
to share information easily. In his book “The Cuckoo’s Egg” Clifford Stohl compares
them to a small town where everybody still leaves their door’s unlocked at night. It is
perhaps a little naive in this day and age. Adding on massive security systems makes
it harder for people to communicate and in many ways defeats the purpose of these
systems. What hackers do is betray the level of trust that keeps the systems running
smoothly.

Of course the government has become interested in hacking with the large numbers
of computers that the military uses. The FBI and the Secret Service take a great
interest in hackers. Unfortunately these agencies have a tendency to overreact quite
a bit on their seizures ...entering with an abundance of firepower and few warrants,
and then proceeding to carry off everything in sight. There are stories, not necessarily
apocryphal, about police agencies dusting floppy discs for fingerprints. Complicating
the matter is that there are very few legal rulings concerning E-mail, and bulletin
boards and how they relate to Amendments 1, 4, and 14 of the Constitution.

7.10 Fone Phreaks

Another group of people you might have heard about are Fone Phreaks. Just as
hackers are interested in computer systems, fone phreaks are interested in commu-
nications systems. Unfortunately, many are also interested in credit card fraud and
other nasty things. Ma Bell was the obvious target in the mid 70’s. Even Steve Jobs
and Steve Wozniak - future founders of Apple Computer Corp. huckstered equipment
to make free long distance phone calls. When other long distance phone companies
were becoming popular in the 80’s each user was given an identification code to use
when making calls. If someone else got your code they could make calls to anywhere
they wanted and charge them to you. Typically fone phreaks would charge their calls
to large corporations, and play tag with the FCC, much as the software pirates play
tag with the FBI.

80 CHAPTER 7. TELECOMMUNICATIONS

7.11 Security

You can never be completely secure, but you can be safer if you choose a good
password. Bad passwords include your name, or HELP, or SAMPLE, or 123. Your
password should be something that you can remember without writing down, but
something that would not be obvious to a casual acquaintance. Other passwords
to avoid are names of girlfriends/boyfriends, unless the relationship is really stable.
Often couples will break up and then you want to change your password, or your
former companion will try to get back at you by erasing all your files.

There are several ways that computers can be made more secure. One way is to
have a call-back modem. In this case, you call the computer, hang up, and then the
computer calls you back at a preassigned phone number. Its even safer if you do
not allow people to call into your computer from outside your building. This way
you only have direct connections between computers. The highest level comes from
forcing the person to go to the computer itself, and not connecting the computer up
to anything else. The trade off is security versus convenience. The more convenient
something is, the less secure it is.

7.12 Viruses

We said that you can often download software from BBSs. It would be nice to assume
that this software is safe to download. Unfortunately this is not true. Some software
contains computer viruses. A computer virus is like a molecular virus in real life - it
spreads and infects others. Computer viruses are small programs hidden within an
application such as a word processor. Running an application infected with a virus
first activates the virus and it looks around for other programs to infect on other
discs currently in the computer. Then the ‘real” program runs so you are unaware
that anything else has happened. The virus then spreads from disc to disc. As in real
life some viruses are harmless, others can cause great damage. Some times the person
who wrote the virus was clumsy and his poorly written virus causes unintentional
side effects.

Now you might think you would be safe if you only use store-bought software,
but its not true. Fven computer companies can get viruses, and then an official
packaged product sent out by the manufacturer can inadvertently contain a virus.
You could protect yourself from viruses by never downing software from a BBS, and
never copying any programs from your friends, and never exchanging any data with

7.13. WORMS 81

anyone else ...but then your computer loses a lot of its worth. Just as hackers
have interfered with the trust that mainframe users had, viruses have made personal
computer users less trusting, less open, less willing to share information.

Viruses tend to act in predictable ways, so there are software products out there
to make sure that your software doesn’t do anything suspicious. These programs stop
viruses from spreading. Another group of disinfectant programs will search through
the applications on your disc looking for hidden viruses. If a virus is found it is
removed, and then the application will work normally again. With software available
on worldwide computer networks, it is possible for a computer virus to spread around
the world within hours. Updated disinfectant programs to handle this new virus
appear about a week later.

7.13 Worms

Worms are to networks of computers what viruses are to personal computers. A
worm is a piece of software designed to spread through telecommunication networks,
reproducing itself as it goes. Worms do not hide within other programs to sneak in to
your computer, they just crash through the front door, or the back door, or through
the cracks in the floor. As soon as they get in, they try to spread to as many other
computers as possible.

7.14 Logic Bombs

A logic bomb is like a timed explosive device hidden within a program. When a
certain date rolls around or a certain program is run “something” will happen. This
something may be a message printed on the screen saying “Dukakis for president”, or
it may be your hard drive erasing itself. Logic bombs are usually spread by viruses
so they can annoy the greatest number of people possible.

7.15 Trojan Horses

A Trojan horse is a program written so that it appears to do one thing while secretly
designed to do something else. A common Trojan horse program in a university
setting will look like a terminal program. When you go to the lab and use this
terminal program to call a BBS or log in to a mainframe, the terminal program will

82 CHAPTER 7. TELECOMMUNICATIONS

appear to run normally. Secretly, the ‘terminal program’ is keeping track of your ID#,
and password as you type them in. This way the author of the ‘terminal program’
can come by ocassionally and get a listing of valid ID#s and passwords to use in
unscrupulous ways.

Are all these bad things worth worrying about? Yes and No. They are good to be
aware of, but they are not worth losing any sleep over. Its like the threat of someone
scraping their keys down the side of my car. I realize that it can happen, and I can
protect myself a little, but there’s not a whole lot I can do about it.

7.16 Telecommunications and You

Telecommunications technology has greatly improved the speed and amount of com-
munication. The modem, like the telephone before it, gives you instant access to
people around the world. BBS systems lets you talk with people about topics ranging
from neural networks to last week’s episode of “Twin Peaks.” Important things get
discussed as well as popular culture. It is no longer a secret and privileged medium.
It has become simply another means for “average” people to communicate their ideas
and opinions freely ... which is perhaps the greatest benefit that technology gives us.

7.17 Questions

1. What does a modem do?
2. What are passwords used for?

(a) to identify yourself to a computer system

(b) to verify your identity to a computer system
)
)

(c
d

to read your mail on a computer system

(d) to send mail on a computer system
3. A computer virus is a:

(a) small program that hides within other programs
(b) small program that hides within a computer’s ROM

(c¢) small program that spreads itself over computer networks

7.17. QUESTIONS 83

(d) small program that alters the tracks and sectors of a hard disc

4. What is a BBS, and what is it used for?

5. What equipment is needed to communicate with another computer using the

telephone lines?
6. How can a mainframe allow many users on the system at one time?

a mainframe is actually many separate personal computers

)

b) each user is given a small ‘slice’ of time in rotation
) all the others must wait until the first person signs off
)

84

CHAPTER 7. TELECOMMUNICATIONS

Chapter 8

Databases

Computers are very good at storing information, and when you have a lot of informa-
tion to store you should use a database. A database provides convenient and efficient
ways for the user to access, add, modify, and remove information stored within it.
The key words here are convenient and efficient. Depending on the amount and type
of information you want stored a database may not be convenient or efficient. Your
brain, or a piece of paper may be more convenient and efficient.

When personal computers were new, companies were trying to figure out why you
“needed” to own one. One suggestion was that you “needed” a computer to store your
recipes on. You could then throw away the cookbooks and life would be wonderful.
Unfortunately this was not thought through very well. First of all you needed to have
the computer in the kitchen, preferably near the oven and the sink - near hot sauces
and free flowing water. Whenever you wanted to cook something you would have to
go and turn the machine on, load up your recipe program, find the recipe and display
it on the screen. While cooking you would need to run back and forth between the
computer and your pots and pans, being VERY careful not to drop some egg-yolks
into the keyboard, or smear flour onto the monitor screen. This was not convenient,
not efficient, and not very smart.

Figure 8.1 compares three of the more popular ways of storing information. The
human brain is a marvelous piece of equipment, but it has some limitations. When
the brain could no longer store all the information we needed to know we began to
store information on paper. When the piles of paper began to fill entire rooms we
began to use computers. Fach of the three ways of storing information has some
advantages and some disadvantages.

Databases are good when you have a lot of data and it does not have to be

89

86 CHAPTER 8. DATABASES

Criteria Brain Paper Computer
Amount of info a few some a lot
(phone numbers) 10-20 50-100 thousands
Recall speed fast good fast

if organized

Reliability low high high

Convenience right there good you go to it
with you if small

Update terrible fair good

Figure 8.1: Comparison of Data Storage Devices

portable. This means that a database is not very useful for the average person,
unless you happen to be a serious collector of stamps or squished bugs and need to
store a lot of data. Databases are useful for companies with lots of data to keep track
of such as airlines, universities, hospitals, banks, and the IRS.

8.1 Terminology

There are three main types of databases: Relational, Network and Hierarchical. We
will be concentrating on the Relational Model since it is very popular currently.
The relational database stores its information in one or more relations. Another name
for a relation is a table. There are several “database” products on the market for
personal computers that are not really databases at all. The reason for this is that
most personal computer users do not need a real database. Hence they give you a
watered down database that fills your nonexistent needs. Here, we are going to talk
about real databases since you may encounter them if you go to work where there is
a lot of data being stored.

8.2. EXAMPLE 87

OH OH OH
Name Bldg Room Time
Biasu Mack 123 11
Teacher table | Leigh Main 106 10
Jekyll North 234 3
Phibes State 234 2
Johnson State 405 4

Class Class Class
Class Name Class Bldg Room Time
671 Biasu 680 State 129 4
511 Jekyll 511 North 102 3
680 Phibes 671 Mack 123 11
Teaches table 11 Leigh Course table 11 Main 911 12
101 Johnson 101 State 312 8
871 Biasu 871 Mack 450 10
880 Phibes 380 State 129 6

Figure 8.2: Information in Three Tables

8.2 Example

The database shown in Figure 8.2 contains three tables. Each table contains different
types of information or fields. Another name for field is attribute or column. The
Teacher Table has 4 fields: Name, OH Bldg, OH Room, and OH Time. Each table
also contains records, or sets of data with values for the fields. Another name for
record is row or tuple. The Teacher Table has five records - one for Professor
Biasu, one for Mr. Leigh, one for Dr. Jekyll, one for Dr. Phibes, and one for Mr.
Johnson.

Why do we have three tables, when we can combine all the information into one
table as shown in Figure 8.37 Having three tables is better for the following reasons:

e reduces duplication
e increases security

o decreases search time

88 CHAPTER 8. DATABASES

Class Name OH OH OH Class Class Class
Bldg Room Time Bldg Room Time
671 Biasu Mack 123 11 Mack 123 11
511 Jekyll North 234 3 North 102 3
Combined table | 680 Phibes State 234 2 State 129 4
441 Leigh Main 106 10 Main 211 12
101 Johnson State 405 4 State 312 8
871 Biasu Mack 123 11 Mack 450 10
880 Phibes State 234 2 State 129 6

Figure 8.3: Information in One Table

e simplifies updates

Each separate table hold some specific information. The Teacher table holds
information about certain teachers, their office, and their office hours. It only contains
information about the teachers. The Course table holds information about certain
courses, and where and when they meet. It only contains information about courses.
The Teaches table allows the information in the other two tables to be combined.
When we combine the information into one table we see things like Professor Biasu’s
and Dr. Phibes’ office information is written twice. A teacher’s office has nothing to
do with what class(es) he is teaching.

It is faster to look through a smaller table than a larger one. It is also generally
faster to combine a few small tables than to look through one big one.

What happens it Professor Biasu decides to move his office from one building to
another. With the three separate tables we only need to look through the teacher
table until we find Professor Biasu and change one entry. With the combined table
we need to look through the entire table because we do not know how many times
Professor Biasu’s name will appear. This would be very wasteful in a big database,
and could lead to errors if we forget to change one of the entries.

Security is very important with databases. With one big table either a person
has access to all the information, or to none of it. With separate tables you can
give certain people access to certain tables. This increases the security of the data.
When looking at classes in the schedule of classes at Wayne State you only get to see
information from the course table. You do not know the teachers name or office.

8.3. ANOTHER EXAMPLE 89

Customer—table‘ SS# Name City Phone-number

Movie—table‘ Title Year Length Rating Director

Stock—table‘ Title Format Number Rental—table‘ SS# Title Format

Figure 8.4: Tables for Video Store

8.3 Another Example

Here is another situation where a database would come in handy. What if you were
to open up a video rental store. You would certainly need a computer to keep track
of all the customers, and videos. Before you read on, take a couple of minutes and
think about the kind of information that you will need to store.

We are certainly going to need a relation that stores information about each
customer. We will also need a relation to store information about each movie we
have in stock. We will need a third relation to keep track of how many tapes we have
in each format and a fourth to tell us who rented what. That’s right ...four tables.
Figure 8.4 shows what we get.

The customer table holds all the information about a particular customer. the
movie table holds all the information about a particular movie. The stock table tells
us how many copies of each film we have in each format (LD, VHS, S-VHS, Beta,
ED-Beta, Hi-8, etc.) The rental table tells us which customer rented which film in
which format. Now you can see that the customer can be given access to the Movie
and Stock table to help him make his selections. The Customer and Rental tables
contain information that only the store owner should know. We could have entries
like those in Figure 8.5.

Each customer is only listed once in the customer table. Each movie is only listed
once in the movie table. The stock table has one tuple for each Format of each title
in stock. The Rental table has one tuple for each video that has been rented. Each
table is devoted to holding a specific type of information. We have security, we have
convenience, and we have easy update.

8.4 Query Language

Given that we have a database set up, we need some way to access and modity the
information that it contains. To do this we use a query language. It is the language

90 CHAPTER 8. DATABASES

SS# Name City Phone-number
453-87-6553 Hamner Detroit 332-4378
Customer-table | 346-84-5456 Jellison Clinton H48-6562

235-63-7526 Czescu Ann Arbor 878-8230
Hh48-64-2315 Baker Hamtramck 843-4105

Title Year Length Rating Director
Maltese Falcon 1941 102 n/a Huston
Movie-table | Yellow Submarine 1968 87 G Dunning
This is Spinal Tap 1984 82 R Reiner
Die Hard 1988 127 R McTiernan
Title Format Number
Die Hard Beta 10
Die Hard VHS 12
Die Hard LD 2
Die Hard S-VHS 5
Stock-table Maltese Falcon VHS 2
Maltese Falcon LD 1
This is Spinal Tap LD 1
This is Spinal Tap ~ Hi-8 2
Yellow Submarine ~ VHS 1
SS# Title Format
235-63-7526 Die Hard LD
Rental-table | 235-63-7526 Maltese Falcon LD

548-64-2315 This is Spinal Tap ~ Hi-8
453-87-6553 This i1s Spinal Tap Hi-8

Figure 8.5: Database for Video Store

8.5. KEY 91

in which we express our commands to the database. While the languages look fairly
English-like, they are very strict. One of the current popular query languages is SQL
(“sequel.”) Let us say we were using the SQL language to talk to our video database.

Say we wanted to know the names of all the movies we have:

SELECT Title
FROM Movie-table

Say we wanted to know the names of all the R rated movies we have:

SELECT Title
FROM Movie-table
WHERE Rating = “R”

The query language allows us to communicate our request to the computer, but
we must follow the format that the computer expects. Query languages have a very
specific syntax that must be followed, so there is no ambiguity in your request.

8.5 Key

What is a key? A key is a column or set of columns that allows us to uniquely
identify each row in a table. When the IRS processes your report, they are not going
to use your name. With 250 million people in the US, it is likely that your name is
not unique. Instead they will use your social security number. Your social security
number uniquely identifies you. Keys are important in databases since they allow the
computer to search through a table very quickly. For keeping your student records,
Wayne State uses your social security number too.

8.6 Databases and You

As we find we need to manage more and more information, we will have a greater
need for database programs. Currently the average person does not need a database.
Large business have used databases for years, and smaller businesses are also seeing
their benefits. As databases become simpler to use, and the hardware necessary to

92 CHAPTER 8. DATABASES

run them becomes less expensive more and more people will find a use for them.

8.7 Questions

1. Give two situations where it would be good to use a database, and why?
2. What are databases best used for?

(a) drawing pictures with awesome graphics

(b) efficiently storing and retrieving large amounts of information
)
)

(c

(d) writing term papers with lots of tables

storing small amounts of information for quick access

3. Give three reasons why having many small tables is better than one large one?
4. What is a query language?
5. What does a key of a table allow us to do?

a) uniquely identify a column

(
(

)
b) uniquely identify a database
(¢) uniquely identify a field
(d) uniquely identify a row

Chapter 9

Spreadsheets

While you will probably find that word processors are the most useful kind of ap-
plication, spreadsheets can also be very useful. Spreadsheets allow you to do work
with numbers in a very comfortable way. They allow you to do complex calculations
simply, and quickly (after all, everyone knows computers are good at math.)

The first spreadsheet program, called Visicalc, was written by Dan Bricklin and
Robert Frankston. Visicalc was short for VISIble CALCulator. It was released for the
Apple][in May 1979. This program was a top selling program for years, and was the
biggest reason that businesses began to take a serious look at personal computers.
The current standard in spreadsheets, called Lotus 1-2-3 was released three years
later. Within this chapter we will be using the conventions of the Microsoft FExcel
spreadsheet which is probably the best spreadsheet currently on the market. Visicalc
was so well thought out that all of its successors, including Lotus, and Excel, have
almost identical commands.

