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1. INTRODUCTION 

 

1.1 Background 

1.1.1 Visual Programming for Profressionals and Non-Professionals Today 

Most people who write computer programs today primarily use text-based editors.  Some 

visual programming tools (VPTs) are used, but they are typically confined to some aspects of 

system design or in rapid application development (usually with prewritten components).  VPTs 

may be one of the methods of programming more efficiently.  They may be able to allow the 

user to focus on the logic of the program and reduce programming syntax errors.  Ultimately, 

VPTs may help people not trained in the areas of information technology be able to write 

programs. 

 

Although visual programming has had limited success in the professional arena of people 

in information technology, visual programming has made more progress in the area of graphical 

user interfaces (GUIs) found in many modern programs today.  For instance, most people take 

for granted office automation products today; however, they were among the first beneficiaries 

of using direct manipulation as the primary means of interacting with the program.  Word 

processing used to involve line editors with difficult-to-remember keyboard commands and 

HTML-like syntax to create “nicely formatted” documents.  Creating spreadsheets would involve 

writing programs to complete the calculations.  Now, word processing is done with WYSIWIG 

editors that have spell checking and grammar checking.  Today, spreadsheets act as a 

programming language with the ability to calculate data with a variety of mathematical and 
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financial functions, create graphs from the data, and forecast future data by changing some 

datasets (Shneiderman, 1983). 

 

1.1.2 Direct Manipulation 

The conceptual foundation for these advancements is direct manipulation.  Before 

beginning with the history of visual programming, it is fitting to start with one of the 

foundational papers from which modern user interfaces are constructed— the concept of direct 

manipulation.  Shneiderman (1983) described the concept of direct manipulation as having a 

variety of characteristics: 

 

• The object focused upon by the user should have its representation displayed 

continuously.   

• The combination of a GUI and input devices replace complex syntax.   

• “Rapid, incremental, reversible operations” visibly impact the object of interest.   

• The “spiral approach to learning...permits usage with minimal knowledge...After 

obtaining reinforcing feedback from a successful operation, users gracefully expand 

their knowledge of features and gain fluency” with other features. 

 

Direct manipulation systems are successful in part because the interface presented 

focuses on the semantics of operations instead of the syntax of operations.  User behavior is 

characterized in part with a syntactic/semantic model.  Syntactic knowledge is system dependent 

and arbitrary.  This knowledge tends to be memorized in a rote manner “and [is] easily forgotten 

unless frequently used.”  Semantic knowledge “is well-structured, relatively stable, and 
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meaningfully acquired.”  It remains in the long-term memory where it is organized from “high-

level program domain concepts down to numerous low-level program details.” (Schnedierman, 

1983). 

 

Although a command language is used in the following example given in the paper, one 

could also apply this example to a textual programming language.  When novices use a 

programming language, they closely relate the syntax and semantics of the language.  For these 

users, the syntax of the language assists the user in remembering the semantics of the language.  

By reviewing methods mentally or by using a manual, this process “act[s] as stimuli for recalling 

the related semantics.  Each [method] is then evaluated for it applicability to the problem.”  As 

the level of the user’s experience increases, the user becomes more distant from the syntactic 

details of a language and begins thinking in “higher level semantic terms” (Schnedierman, 1983). 

 
It is important to think about the interface and display presented in a direct manipulation 

system.  Users who have problems depicted in spatial or graphic manner may not improve 

performance.  From one study, it was determined “that the content of graphic representations 

[was] a critical determinant of their [usability].”  Another problem was the learning of “the 

meaning of the components in the graphic representation”.  Similarly, care must be taken to 

ensure that the graphic representation ensures the proper meaning.  Finally, the graphics 

representation may use much more screen space than another concise notation (Schnedierman, 

1983). 

 

If direct manipulation systems are successfully deployed, its users will experience many 

benefits.  These benefits include the following: 
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• Novices can attain the skills to operate the system at a basic functionality level 

without a steep learning curve.  Learning typically occurs by seeing a demonstration 

of system tasks. 

