
Articulate: a Conversational Interface for Visual Analytics

Yiwen Sun∗ Jason Leigh† Andrew Johnson ‡ Dennis Chau §

Electronic Visualization Laboratory, University of Illinois at Chicago

A
While many visualization tools exist that offer sophisticated func-
tions for charting complex data, they still expect users to possess a
high degree of expertise in wielding the tools to create an effective
visualization. This poster presents Articulate, an attempt at a semi-
automated visual analytic model that is guided by a conversational
user interface. The goal is to relieve the user of the physical burden
of having to directly craft a visualization through the manipulation
of a complex user-interface, by instead being able to verbally ar-
ticulate what the user wants to see, and then using natural language
processing and heuristics to semi-automatically create a suitable vi-
sualization.

Index Terms: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Graphical user interfaces

1 I
Visual analytic tools have been used in a variety of disciplines to
synthesize information and derive insight from abstract data-sets.
The combined complexity of certain tools and visual design itself
can be daunting, so much so that the modification of visual parame-
ters isn’t predictable, even for visualization experts. Unfortunately
the users of such tools are usually domain experts with marginal
knowledge of visualization techniques. These users often experi-
ence difficulties when trying to manage simple visual parameters,
such as specifying a desired graph type for a given data set, or as-
signing proper data fields to certain graph dimensions. To facili-
tate the use of these tools by domain experts, we propose a semi-
automated visual analytic model: Articulate. The goal is to provide
a streamlined experience to non-expert users, allowing them to fo-
cus on using the visualizations effectively to generate new findings.

Mackinlay et al. described Show Me[7], an integrated set of user
interface commands and defaults that automatically generate visual
presentations based on VisQL specification language. Users place
data into columns and rows to specify VisQL commands. In order
to generate meaningful visualizations, an understanding of the rela-
tionships between columns and rows is needed. Rezk-Salama et al.
demonstrated a semantic model for automatic transfer function as-
signment in volume rendering applications [8]. However the design
of the semantic model is such that the presence of computer scien-
tists and domain experts are needed when generating a visualiza-
tion. Lastly, a 2007 National Science Foundation workshop report
on “Enabling Science Discoveries Through Visual Exploration” [6]
indicated that “there is a strong desire for conversational interfaces
that facilitate a more natural means of interacting with science.”
This inspired us to adopt a conversantional interface in the semi-
automated visual analytic model.

Our Conversational Visualization Language (ConVL) is in many
ways an homage to the simplicity of languages such as Apple’s
HyperTalk [5]. It differs from other languages, such as Gnuplot

∗e-mail: ysun25@uic.edu
†e-mail: spiff@uic.edu
‡e-mail: ajohnson@uic.edu
§e-mail: koracas@gmail.com

script or Graphics Production Language [9], in that each command
is mapped to a query rather than requiring specific assignment. It
allows the user to explain what they want to see in a brief manner.
This type of conversational language is ideal for integration with a
speech recognition module - one of the ultimate goals of Articulate.

2 V A M
The system model for Articulate is shown in Figure 1. The main
idea is to integrate the user’s requirements and data properties to
automatically generate an appropriate visual result.

Figure 1: System Model for Articulate

There are three main components in the model: ConVL input
parser, data parser, and graph reasoner.

2.1 ConVL Input Parser
Visualization requirements are expressed in ConVL. The grammar
of ConVL will be given in Section 3. The input parser translates the
ConVL command to a sequence of intermediate expressions which
are presented as a pipeline of lower-level instructions. Similar to
other low-level visualization languages, it specifies topology as-
signment, visual parameters, and general graph type. It provides
the graph reasoner with a basis for the optimization and generation
of the final visual product.

2.2 Data Parser
The data parser reads the original data file searching for data fields
such as attribute names, data types (numerical values, text or time)
and data structures (tables or trees). Furthermore, data properties
are determined such as statistics features (the minimum and maxi-
mum values, number of categories). This information is sent to the
graph reasoner for visual parameter assignment.

2.3 Graph Reasoner
In our model, the reasoner is the key component responsible for
the semi-automated generation of visualizations. Information about
the data from the data parser and the intermediate expressions gen-
erated from parsing the user’s input are funneled into the Graph
Reasoner. Properties of various graph types are also funneled in
via the graph specification, which include dimensions, layouts and
data restrictions. The reasoner uses this information to determine
the most appropriate visualization to generate.

For example, a command such as “compare GDP among coun-
try” will result in the creation of a bar chart or a line chart. These
graphs, according to Abela’s chart chooser [4], are often used for

comparison tasks. To make a decision between these candidates,
the reasoner checks the data property. It finds that the attribute
“country” is a text type with categorized values. Hence a bar chart
will be most suitable. Then the reasoner follows the graph specifi-
cation of a bar chart to the assign attribute “GDP” to the range axis,
and assign each instance of the attribute “country” to a seperate bar
on the domain axis. Finally the graph generator is invoked.