9.1 Terminology

A spreadsheet looks like an accountant’s ledger pad. It is made up of a grid of cells.
Each cell can be uniquely identified by its row and column, and each cell contains
either text, numbers or a formula. Numbers and text we have seen before. A
formula is used to make calculations.

93

94 CHAPTER 9. SPREADSHEETS

A B [D E

1 |Student’s Name :Exam *1 :Exam *¥2 :Exam ¥3 :Average
2

3 |Jervas Dudley 78 76 86

4 |Basil Elton 56 49 65

5 [Kar] Heinrich g1 66 84

6 |Thomas Malone g9 g7 86

7 |Lavinia Whateley 53 86 75

8 |Asenath Waite 99 g9 95

9

Figure 9.1: Student Grade Spreadsheet

9.2 Example

Let us say we wanted to set up a spreadsheet to figure out the grades for a class. We
assume that each student has three exam grades and we need to find out what the
average score is. We could set up data in a spreadsheet as shown in Figure 9.1.

As you can see, each cell has a specific address given by its row and column. Cell
Al in Figure 9.1 has the text “Student’s Name” stored in it. Cell D8 has the number
95 stored in it.

Typing information into a cell is simple. You select the cell you want (using either
the arrow keys or a mouse) and then type what you want the contents to be using
the keyboard. When you are done typing you hit the enter or return key. We can set
up the simple table shown in Figure 9.1 this way.

Now we need to find the average score for each student. For Jervas we need to
take 78 + 76 + 86 and then divide by 3. We could do this on a calculator and then
type the number 80 into cell E3.

But we can do it easier than that. We could type a formula into cell E3 that says
“=(78+476+86) / 37 and it would calculate the average for us. Then we could do the
same for the other five students.

Well, we can do it even easier than that. Instead of typing numbers into the
formula we can type the cell locations into the formula. We could type a formula into
cell E3 that says “=(B3 + C3 4+ D3) / 3” and it will calculate the average for us.
Cell B3 contains the number 78. Cell C3 contains the number 76. Cell D3 contains
the number 86. This way has a big advantage over the other two methods. What
happens if Jervas’ score on Exam #3 is wrong and he actually deserves 90 points.
We need to change the value in cell D3 to 90. That’s simple. We select cell D3 and
type 90. What about cell E3 - do we need to change the formula? Not if the formula

9.3. CIRCULAR REFERENCE 95

is “=(B3 + C3 + D3) / 3”7 because this formula has no numbers in it ...only cell
locations. Since the value in location D3 has changed, the spreadsheet automatically
recalculates all the formulas. If we used the other methods we would need to retype
the formula in cell E3.

Now you may be wondering what appears in cell E3. We have typed in a formula,
but we expect it to calculate a number for us. The number is what appears in the cell,
but when you select the cell you have the opportunity to modify the formula. You
can think of the formula as a third dimension to the two-dimensional spreadsheet.

This is the big advantage spreadsheets have over calculators and ledger pads. You
can very easily vary the numbers and see how the results of the formulas change.
You can find out what would happen if this or that happened. So, what would the
formula be that we type into cell E4 to calculate the average of Basil’s exam scores?
I hope you guessed:

=(B4 + C4 + D4) /3

That’s the correct answer. We can write similar formulas for the other four stu-
dents.

You might have noticed that the formulas all have “="

signs out in front. That is
how the spreadsheet differentiates a formula from text. All formulas must start with

an “=" sign.

9.3 Circular Reference

What if we have the following situation:
Cell Al contains “=B1 + 2”7
Cell B1 contains “= Al - 17

The computer can not calculate the value for cell A1 without the value for cell B1.
It can not calculate the value for cell B1 without the value for cell Al. This is called
a circular reference. It is bad. It will cause the computer to give you an error message
because it can not complete its calculations. This brings up the question of how does
the spreadsheet know what to calculate first. The spreadsheet looks through all the
calculations that it must do and does all the ones it can do, then it looks back at the
calculations it couldn’t do before to see if there are any that it can do now, having
done the previous batch. It keeps on going until it has done all the calculations.

96 CHAPTER 9. SPREADSHEETS

9.4 Relative Referencing

Now we have to talk about absolute referencing and relative referencing. These are
the two ways to refer to a cell in the spreadsheet. What we have shown so far is
relative referencing. Let us look at the first formula we wrote. We put a formula in

cell E3 that said:
=(B3+C3+D3)/3
Now the spreadsheet interprets this formula to mean:

take the value in the cell three to my left and zero above me
and

add it to the cell that is two to my left and zero above me
and

add it to the cell that is one to my left and zero above me
and

divide the total by three.

The locations of the other cells (cell B3, cell C3 and cell D3) are shown relative
to the cell the formula is written in (cell E3). Now you may think that this seems
needlessly complicated. The advantage comes with the ability to copy and paste for-

mulas from one cell to another. What happens if we copy the contents of cell E3 into
cell E4. Well now cell E4 contains:

take the value in the cell three to my left and zero above me
and

add it to the cell that is two to my left and zero above me
and

add it to the cell that is one to my left and zero above me
and

divide the total by three.

That gives the correct answer for the second student without us having to retype
anything. If we click on cell E4 to look at the formula we see that it is

=(B4+ C4+D4) /3

9.5. ABSOLUTE REFERENCING 97

A B | C D
1 23 56 57

Figure 9.2: Standard Deviation Needed

So for our grades table all we have to do is type in one formula and copy it into the
other five cells, and the formulas will automatically change to fit their new location.

9.5 Absolute Referencing

But what happens if we do not want a formula to change when we move it? What if
we do not want to refer to the cell three to my left and zero above me, but we really
want to refer specifically to cell A37 In this case we would write the row and column
with “$” signs. For example the formula in cell E3 could have been written:

—($BS3 + C3 + D3) / 3

and it would have given the correct answer. But what if we copied that formula
into cell E4. The formula in cell E4 becomes:

—($BS3 + C3 + D3) / 3

This is the same as the formula in cell E3. We are referring to the row and column
absolutely so there is no automatic changing of the formula.

Spreadsheets can go beyond simple arithmetic because they have built in functions.
This makes them very useful for college students with lab courses. In Physics labs
there is very often a need to take the standard deviation of a set of numbers. Now
the standard deviation is a nasty formula which I will not reproduce here for fear that
some students will suffer an immediate panic attack. With a spreadsheet you don’t
have to worry about how to calculate the standard deviation ...let the computer do
it for you. Lets say we have the situation shown in Figure 9.2. and we want to have
the standard deviation of the three numbers in cell D1. This is really simple. We
type “=STDEV(A1, B1, C1)” into cell D1 and we get our answer as shown in Figure
9.3.

98 CHAPTER 9. SPREADSHEETS

A B C D
1 23 56 g74 32.0052079

Figure 9.3: Standard Deviation Obtained

average sin

absolute value cos

exponents tan

logarithms

maximum standard deviation
minimum variance

Figure 9.4: Spreadsheet Functions

STDEV is the name of the function that calculates standard deviations. There
is another function we could have used back with the grades example. In cell E3 we
could have typed:

=AVERAGE(B3, C3, D3)
instead of
=(B3+C3+D3)/3

and we would have gotten the same answer. Spreadsheets have many built in
functions to make calculating easier. Some of these functions are shown in Figure

9.4.

9.6 Spreadsheets and You

So what can you really do with a spreadsheet?

e Balance your monthly finances

9.7. QUESTIONS 99

e (Calculate data for your lab report

e ['igure out your taxes

Spreadsheets conveniently organize numerical information and allow us to “play”
with it. They allow us to ask questions like “What happens if...” and get immediate
feedback. Anyone who deals with numbers on a regular basis should think about
investing the time to learn how to use a spreadsheet program. The time you save,
will be your own.

9.7 Questions

1. What is the difference between relative referencing and absolute referencing?
2. What are the three different things that a cell can contain?
3. Which of the following does NOT calculate the average of Al, Bl and C1
(a) =A14+ Bl +C1/3
(b) =AVERAGE (A1, BI1, C1)
(¢) =SUM (A1, B1,C1) /3
(d) =SUM (A1:C1) / 3
4. What is the difference between the name of a cell and its value?

5. A circular reference

a) 1s used to calculate the area of circles

(a)

(b) is used to calculate the radius of circles
(c) is used to calculate the geodetic prime arc of a circle
(

d) will cause a spreadsheet to print an error message
6. Which of the following types of referencing should be avoided?

(a) Absolute
(b) Relative
(¢) Circular
(d) Absolute and Relative

100 CHAPTER 9. SPREADSHEETS

Chapter 10

Graphics

In the 60’s Ivan Sutherland created Sketchpad - the ancestor of all our modern graph-
ics programs. When personal computers came along, the ability to draw shapes with
pretty colours on the monitor screen became a great selling point. Unfortunately the
early programs were very primitive, and the early monitors did not have the resolution
to produce anything beyond blocky drawings in a handful of colours.

10.1 Painting Programs

The first really useful, and popular, painting program for personal computers was
MacPaint, released with the Macintosh in January 1984. This program was the
easiest computer program to use at the time, and was capable of producing some
very nice artwork. This program was soon imitated, and today there are several
similar painting programs for every personal computer. The problem with MacPaint
(and the early Macintoshes) was the lack of colour. You could only paint with black
and white patterns. This left the door open for a big improvement which came one
year later with the release of the Amiga. The Amiga ran colour painting programs,
with many sophisticated painting options.

Paint programs work by allowing you to set the colour of each pixel on the screen.
They also allow you to draw lines and curves, and fill areas with a certain colour.
They give you several shapes and sizes of “brushes.” They let you move and rotate
parts of your picture. These pictures can then be printed out or, more importantly,
copied into other documents such as a report you are typing with a word processor.

Figure 10.1 shows the set of tools you get with MacPaint, along with some of the

101

102 CHAPTER 10. GRAPHICS

i
A,
"‘?T'“P"MF

i

Figure 10.1: Paint Patterns and Tools

sample black and white patterns. When we create artwork in the real world we have
several tools available to us: paint brush, pencil, eraser etc. On the computer we
usually have a mouse. By selecting a tool you “transform” the mouse into a pencil
or a paint brush or an eraser, depending on the work you need to do.

10.2 Digitizing

Now having this painting program is very nice, but no matter how friendly the pro-
gram is, you still need artistic talent. But what about those of us who have very
little artistic talent? A digitizer allows us to take a picture and convert it into a paint
file. The analogue picture (say a photograph, or a picture out of a newspaper) is
converted into a digital one for the computer. The picture will be a bit grainier than
the original, but now it can be modified using all of the tools the paint program gives
us. The higher the resolution of the screen and the more colours that are available
- the closer the digitized image will be to the original. Since the picture is now in a
digital form, we can move it into word processing documents, or upload it to a BBS.
Figure 10.2 shows an example of a digitized image. Figure 10.3 shows that same
image after it has been modified using a paint program.

Officially, digitizing is the conversion of anything to a digital form. Most com-
monly this is a picture, but it can also be sound. Most personal computers can play
digitized sounds, as well as display digitized pictures.

10.2. DIGITIZING 103

{....,___..,. i e T - SAE S 1~ AL s § . -

6 00000000 ¢ }'x

W\IIIMIM!&IM‘

600000000 C W i
7 Ko, dusilen Caty SN AL c.'é__’., 4
I\._J" 0'1\'1‘ DOLLAR ﬁ'\“‘n /B

L - — —— T e et e e ———— ——— e

Figure 10.2: Digitized Image

o —— - e et 1 gt B

QR l’l'lllCll’ 1 ¥ lll.Nlu]l"]]]\()) 2

. Z e 7.
e tninn (R 3 athtabin: 7 D iam Py —
I\\ﬁ/‘\)\/ s ,.. l)l\] l’x‘!u‘l: ﬁ\JJ,A Vi LA

L —e e et et - e w e S—— T A

Figure 10.3: Modified Digitized Image

104 CHAPTER 10. GRAPHICS

Figure 10.4: Painted Line VS Drawn Line

10.3 Drawing Programs

There is another type of graphical program called drawing programs. Drawing pro-
grams became very popular with the arrival of Laser Printers, and the first popular
one was called MacDraw. Along with Word Processors and Laser Printers, Drawing
programs are the three integral parts of Desktop Publishing. Unlike Paint programs,
drawing programs do not alter individual pixels. Instead drawings are held in terms
of their mathematics. This allows the drawing to have as much resolution as the
printer can supply. Where painting programs work well on a monitor with its 72 dots
per inch resolution, these images do not look very good on a printer with 300 dots
per inch resolution. Paint files tend to look grainy when printed on Laser Printers.
Draw files look very fine. The difference is shown in Figure 10.4. The line on the left
was created with a paint program. The line on the right was created with a draw
program. On the computer screen they look identical, but when printed onto paper
there is a big difference.

Back in school you did many different things in art class. You could make a picture
with a paint brush and several bottles of paint. You could also make a picture by
cutting shapes out of coloured construction paper and then arranging these pieces
of paper. This is the difference between a paint program and a drawing program.
The paint programs puts colours onto a canvas. The drawing program moves objects
around on the canvas. With a drawing program you can draw a box and a triangle.
You can then grab the box and move the box under the triangle to create a house
- just like you did back in art class. If you don’t like the way it looks the drawing
program lets you stretch the box, or move it somewhere else. Like using construction
paper you can put one object on top of another, and move them around till they

10.4. DESKTOP VIDEO 105

look the way you want them to. The advantage of a drawing program over using
construction paper is that you never have to glue the paper down - you can always
come back later and move the pieces around.

Artistic drawings tend to be done with paint programs since paint programs give
more kinds of tools for putting colour onto the screen. Technical drawings tend to
be done with drawing programs since they give more kinds of tools for moving and
modifying objects.

10.4 Desktop Video

Now the usefulness of painting programs extends beyond printing out diagrams. Paper
is not enough to keep people’s attention today. People want colour and movement
and sound. They want animation. The personal computer can be an excellent tool
for creating exciting presentations. As the Macintosh made “desktop publishing”
possible, the Amiga made “desktop video” possible. Computer animation is done in
the same way that animation has always been done, except that all of the cells are
created with a computer and stored on disc. Rapidly showing these cells in order
on the monitor screen gives the illusion of movement. The computer can then be
connected to a VCR to record the animation.

You have probably all seen the computer generated intros that all the major
television networks have. You might have even seen theatrical films such as “Tron”
or “the Last Starfighter” which both made extensive use of computer graphics. Big
computers can truly produce some “awesome graphics” (as a former CSC 101 student
put it.) You may be surprised to learn that some personal computers can produce
some pretty awesome graphics of their own. Local TV stations have found personal
computers (especially the Amiga) to be very useful in generating professional looking
animation at a fraction of the cost for the professional studio.

10.5 Rendering

Rendering is a general term used to describe the process of creating a graphical image
on the computer screen. Artists consider using a paint program to be rendering where
computer scientists use the word to describe the process of generating images by some
computational method such as ray tracing.

Ray tracing is the process of realistically (and mathematically) rendering an image

106 CHAPTER 10. GRAPHICS

using a geometric 3-D model. Typically a 3-D model is created out of polygons which
are “glued together” to form “solid” objects. The ray tracer then “fires” rays of light
into the scene and traces the path each ray takes as it reflects off or refracts through
the various objects. This way the computer can create much more realistic looking
scenes than a human artist can. Ray tracing is particularly good at rendering glass
and metallic objects. Combining these rendered images with animation can create
some very impressive presentations. Figure 10.5 shows a computer generated image
of a desktop complete with desklamp, books, and bouncing-silver-ball-thing. Note
the reflections in the silver balls. The actual image is in colour and has been reduced
to black and white for inclusion in this text.

Rudimentary rendering is possible on IBM-PCs with more advanced rendering
possible through TrueVision’s TARGA boards. High quality rendering is possible on
the Mac II, but at a somewhat inflated prices. High quality rendering is also possible
on the Amiga at more reasonable prices. Production quality animation is done on
$20,000 systems such as Silicon Graphics’ Iris.

10.6 The Making of George

The following is a description of how a cartoon character is designed and generated
using the computer.

First of all a special program called a modeller is needed. A modelleris a program
that allows the user to create three-dimensional objects that resemble objects in real
life. Modellers are commonly used today to design cars because it allows the user to
visualize the finished product before it is built.

In our example we have built a cartoon character called George who is nothing
more than a blue ball with bulging eyes. Using the modeller, we first build George’s
body. Modellers typically have a built in library of objects that can be loaded at any
time. Since George is shaped like a ball, the modeller can simulate that shape using
a sphere as shown in Figure 10.6.

Notice that the sphere is not perfectly smooth, but instead is composed of facets.
These facets are called polygons. All three-dimensional computer generated objects
are created using polygons. When there are enough polygons strung together the
final object will look smooth, like the sphere.

Next we will create George’s eye balls. George is actually a very simple cartoon
character to build with a modeller. His eye balls are simply two more spheres which
will be attached to his body (the larger sphere we created earlier) at the appropriate

10.6. THE MAKING OF GEORGE 107

Figure 10.5: Ray Traced Desktop

108 CHAPTER 10. GRAPHICS

RSSO

ol

Figure 10.6: Simple George

points. Figure 10.7 shows this new version of George.