• Experts can complete a wide number of tasks rapidly and may even be able to define 

new functions. 

• Intermittent users retain concepts for operating the system. 

• Progress in accomplishing a goal is visible and changes can be made to accomplish a 

different goal, if desired. 

• Users experience less stress using a system because actions are reversible and the 

system design is understandable. 

• Users experience confidence and mastery of the system because they control the 

system through initiating actions and can predict system responses. 

 

Direct manipulation is successful in part because of the semantic/syntactic model.  The 

user interacts with the object of interest so that user actions occur in the “high-level problem 

domain”.  Furthermore, these actions are “closer to innate human capabilities [since] action and 

visual skills emerged well before language in human evolution.” (Schnedierman, 1983). 

 

1.2 Problem Statement 

1.2.1 Programmers Need Better Tools To Perform Programming Tasks 

 The methods of programming continue to change over time.  Ten years ago, object-

orientated programming was means of programming.  With that paradigm shift, programmers 
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had to reorganize their methods of procedural programming to accommodate this change.  

Today, programmers have to contend with the impact of the Internet and distributed systems.  

Not only is object-orientated programming still crucial, but now programmers have to think 

about multiple instances of objects running at the same time and making the state of objects 

persistent over time for use at a later time.  Within each paradigm, there are programming 

languages.  Programming languages come and go, but there is an investment in time and 

resources to use these programming languages not only for an individual who makes a career out 

of programming but the businesses that create software.  It is fairly certain that future paradigm 

shifts in programming with whatever languages used to create this software will add more 

complexity.  Thus the programmer will have to continue to learn, adapt to, and harness all of 

these things in order to create the applications of tomorrow. 

 

 End-users have become more demanding than ever in what features their software should 

have.  The mantra of “faster, cheaper, and better” used throughout the industry drives a need for 

code with a minimal number of errors while taking advantage of the new hardware available.  

Yet, the software has to be completed in a short amount of time before the next version comes 

out.  In addition to this issue, there are always a segment of users that keep old versions of 

software until the computer it uses becomes useless.  The Y2K crisis was the perfect example of 

this where business held on to programs on old systems until it became absolutely necessary to 

migrate to new software on a new system.  As a result, these users want to have their software 

run on the platforms that they use despite how old the software is and what conflicts it may cause 

running with other software. 
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1.2.2 Non-Programmers Need the Ability to Program 

 Ordinary people, the non-programmers of the world, feel swept up by the pace and 

complexity of technology.  The underlying reason for this is that people feel controlled by 

technology instead of controlling the technology themselves.  Computers should empower, yet, 

too often, they intimidate.  It is a very odd phenomenon that people blame themselves when the 

technology on computers does not meet their expectations.  Who blames themselves when a 

major household appliance breaks?  People do not usually say, “I am not smart enough, so I 

cannot use the television or the microwave.”  People can control and understand these other 

appliances, but there are people who cannot control their computers.  This phenomenon is not 

limited to the people who are computer-illiterate.  There are also people who would like to do 

additional things with their computers, but do not want to invest the time and effort to do these 

things.  This not only applies to individuals but also to people who are at an institution facing 

these same issues.  People do embrace technology, but as with anything else, it is evaluated for 

its positives and negatives.  Because computer technology provides such a number of positives 

over negatives, people will continue to want more powerful and feature-filled technology.  

 

 The basic problem is the human-computer interface.  Products that sell well tend to be 

easy to use.  Who wants to buy a hard-to-use automobile or a difficult-to-maintain lawn mower?  

There are some computer applications described earlier that have created good human-computer 

interfaces— word processors, spreadsheets, video games, etc.  End-user programming is a 

challenge, though.  When people think of programming a computer, they probably think of 

typing in series of cryptic commands and dealing with strange codes, and it does not have to 

remain this way.  Abstractions should exist that provide the user enough ability to program for a 
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particular domain, which do already exist to some degree.  It is a matter of finding a metaphor 

and visual interface that will inspire people to want to make an effort to learn. 