3 CVL
ConVL is a high-level conversational language based on first-order
predicate logic, specified in a formal grammar. Additional con-
siderations were introduced to attain the simplicity and flexibility
needed for a conversational language. To accommodate the differ-
ent purposes of visual analytics, ConVL is divided into two major
categories: visualization commands, and manipulation commands.

Visualization commands are ones that describe the semantics of
the visualization task. Each plot type has its own advantages and
disadvantages for certain types of data. For example: bar charts are
often used for comparing values by category, whereas pie charts
are good at illustrating relative magnitudes or frequencies [1]. To
determine the proper visualization, further classifying was needed.
The visualization commands were divided into four subcategories:
1) find the relationship between two or more attributes using scatter
plot, bubble plot or radar plot; 2) compare values over time or cate-
gories using time-series plot, bar chart or area chart; 3) use network
graphs to show connection and communication; and 4) explore fur-
ther visual analytic results using histogram or dendrogram. With
each subcatergory, there is a list of possible commands. The fol-
lowing are those for “Comparison” under subcategory 2:

< comparison > F COMPARE < attrib list >
| COMPARE < attrib list > OVERT IME
| OVERT IME COMPARE < attrib list >
| COMPARE < attrib list > AMONG/BY
< attribute >

| AMONG/BY < attribute >COMPARE
< attrib list >

As shown in the grammar above, a statement is composed of an
action with one or two parameters. The action verb is chosen to
identify the semantics of this visualization task. “Compare” was
chosen because it was the word users would most likely choose
when trying to examine similarities or differences. Additionally all
combinations of a command are present in the grammar. This al-
lows the user to achieve the same semantics under different syntax.
This is exemplified by COMPARE < attrib list >OVERT IME and
OVERT IME COMPARE < attrib list >. In the future however we
intend to leverage natural language processing techniques to mini-
mize the need to encode all the anticipated ways in which a com-
mand may be expressed.

Manipulation commands are used to alter the visual metaphors.
Similar to the visualization commands, they are also defined as a list
of statements. These commands however, focus on the mapping or
assignment of visual metaphors. For example:

< mapping > F MAP < attribute > TO COLOR
< assignment > F S ET S IZE OF POINT TO < value >

4 R
Our framework is being developed in Java and the ConVL parser
is implemented using JFlex [3] and CUP [2]. Figure 2 shows an
example of the graphical user interface. The left side of the win-
dow lists the data attributes. The bottom contains an input window
that accepts ConVL commands and displays all the previous input;
the main body is the visualization panel, which shows each visual
representation in a seperate view.

Figure 3 illustrates the ConVL command “Relate X,Y,Depth and
Conductivity,Temperature,pH” applied on a hydrologic dataset with

Figure 2: GUI of the framework

10 attributes and 5000 instances. The result shows pairwise rela-
tionships among specified attributes using a scatter plot matrix.

Figure 3: Relationship command represented by scatter plot matrix

5 C FW
In this poster, we presented our current work on Articulate, a semi-
automated visual analytic model that incorporates a novel user-
interface based on ConVL, a high-level conversational language.
We believe this design will help visualization novices produce
quick and effective visual representation without extensive knowl-
edge of visualization techniques. It also highlights the trend toward
increasing use of speech driven user-interfaces for controlling com-
plex computing systems. Our step is to create a suite of Analysis
commands to complement the visualization and manipulation com-
mands, and evaluate the system using populations of visualization
novices. Future directions in this research will include the integra-
tion of natural language processing and artificial intelligence tech-
niques to accomodate a wider range of semantically equivalent ar-
ticulations of commands, and to enable the system to converse with
the user to produce personalized results.

R
[1] A Periodic Table of Visualization Methods. http://www.visual-

literacy.org/periodic table/periodic table.html.
[2] CUP-LALR parser generator. http://www2.cs.tum.edu/projects/cup/.
[3] JFlex-The Fast Scanner Generator for Java. http://jflex.de/.
[4] A. Abela. Advanced Presentations by Design: Creating Communica-

tion that Drives Action. Pfeiffer, 2008.
[5] Apple Computer Inc. Hypercard Script Language Guide: The Hyper-

talk Language. Addison Wesley Publishing Company, 1988.
[6] D. Ebert, K. Gaither, and C. Gilpin. Enabling science discoveries

through visual exploration. NSF Workshop report, September 2007.
[7] J. Mackinlay, P. Hanrahan, and C. Stolte. Show me: Automatic presen-

tation for visual analysis. Visualization and Computer Graphics, IEEE
Transactions on, 13(6):1137–1144, Nov.-Dec. 2007.

[8] C. R. Salama, M. Keller, and P. Kohlmann. High-level user interfaces
for transfer function design with semantics. IEEE Transactions on Vi-
sualization and Computer Graphics, 12(5):1021–1028, 2006.

[9] L. Wilkinson. The Grammar of Graphics. Springer, 2005.