Now would be a good time to have a look at how George looks before we put any
more work into him. First of all we need to tell the modeller where we would like
to put our camera (to “take the photo”) and where we would put the lamps to light
up the scene. The camera is placed directly in front of George and the light source
is placed to the left and above the camera. This is shown in Figure 10.8. Having
done this we can get a quick preview of how George looks in 3D. This is done using
a wireframe model. A wireframe model is like the skeleton of a large ocean liner
before sheets of metal are bolted to its sides. The wireframe version of George is
shown in Figure 10.9.

So far George looks pretty good so we can proceed by putting George’s pupils in.
These are nothing more than two disks; one for each eye as shown in Figure 10.10.

We are almost ready to take George’s photo (which is called rendering in computer
lingo); but before we can do that we must assign colors to George. George’s body
will be blue, his eye balls will be white and his pupils will be black. These kinds of
attributes are assigned using a control panel as shown in Figure 10.11. In this case
the panel is showing the settings for George’s body which is a smooth glossy blue
ball.

Finally we are ready to render George. We are going to render him using a
technique called ray tracing, which is the most time consuming process in computer

10.6. THE MAKING OF GEORGE 109

-

[T ..
RSOSSN
R O X ot

S e R
TR ATR

Figure 10.7: George with Eyeballs

graphics. Where a wire frame can be generated in seconds, a ray traced image can take
days to generate. This is because in order to simulate what you see in the real world
the computer has to simulate each point of light that leaves your TV screen and hits
the three-dimensional object that you have designed. If the object itself is reflective
then the ray tracer must continue by further tracing the path of the reflected light.
A lot of Physics, Mathematics and Fudging is involved in successfully ray tracing a
truely photo-realistic scene. Because George is a relatively simple object, he only
takes 1 minute to ray trace on an Amiga with a Motorolla 68030 CPU and 68882
Floating Point processor. Our final version of George (reduced to black and white for
this text) is shown in Figure 10.12. On the computer screen George is a shiny blue
ball with bulging white eyes.

In order to create animation, the camera and/or objects must be carefully moved
in the three-dimensional world. After each movement has been established, the ray
tracer can then render each individual frame of the image. If a frame takes 24 hours to
render, it would mean that it would take about 30 days to simply generate 1 seconds
worth of animation (assuming 30 frames a second - full movie speed). And a full
length movie that lasts about 2 hours would take about 216000 days to create ;which
is about 592 years! That is why for the most part you will see computer graphics and
animation as something that enhances a live-action movie (like The Abyss) rather
than becoming the entire movie. The computers we use today for computer graphics

110 CHAPTER 10. GRAPHICS

[

The
Light

Source
Cé} The Camera

Figure 10.8: Top View Showing the Positions of the Light and Camera

10.6. THE MAKING OF GEORGE 111

R LOT. T -
oy 1 "

".!"".-'.--- S ". [TR Iy '-: ‘,{h’:\

7T S 77

S N T N BV
" :,;I-:;\i;!'-:i:liﬂﬂ o [!1“.‘:#'-;-; s
N fe ?.:.!'..-'l.h _'-.'.-:'1'. 'if.;l 9
TN R

b R

Jugt ':' F:.-._ "

Figure 10.9: Wireframe Version of George

%,"\?*!'xmfé}
VOSOR 20
SSOTOZOROST

N7
NPz

Figure 10.10: George with Pupils

112

CHAPTER 10. GRAPHICS

Object [V [Quick Redraw

@ Colop “ E Red
[Reflect N] Green
DFI“EP m @BluE REmmnmmonn

EEER X Blending [N | E Aip

| 8| Ekuughness (T :i‘t“’
ass

B pecul W gy

| 28 E Hardness | B [custon

D Unlit X Shaded [< Smooth [Nm\nal

(] As Sun [Bright [Facets [X] Glossy

[] As Lanp [] Texture [] Genlock
Intensity EEENITI (3 [Matte [IFF Evush

Figure 10.11: Setting up George’s Attributes

10.7. VIDEOGAMES 113

Figure 10.12: Ray Traced Version of George

are very fast; but still not fast enough...

10.7 VideoGames

Now we certainly couldn’t have a section on graphics and not talk about videogames.
The current generation of home videogame machines have the same CPUs as personal
computers do. In fact, all they need is a keyboard and a disc drive to really be
considered a personal computer that specializes in graphics and sound.

Videogames require a lot of computing power, as they typically involve fast multi-
colour animation along with multi-voice stereo sound. Remember that back in the
mid 70’s Pong was cutting-edge videogame technology. For those of you that missed
the 70’s, a typical “table tennis” video game is shown in Figure 10.13. Today one of
every four homes in America has a videogame system. This is where microcomputers
have really found a home ...in your home.

114 CHAPTER 10. GRAPHICS

Figure 10.13: Ye Olde Video Game

10.8 Graphics and You

Good graphics require a lot of computing power, and as machines become faster,
graphics quality will continue to improve. As desktop publishing brought the power
of a small printshop to your desk, desktop video now brings the power of a small video
production facility. The creativity and talent still rest with the individual artist. The
computer simply gives you another medium to work in and another set of tools to
help you express yourself.

10.9 Questions

1. What is rendering?
2. How does a drawing program differ from a painting program?
3. What is digitizing?

(a) converting audio or video into a form the computer can understand

10.9. QUESTIONS 115

(b) multiplication using binary numbers
¢) the act of typing numbers into the computer
(c) yping p

(d) the method Ted Turner uses to ‘improve’ old movies

116 CHAPTER 10. GRAPHICS

Chapter 11

Hypertext

We have said that computers are good at managing information, and there is a lot of
information out there to manage. We can use a computer to help us get to important
information quickly. A book is divided into chapters with a table of contents at the
front. Why? It lets us find the information we are searching for quickly. Textbooks
have indices in the back. Why? It lets us find the information we are searching for
quickly. It would be very time consuming to have to start at the beginning of a book
and keep reading until we found what we are looking for. Tables of Contents and
Indices allow us to take shortcuts, and go directly to the piece of information we want
to look at. It would be nice if we could take even more shortcuts.

Even in 1945 the need for a system that cross referenced information was apparent.
Vannevar Bush came up with the idea for a system called Memex. This system would
allow the linking of pictures and text. Unfortunately the technology of 1945 would
not allow this system to be built. The first working hypertext system was created in
1967 at Brown University.

11.1 Hypertext

In many papers we make use of footnotes. We put a number into our text and
the reader can use that number to find the corresponding footnote reference. The
footnote number acts like a link between the main body of the text and the additional
information stored in the footnote itself. Encyclopedias work on this same principle.
They list related topics that you can look at for further information. The limitation
of printed material is that you must go to the related piece of information. Hypertext

117

118 CHAPTER 11. HYPERTEXT

the special and the general theorey : a popular exposition

Bonanza Books

Bibliography: p. 158-159.
Includes index.

Figure 11.1: Card Catalogue

is a generalization of these concepts.

Ted Nelson coined the term “Hypertext Systems” and it was appropriate for the
early systems that were developed since they could only link text. Officially hypertext
is non-sequentially linked pieces of text or other information. Hypertext systems
consist of information and links that link related pieces of information together. A
person does not have to start at the beginning and read through to the end. He
can start at the beginning and then go in the direction that interests him. Using
a hypertext system is often known as “navigating through an information space.”
Information is linked together, and the links allow the user to move through the sea
of information, only looking at those pieces of information that are of interest, and
moving quickly between related interesting topics.

Hypertext systems display their information on the monitor screen so the user
does not have to go searching for the related information. The computer does the
searching and displays the requested information. Most of the monitor screen for a
hypertext system is devoted to displaying the requested information, and the rest
contains buttons allowing the user to choose what to look at next. Since it is easy
to get lost in a large hypertext document maps are often provided on the screen to
show you where you are and where you can go from here.

For example, we could have a hypertext card catalogue for a library. The infor-
mation about each book is displayed on the monitor screen in the form of a card as
shown in Figure 11.1.

As well as having the standard card catalogue information which would allow the
user to search for books based on various criteria, this system may have links allowing
you to read an abstract from the text stored electronically. At the push of a button
you would have the opening chapter of the book displayed on the screen in front of

11.1. HYPERTEXT 119

PREFACE

The present book is intended, as far as possible, to give an exact insight into
the theory of Relativity to those readers who, from a general scientific and

philosophical point of view, are interested in the theory, but who are not con
versant with the mathematical apparatus of theoretical physics. The work
presumes a standard of education corresponding to that of a university ma-
triculation examination, and despite the shortness of the book, a fair amount
of patience and force of will on the part of the reader. The author has spared

Figure 11.2: Text of the Book

Figure 11.3: The Author

you as shown in Figure 11.2.

The names of important people and events in this book would be linked to infor-
mation about them. This is where the original concept of hypertext comes in. Certain
important words have links to additional information, or other sections of the text.

Another button could bring up biographical information about the author as
shown in Figure 11.3.

Of course, a system like this is still a few years off, but primitive versions are
currently in operation.

Each user charts her own course through the information. We said before how
modern computers allow us to work in ways that are intuitive to us. Hypertext
systems allow us to search for information in a more natural way. Hypertext systems
also put a “friendly” face on the monstrous amount of information that is accessible.
With computers becoming faster, storage devices becoming cheaper, and interfaces
being easier to use, we can look forward to seeing more and more of these hypertext
systems becoming available.

120 CHAPTER 11. HYPERTEXT

One the new “buzzwords” of the 90’s is multimedia. Why not allow the computer
access to information from different media. For example connect the computer to a
compact disc player, or a laser disc player. Let’s use the computer to manage other
types of information aside from plain text. Multimedia applications are supposed to
be the hot computer area of the 90’s and Commodore is already pushing their newest
Amiga as a “Multimedia platform.” Computers will be managing larger, and more
varied amounts of information in the coming years. The more information available,
the more useful a hypertext system will be to help you search through it.

11.2 Hypermedia

Apple’s Hypercard was the first really popular hypertext program and the first pro-
gram to successfully expand the idea of Hypertext into Hypermedia. The information
that a hypertext system moves through does not have to be stored within the com-
puter. Hypermedia is a combination of hypertext systems to a multimedia computer.
Hypermedia allows the user to easily access information from many different forms
of media. Hypercard allowed computer users to run Compact Disc players and their
larger siblings Laser Disc Players from a Macintosh. A laser disc can hold 50,000 full
colour still pictures on a single side. Trying to look up a certain frame on a printed
index would be very difficult by hand, but a hypermedia system would make it simple.

The Voyager Company has had some HyperCard hypermedia products on the
market since 1988. One of their discs contains everything you ever wanted to know
(and much, much more) about Beethoven’s 9th Symphony. Other currently available
products include a complete dictionary on CD-ROM. Not only does this dictionary
give you the standard definitions and origins for a word, it also gives you an audible
pronunciation. You don’t have to translate the pronunciation symbols anymore be-
cause the dictionary will “speak” the word for you. An entire encyclopedia can be
stored on disc along with full colour pictures. Since the computer can access this in-
formation for you, you can search much more quickly. And they have the advantage of
being portable. Why lug around a 2000 page dictionary or a 15 volume encyclopedia
when you can carry around a compact disc?

11.3. MEMEX 121

11.3 Memex

It seems hard to picture how a hypertext system could have been thought up in the
40’s by Vannevar Bush. Computers were very rare and very expensive things and
had nowhere near the capabilities of today’s desktop personal computers. Vannevar
Bush’s system was designed based on the technology of the times. Memex was a
desk that the user would sit at. Information in the form of pages would be stored on
microfilm. Using a lever you could show one of these pages on one of the translucent
screens of the memex. The machine you use at the library to look at microfilm
works just this way. But how do you get information into the machine? Through
photography. The memex would be able to take a photograph of any piece of paper
and store it on a new piece of microfilm. You could bring up a page onto one of the
screens, add some new notations, and then take a new picture of the changed page.

The hypertext links were kept through coded numbers. A book on the desk would
contain the numbers of different pieces of microfilm. Each piece of microfilm would
have its own numebr as well as the numbers of related pieces of microfilm. If you were
interested in following the links’ you would then look up that piece of microfilm.

I find the ideas behind the memex interesting because it would have been an
information processor that didn’t not rely on digital processing or even anything
remotely similar to a computer of today. Today however you could make a much
more powerful memex system. Microfilm would be replaced by hard discs and CD-
ROM. Photography would be replaced by digiters. Output could be onto full colour
monitor screens or hardcopy onto a laser printer. The built in computer could access
and display this information quickly. Changes could be made to the documents using
the keboard, an optical pen or a mouse. And, of course, the 'desk’ could be compacted
down to the size of a briefcase for portability.

11.4 Hypertext and You

Hypertext products also offer the promise of allowing people to create multimedia
presentations with very little programming knowledge. Hypertext systems come with
their own programming languages to allow their users to create new hypertext docu-
ments. This is good for non computer science people who want to create hypertext
information systems. Hypertext systems have found their first niche in museums,
where the museum can set up hypertext systems for their patrons to use. Each vis-
itor to a specific exhibit can use the system to look for more information in specific

122 CHAPTER 11. HYPERTEXT

areas she is interested in.

Unfortunately all the hype surrounding hypertext and multimedia obscures the
fact that there really is a need for systems such as these. Their usefulness in teach-
ing could be astounding, but like every other tool they must be used appropriately.
Hypertext and multimedia systems will give people easy access to vast amounts of
information, but correlating these facts and learning from them will still be up to the

individual.

11.5 Questions

1. What is hypertext?

(a) an automatic linking of related pieces of information
(

C

)
b) the way text wraps around the screen when you use a word processor
) sending information over phone lines

)

(
(d

typing text into a paint program

Chapter 12

Programming

Computers are like an Old Testament God; A lot of rules and no mercy.
— Joseph Campbell.

One of the questions posed when the topic of programming crops-up is: Why do
I need to learn how to program a computer when I can just buy any program that
I need? Programming is much more than learning a set of “incantations” that tell
the computer what to do. Being able to write a program, even a very simple one,
allows you to take full control over the computer and make it do what you want it to
do, rather than just making do with what others have already written. Programming
will give you a better feeling for why programs work the way they do, and how much
work goes into creating them. Programming also teaches the very important skill of
breaking a problem down into subproblems - stepwise refinement. This skill comes
in handy in all kinds of ways, as it forces you to think in a very logical and step by
step manner. You will find that the more specialized your need, the less likely that
a program exists to fulfill that need. Being able to write a program will allow you to
create the program that you need, rather than waiting for it to be written by someone
else. There is also a great market for programs written by people in specialized fields.

123

124 CHAPTER 12. PROGRAMMING

Programming is the art of writing computer programs. Programming is truly
an art as well as a skill. When we write a program we are not only interested in
solving the current problem. We want to write a program that is easy to read, easy
to understand, and easy to modify if the need arises. We want an elegant solution to
the problem. We are not just painting the garage to hide the cracks, we are painting a
picture to hang on the dining room wall. We will not take the “Cliff Notes” approach
to programming here.

12.1 Algorithm

Given a problem there are usually many methods that will solve it. Each person sees
a problem in a different way, and will come up with a unique solution. When we
are given a problem we try to decide on a sequence of steps that will solve it. In
computer science this sequence of steps is called an algorithm. In the real world it is
called a recipe. Computer scientists use the word algorithm because it makes them
feel important. A program is the translation of this sequence of steps into a form
that the computer can understand and perform.

Algorithms have existed for more than 2000 years. The first nontrivial algorithm
was developed around 350BC by Euclid (remember him from Geometry?) when he
invented a procedure to find the greatest common divisor of two positive numbers.
The word ‘algorithm’ comes from the name of a 9th century Persian mathematician
named Mohammed-al-Khowarizmi which was translated into Latin as ‘algorismus.’
Mohammed-al-Khowarizmi created step by step rules for doing basic math on decimal
numbers.

Now, typically we aren’t confronted by problems like those of Euclid or Mohammed-
al-Khowaizmi but as human beings going about our business we often come up against
new situations: How do I make chocolate chip cookies? How do I change the oil in
my car? How do I register for classes?

12.2 Stepwise Refinement

The best way to solve these problems (and in fact the way humans generally DO
solve problems) is to use a process called stepwise refinement, which is also known
as “divide and conquer.” We break down a large problem into smaller and simpler
problems until we have solved all the small problems, and then we have (magically)

12.2. STEPWISE REFINEMENT 125

solved the larger problem. In effect we create a recipe, or algorithm, for solving this
large problem - we find a sequence of steps that will solve it. We will be able to use
this recipe again in the future if we come across a similar problem.

Imagine you have a friend who has never been to a movie theatre, and you want
to tell her how to go about seeing a movie.