 

People who do not write programs as a career need to control the technology around 

them.  More electronic devices are being released, and people want to them to interconnect and 

different tasks that may not be available.  Other end-users who have mastered the interface for an 

application have a sense of accomplishment when they finish some work, but sometimes they are 

left with the feeling, “I wish that the program could do...”.  If an individual wanted to tinker with 

a program without becoming a programming expert, that individual should have that ability.  As 

much as people have hobbies like play video games, paint, work on automobiles, or garden, why 

is it that people who do not program for a living say that one of their hobbies is writing computer 

programs and not be looked at strangely?  

 

1.2.3 The Need For a Consistent Visual Programming Metaphor 

It is important to have widely-used metaphors to allow portability of task knowledge to 

different domains.  Currently, the metaphor for general-purpose programming is the text editor.  

This is the universal medium by which people write programs.  The universal medium that 

people utilize to use the computer operating system is some sort of visual desktop metaphor or a 

text-based command-line interface.  With the power of these agreed-upon metaphors, people are 

able to cross different domains to accomplish tasks.  The programmer does not need to feel 

anxiety when programming in Java, C#, or Python because the text editor will always be there.  

People who use different computer platforms can feel at ease that there will be a desktop 
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metaphor or command line with other supporting programs in order to help them find files and 

configure the computer. 

 

 Likewise, it seems necessary to create a general-purpose visual programming metaphor 

beyond the text-editor.  Just like with the use of a text editor for writing programs, this visual 

programming metaphor should have a consistent look and task set used for creating programs.  

Through its application, people who write programs will not have to invest as much time and 

money learning a set of languages only to have them become less and less used over time.  One 

visual IDE could be used for a set of visual languages just as one IDE is used for many text-

based languages.  It will not matter what language is used because the task of programming is 

focused on creating the logic of the program successfully instead of struggling with the syntax of 

the programming. 

 

1.3 Purpose of the Project 

The author believes for the reasons stated previously, that there exists a general 

framework for visual programming that could be applied to general-purpose programming.  

After providing a history of visual programming and explaining how this general framework 

shares a similarity with the model-view-controller programming design pattern, the paper will 

describe the actual framework for visual programming called panel-view-tool.   

 

In addition to providing a framework for visual programming, the author has written a 

program in Java (version 1.2.2) that illustrates this general framework for visual programming.  

The program enables a programmer to write a program in an assembly language.  The running 
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and testing of the program must be done with an accompanying program since this was outside 

of the scope of the project.  Accompanying this program is a user manual was also created that 

appears separately from this paper. 
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2. HISTORY OF VISUAL PROGRAMMING 

 

2.1 Paper Notations 

For the remainder of this paper, the first published year of a system found in the author’s 

research will be surrounded by square brackets.  This year should be considered an 

approximation since the year listed may not be the exact year the first publication of the system 

occurred since the author did not carefully research this aspect of the researched system.  

Additionally, for systems where only an implementation date was listed, the system 

implementation date along with the word “implemented” followed by the year of the 

implementation will appear surrounded by square brackets.  Additionally, system names will be 

italicized. 

 

2.2 Definitions 

It is best to begin by properly defining the terminology used in this paper.  Myers (1990) 

quotes a reference in his paper when defining programming as “a set of statements that can be 

submitted as a unit to some computer system and used to direct the behavior of that system.”  He 

also defines Visual Programming (VP) as “any system that allows the user to specify a program 

in two (or more) dimensional fashion…includes conventional flow charts and graphical 

programming languages.  It does not include systems that use conventional (linear) programming 

languages” as well as “most graphics editors, like [Sutherland’s] Sketchpad.”  Myers 

differentiates VP from the term Program Visualization (PV) that he defines as involving “…the 

program is specified in the conventional, textual manner, and the graphics is used to illustrate 
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some aspect of the program or run-time execution.”  Today, this older term is now likely referred 

to as software visualization.   