As in a recipe, there are certain ‘ingredients’:

e you need a movie that she wants to see

e she must be able to get to the theatre at the correct time
e she must have enough money

e she must be able to get home from the theatre

Assuming all these ingredients are available we can think about the steps involved.
first we start off with something very general:

1)See a movie

Well, lets break (1) down into several sub-problems. First we need to go into the
theatre, then buy a ticket, then go into the ‘viewing room’, then watch the movie,
and finally we leave. Now we can write these down a little better as follows. What
we are building up looks suspiciously like an outline.

refinement of see a movie
1.1)enter theatre

1.2)buy ticket

1.3)enter viewing room
1.4)watch movie

1.5)leave theatre

(1.1), (1.2), (1.3), (1.4), and (1.5) all refine step 1. We like to number the steps
as in an outline so we don’t get confused. We started with one problem, and now we
have five problems - but they are five simpler and more specific problems.

Now we will need to break each of these five steps into smaller parts. Lets break
(1.1) down into several sub-problems. In order to enter a theatre we have to walk up

126 CHAPTER 12. PROGRAMMING

to the theatre, then find the door, then wait in line to get in, then go through the
door. We can write these a little better as:

refinement of enter theatre
1.1.1)walk up to theatre
1.1.2)find entrance doorway
1.1.3)wait in line to get to doorway
1.1.4)go through doorway

Now you may not agree with these latest steps. What if the box-office is outside
the door? What if the people line up inside the theatre? The recipe has gotten more
detailed and more specific. Try to refine the other four steps for yourselt and see how
they compare to mine. They probably don’t match exactly and that’s fine. Everyone
breaks down a problem in a different way, and comes up with a different recipe to
solve it. Programming is a truly creative process.

Here is my complete refinement for going to the movies:
1) See a movie

refinement of see a movie
1.1)enter theatre

1.2)buy ticket

1.3)enter viewing room
1.4)watch movie

1.5

e N N N’

leave theatre

refinement of enter theatre
1.1.1)walk up to theatre

1.1.2)find entrance doorway
1.1.3)wait in line to get to doorway
1.1.4)go through doorway

refinement of buy ticket
1.2.1)walk up to ticket counter

12.2. STEPWISE REFINEMENT 127

1.2.2)take out money ($3.50 tops)

1.2.3)state movie name (e.g. Hunt for Red October)

1.2.4)slide money through slot

1.2.5)receive ticket and change

1.2.6)get ticket ripped in half by the ticket-in-half-ripper person

refinement of enter viewing room

1.3.1)find correct viewing room within the cinerama quintaplex
1.3.2)find row where screen fills vision, no exit signs visible
1.3.3)move across row until within centre of viewing room
1.3.4)find closest empty chair

1.3.5)sit down

refinement of watch movie

1.4.1)talk with friends until projector turns on
1.4.2)watch previews

1.4.3)shut up

1.4.4)watch movie

1.4.5)wait for credits to finish and music to stop

refinement of leave theatre
1.5.1)stand up

1.5.2)unstick feet from floor
1.5.3)go outside through exit door

You could break each of these steps into several substeps. You could break step
1.1.4 “go through doorway” down into several motions. We will stop at three levels for
this problem. We have broken down the problem to basic human conscious actions.
The final number of refinements will depend on how complex the problem is. The
more complex the problem is, the more steps it will take to break the problem into
sufficiently simple steps that your audience can perform them.

You may have noticed at final registration for classes they now have a little chart
that you follow along step by step as you go through the process. They have broken
the big and general problem of “final registration” into a set of simpler steps for you
to follow in order that will solve the problem of getting you registered for classes.
Even the university administration can see the advantages inherent in this process.

Programming a computer to solve a problem involves a similar process, except

128 CHAPTER 12. PROGRAMMING

that the computer is the dumbest friend you have ever known. It will do exactly
what you tell it, so you can not be ambiguous in your directions. You also must
break down your problem to a level that the computer can handle on its own. This is
when most people stop viewing computers as mysterious and unknowable, and start
complaining about how ‘stupid’ they really are.

This ability to break down a problem statement down into steps is probably the
most important thing to be learned in this class. Breaking down the problem forces
you to understand the problem before you try to solve it. It is very tempting to just
go right at the problem and start trying to fight the problem without thinking first,
but it is always faster to slow down, sit back and think before you type.

We are going to start with a very simple problem expressed in English. We are
going to break that problem down into a step by step English algorithm. We will
then write these steps in the Pascal language so that the computer can understand
them. When we have finished we will have a complete Pascal program.

Problem — Algorithm — Program

In everyday life we speak to each other in the language we are most familiar. For
the sake of argument lets say it’s English. When we speak English to one another we
usually understand what each other is saying and if the sentences are ideas, orders
or requests, we usually understand what it means and how to go about fulfilling the
request. Unfortunately there are also instances when we do not communicate our
orders effectively, perhaps because of a lack in the ability to speak the language or
a lack in the specificity of the orders. For example in a recipe to bake a cake you
may be asked to put in two eggs. Two people may interpret that in different ways.
The obvious interpretation would be to crack the egg and empty its contents into
the mixing bowl; an alternate interpretation is that we throw in the two eggs, shell
and all. Speaking in a computer language so that the computer understands your
intentions presents the same problems.

You have to treat the computer as a 3 year old child to get it to perform the
tasks exactly as you intended. You must first be able to speak the computer language
accurately because the computer is absolutely intolerant of incorrect grammar. And
you must be able to break up the descriptions of a task you wish to perform into
small enough parts so that the computer will understand without ambiguity. The
rule to remember is: Computers never do what you WANT them to do; only what

you TELL them to do. As Aldous Huxley said:

12.3. PORTABILITY 129

/ -
Compiler D
Text Pascal
Editor Computer
Program Compiler \ @ I |
=
L———7

Figure 12.1: Portability of Pascal to different CPUs

People always get what they ask for; the only trouble is that they never
know, until they get it, what it actually is that they have asked for.

We have said that computers only know 0s and 1s. It would be rather tedious
and very error-prone if we had to write programs with only 0s and 1s in this binary
language. Fortunately each CPU on the market has its own assembly language
which makes things a little better ...a little closer to English. Pascal and other
high level languages such as C, BASIC, and Lisp make computer programs look
even more like English. This makes the programs much easier to write, and much
easier to understand. Even so, computer programming languages have a very precise
grammar, and any deviation from it will cause the computer to reject what you write.

12.3 Portability

Programs written in high level languages such as Pascal are portable. I can write the
same Pascal program on an IBM-PC or a Macintosh even though they have different
CPUs. The code within the Pascal program does not depend on the brand of machine
it is running on. Pascal programs must be translated into assembly language before
they can be run. When this translation is performed they are translated into the
specific assembly language of the CPU that will be used. This assembly language
(low level language) version is no longer portable. It can only be used with that
same type of CPU. Figure 12.1 illustrates.

130 CHAPTER 12. PROGRAMMING

12.4 Pascal

We are going to be using the computer language called Pascal in this class, which
was named after the French mathematician Blaise Pascal. We are using it because it
is a popular language at the moment in computer science curriculums, and it is very
similar to most other computer languages you may encounter. It is also the language
used in CSC 102, and this class is a prerequisite for that class.

We begin with a simple problem of teaching the computer how to add two numbers
together and display the answer. This is a classic program as we all know that
computers are good at arithmetic.

In plain English how is this problem expressed?

We may write:

I need to teach the computer how to add two numbers together and I would like to
see the answer that the computer gets.

This is a clear and simple problem statement. It is important that you understand
the problem before you attempt to solve it. Unless you fully understand the problem,
you will never really know that what you are doing will solve it. This is a fact that
applies to problem solving in general and not just computers. In Software Engineering,
defining the problem occupies 30% of the effort of solving the problem.

The problem statement we have written above is fine for humans but far too im-
precise for computers.Let us break the statement into smaller parts such as:

1. Give me two numbers.
2. Add them together.

3. Show the answer.

These smaller parts indicate a stepwise refinement of the problem statement.
We should now attempt to exercise stepwise refinement to make the algorithm above
more precise until finally we reach a stage where we can convert the idea directly into
Pascal. A refinement to the above algorithm is:

la. Give me a number.
1b. Glive me another number.
2. Add them together.

3. Show the answer.

12.4. PASCAL 131

We break step 1 into two parts la, and 1b. You will notice that this looks a bit
like an outline. We use letters and numbers to identify each step so we can see the re-
finement process. At this point, Step 2 is still somewhat imprecise. What do we mean
by, Add THEM together? We therefore revise step 2 with a new refinement as follows:

la. Gwe me a number.

1b. Glive me another number.

2. Add the first number and second number together.
3. Show the answer.

Now, Step 3 seems a little imprecise. What do we mean by SHOW the answer?
Let us rewrite the above as:

la. Give me a number.

1b. Give me another number.

2. Add the first number and second number together.

3. Print the answer in step 2 onto the computer screen.

Since computers tend to be mathematical machines that often deal with symbols
let us try to gradually move toward using symbols in our algorithm.

For example instead of saying: la. Give me a number. Let us say, Give me a
number and call it NUMBERONE. Likewise we can call the second number NUM-
BERTWO. NUMBERONE and NUMBERTWO are good names for these symbols
since we know that they are going to be numbers. Other good names could be
FirstNumber and SecondNumber, or Numberl and Number2. So the algorithm now
becomes:

la. Give me a number and call it: NUMBERONE.
1b. Give me a number and call it: NUMBERTWO.
2. Add NUMBERONE and NUMBERTWO together.

3. Print the answer in step 2 onto the computer screen.

Let us also try to elaborate on step 2 and re-write it using another symbol THE-
SUM. THESUM is a good name since we want to compute the sum of the two num-
bers. We could have called this NUMBERTHREE, or ANSWER but THESUM 1is
much more specific. Let us use THESUM to contain the results of adding NUM-

132 CHAPTER 12. PROGRAMMING

BERONE and NUMBERTWO.

la. Give me a number and call it: NUMBERONE.
1b. Give me a number and call it: NUMBERTWO.
2. Let THESUM = NUMBERONE + NUMBERTWO.

3. Print the answer in step 2 onto the computer screen.
Now we can rewrite step 3 so that our algorithm becomes:

la. Gwe me a number and call it: NUMBERONE.

1b. Give me a number and call it: NUMBERTWO.

2. Let THESUM = NUMBERONE + NUMBERTWO.

3. Print the answer, THESUM, onto the computer screen.

At this point we can see that certain steps are becoming more precise while others
are still somewhat vague. For example, step la and 1b says: Give ME a number and
call it ... We don’t want to use the word ME when we talk about computers so we
use a term that sounds more like a computer term: READ. We want to read in values
for these two numbers. But instead of just reading in the number, we should ask the
user to give us a number. This is slightly more polite. So we can rewrite the steps as:

lai. Ask user for NUMBERONE.

laii. Read NUMBERONE.

1bi. Ask user for NUMBERTWO.

1bii Read NUMBERTWO.

2. THESUM = NUMBERONE + NUMBERTWO.

3. Print the answer, THESUM, onto the computer screen.

Similarly the third step: Print the answer ...can be more tersely expressed if we
used WRITE. We want to write out the answer.We should also write out an appro-
priate message telling what this answer represents. The new refinement becomes:

lai. Ask user for NUMBERONE.

laii. Read NUMBERONE.

1bi. Ask user for NUMBERTWO.

1bii Read NUMBERTWO.

2. THESUM = NUMBERONE + NUMBERTWO.

12.4. PASCAL 133

3a. Write explanation.

3b. Write THESUM.

At this point our instructions are beginning to look more like a Pascal program.
In fact in Pascal there are commands: READ and WRITE that does exactly what we
want: to READ-in information (from the keyboard) and to WRITE-out information
to the screen. With what we have developed so far, the grammar is still not quite
correct Pascal so we need to re-write our steps using the Pascal grammar. Steps laii,
1bii and 3b may be re-written as follows:

lai. Ask user for NUMBERONE.

laii. Read (NUMBERONE);

1bi. Ask user for NUMBERTWO.

1bit Read (NUMBERTWO);

2. THESUM = NUMBERONE + NUMBERTWO.

3a. Write explanation.

3b. Write (THESUM);

Now we have to deal with writing out some explanatory text. Similar to the way
we can Write (THESUM) we can just write out some plain text. Steps lai, 1bi, and
Ja are re-written as follows:

lai. Write (’Please enter the first number’);

Laii. Read (NUMBERONE);

1bi. Write ("Please enter the second number’);
1bii Read (NUMBERTWO);

2. THESUM = NUMBERONE + NUMBERTWO.
3a. Write ("The sum of the two numbers is’);

3. Write (THESUM);

Note the added parentheses and semi-colons after the instructions. At this point
our problem is almost a Pascal program. It is “almost” a Pascal program because
we need to make some changes to step 2. It is still not in the correct grammatical
form (or syntax). We should rewrite step 2 as shown below, and at the same time
we need to remove the step labels we have used so far because Pascal does not use
them.

134 CHAPTER 12. PROGRAMMING

program AddEmUp;

var
NumberOne, NumberTwo, TheSum: INTEGER;

begin
WRITE(’Please enter the first number’);
READ (NumberOne) ;
WRITE(’Please enter the second number’);
READ (NumberTwo) ;

TheSum := NumberOne + NumberTwo;

WRITELN(’The sum of the two numbers is:’, TheSum);
end.

Figure 12.2: Pascal Program

Write (’Please enter the first number’);
Read (NUMBERONE);

Write (’Please enter the second number’);
Read (NUMBERTWO) ;

THESUM = NUMBERONE + NUMBERTWO.

Write (’The sum of the two numbers is’);
Write (THESUM);

Before this becomes a complete Pascal program we need to include some additional
information in the program. These will be explained after we present the complete
program in Figure 12.2.

12.5 Literate Programming

Stepwise Refinement is a technique often used by good Software Engineers. It has
been greatly popularized by a technique called Literate Programming; invented by

12.6. TYPES OF ERRORS 135

professor Donald Knuth at Stanford University. It is an attractive means of program-
ming because it forces the programmer to state the problem clearly and to concentrate
on only one part of the problem at a time. Literate programming also forces pro-
grammers to thoroughly explain their program rather than just plunge in and write
incomprehensible instructions. In fact a well written Literate Program should be as
easy to read and follow as a good novel. In fact Knuth has published several books
which are actually programs written in Literate Programming style, but because they
have been written in this style, they have been sold as computer textbooks.

So in the spirit of Literate Programming we should explain (or comment or doc-
ument) our program appropriately so that when we read it again at a later date we
can still understand what it was supposed to do. We put a large comment at the
top telling who wrote the program, when it was written, and what in general it was
written to do. Important lines of code have comments written before them.

The new program with comments included is shown in Figure 12.3. Note: Text
enclosed in {} pairs are recognized by Pascal as comments and not actual instructions.
That is when Pascal works on the program it will ignore all the text that are enclosed
in {}. This gives us a opportunity to insert “human” information there that makes
our program more understandable without interfering with the normal interpretation
of the program by the computer.

You may have noticed that we have indented the lines of the program. Along
with comments and good variable names, indenting is used to make the program
more readable to humans. When we write a paper in English we also indent our
paragraphs to make them more readable.

12.6 Types of Errors

There are two different kinds of errors that are possible when writing programs. One
is a syntax error, and the other is a semantic error. These programming errors
are similar to their English equivalents. A syntax error is an error in grammar. The
computer does not understand what you want it to do. It could be as simple as
mistyping a letter, or misspelling a word. A semantic error is an error in meaning.
You have given the computer instructions with proper grammar, but the machine
does not do what you want it to do. You have told it to do the wrong thing and it is
happily doing what you told it to do. Stepwise refinement can not eliminate syntax
errors, but it can greatly reduce semantic errors, and the earlier you catch an error,
the easier it is to fix it.

13

6 CHAPTER 12.

program AddEmUp;

{*
{*
{*
{*
{*
{*
{*
{*
{*

sk sk sk sk skeok ok sk o ok o ok ok ook sk sk ok ok s sk ok ok ke sk sk skok sk sk ok ok ok okok sk ok ok -
Authors: Jason Leigh and Andy Johnson *}

Date: 6/18/89 (last modification 4/29/90) *}
skt ok ek s s ke sk sk ke ske stk sk sk sk sk sfesksfesk sk stk st ok ok ok ko ok sk sk skk skk sk ok
Description: *}
The computer will ask me for two numbers. *}
It will then add those *}
numbers together and show me the sum *}
skt ok ek s s ke sk sk ke ske stk sk sk sk sk sfesksfesk sk stk st ok ok ok ko ok sk sk skk skk sk ok

var
NumberOne, NumberTwo, TheSum: INTEGER;

be
{

{

{

{

gin
print out welcoming message’
WRITELN(’Welcome to the number adding program.’);

prompt the user for the numbers}
WRITE(’Please enter the first number’);
READ (NumberOne) ;

WRITE(’Please enter the second number’);
READ (NumberTwo) ;

calculate the sum of the two numbers}
TheSum := NumberOne + NumberTwo;

print out the sum of the two numbers}
WRITELN(’The sum of the two numbers is:’, TheSum);

end.

Figure 12.3: Complete Pascal Program

PROGRAMMING

12.7. PROGRAMMING AND YOU 137

In English a sentence that is syntactically incorrect is “Jane the rifle Dick at

7 There are several grammatical errors in that sentence. A sentence that

shoots.
is syntactically correct but semantically incorrect is “Colourless green ideas sleep
furiously.” Syntactically there is nothing wrong with this statement, but it doesnt
make any sense: How can something be colourless and green? How can you sleep

furiously? How can an idea be green, and how does it sleep?

12.7 Programming and You

The steps involved in converting our problem statement to a Pascal program is one
of many possible solutions. Depending on the creativity of the programmer many
different programs may appear, all solving the same problem in unique ways. There
are no concrete steps that will always guide you from a problem statement to a final
computer program. Successful translation requires a lot of practice and the more
practice you get the better you will be able to perform this translation. It is like
learning a foreign language. It requires a great deal of practice before you are able to
speak the programming language fluently. But all of you have learned English, and
it is far stranger than any computer language you will encounter.

12.8 Questions

1. Use stepwise refinement to refine the idea of going into a fast food restaurant
and having lunch.

2. list 3 reasons why a person would want to write his own program.
3. Stepwise Refinement is used to

a) Break a problem down into smaller more manageable pieces

(
(

b) Convert a program from Pascal into Assembly Language
(c) Compile a Pascal program
(d) Create an executable version of a Pascal program

4. How does an algorithm relate to a program.?

5. What is the difference between a syntax error and a semantic error?

138 CHAPTER 12. PROGRAMMING

6. The language Pascal was named after

a) Bernie Pascal

(a)
(b)
(c)
(d) Luther Pascal

Jean-Luc Pascal

Blaise Pascal

7. Develop an algorithm and a Pascal program for computing the value of Y in

the following equation: ¥ = M X + B.

8. Develop an algorithm and a Pascal program for computing the average of your
exam grades.

9. Develop an algorithm and a Pascal program to convert Fahrenheit to Celsius,
or vice-versa.

Chapter 13

Some Pascal

We are now ready to actually talk about Pascal programming. You have used a word
processor to type information into the computer. You have given specific commands
to a database to perform specific functions. You have used formulas in a spreadsheet
to do calculations. In the last chapter you learned how to break a problem down
into smaller, simpler problems. Programming combines all these skills as you take a
problem, break it down into specific instructions the computer understands, and then
type it in to the computer using a text editor.

13.1 Line by Line

First we are going to show you the final version of the program we developed using
stepwise refinement. We are now going to look at the individual lines of code and
actually see what they do. The final version of the program is shown in figure 13.1.

Now my guess is that you understand what that program does, even if you do not
know any Pascal. That is the kind of program that we want you to be able to write
...one that can be read and understood by people who do not know anything about
programming.

Let’s look at this program in a little more detail:

PROGRAM AddEmUp;

Every Pascal program must start with the word “program” and then the one-word
program name and then a semi-colon. In this case the author of the program named

139

140 CHAPTER 13. SOME PASCAL

program AddEmUp;

Lok ok skook ok sk ok skok ok sk o sk ok ok ok ook ok ok ook o ok o sk o ok ok ok sk ok sk ok ok ok ook ok ok ok ok K
{* Authors: Jason Leigh and Andy Johnson *}
{* Date: 6/18/89 (last modification 4/29/90) *}
Lok ok skook ok sk ok skok ok sk o sk ok ok ok ook ok ok ook o ok o sk o ok ok ok sk ok sk ok ok ok ook ok ok ok ok K

{* Description: *}
{* The computer will ask me for two numbers. *}
{* It will then add those *}
{* numbers together and show me the sum *}

{***}

var
NumberOne, NumberTwo, TheSum: INTEGER;

begin
{print out welcoming message’}
WRITELN(’Welcome to the number adding program.’);

{prompt the user for the numbers}
WRITE(’Please enter the first number’);
READ (NumberOne) ;

WRITE(’Please enter the second number’);
READ (NumberTwo) ;

{calculate the sum of the two numbers}
TheSum := NumberOne + NumberTwo;

{print out the sum of the two numbers}

WRITELN(’The sum of the two numbers is:’, TheSum);
end.

Figure 13.1: Complete Pascal Program

13.1. LINE BY LINE 141

the program AddEmUp.

{oHokokok ko sk ook ok ok koK KoK o KoK ok KooK ok o oK ok K ook oK oK ok ok ok ok K ok ok Kok
{* Authors: Jason Leigh and Andy Johnson *}
{* Date: 6/18/89 (last modification 4/29/90) *}
{oHokokok ko sk ook ok ok koK KoK o KoK ok KooK ok o oK ok K ook oK oK ok ok ok ok K ok ok Kok

{* Description: *}
{* The computer will ask me for two numbers. *}
{* It will then add those *}
{* numbers together and show me the sum *}

{***}

The words on these lines are encased in the squiggly brackets ‘{” and ‘}’. Anything
enclosed in squiggly brackets is called a comment. Comments are used to make the
program more readable to a human who wants to know what your program does.
The computer ignores all of your comments when it translates your program. The
comment at the top of the program usually tells who wrote the program, when it was
written, and what it does in general.

After the comments comes a blank line. The computer does not need it but it

makes your code much easier to read if important parts of it are sectioned off using
blank lines.

var
NumberOne, NumberTwo, TheSum: INTEGER;

Here is where we declare what type each of our variables will be (var is short for
variables.) A variable is a location in memory that is going to be used to store a
value while the program is running. This place in memory is given a name (such as
NumberOne.) We also give this location in memory a type (such as integer) which
tells that location what kinds of things it can expect to be put there. In this program
we set aside three memory locations and all of them will hold integers. We do not
give any values to the variables at this point, we only declare their existence. It is
important to give the variables appropriate names to make the program easier to
read.

142 CHAPTER 13. SOME PASCAL
begin
end.

The ‘main body’ of the program, where the actual computing goes on, is contained
between the words ‘begin’ and ‘end.” It is important to note that after the end there
is a period. Just as a Pascal program begins with the word ‘program’ it also must
end with ‘end.” You may notice that the text within the begin/end block is indented,
as were the variables we declared. The computer also ignores all the indenting and all
the white space you put into your program. When writing a paper we use paragraphs
to break up our writing. We indent the first line of our paragraphs, and indent
quotations even more. This indenting does not change the meaning of the words that
we have written. It makes them easier to read. That is why we use indenting and
white space in our Pascal programs. We want to make them easier to read.

{print out welcoming message’}
WRITELN(’Welcome to the number adding program.’);

The first line is contained in squiggly brackets so it is a comment. It tells us in
English what is going to happen next. The second line uses the word ‘writeln” and
then there is a pair of parentheses, and finally a semi- colon. Writeln is short for
“write line.” Writeln is used to print text onto the monitor screen. What it prints
is contained within the parenthesis. Writeln can be used to print out the values of
variables, or just text. If text is to be written out it must be contained within single
quotes (note not “ [double quotes| or ‘ [apostrophe].) In this case the program will
write out the phrase Welcome to the number adding program.

{prompt the user for the numbers}

Here we have another comment telling the reader what the program is going to do
next.

WRITE(’Please enter the first number’);
READ (NumberOne) ;

Above we saw a writeln, and here we have a write. Both of them write out text
onto the screen but the writeln moves down to the next line when it is finished . .. like
hitting the carriage return on a typewriter. The write writes out text but does not

13.1. LINE BY LINE 143

hit the carriage return. This write statement is acting as a prompt. It is prompting
the user of the program to type in a number. The next line uses the word read, a
pair of parenthesis, and a semi-colon. Where ‘write’ is used to display information to
the user, read is used to get information from the user. In this case we are going to
read a value into the variable named NumberOne.

WRITE(’Please enter the second number’);
READ (NumberTwo) ;

These two lines behave in a similar way to the two lines above. The user is
prompted to enter a second number, and the value that the user types in is stored in
the variable NumberTwo.

{calculate the sum of the two numbers}
TheSum := NumberOne + NumberTwo;

Now we are going to calculate the sum of the two numbers. The first line is
a comment that tells us this. The second line is an assignment statement. “:=’ is
the assignment operator. What “:=’ does is that it calculates the value on the right
side and assigns that value to the variable on the left side. In this case the variable
TheSum will be assigned to be the sum of NumberOne and NumberTwo. You can
see here that the variable named TheSum is appropriately named since it is going
to contain the sum. Now you can see why variables are called variables. TheSum,
NumberOne, and NumberTwo do not have any values at this point. The values will
be supplied by the user when the program is run. The contents of these variables will

vary depending on what happens when the program is run.

{print out the sum of the two numbers}
WRITELN(’The sum of the two numbers is:’, TheSum);

The two final lines within the main body are responsible for printing out the
answer. The comment tells us that. Again we use a writeln to write out some
information to the user. In this case we are writing out the text The sum of the two
numbers is: and then we write out the value contained in the variable called TheSum.

144 CHAPTER 13. SOME PASCAL

13.2 Trace

Now you have seen what each line of the program does, so now lets look at what the
program as a whole does. To do this we are going to use a technique called tracing.
When we trace a program we are “running” it on a piece of paper in the same way
that a computer would run it. In order to make what’s going on a little clearer we
are going to add some line numbers. These are shown in Figure 13.2

We start “running” the program at line 0. At this point we do not know what
the values of the three variables are, so we mark them with a question mark. When
we get to line 1 an introductory message is printed on the screen telling the user that
the program is running. In line 2 Another message is printed prompting the user to
enter a number. The values of all the variables are still unknown at this point. In
line 3, the computer is waiting for the user to enter a number. Our imaginary user
enters the number 4 in response to the computer’s prompt. Now the value 4 is stored
as the value of the variable named NumberOne. Line 4 prompts the user for the
next number, and line 5 reads in the number that the user types. In this case our
imaginary user types in the number 11. In line 6 the computer calculates the sum
of the two numbers and stores the value 15 in the variable TheSum. Line 7 prints
out the value in the variable TheSum along with an appropriate message. Then the
program is done. See Figure 13.3.

You have now seen two ways to put a value into a variable. You can either read in a
value using a READ statement, or use the assignment statement :=. The WRITELN
statements do not change the value within the variables.

13.3 Semi-Colons

You are probably wondering why there are so many semi-colons in Pascal when you
hardly ever see them in English. Pascal does not look for carriage returns or white
space to end a statement. The semicolon is used to separate statements. In English
we use periods to separate our sentences. We can write sentences that are longer than
one line. We can write short sentences. The end of a line does not signal the end of
an English sentence, a period does. The same is true for Pascal. The end of a line
does not signal the end of a Pascal Statement, a semi-colon does.

13.3. SEMI-COLONS

program AddEmUp;

Lok ok skook ok sk ok skok ok sk o sk ok ok ok ook ok ok ook o ok o sk o ok ok ok sk ok sk ok ok ok ook ok ok ok ok K
{* Authors: Jason Leigh and Andy Johnson *}
{* Date: 6/18/89 (last modification 4/29/90) *}
Lok ok skook ok sk ok skok ok sk o sk ok ok ok ook ok ok ook o ok o sk o ok ok ok sk ok sk ok ok ok ook ok ok ok ok K

{* Description: *}
{* The computer will ask me for two numbers. *}
{* It will then add those *}
{* numbers together and show me the sum *}

{***}

var
NumberOne, NumberTwo, TheSum: INTEGER;

{0} begin
{print out welcoming message’}
{1} WRITELN(’Welcome to the number adding program.’);

{prompt the user for the numbers}
{2} WRITE(’Please enter the first number’);
{3} READ(NumberOne) ;
{4} WRITE(’Please enter the second number’);
{5} READ(NumberTwo) ;

{calculate the sum of the two numbers}
{6} TheSum := NumberOne + NumberTwo;

{print out the sum of the two numbers}
{7} WRITELN(’The sum of the two numbers is:’, TheSum);
end.

Figure 13.2: Complete Pascal Program with Line Numbers

145

146

CHAPTER 13. SOME PASCAL

Line Number Number The What is Printed User
One Two Sum On The Screen Types
0 ? ? ?

1 ? ? 7 Welcome to the ...program.
2 ? ? ? Please enter the first number 4
3 4 ? ?
4 4 ? ? Please enter the second number 11
5 4 11 ?
6 4 11 15
7 4 11 15 The sum of the two numbers is: 15
done

13.

Figure 13.3: Tracing the Program

4 Style

It is possible to write a very different looking Pascal program that will do exactly the
same job as the program shown in Figure 13.1. This version is shown in Figure 13.4.
As far as the user is concerned the programs are exactly the same but this program
is very unreadable and this style should not be emulated.

What is so bad about it?

1.

2.

3.

6.

meaningless program names

meaningless variable names

. no indenting

. no white space

no comments

more than one statement per line

It is very important for you to write readable Pascal programs, if only for the
reason that it makes your teacher happy, and more likely to give you a good grade.

13.5. VARIABLES 147

PROGRAM test; VAR X, Y, Z: INTEGER; BEGIN
WRITELN(’Welcome to the number adding program.’);
WRITE(’Please enter the first number’);

READ(X); WRITE(’Please enter the second number’);
READ(Y); Z := X + Y;

WRITELN(’The sum of the two numbers is:’, Z); END.

Figure 13.4: Bad Style

Mostly it is a question of style. We want you have a good programming style. Pro-
grams should be readable, and easy to follow. Just getting the program to work is
not enough. In fact its only about half the challenge.

13.5 Variables

In mathematics a variable is something like “X” or “Y” and they are used in equations
such as Y = 5X 4+ 2. “X” and “Y” are variables because they do not have a set value
- they are variable. In computer languages a variable is the name of a certain location
in the RAM that is used to store a value. The value stored at this location could be
12 or it could be the letter ‘C’ so the contents can vary. Computer memory can be
compared to a wall of mail-boxes. Each one has a unique name, and their purpose is
to store something.

Up in the VAR section is where we declare our variables. We tell the computer
that we need some space reserved in memory, and we are going to refer to that space
by a certain name. We also tell the computer what kinds of things we are going to
put in that space. Declaring a variable is like writing your name on your mailbox.
You have claimed that space and given it a name.

Within the body of the program is where we use the variable. Declaring a variable
does not give it any specific value. This is why it is a good idea to initialize your
variables to give them a specific starting value. When you write your name on the
mailbox, you will very likely want to open it up and take out any old mail that has
been left over from the previous tenant. Similarly in a computer program you do not
know what’s been left in the memory that you have just claimed for your variable.
Its best to clean it out and set it to a specific value to avoid problems. The first

148 CHAPTER 13. SOME PASCAL

Space Shuttle flight was delayed several weeks because someone did not initialize
their variables.

Like your mailbox there are only a few things you can do with a variable. You
can look and see whats inside, or you can put something new inside. A variable
can only hold one thing so its like a very small mailbox. If you try to put another
value into a variable it replaces the old one. So if the variable “Temperature” already
contains the value 60 and you issue the command “Temperature := 75;” the variable
“Temperature” now contains the value 75. The 60 is gone, replaced, no more. If the
letter carrier comes to put a letter in your box and he finds you already have a letter
there he kindly rips up the old letter and substitutes the new one in its place.

In the first sample program we made all three variables of the type ‘integer.” There
are three other major types of variables you need to be aware of: real, boolean, char.

13.5.1 Integer

Integers are the whole numbers between 32768 and -32768. Now this might be a little
limiting. Integers do not include fractions, and they do not include large numbers.
integers are good for everyday type calculations where the numbers do not get very
large.

13.5.2 Real

Reals are rational numbers. They have a whole part and a decimal part. Real numbers
have a much wider range than the integers, but real numbers are not exact. We said
before that computers store everything as a sequence of 0s and 1s. A number such
as 7 or 1/3 can not be represented with a finite number of 0s and 1s, so the number
stored in a real variable is not exact.

13.5.3 Char

Integers and Reals pretty much cover the numbers, but computer programs can deal
with more than numbers. Computers can also deal with letters. A variable that holds
a single letter is of type char (short for character.) A variable that holds a sequence of
letters is a string. Characters include more than letters, they also include the single
digits, and the punctuation marks. Any single character that you can type with a
typewriter is a character in Pascal.

13.6. RESERVED WORDS 149

13.5.4 Boolean

Since computers deal with 1s and 0s,on and off, yes and no, there is a special variable
type to handle these. It is called Boolean, named after logician George Boole. Boolean
variables are either true or false ...that’s it.

13.6 Reserved Words

When we declare a variable we give it a name and a type. Now we have said that we
want to give variables good long names, but there are some names we can not use
for variables. Like many programming languages, Pascal has a set of reserved words.
These reserved words have special meanings in the language so they are not available
to the programmer. A listing of Pascal’s reserved words is given below:

and array begin case const
div do downto else end

file for function goto if

in label mod nil not

of or packed procedure program
record repeat set then to

type until var while with

13.7 Arithmetic

In the first sample program there was a line that read:

{calculate the sum of the two numbers}
TheSum := NumberOne + NumberTwo;

We used the “47 symbol to stand for addition, just like in arithmetic. We use the
“7 (dash) for subtraction. Now computers do not use x and <+ for multiplication
and division. Instead “*” (asterisk) means multiplication and “/” (slash) means di-
vision. All of the standard rules of algebra apply in Pascal, including the precedence
rules, but remember that := (colon equals) is not an equal sign, but an assignment
statement.

For example:

150 CHAPTER 13. SOME PASCAL

ForceObject := Mass0fObject * AccelerationOfObject;

is a Pascal statement that takes the value of the variable MassOfObject and
multiplies it by the value of the variable AccelerationOfObject and then stores the
result into the variable ForceObject. Whatever value that was in ForceObject before
is now gone. It has been replaced by the new value.