 

Programming has evolved over many decades utilizing the recent technology available.  

In the beginning, programming was accomplished using wires and a patch panel.  Then 

programming could be performed using punch cards or a Teletype machine.  Finally, the CRT 

and interactive editing arrived to provide the foundation for how programmers write programs 

today.  Before focusing upon more modern visual editing, it is important to mark what could be 

considered as the beginning of the era of visual programming. 

 

2.3 Sutherland’s Sketchpad: the Pioneering System 

Ivan Sutherland was working on his Ph.D. thesis at the Massachusetts Institute of 

Technology and created what is considered a pioneering “constraint-based graphical 

communication system.” (Ambler and Burnett, 1989).  The name of the system was Sketchpad, 

and a paper was published about its design in 1963.    Instead of using instructions to generate 

computer graphics, a user utilized a light pen to directly manipulate graphics on the screen.  A 

data structure contained information about different aspects of the drawing that was used to 

satisfy geometric constraints, permit copying, and operate on subparts of the drawing.  Controls 

on the screen permitted various operations to be performed on parts or all of the drawing.  

Through constraint satisfaction, the user had “the ability to specify...mathematical conditions on 

already drawn parts on his drawing which will be automatically satisfied by the computer to 

make the drawing take the exact shape desired.”  Usually, a “one-pass method” was 

implemented, which was similar to Moore’s algorithm, to satisfy the constraints.  However, if 
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this was not sufficient, Sketchpad resorted to mathematical relaxation techniques.  Some of its 

uses included pattern generation, geometric animations, animated cartoons and artistic drawings, 

scaled drawings, electrical circuit diagrams, and bridge force drawings.  It would be many years 

before something ambitious would be attempted and published again (Sutherland, 1990). 

 

2.4 Metrics for Classifying Visual Languages 

There are a number of visual languages used for programming.  However, each visual 

language has its own strengths and weaknesses.  In order to effectively evaluate a visual 

language, one survey paper on visual programming languages by Shu (1990) described various 

metrics.  These metrics create the “profile of a language” which characterizes the language in a 

three dimensional framework.  Graphically, it may be represented by the surface determined by 

the relative measures of the language on three axes (Shu, 1990). 

 

The assessment of a programming language will use the metrics of language level, 

language scope, and the visual expression of the language.  The language level is “an inverse 

measure of the amount of details that a user has to give the computer in order to achieve the 

desired results.”  The language scope has a “depicts how much a language is capable of doing”.  

The range of values starts at “general and widely acceptable” to “specific and narrowly 

acceptable”.  The visual expression of the language is “the meaningful visual representations (for 

example, icons, graphs, diagrams, pictures) used as language components to achieve the purpose 

of programming.” (Shu, 1990). 
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2.4.1 Graphics as the Primary Means of Programming 

From these metrics, Shu (1990) defines three categories used to describe different visual 

programs.  The first category has “graphics…deliberately designed to play the central role in 

programming.”  These systems include: Pygmalion [1975], Xerox Star [1982] (serves as the 

basis for a future work called SmallStar that will described in more detail later by Halbert 

(1993)), Rehearsal World [1984], Pict [1984] (described in more detail later on as Pict/D), 

VennLISP [1986 or earlier], and Jacob’s State Transition Diagram Language [1985].  These 

systems are created for novice users who are either office workers, typically using Xerox Star, or 

new programmers, who would be likely to use Pict.  Xerox Star is similar to the pervasive iconic 

operating system interfaces of today.  However, complicated procedures must be done in a 

textual command language.  Pict allows all programming to be done graphically and with a 

pointing device, which could be thought of as a primitive mouse today.  Scoping is permitted, 

and color is important.  On the graph, Xerox Star has a low language level and scope but a high 

level of visual expression.  In comparison to Xerox Star, Pict, has an equal value for scope but 

has higher levels than Xerox Star of language level and language scope. 