It we had a variable which stored a length in inches and we wanted to convert
that into the number of centimeters we could do it as follows:

NumberCentimeters := NumberInches * 2.54;

If we wanted to do the reverse calculation and convert the number of centimeters
into the number of inches we could not use this same line of code. We would need to
use the following line of code:

NumberInches := NumberCentimeters / 2.54;

Now here we do have a bit of a problem. You see adding, subtracting, or mul-
tiplying integers will always give you another integer. This is not true of division.
Pascal assumes that the “/” operator will produce a real number as a result. Now
what happens if we try to put a real value such as 12.5 into an integer variable. It
is like trying to put a round peg into a square hole. It won’t fit, and Pascal will tell
you. It will give you an error message. You can however assign an integer value such
as -34 to real variable as it will simply add on a “.0” to the end of it.

Now how about this one:

Counter := Counter + 1;

This statement is meaningless in arithmetic since X # X 4+ 1. But as we said
before := is an assignment statement. What is on the right side? “Counter + 1;”
OK, we can calculate that value. Then we assign that value to the variable on the
left hand side. In this case that variable also happens to appear on the right hand
side. No problem. This statement increments the value of Counter by 1.

13.8. WRITE/WRITELN 151

13.8 Write/Writeln

Above we had a brief discussion on the difference between WRITE and WRITELN.
Since this often causes confusion we will give a few examples. Remember that WRITE
prints something onto the screen and then waits there. Writeln does a write and then
appends a carriage return to the end.

WRITELN(’A’, °B’, ’C’);
WRITE(’d’, ’e’, ’f7);
WRITE(’G’, ’H’, ’I’);
WRITELN(C’j’, ’k’, °1°);
WRITELN(’M’, °N’, ’0°);

creates the following output:

ABC
defGHIjKI

MNO
As there is a WRITE and WRITELN for outputting information to the user; there

is a READ and READLN for inputting information from the user. Just as WRITE
will print out information and wait on the same line, READ will read in information
and wait on the same line. Just as WRITELN goes to the beginning of the next line
after writing out its information, READLN will read in information and then go to
the beginning of the next line.

13.9 Some Pascal and You

And that is some Pascal. What you have learned so far will allow you to write some
fairly simple, straightforward programs (and those are the best kind.) As with any
language, you do not become fluent unless you practice it.

13.10 Questions

1. What is the difference between declaring a variable and initializing it? What will
happen if we don’t declare a variable? What will happen if we don’t initialize
it?

152

CHAPTER 13. SOME PASCAL

. Why is it important for you to put comments into your code?

If you try to assign a real value to an integer variable

(a) the fractional part is ignored
(b) the fractional part is rounded to the nearest integer

(

c) the integer variable will be converted to a real variable
(d) you will get an error message

. Writeln is different from Write in that Writeln

(a) goes to the next line then does a write
(b) does a write then goes to the next line
(c) goes to the next line, does a write, then goes to the next line

(d) only prints out integers while write prints out real numbers

. Why is it important to put comments in your program?

An integer is a

(a) any number

(b) positive whole number
(c) positive whole number or zero
(

d) positive or negative whole number or zero
Indenting is used in a program so that

(a) the computer knows the order to execute the statements

(b) the computer can create an application

(

c¢) the computer can read the program easier
(d) the program is made more readable to a human

All Pascal programs end with a

(
(b

=

e e e’ N

C

(
(d

Chapter 14

More Pascal

There are three different orders in which statements will be executed: Sequentially,
Conditionally, and Repititionally (yes, I know there is no such word as repititionally,
but I like it.) You have already seen sequential programs. In them each line is
processed in turn, and then the next line is processed and so on. When statements are
executed Conditionally they may or may not be executed depending on whether the
condition is met. When statements are executed repititionally they may be executed
more than one time. All three different types of control are necessary to write good
programs. Figure 14.1illustrates.

¥

Sequential ~ Conditional Repititional

Figure 14.1: Different Statement Orders

153

154 CHAPTER 14. MORE PASCAL

14.1 If

The most common conditional statement in Pascal is the “IF” statement. It looks

like this:

IF condition THEN
BEGIN
{do if condition is true}
END;

or it can look like this

IF condition THEN
BEGIN
{do if condition is true}
END
ELSE
BEGIN
{do if condition is false}
END;

Within the BEGIN END block of the IF statement we can have any Pascal state-
ments that we wish. We can do arithmetic, read in values, write out values, or even
have other IF statements.

Let’s say we want to write a Pascal program to help us plan our daily exercise.
We want to give the program the current outside temperature, and the computer will
tell us what we should do. We can set up the following table:

80 < Temp swimming
60 < Temp < 80 tennis
40 < Temp < 60 baseball

otherwise stay inside

Now assuming we have the outside temperature stored in the variable Temp we can
handle the first case by writing:

IF Temp > 80 THEN
BEGIN
WRITELN(’Go Swimming’);
END;

14.1. IF 155

If Temp is larger than 80 we will get the message Go Swimming. “Temp > 807 is
the condition that is being evaluated. If this is true then the message Go Swimming
is printed. If the condition is not true then the message will not be printed. Now we
need to add in the condition for playing tennis. We could write the following.

IF Temp > 80 THEN
BEGIN
WRITELN(’Go Swimming’);
END;
IF Temp > 60 THEN
BEGIN
WRITELN(’Play Tennis’);
END;

Unfortunately, this won’t work. If Temp is 75 we get the correct message, but
what happens if the temperature is 90. Then we get BOTH messages printed. That’s
not what we wanted. Here is one way to avoid this problem.

IF Temp > 80 THEN
BEGIN
WRITELN(’Go Swimming’);
END;
IF (Temp > 60) AND (Temp <= 80) THEN
BEGIN
WRITELN(’Play Tennis’);
END;

We have made the second condition more explicit, so the Play Tennis message
will only be printed if Temp is greater than 70 AND less than or equal to 80. The
parentheses are needed now that we have multiple conditions. The rest of the code
looks basically the same:

IF Temp > 80 THEN
BEGIN
WRITELN(’Go Swimming’);
END;
IF (Temp > 60) AND (Temp <= 80) THEN
BEGIN

156 CHAPTER 14. MORE PASCAL

WRITELN(’Play Tennis’);
END;
IF (Temp > 40) AND (Temp <= 60) THEN
BEGIN
WRITELN(’Play Baseball’);
END;
IF Temp < 40 THEN
BEGIN
WRITELN(’Stay home and watch videos’);
END;

The entire program would look something like Figure 14.2.

14.2 If Then Else

Figure 14.3 shows another way to avoid the problem using the [IF-THEN-ELSE version
of the IF statement.
Now that probably looks a bit messier to you, but it will do the same thing.

Note that there is never a ;7 before an ELSE. Semi-colons are used to separate one

statement from another. The ELSE is still part of the IF-THEN-ELSE statement.
You would not put a semi-colon in the middle of the word BEGIN(BEG;IN), so you
do not put one before an ELSE.

14.3 Loops

There are three different types of repititional statements in Pascal. These are gener-
ally called “loops” since they can loop back and perform the same job over and over.

We will deal with two of the three: the FOR loop and the WHILE loop.

14.3.1 For loop
The FOR loop looks like this:

FOR Counter-variable := start to finish Do
BEGIN
{do this finish - start + 1 times}
END;

14.3. LOOPS 157

PROGRAM Exercise;
{ Author: Andy Johnson Date: 4/29/90
The computer will tell me what exercise to perform
depending on the outside temperature }

VAR
Temp : INTEGER; {the outside temperature}

BEGIN
{print out welcoming message}
WRITELN(’Welcome to the exercise decision program.’);

{get the outside temperature}
WRITELN(’What is the temperature in Fahrenheit?:’);
READ (Temp) ;

{decide on what activity to perform}
IF Temp > 80 THEN

BEGIN
WRITELN(’Go Swimming’) ;
END;
IF (Temp > 60) AND (Temp <= 80) THEN
BEGIN
WRITELN(’Play Tennis’);
END;
IF (Temp > 40) AND (Temp <= 60) THEN
BEGIN
WRITELN(’Play Baseball’);
END;
IF Temp < 40 THEN
BEGIN
WRITELN(’Stay home and watch videos’);
END;

END.

Figure 14.2: Complete Pascal Exercise Program

158 CHAPTER 14. MORE PASCAL

PROGRAM Exercise2;
{ Author: Andy Johnson Date: 4/29/90
The computer will tell me what exercise to perform
depending on the outside temperature}
VAR
Temp: INTEGER; {the outside temperature}
BEGIN
{print out welcoming message}
WRITELN(’Welcome to the exercise decision program.’);

{get the outside temperature}
WRITELN(’What is the temperature in Fahrenheit?:’);
READ (Temp) ;

{decide on what activity to perform}
IF Temp > 80 THEN
BEGIN
WRITELN(’Go Swimming’) ;
END
ELSE
BEGIN
IF Temp > 60 THEN
BEGIN
WRITELN(’Play Tennis’);
END
ELSE
BEGIN
IF Temp > 40 THEN
BEGIN
WRITELN(’Play Baseball’);
END
ELSE
BEGIN
WRITELN(’Stay home and watch videos’);
END;
END;
END;
END.

Figure 14.3: Complete Pascal Exercise Program w/ [F-THEN-ELSE

14.3. LOOPS 159
The WHILE loop looks like this:

WHILE condition Do
BEGIN
{do while condition is true}
END;

Let’s say we would like to write the word “hello” on the screen 5 times like this:

hello
hello
hello
hello
hello

Now we could just write a simple program to do the job as shown in Figure 14.4. But
there is a better way, using a FOR loop as shown in Figure 14.5. Why is this better?
Well, what happens if you need a program to print hello 50 times, or 500 times. It is

much easier to change the 5 to a 500 in program HelloFor, than to type in 495 more
writelns into program Hello. The program is much easier to modify. In this program
the variable Counter is used as the index for the FOR loop. Counter is set to 1 the
first time through the loop and then after executing the code within the loop, counter
is automatically incremented by one. This process continues until Counter exceeds
the upper limit of the FOR loop. In this case, Counter takes on values 1, 2, 3, 4, and
3.

There are some restrictions on the FOR loop. The counter-variable must be an
integer as well as the starting value and the ending value. In program HelloFor we
declared Counter to be an integer.

What if we wanted a program to print out the numbers 5 to 10 in a column like this:

o -1 O Ot

9
10

We could certainly write a program with 6 writeln statements to do the job, but

160 CHAPTER 14. MORE PASCAL

PROGRAM Hello;
{This program will write out hello 5 times in a column}

BEGIN
WRITELN(’hello’);
WRITELN(’hello’);
WRITELN(’hello’);
WRITELN(’hello’);
WRITELN(’hello’);

END.

Figure 14.4: Simple Hello Program

PROGRAM HelloFor;
{This program will write out hello 5 times in a column}

VAR
Counter: INTEGER; {counter for the FOR loop}

BEGIN
FOR Counter := 1 TO 5 DO
BEGIN
WRITELN(’hello’);
END;
END.

Figure 14.5: Better Hello Program

14.3. LOOPS 161

PROGRAM FiveTen;
{This program will write out the numbers between 5 and 10 inclusive}

VAR
Index : INTEGER; {counter for the FOR loop}
Start, Finish : INTEGER {start and finish for the FOR loop}

BEGIN
Start := 5; A{initialize start}
Finish := 10; {initialize finish}

FOR Index := Start TO Finish DO
BEGIN
WRITELN(Index);
END;
END.

Figure 14.6: Counting from 5 to 10 Program

again, this would be hard to modify. We can use a FOR loop to this as shown in
Figure 14.6.

What if we wanted to print the numbers in the opposite order, that is start with
10 then 9 then 8 down to 5. Program TenFive in Figure 14.7 shows you how to do
this.

14.3.2 While loop

The WHILE loop is a more general loop that the FOR loop, so any FOR loop can be
expressed as a WHILE loop. Figure 14.8 shows the program from Figure 14.5 using a
WHILE loop. Figure 14.9 shows the program from Figure 14.6 using a WHILE loop.

A WHILE loop will keep looping as long as the condition remains true. In program
HelloFor the condition is “Counter <= 5" so as long as Counter is less than or equal
to five, the code within the loop will be executed. Before we get to the loop we set
Counter equal to 1. Since 1 is less than 5 we enter the loop. Within the loop “hello”

162 CHAPTER 14. MORE PASCAL

PROGRAM TenFive;
{This program will write out the numbers between 10 and 5 inclusive}

VAR
Index : INTEGER; {counter for the FOR loop}
Start, Finish : INTEGER {start and finish for the FOR loop}

BEGIN
Start := 10; {initialize start}
Finish := 5; {initialize finish}

FOR Index := Start DOWNTO Finish DO
BEGIN
WRITELN(Index);
END;
END.

Figure 14.7: Counting from 10 to 5 Program

14.3. LOOPS 163
PROGRAM HelloWhile;
{This program will write out hello 5 times in a column}

VAR
Counter : INTEGER; {counter for the WHILE loop}

BEGIN
Counter := 1; {initialize counter}
WHILE Counter <= 5 DO
BEGIN
WRITELN(’hello’);
Counter := Counter + 1; {increment counter}
END;
END.

Figure 14.8: Hello Program Using WHILE Loop

is printed and Counter is incremented to 2. 2 is less than 5 so we go through the loop
again. “hello” is printed and Counter is incremented to 3. 3 < 5 so we go through
the loop again. “hello” is printed and Counter is incremented to 4. 4 < 5 so we go
through the loop again. “hello” is printed and Counter is incremented to 5. 5 < 5 so
we go through the loop again. “hello” is printed and Counter is incremented to 6. 6
is greater than 5 so we do not repeat the loop again.

The FOR loop automatically incremented Counter and Index. The WHILE loop
does not. We must increment any counters that we choose to use. One of the dangers
of a WHILE loop is to forget to increment the counter as shown in the following
program. This program will keep printing “hello” on the screen until the computer is
turned off. This is called an infinite loop. Program Infinite in Figure 14.10 illustrates.

Why does it go into an infinite loop? Because Index is set to one, and then it
is never modified. Since 1 < 10 the program will continue to loop. The looping
condition will never become false.

The condition of the while loop does not have to use integers. It can involve reals,
or characters or booleans, or any combination of them. Any expression that evaluates
to either true or false can be used as the condition of a while loop.

164 CHAPTER 14. MORE PASCAL

PROGRAM FiveTen2;
{This program will write out the numbers between 5 and 10 inclusive}

VAR
Index : INTEGER; {counter for the WHILE loop}
Start, Finish : INTEGER {start and finish for the WHILE loop}

BEGIN
Start := 5; A{initialize start}
Finish := 10; {initialize finish}
Index := Start; {initialize counter}
WHILE Index <= Finish DO
BEGIN
WRITELN(Index);
Index := Index + 1; {increment counter}
END;
END.

Figure 14.9: Counting from 5 to 10 using a WHILE Loop

14.3. LOOPS

PROGRAM Infinite;

{This program will go into an infinite loop. This is not

a good thing for a program to do}

VAR
Index : INTEGER; {counter for the WHILE loop}

BEGIN
Index := 1; {initialize counter}
WHILE Index <= 10 DO
BEGIN
WRITELN(’hello’);
{forget to increment counter}
END;
END.

Figure 14.10: Infinite Loop Program

165

166 CHAPTER 14. MORE PASCAL

PROGRAM Response;
{This program will ask the user if it should keep going}

VAR
Response: CHAR; {sentinel for the WHILE loop}

BEGIN
Response := ’Y’; {initialize Response}
WHILE (Response = ’Y’) OR (Response = ’y’) DO
BEGIN

WRITELN(’hello’);
WRITE(’Do it again?(Y/N)’);
READLN (Response) ;
END;
WRITELN(’I am domne’);
END.

Figure 14.11: WHILE Loop Under User Control

Program Response in Figure 14.11 will print “hello” and then ask the user whether
it should do it again. If the user types in a capital Y or a lower case y the program
will do it again. The program will keep going through this sequence until the user
types something other than Y or y.

Note that the condition has = signs not :=. This is because := assigns a value,
where = checks for equality.

In the above program, we have a compound condition for the while statement
using the connective OR. The while condition will be true if either the first condition
or the second condition is true or both are true. As well as OR, you can also use

AND and NOT.

14.3.3 Logic

You might remember logical rules in Figure 14.12 from High-school. They come in
rather handy in Pascal. You might have noticed that the preceding programs used

14.3. LOOPS 167

True AND True — True True OR True — True
True AND False — False True OR False — True
False AND True — False False OR True — True
False AND False — False False OR False — False

NOT True — False
NOT False — True

Figure 14.12: Rules of Logic

VoA IV IA T
V
Il

Figure 14.13: Mathematics VS Pascal

‘<="instead of ‘<.” Since certain mathematical symbols are not available on the
keyboard so Pascal has some substitutes as shown in Figure 14.13. You could have a
complicated while condition like the following:

Counter := 1;
Response := ’Y’;
WHILE (counter <= 5) AND NOT ((Response = ’N’) OR (Response = ’n’)) Do
BEGIN
WRITELN(’hello’);
WRITE(’Do it again?(Y/N)’);
READLN(Response) ;
Counter := Counter + 1;
END;

168 CHAPTER 14. MORE PASCAL

In the above program “hello” will be printed at most 5 times, but if the user does

types a “N” or “n” to stop it, it will stop sooner. “hello” will be printed as long as:

(Counter < 5) AND NOT ((Response = 'N’) OR (Response = 'n’))
This can be seen as a collection of true and false clauses.