 

2.4.2 Graphics That Accompany Conventional Programming Languages 

The second category has “graphics incorporated into the programming environment as an 

extension to conventional programming languages.”  In this category are the following systems: 

Diaz-Herrera and Flude’s PASCAL/HSD [1980], PIGS [1983], Belady and Hosokawa’s 

“Visualization of Independence and Dependence for Program Concurrency” [1984].  PIGS is an 

acronym that stands for “Programming with Interactive Graphical Support”.  In this system, “NS 

diagrams [serve] as executable program control constructs…that support[s] program 
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development and testing within the same environment.”  The graphical representation extends 

the language.  Specifically, NS diagrams are used with Pascal language for “structured control 

constructs of logic flow.”  The system is capable of interpreting programs placed into NSD chart.  

The system also displays the execution sequence and supports interactive testing and debugging.  

Belady and Hosokawa’s “Visualization of Independence and Dependence for Program 

Concurrency” utilizes “special notations to expose the sequencing [of programs] and [their] 

concurrency information”.  Here, the programmer provides a two-dimensional chart that 

indicates the order of program execution as well as what statements may be executed in parallel.  

This information can be provided to the compiler (Shu, 1990). 

 

2.4.3 Visual Expressions Used for Nonprocedural Programming Languages 

The third and final category that encompasses the above metrics is defined as containing 

“non-procedural programming languages using tables or forms as visual expressions”.  

Additionally, the graphical representations are purposely created as a crucial aspect of the 

language.  Furthermore, “…the language cannot function without the graphic representations.  

Many table- and form-based languages belong to this category.”  Included in this category are 

the following systems: QBE [1981] and FORMAL [1985].  QBE uses templates of tables to query 

a database by having the user filling in codes in fields of records.  These combinations of codes 

in various fields of different tables will determine the database operations.  QBE has a high 

language level limited to non-procedural languages, a small scope still greater than Xerox Star 

and Pict with a limitation to flat tables, and a low level visual expressiveness that is greater than 

PIGS and Belady and Hosokawa’s “Visualization of Independence and Dependence for Program 

Concurrency” but less than Xerox Star and Pict.  FORMAL has the user fill in the template of the 
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program through the specification of its data source.  Through the use of this template form, the 

user can specify matched fields from two input source and conditions for selecting the input data 

and the ordering of output data.  FORMAL enables the user to construct complex database 

queries while relying on the compiler to write the algorithms to perform the actual database 

query operations.  The formatting of the heading of the tables can also be performed with some 

detail.  FORMAL has high language level even greater than QBE, a moderate-level language 

scope still greater than QBE, and a level of visual expression equivalent to QBE (Shu, 1990). 

 

2.5 An Overview of General Visual Programming Systems 

2.5.1 Syntax-Directed 

From Sutherland’s Sketchpad, people have been continuing to search for ways to simplify 

the tasks related to programming.  Some programming systems used syntax-directed editing.  

These systems provided immediate feedback of syntactical errors and may have permitted the 

programmer to utilize language syntax templates.  The Cornell Program Synthesizer [1981] had 

the programmer give language-specific commands and fill in templates.  Aloe, an editor used in 

Gandalf [1986] which was another software development, was similar to the Cornell Program 

Synthesizer through its use of syntax templates, but it also used token replacement in the 

templates (Ambler and Burnett, 1990). 

 

2.5.2 Specification-Directed Editing 

 Other systems went beyond templates and created specification-directed editing.  This 

type of system used additional rules “on the structure of programs and enforc[ed] these rules 

through the editor.”  Two examples of this system are Use.IT [1976] and PegaSys [1986].  
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Use.IT guided the user through entering formal specifications “using a structure-based editor that 

enforces decomposition [typically of functions] based on provably correct design axioms that 

limit interaction between modules.”  PegaSys graphically depicted formal dependency diagrams 

based on user entered design specifications.  Editing occurs with “system imposed syntactic and 

semantic constraints.” (Ambler and Burnett, 1990). 

 

2.5.3 Visually Transformed 

Another set of systems used visually transformed programming where the diagram is the 

only program representation, and the editing of programs is done directly on the diagram.  In 

Pict/D [1984], the programmer manipulates flowcharts and can create new icons that substitute 

for positions of the flowcharts.  In the system, icons replace keywords.  Another system is 

PECAN [1985] which depicted Pascal programs using Nassi-Shneiderman (NS) diagrams and 

flowcharts, whose representations were published in 1983 (Ambler and Burnett, 1990). 

 

2.5.4 Forms-Based 

Another visual language type utilizes the forms-based paradigm, which also is known as 

a “generalization of spreadsheet programming.”  The visual cell matrix prevents the programmer 

from having to consider “variables, declarations, and output formatting.”  The program called 

Forms [1987] extends the spreadsheet metaphor.  A “basic sheet” is a form, corresponding to a 

piece of paper on which one can place cell matrices called objects.  Each cell is only evaluated 

once.  A “[c]ell expression” can reference any cell(s) in any object within the containing form or 

within other forms (Ambler and Burnett, 1990). 
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2.5.5 Visual Environments 

Besides visual languages, there are also visual environments.  PECAN [1985] and VP 

[1982] are visual environments.  Visual environments utilize “graphical techniques in a software 

environment that supports the program or system development.”  PECAN is a “family of 

program development systems that support multiple views of the user’s program.”  The internal 

representation of the program is an abstract syntax tree.  Concrete views are updated as changes 

occur.  The “…views can be representations of a program or of the corresponding semantics.”  

PECAN also updates its views during run-time.  It provides “visualization of a program and its 

run-time environment.”  SDMS [1980], or Spatial Data Management System created by the 

Computer Corporation of America, provides “visualization of data or information.”  The system 

stores information in relational databases and has its information presented through a spatial 

framework.  It uses direct manipulation on the “graphical view of the database” to facilitate 

information retrieval.  A system called PV is capable of  “support[ing] manipulation of static and 

dynamic diagrams of computer systems; manipulation of program and document text; creation 

and traversal of multidimensional information space; and reuse and dissemination of tools, which 

is made possible by a library of diagram and text components.” (Shu, 1990). 

 

2.5.6 Flow- and Constraint-Based 

Flow- and constraint-based languages typically have a visual “front end” over a non-

visual language or have a visual environment in which there is “no strictly textual equivalent”.   

One type of visual language utilizes data flow that has diagrams in which functional modules are 

connected by paths of inputs and outputs.  This paradigm omits translation to text, which is 

typically done as a separate design step.  Another type is the constraint-based paradigm 
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characterized by Sketchpad from 1963 and ThingLab [1986].  ThingLab is based on logic 

programming.  A solution “is the set of values that simultaneously satisfies all constraints.”  The 

paper will describe these systems in more detail at another point (Ambler and Burnett, 1990). 

 

2.6 Programming by Example / Programming by Demonstration Systems 

2.6.1 Description of Programming By Example / Programming By Demonstration and 

Their Systems  

A paradigm for a type of visual programming is called Programming by Example (PBE).  

It has the following three characteristics: 

 

• The programmer specifies a program solely from input-output pairs. 

• The programmer performs the steps of the algorithm on a set of examples.  Then, the 

system attempts “to infer the general program structure.” 

• The programmer specifies all aspects of the program, “but the [programmer] can 

work out the program on a specific example.”  Commands execute normally, while 

the system remembers them for later reuse. 

 

This may also be referred to as Programming by Demonstration (PBD) (Myers, 1990). 