True/False AND NOT ((True/False) OR (True/False))

Depending on the values of the individual clauses the overall expression will be

either TRUE or FALSE.
For example, it Counter = 4 and Response = “Y” then we have:
True AND NOT ((False) OR (False))

In order to simplify this we do parenthesis first, then NOT, then AND, and finally
OR. These are the same simple logic rules that you learned about in high-school. In
this case we have parenthesis so we start there:

False OR False — False so we simplify to:

True AND NOT (False)

NOT False — True so we simplify to:

True AND True

True AND True — True so we simply end up with:
True

Since the while condition is true, the while loop would be executed for that set of
values. The while condition can always be simplified down to either TRUE (the loop
will execute again) or FALSE (the loop will not execute again.)

14.4. GOTO 169

()

not
*, /, div, mod, and
+, -, or
= <>, <=,>=,<,>,1n

Figure 14.14: Order of Precedence

14.3.4 Precedence

At this point we have introduced several operators, so we should show their precedence
order. You may remember that 5x4+3 = 23 not 35 because x has a higher precedence
than +. Figure 14.14 shows the complete list in decreasing order of precedence.

14.4 GOTO

Some computer languages (including Pascal) have another way of ordering statements.
These languages have what is called a GOTO statement. This statement allows the
program to GOTO some other part of the program. The use of GOTOs is considered
very bad programming practice. Programs with GOTOs are very hard to figure out,
because the program is jumping from place to place. We have said that the goal of
literate programming is to make programs readable to those who know nothing about
computers or programming. If a program with GOTOs is confusing to someone who
KNOWS about computers and programming, then it will be incomprehensible to
people who know even less. When a programmer needs to use a GOTO, it shows that
there was not enough work done in the stepwise refinement phase.

14.5 Procedures

Sometimes our programs get very long and it is bothersome to have to read page
after page of code trying to find a certain section. Procedures solve this problem.
Procedures break up the code into segments. Procedures embody the idea of stepwise
refinement as each procedure contains a refinement of the overall program, and the

170 CHAPTER 14. MORE PASCAL

lines of code within the procedure refine the idea of the procedure. Figure 14.15
contains the program that we generated from stepwise refinement.
Here is the initial refinement:

1. Give me two numbers.
2. Add them together.

3. Show the answer.

We will use this initial refinement to break the program into procedures as shown
in Figure 14.16.

Now we have broken the program into three procedures. The procedures are
declared after the variables and look like little programs. The procedures are called
from within the main body by giving the procedure’s name.

PROCEDURE GiveMeTwoNumbers;
{prompt the user for the numbers}
begin
WRITE(’Please enter the first number’);
READ (NumberOne) ;
WRITE(’Please enter the second number’);
READ (NumberTwo) ;
end;

Here is the declaration of the GiveMeTwoNumbers procedure. It has an appro-
priate name, and a comment to tell us what this procedure does. You can see the
similarities between a program and a procedure. The only difference is that the word
PROGRAM is replaced by the word PROCEDURE and the “end.” is replaced by
an “end;” since there can only be one “end.” in the program. Within the procedure
there is a BEGIN-END block just like in a program. Anything that can be written
in a program can be written in a procedure.

GiveMeTwoNumbers;

Procedure GiveMeTwoNumbers is activated (or called) by giving its name followed
by a semi-colon. When a procedure is called, its statements are executed. After the
procedure is finished, control is passed to the next line in the main program.

Procedures help make the code more readable. When you want to find the main
body of the program all you have to do is go to the very end of the code and there

14.5. PROCEDURES

program AddEmUp;

Lok ok skook ok sk ok skok ok sk o sk ok ok ok ook ok ok ook o ok o sk o ok ok ok sk ok sk ok ok ok ook ok ok ok ok K
{* Authors: Jason Leigh and Andy Johnson *}
{* Date: 6/18/89 (last modification 4/29/90) *}
Lok ok skook ok sk ok skok ok sk o sk ok ok ok ook ok ok ook o ok o sk o ok ok ok sk ok sk ok ok ok ook ok ok ok ok K

{* Description: *}
{* The computer will ask me for two numbers. *}
{* It will then add those *}
{* numbers together and show me the sum *}

{***}

var
NumberOne, NumberTwo, TheSum: INTEGER;

begin
{print out welcoming message’}
WRITELN(’Welcome to the number adding program.’);

{prompt the user for the numbers}
WRITE(’Please enter the first number’);
READ (NumberOne) ;

WRITE(’Please enter the second number’);
READ (NumberTwo) ;

{calculate the sum of the two numbers}
TheSum := NumberOne + NumberTwo;

{print out the sum of the two numbers}

WRITELN(’The sum of the two numbers is:’, TheSum);
end.

Figure 14.15: ADDEMUP Pascal Program

171

172 CHAPTER 14.

program AddEmUp;
Lotk ok sk sk sk sk st sk skt stk sk stk st ok ok ok ok sk s sk sk sk sk sk skl sk kesk sk ok ok -

{* Authors: Jason Leigh and Andy Johnson *}
{* Date: 6/18/89 (last modification 4/29/90 *}
{* This version has procedures *}

{***}

var
NumberOne, NumberTwo, TheSum: INTEGER;

PROCEDURE GiveMeTwoNumbers;
{prompt the user for the numbers}
begin
WRITE(’Please enter the first number’);
READ (NumberOne) ;
WRITE(’Please enter the second number’);
READ (NumberTwo) ;
end;

PROCEDURE AddThemTogether;
{calculate the sum of the two numbers}
begin
TheSum := NumberOne + NumberTwo;
end;

PROCEDURE ShowTheAnswer;
{print out the sum of the two numbers}
begin
WRITELN(’The sum of the two numbers is:’, TheSum);
end;

begin
{print out welcoming message}
WRITELN(’Welcome to the number adding program.’);

GiveMeTwoNumbers;

AddThemTogether;

ShowTheAnswer;
end.

MORE PASCAL

Figure 14.16: ADDEMUP Pascal Program with Procedures

14.6. NUMBERS 173

it is. You can then look at the procedure names and go right to the procedure that
you are interested in.

14.6 Numbers

When Pascal prints out a number it will try to print that number out using the most
compact representation possible. This will usually mean scientific notation where
1200 would be written 1.2E+3. There are times when we would like to specify how
the number will be printed out, especially if we are trying to set up columns of
information. Pascal allows us to do this, though the format is slightly different for
integers and reals.

When we are writing out an integer variable we can write it like this:

Writeln(NumberOne:5);

That is: VARIABLE:NUMBER. The number tells how many places on the screen
to reserve for the value of the variable. The value of the variable will be right justi-
fied within this number of places. If NumberOne contains the value 13, the following
would be printed:

___13
~—_——

5
When we are writing out a real variable we can write it like this:

Writeln(Fraction:8:2);

That is: VARIABLE: TOTAL:FRACTION. The total tells how many places on the
screen to reserve for the value of the variable, and the fraction tells how many places
are after the decimal point. The value of the variable will be right justified within this
number of places. If Fraction contains the value 124.6, the following would be printed:

2

A~
~.124.60
8

174

CHAPTER 14. MORE PASCAL

14.7 Even More Pascal

There is much, much more to Pascal than what has been mentioned here, but a decent
discussion of Pascal requires a book in itself. The concepts given here are valid for
almost all higher level languages, and once you understand one high level language it

is very easy to work with any of the others.

14.8 Questions

1.

2.

What are the advantages of using procedures in a program?

Why is a ‘GOTO’ considered bad programming practice?

. What is an ‘infinite loop’?

The code within a WHILE loop will be executed

)

b) as long as the while condition is false
(c) once
(d) never

The counter in a FOR loop

a) must be a character

(a)
(b)
()

)

(d) must be incremented by the user

must be a real number

is automatically incremented by one each time through the loop

Chapter 15

Programming Languages

In this class you will only be working with the Pascal language, but there are many
other languages out there that you will encounter if you wish to keep writing your own
programs. Many different “higher-level” (or more English-like) computer languages
have been written since the mid-50’s. Some of the earliest languages are still widely
in use today, as are some of the newer languages. Here we are going to write the same
program in several different computer languages so you can see the similarities and
the differences between them.

Each of these programs was written to calculate N! (“N factorial.”)
For some value of N, Nl = N x (N —1) x (N —2)---3 x2x L.
For example, if N = 5 then N! =5 x4 x 3 x2 x 1 = 120.

175

176 CHAPTER 15. PROGRAMMING LANGUAGES

15.1 Pascal Version

Pascal was developed in the late 60’s by Niklaus Wirth. In the 80’s it has been the
major language used to teach programming skills in universities. As you have seen in
class, many personal computers have a version of Pascal available for them.

PROGRAM factorial;

{This Pascal program will prompt the user for a positive integer}
{and it will then calculate and return the factorial of that number}
{i.e. given N, the program calculates N!}

VAR
number: integer; {user input number}
counter: integer;
theFactorial: real; {factorial of user number}

BEGIN

{get number from user}
writeln(’Welcome to the factorial calculator’);
write(’Please enter a positive integer number:’);
readln(number) ;

{calculate the factorial}
theFactorial := 1;

FOR counter := 1 TO number DO
BEGIN
theFactorial := theFactorial * counter;
END;

{return the answer to the user}
writeln(number : 2, ’ factorial is: ’, theFactorial : 6 : 2);

END.

15.2. BASIC VERSION 177

15.2 BASIC Version

I can not think of a personal computer that does not have at least one version of
BASIC (Beginners All-purpose Symbolic Instruction Code) available for it. It was
developed in the mid 60’s by Thomas Kurtz and John Kemeny to be an easy-to-use
language for beginners. In the 70’s when programs came on cassette tape instead of
floppy disc, BASIC was usually the only language available for use with your personal
computer. You will find a plethora of books available for writing programs in BASIC
in any decent bookstore.

10 REM this BASIC program will prompt the user for a positive integer
20 REM and it will then calculate and return the factorial of that number
30 REM i.e. given N, the program calculates N!

40 REM

45 REM get number from user

50 PRINT "Welcome to the factorial calculator"

60 INPUT "Please enter a positive integer number:", NUMBER

70 REM

80 REM calculate the factorial

90 THEFACTORIAL = 1

100 FOR COUNTER = 1 TO NUMBER

110 THEFACTORIAL = THEFACTORIAL * COUNTER

120 NEXT COUNTER

130 REM

140 REM return the answer to the user

150 PRINT NUMBER, " factorial is ", THEFACTORIAL

178 CHAPTER 15. PROGRAMMING LANGUAGES

15.3 LISP version

LISP is a language used in Artificial Intelligence work. Its name is an acronym that
stands for LISt Processing. LISP was developed in the mid 50’s by John McCarthy,
and is still the primary language used in artificial intelligence.

(defun factorial ()

; This Lisp program will prompt the user for a positive integer
; and it will then calculate and return the factorial of that number
; 1.e. given N, the program calculates N!

(print "Welcome to the factorial calculator:'")
(princ "Please enter a positive integer number:")
(setf Number (read))

; calculate the factorial

(setf TheFactorial 1)

(do ((counter 1))
((> counter Number))
(setf TheFactorial (* TheFactorial Counter))
(setf counter (1+ counter))

; return the answer to the user

(princ Number)

(princ " factorial is ")
(princ TheFactorial)
(terpri)

15.4. C VERSION 179

15.4 C version

C was developed in the early 70’s by Dennis Ritchie to be part of the UNIX operating
system. As a result many of the features in C allow flexible interfacing with UNIX.
Originally UNIX was written in PDP-11 assembly code (very low level computer
language) and occupied approximately 64K. The C version of UNIX turned out to be
only 10% larger and hence C has now been adopted for developing operating systems
and programming languages.

main()

{
/* This C program will prompt the user for a positive integer */
/* and it will then calculate and return the factorial of that number */
/* i.e. given N, the program calculates N! */

int number; /* user input number */
int counter;
float theFactorial; /* factorial of user number */

/* Get number from user */

printf("Welcome to the factorial calculator\n");
printf(”Please enter a positive integer number:");
scanf ("%d",\&number) ;

/* Calculate the factorial */
theFactorial = 1;

for (counter = 1; counter <= number; counter++)
theFactorial *= counter;

/* Return the answer to the user */
printf("%d factorial is: %f\n",number,theFactorial);

180 CHAPTER 15. PROGRAMMING LANGUAGES

15.5 Compiling vs Interpreting

You may hear Pascal referred to as a compiled language. Running your program you
may see the word “compiling” appear on the screen. Compiling is the act of trans-
lating the computer program into assembly language, so that the computer can run
it. Languages such as Pascal, and C are compiled languages. Some other languages
such as BASIC are interpreted languages. So now we need to explain the difference
between a compiler and an interpreter.

Imagine you have this really neat book written in a foreign language, and you
want to read it. Now you have a friend who can translate the book for you. The
translator can sit down with the book, and you, and possibly some dictionaries and
other helpful reference books. He can read one sentence out of the book, then tell
you what that sentence said. This pattern continues until the end of the book. Now
what happens if you need the book read to you again a few weeks later. You call up
your friend but he isn’t available. You are stuck. What you could have done when
you had your translator friend available, was to ask him to REWRITE the book in
English for you. He would go through the book sentence by sentence, but instead of
reading you the sentence, he would write it into a new book. When he is finished
you will have an English version of the book, and no need to call your friend again.
This translation would have taken longer to do since the translator had to rewrite the
book, but now that you have the translated copy, you can read it much quicker than
before.

When your friend reads line by line and tells you what it says, he is interpreting
the book for you. When he reads line by line and writes out a new version that you
can understand, he is compiling a new version of the book for you. An interpreted
computer program always needs the interpreter around to translate it so the computer
can understand. A compiled computer program does not need an interpreter. The
program has been compiled into a form that the computer understands.

It you have a program written in Pascal, you can interpret it from within any
Pascal. Alternatively, you can Compile the program and save the compiled version
onto a disc. This compiled version can be run separately from Pascal, and it runs
much faster than the interpreted version. The Pascal program is portable. It can be
moved onto different machines. On the other hand, the compiled (translated) version
is not portable, and can only run on machines of exactly the same type. The compiled
code is not as portable as the uncompiled code.

Interpreting is good when you are developing a program. When you have the
program working the way you want it to, then you compile it. When you compile a

15.6. QUESTIONS 181

Pascal program and save it as an application, that application will only work on one
type of machine, where the Pascal program can run on several different machines. [
can type the factorial program into Turbo Pascal on an IBM-PC. I can type that same
program into Lightspeed Pascal on the Mac. Once I compile the program and save
it, however, it is in a form that is very specific to the machine that it was compiled
on. This is one of the reasons why the compiled version runs faster.

15.6 Questions

1. Why do we want to compile our programs?

182 CHAPTER 15. PROGRAMMING LANGUAGES

Chapter 16

Neat Stuff

Now that you have seen what you can do with a computer, the computer has lost a
lot of its mystique. We couldn’t let you go thinking that computers are really just as
boring as toasters.

Understanding how our technology works helps us to understand ourselves. One
of the great mysteries of ourselves is how the brain works, and the simple but hard
question “What is intelligence?” It is a simple question to ask, but a very hard
question to answer. Huge sums of money are spent to try to make computers act in
intelligent ways. The trouble in doing this is that the problem is not well defined.
We can not say how the brain works, so how can we create a device that works in a
similar manner.

We do know that there are some things the brain does very well that computers
are very bad at such as vision, and natural language understanding. Both of these are
problems for computers because they involve a lot of noise. Human beings are very
good at filtering out what is unimportant, and making decisions based on incomplete
information. Computers are not. For example: When you are at a party talking with
your friends there may be many other conversations going on in that same room;
yet you can pick out what your friends are saying from all of the other words being
spoken. Another example: When you are driving a car at night in a thunderstorm
there is rain on the windshield, the wipers are swishing back and forth, car lights are
reflecting off the water, yet you are able to keep the car on the road.

Two major methods have been proposed to make machines “intelligent.” One is
Artificial Intelligence, and the other is Neural Networks. At various times during the
last 40 years both of these methods have been hailed as the be all and end all of
computing. Of course neither has lived up to its hype, but each represents a different

183

184 CHAPTER 16. NEAT STUFF

way of thinking about intelligence.

16.1 Artificial Intelligence

Most “intelligent” systems developed so far have been Artificial Intelligence systems.
AT typically uses rules to guide the computer’s actions. If situation X then do action
Y. This works very well for situations where we can supply rules to the computer.
Many commercial Al systems are called Expert Systems. In this case an expert (or
maybe a handful of experts) has told the computer all the rules that are used in
a given situation. The computer can store all these rules and quickly access them.
As the computer makes mistakes it can modify these rules. In effect, the computer
learns.

These systems have had good success in areas such as medicine and chess. In both
cases, given a certain situation a certain action should be performed. In medicine a
certain set of symptoms may lead the computer to ask for specific tests to be run to
isolate the problem. In chess a certain layout of pieces will lead the computer to move
a specific piece. In both these areas computers are coming near the level of human
practitioners.