 

Another aspect of visual languages is that PBD involves a visual process that lacks a 

textual equivalent.  A person directly manipulates graphics instead of text in order to 

demonstrate to the programming system what the program should do.  Three examples of this 

type of programming include ThinkPad [1985], Rehearsal World [1984], and Pictoral 
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Transforms (PT) [1988].  ThinkPad is a “declarative, graphical PBD language and environment.”  

Manipulating diagrams of data structures demonstrates operations on data and maps to Prolog 

code.  Running and debugging code still must occur in the Prolog environment.  Rehearsal 

World is based on the SmallTalk programming environment and uses a theater metaphor to 

primarily help non-programmers be able to write programs.  “The basic components, called 

performers, interact with each other on the stage (the screen) by sending cues.  The screen is the 

stage upon which the performers (objects) perform the actions the user has taught them for a 

particular production (program).”  PT allows the user to describe visual representations of data 

and “manipulat[e] them to develop program algorithms.”  The user “design[s] graphical objects 

and use[s] [them] to demonstrate” how algorithms work.  A picture is a “collection of graphical 

objects.”  A film is a “sequence of manipulations performed on a picture.”  (Ambler and Burnett, 

1990). 

 

One of the survey papers written by Myers (1990) classified programming systems in the 

following manner: VP, not PBE, batch; VP, not PBE, interactive; VP, PBE, interactive; and VP, 

PBE, batch.  Not PBE and batch systems include: Grail [1969], GAL [1984], AMBIT/G [1968], 

AMBIT/L [1971], QBE [1977], and FORMAL [1985].  Grail utilized computerized flowcharts 

that were compiled.  The flowchart boxes contained “ordinary machine language statements.”  

GAL implemented NS flowcharts compiled into Pascal.  AMBIT/G and AMBIT/L used “symbolic 

manipulation programming using pictures.  Both programs and data were represented 

diagrammatically as directed graphs, and the programming operated on pattern matching.”  QBE  

“allows [programmers] to specify queries on a relational database using two-dimensional tables 

(or forms).”  Examples are really variable names typically used in most conventional 
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programming languages.  OBE is an office automation system whose ideas are extended from 

QBE.  FORMS is a “forms-based database language…which explicitly represents hierarchical 

structures.” 

 

VP, not PBE, and interactive systems include: Graphical Program Editor [1966], PIGS 

[1983], Pict [1984], PROGRAPH [1983], and State Transition User Interface Management 

System (UIMS) [1985].  The Graphical Program Editor is likely the first VP system, according 

to the paper written by Myers (1990), because he did not consider Sutherland’s Sketchpad since 

he viewed it as a graphics editor.  Programs are represented “somewhat like hardware diagrams”.  

PIGS represents programs using NS flowcharts.  Pict uses flowcharts whose flowchart symbols 

contain color icons.  PROGRAPH describes programs in a functional data flow language that is 

concurrent.  State Transition UIMS uses a state transition diagram editor for specifying the user 

interface graphically although it should be noted that this does not implement a modern GUI 

interface. 

 

VP, PBE, and batch systems include a system by Bauer [1978].  This system uses visual 

programming since the “[programmer] can specify the program execution using graphical 

traces”.  Programs are generated from input-output pairs, data structures, and algorithm 

specifications for a set of programs.  The system executes the program on example data and 

infers “where loops and conditionals should go to produce the shortest and most general program 

that will work for all of the examples.” (Myers, 1990). 
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VP, PBE, and interactive systems include the following: AutoProgrammer [1976], 

Pygmalion [1977], ThingLab [1986], SmallStar [1981], and Rehearsal World [1984].  