Computerized game players have always been a popular area of study. Imagine
a very simple game such as tic-tac-toe. Back when you were very young you could
play this game endlessly with a friend. Then one day you realized that if you started
in the center, you won much more often. In fact, it was almost impossible to lose
if you started in the center.Within a week you gave up the game. You figured out
the basic rules of winning the game. You could then move onto harder games. Al
people have created successtul computerized tic-tac-toe systems and checker players.
In chess, computers are getting very close to knocking off the top human player. Of
course then there are always harder games such as ‘shogi’ or ‘go’ to move onto. These
kinds of programs have become so popular that most personal computers have a chess
program available where the computer will play you.

One of the problems with artificial intelligence is that there are times when there
is not a definite set of rules. Given a problem, human beings do not tend to follow a
strict set of rules. Commonly we use “rules of thumb” to solve our problems. They
do not always guarantee success, but they seem to work pretty well. Think about
driving a stick-shift. You can’t really explain how you know when to shift gears, you
just know when to do it. It’s a combination of vision, hearing, and feeling that you
can’t explain to someone who only drives an automatic. In computer jargon these

16.2. NEURAL NETWORKS 185

“rules of thumb” are called heuristics. It is difficult to express these heruistics in the
form of rules.

16.2 Neural Networks

Neural Networks take a different approach, which some consider to be much closer
to the way the human brain works. Instead of having a list of rules, neural networks
have layers of cells which are stimulated by other cells, much as the brain’s neurons
are stimulated. As the system “learns” the connections between the cells are altered.
These systems are good at filtering out noise, and matching patterns, but they are
not very good at math.

The HAL 9000 computer from “2001” was supposedly an advanced neural network
computer (Heuristically program ALgorithmic computer.) By the way if you shift
each letter in HAL, to the right one letter, you get IBM!

16.3 Intelligence

Being intelligent is not just being able to recall previous information that you learned.
Given a new situation an intelligent system refers back to similar previous experiences
to help make decisions about what do do in the present situation. But how do you
store those past experiences? How do you know what are the most important parts
of your past experiences? How do you relate your current experiences to your past
experiences? There are a lot of questions. With the artificial intelligence system one
can look at the rules and see how the computer has modified them. We can see what
it has learned. It is difficult to tell how neural networks are solving a problem, so it
is harder to gauge their progress.

Back in 1950 Alan Turing proposed the ‘Turing Test’ for determining whether a
machine was intelligent. The test works like this. You stand in front of a locked door,
and you do not know who or what is behind the door. You can communicate with
the entity behind the door (perhaps by typing on a keyboard, or writing on a piece
of paper or talking) and have a conversation. Let’s say there is a computer behind
the door. If you can not tell that it is a computer and not a human being then that
computer has passed the Turing test, and must be considered ‘intelligent.’

In 1980 John Searle discussed what he (and many others) consider a flaw in the
‘Turing Test.” Searle proposed a similar situation to the Turing Test and called it

186 CHAPTER 16. NEAT STUFF

the ‘Chinese Room.” Let’s say we again have a locked door and the person outside
the door will communicate with the person behind the door in written Chinese - that
is, the person outside the door will write chinese characters onto a piece of paper,
pass that piece of paper under the door, and after a certain amount of time receive
another sheet of paper with Chinese characters written on it in reply. John Searle
put himself behind the locked door. Now Mr. Searle does not know how to read or
write Chinese, but he takes with him a large set of rules written in English which tell
him that whenever he receives a certain set of Chinese characters he should write the
following characters on his sheet of paper in reply and pass that sheet back out the
door. Mr. Searle can now have a meaningful discussion in Chinese with the person
outside of the door without ever understanding a word of what he is writing. Searle
implies that we can program a machine to mimic human behavior without human
understanding.

16.4 The Future

Criswell said it best in the opening of Plan 9 from Outer Space

We are all interested in the future for that is where you and I are going
to spend the rest of our lives.

There is still a lot of room for progress in these systems. No computer system will
ever be the answer to all our problems. The computer is just another drip in a stream
of ever more sophisticated tools. Throughout time we have created machines to help
us solve our physical problems ...machines to move the earth, or to help us fly over
it. Now we create machines to help us understand our world and ourselves. As with
all our machines, they show us who we are, and what we are striving to become.

With all of our creations there is the promise and the peril. Computers give us
even more opportunities, but we need to decide how to use this new freedom. Will it
help bring us together, or tear us apart? Will it help expand our horizons, or close
our minds? Will it lead us into a new age, or will it push us back?

It can do none of these things.

Only we can.

We decide.

Appendix A
Other Books

If you wish to read further on some of the subjects we have talked about in this text,
you may find the following books to be of interest:

General Information:

o Ditlea,Steve Digital Deli Workman Pub. 1984
e Kiser, Denise Computing Unbound W.W. Norton & Co. 1989
o Levy, Steven. Hackers - Heroes of the Computer Revolution Dell Pub. 1984.

o Penzias, Arno ldeas and Information - Managing in a High-Tech World W.W.
Norton & Co. 1989.

Operating Systems:
e Waite,Mitchell UNIX Primer Plus Howard W Sams & Co. Inc.

Word Processing:

o Erickson,Tim Desktop Publishing with Microsoft Word on the Macintosh SYBEX

inc.
Telecommunications:

o Hedtke.John V Using Computer Bulletin Boards MIS: Press. 1990

187

188 APPENDIX A. OTHER BOOKS

o Stoll, Clifford The Cuckoo’s Egg Double-day. 1989
Databases:

o Date, C.J.Introduction to Database Systems. Addison-Wesley. 1987

o Korth, Henry Database System Concepts McGraw-Hill. 1986.
Hypertext:

o Goodman, Danny. The Complete HyperCard Handbook. Bantam. 1987

o Vaughan, Tay. Using Hypercard, from Home to Hypertalk. Que Corp.
Programming:
e Aho, Alfred Data Structures and Algorithms Addison-Wesley. 1985.

o Koffman, Elliot Problem Solving and Structured Programming in Pascal. Addison-
Wesley. 1986

o Winston, Patrick Lisp Addison Wesley. 1984.
Neat Stuff:

o Gardner, Howard. The Mind’s New Science. Basic Books. 1987.

o Winston, Patrick Artificial Intelligence Addison-Wesley. 1984.

Appendix B

Other Periodicals

For truly up to date information there are several periodicals that cover the personal
computer area. With the increasing popularity of personal computers, many of these
are available at your local library.

Info World
ComputerWorld
Byte

Personal Computing
AT expert

Computer Language

Mac World
Mac User

Amiga World

PC World
PC Magazine

Incider/ A+

Weekly
Weekly
Monthly
Monthly
Monthly
Monthly

Monthly
Monthly

Monthly

Monthly
Monthly

Monthly

$2.95
$2.95

$3.95

189

Business software/hardware
Business software/hardware
General software/hardware
Home software/hardware
Information on Al for novices

Computer Languages

Mac software/hardware
Mac software/hardware

Amiga related software/hardware

I[BM-pe software/hardware
I[BM-pe software/hardware

Apple][software/hardware

12th yr.
24th yr.
15th yr.
14th yr.

5th yr.
Tth yr.

Tth yr.
6th yr.

8th yr.
9th yr.

190 APPENDIX B. OTHER PERIODICALS

Appendix C

Professional Societies

Anyone who is planning on making a career in computer science should belong to
at least one of the major professional organizations. These organizations publish
periodicals on a wide range of current topics, and hold conferences all over the world.
They have active local chapters at most major universities, and best of all they offer
substantial discounts to student members.

On the engineering side (Electronics Engineer, Computer Engineer) there is the
IEEE, and specifically its computer society.

IEEE

The Institute of Electrical and Electronics Engineers
Founded in 1963

300,000 current members

main publication: IEEE SPECTRUM

IEEE Computer Society
Founded in 1963

100,000 current members
main publication: COMPUTER

On the Computer Science side there is the ACM.

ACM

191

192 APPENDIX C. PROFESSIONAL SOCIETIES

The Association for Computing Machinery
Founded in 1947

80,000 current members

main publication: COMMUNICATIONS OF THE acm

Appendix D

Acronyms

You have probably noticed that there are a lot of acronyms in this book. Here’s a list
of some of the more common ones in computer science:

ACM

Al

ALGOL language
ALU

ANSI

APL language
ASCII

ATM

BAR

BASIC language
BBS

BIT

CAD/CAM
CAEN

CD

CIS

CLI

COBOL language
CPU

CRT

DB

Association for Computing Machinery

Artificial Intelligence

Algorithmic Oriented Language

Arithmetic Logic Unit

American National Standards Institute

A Programming Language

American Standard Code for Information Interchange
Automated Teller Machine

see FOOBAR

Beginners All-purpose Symbolic Instruction Code
Bulletin Board System

Binary diglT

Computer Aided Design/ Computer Aided Manufacturing
Computer Aided ENgineering

Compact Disc

Compuserve Information System

Command Line Interface

COmmon Business Oriented Language

Central Processing Unit

Cathode-Ray Tube

DataBase

193

194

DBMS
DIP chip
DIY
DOS
DPI
EBCDIC
FOO

APPENDIX D. ACRONYMS

DataBase Management System

Dual In-line Package

Do It Yourself

Disc Operating System

Dots Per Inch

Extended Binary Coded Decimal Interchange Code
see FOOBAR

FOOBAR (FUBAR)F*ck*d Up Beyond All Recognition
FORTRAN languageFORmula TRANslator

FBI

FCC

GUI

IBM

IEEE

LAN

LD

LISP language
MIS

MODEM

I/0

0S

PC

PET computer
PL/I language
RAM

RGB monitor

ROM

RPM

SCSI

SNAFU

SQL

SYSOP

TRS

TV

VCR

VDT

Federal Bureau of Investigation
Federal Communications Commission
Graphical User Interface
International Business Machines
Institute of Electrical and Electronics Engineers
Local Area Network

Laser Disc

LISt Processing

Management Information Systems
MOdulator DEModulator
Input/Output

Operating System

(IBM) Personal Computer

Personal Electronic Transactor
Programming Language [

Random Access Memory

Red Green Blue monitor

Read Only Memory

Revolutions Per Minute

Small Computer System Interface (“skuzzy”)
Situation Normal - All F*ck*d Up
Semantic Query Language (“ sequel”)
SYStem OPerator

Tandy Radio Shack

TeleVision

Video Casette Recorder

Video Display Terminal

195

WIMP Windows Icons Menus and a Pointer
WYSIWYG What You See Is What You Get (“wizzywig”)

196 APPENDIX D. ACRONYMS

Appendix E

Glossary

Algorithm A step by step procedure for solving a problem in finite time, also known
as a recipe.

Application A computer program that performs a specific task such as a Word
Processor or a Database.

Baud Rate The speed at which modems communicate. Typical speeds are 1200
baud or 2400 baud.

BBS A computerized Bulletin Board System where users leave messages for each
other.

Bit A Binary diglT (ie a single 0 or 1).
Bug An error in your program.
Byte A string of 8 bits (eg. 11001001).

Card A small printed circuit board that is attached to the motherboard with a
card-edge connector. It is attached to expand the capabilities of the computer.

Chip A DIP Chip contains a small integrated cicrcuit that processes information in
the form of electrical signals.

Clone A computer made by company X that runs just like a machine built by com-
pany Y.

197

198 APPENDIX E. GLOSSARY

Command Line Interface A way of communicating instructions to a computer
where the user types commands at a prompt.

Comments The part of a computer program that was written for humans to read,
which the computer ignores.

Compiler A program that translates another program from a form that people can
understand to a form a computer can understand.

Computer A programmable electronic device which stores, processes and retrieves
data.

CPU The Central Processing Unit is the most important chip in the computer which
does most of the processing.

Database An application used to manage large amounts of data where quick retrieval
and update is necessary.

Desktop Publishing The use of a personal computer to prduce professional looking
documents.

Directory A grouping of related files within a hierarchical file structure that is
pictorially represented by a folder.

Disc A secondary storage medium which uses a thin round disc with a magnetic
coating to store information. These discs can either be Floppy Discs used in
Floppy Disc Drives or Hard Discs used in Hard Disc Drives.

Document processor An application used in conjuction with a text editor to type-
set a large document according to a specific style.

DOS The Disc Operating System which handles all the low level interaction with
the disc drives.

E-Mail Messages sent via computer.

Emulator Hardware and/or software that allows one brand of computer to run soft-
ware designed for a different brand of computer.

Ergonomics The science of designing equipment so it will be easy to use by people.

199

File Collection of related data stored on a disc.

Floppy Drive A disc drive which can store small (1 M) amounts of information on
a small floppy disc which can then be taken with the user wherever he wishes
to take it.

Fone Phreak Someone who is interested in telecommunications systems, usually so
they can make free phone calls.

Formatting Preparing a new disk for storing information.

Graphical User Interface A way of communicating instructions to a computer
where the user selects from options displayed on the screen using a mouse or
other device which gives her a surrogate hand on the monitor screen.

Hacker (modern definition) Someone who illegaly enters other people’s computer
systems.

Hard Drive A disc drive which can store and retrieve large (50 M) amounts of
information quickly due to the magnetic disc not being removable.

Hardware The physical parts of the computer including the monitor, the main unit
and the printer.

Hierarchical File Structure A way of organizing files on a disc so that related
objects are together within a hierarchy of different subject areas.

High Level Language An ‘English-like’ programming language.

Hypermedia The linking of a hypertext program to multiple media such as LD
players, or CD players to allow the program to manage visual and audio infor-
mation.

Hypertext A system which links information together allowing a user to move
quickly between important pieces of related information.

Icon The pictorial representation of an object or idea.

Instruction The smallest unit of control for a computer. A complex program is
made up of many simple instructions.

200 APPENDIX E. GLOSSARY

Interface the means by which you communicate with the computer. This usually
includes the monitor, the keyboard, and a mouse.

K A string of 1024 bytes.

Key a) The metal device which allows you to enter your apartment or b) a column
(or several columns) that allows you to find a unique row in a database table.

Keyboard The primary input device for a computer which looks very much like the
keys on a typewriter.

Laptop A small, portable personal computer that use can set on your lap to use.

Literate Programming A style of writing programs where the program is readable
to non computer-scientists.

Low Level Language A ‘computer like’ programming language which is easily un-
derstood by the computer, but not by humans.

M A string of 1024 K.
Main Memory see RAM.

Main Unit The big box that contains the guts of the computer. It is usually at-
tached to the monitor and the keyboard by cables.

Modem A device which allows computers to send information over standard phone
lines by converting the information into sound.

Monitor The thing that looks like a TV set, and allows you to get output from the
computer in a visual manner.

Motherboard The main printed circuit board in the computer where all the impor-
tant chips are located.

Mouse A hand held input device good for making selections, and doing crude draw-
ings.

Multitasking The ability of a computer to run more than one application at the
same time.

201

OS The computers Operating System which handles all the low level work that the
computer does.

Password A secret, personal identification code.

Pirate a) Errol Flynn in the movie “Captain Blood” or b)Someone who illegally
copies software.

Pixel An individual ‘dot’ on the screen.

Printed Circuit Board A fiberglass or epoxy sheet which acts as a mounting board
for various electronic components. Cards and the Motherboard are printed
circuit boards.

Printer A device used to create a printed version of information stored in the com-
puter.

Program A sequence of instructions detailing the steps to be performed by a com-
puter.

Programming language A language used to write computer programs.

Protocol A common language that modems must agree on to allow different brands
of computers to communicate via phone lines.

Pseudo-Code Informal algorithmic notation mixing English and code.

Public Domain Software Software that does not cost any money which is free for
you to copy and distribute.

Query Language The language in which a person communicates with a database.
RAM The volatile Random Access Memory in a computer.

Recursion See: Recursion.

ROM The involatile Read Only Memory in a computer.

Secondary Storage Permanent storage usually on discs or tape.

Software Programs that tell the hardware what to do.

202 APPENDIX E. GLOSSARY

Source-Code A program in its original form, in the programming language it was
written, before being compiled.

Speaker A device which converts electrical signals into sounds.

Spreadsheet An application which allows you to do mathematical calculations on
a screen which looks like an accountant’s ledger pad.

Stepwise Refinement The process of breaking a task down into smaller more spe-
cific sub tasks.

Symantic Error An error in meaning. You have instructed the computer to carry
out a specific action and the machine has done this, but it is not the correct
action.

Syntax Error An error in grammer where the machine does not understand what
you want it to do.

Sysop The System Operator, and manager of a BBS.

Terminal Program An application that allows your computer to talk with other
computers using a modem.

Text editor A no frills word processor used mainly for writing computer programs
and producing input for document processors.

Trojan Horse An application that does one thing while pretending to do something
else.

User Group A group of users of a certain brand of computer who get together
to discuss new pieces of hardware and software, frequently run by xenophobic
little fithrers who believe that their chosen computer is the best computer for
everyone.

Virus A small program designed to hide itself within other programs and spread to
as many other programs on as many other discs as possible. Some are benign
and some can cause great hassles, but the media has blown them way out of
proportion.

Word processor An application which turns your computer into a very sophisti-
cated typewriter with lots of optional goodies.