AutoProgrammer is similar to Bauer’s system [1978] and can inference.   Pygmalion is “one the 

seminal PBE systems.”  The programmer writes a program by manipulating icons.  The emphasis 

is on the interactions of the programmer in the environment as opposed to writing a text program 

that tells the computer what to do.  ThingLab “allows the [programmer] to describe and run 

complex simulations easily.”  It permits the definition of new constraints among objects 

graphically.  One uses existing objects to make new objects in SmallTalk.  SmallStar is an office 

automation tool that has the ability to record macros.  No inferencing occurs in SmallStar.  Users 

must explicitly add constraints, variables, and control structures.  If the system should remember 

operations performed by the user, the user must make sure to set the system in program mode 

while performing the actions in the system’s interface.  Rehearsal World uses SmallTalk and 

implements a rehearsal metaphor for the purpose of “allow[ing] teachers who do not know how 

to program to create computerized lessons easily”.  Users can generate code using PBE, but 

sometimes the users must write code when creating a new performer if PBE is not sufficient 

(Myers, 1990). 

 

2.6.2 Description of Demonstrational Interfaces and Their Systems 

Myers (1993) wrote a later article that further described PBD and PBE systems under the 

category of demonstrational interfaces.  He defined demonstrational interfaces as permitting the 

user to act upon objects related to concrete examples, typically using direct manipulation, which 

creates an abstract program.  As a result, the user does not have to learn the programming 

language.  Myers continues by indicating that these interfaces may be programmable or not 
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programmable.  Additionally, the systems providing demonstrational interfaces may or may not 

have the capacity to inference the user actions.  If the system is programmable and uses 

inferencing, Myers classifies the system as PBE.  If the system is programmable and does not use 

inferencing, he classifies the system as Programming With Example (PWE) since the user is 

required to specify all aspects of the program even though the programmer still uses one or more 

specific examples during the programming process. 

 

To further illustrate the given classifications, an example of a system or systems will be 

placed into each of the eight categories.  To simplify repetition of terms, the focus will be upon 

demonstrational systems versus not demonstrational systems beginning with not demonstrational 

systems.  Myers (1993) classifies standard direct manipulation interfaces as not intelligent and 

not programmable.  He classifies natural language interfaces as intelligent and not 

programmable.  The UNIX shell is programmable and not intelligent.  A system named 

Programmer’s Apprentice [1988 or earlier] is programmable and intelligent. 

 

As for demonstrational systems, there are many more examples of systems given that the 

article written by Myers (1993), which appears in a book Cypher (1993) that focuses upon 

systems that are intelligent or not intelligent, programmable, demonstrational systems.  Macro 

Makers and Mondrian [implemented 1991] are not intelligent, not programmable systems.  

Eager [implemented 1990], Peridot [implemented 1987], and MetaMouse [implemented 1988] 

are programmable, intelligent systems.  Predictive Calculator [implemented 1982], MacDraw, 

and Microsoft Word are intelligent and not programmable systems.  Pygamalion [1977], 

Rehearsal World [1984], Tinker [implemented 1979], Tango [1991 or earlier], Chimera [initially 
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implemented in 1987; constraints added in 1991], Finzer’s (Geometric) Sketchpad [implemented 

1991], and TRIGGERS [implemented 1991] are programmable and not intelligent systems.  

Because the conceptual VP framework discussed in this work focuses upon this category of 

system, many of the VP listed here will be described in more detail later. 

 

Myers (1993) lists the advantages and disadvantages of demonstrational interfaces.  The 

positive aspects of demonstrational interfaces include “providing abstractions concretely” 

through the use of permitting programmers to write a program based on directly manipulating 

example objects.  Another positive aspect are allowing programming to be opened up to 

nonprogrammers who have domain-specific knowledge through the use of domain-specific 

interfaces.  Control constructs in the program may be added directly by the nonprogrammer or 

through system inferencing.  One final benefit is ease of use that comes through the recording of 

macros that may or may not use inferencing.  This inferencing process may allow for the creation 

of proper constraints among objects in a program. 

 

There are also some negatives for demonstrational interfaces.  Many systems have not 

implemented demonstrational interfaces, so it is uncertain as to what applications should use 

demonstrational interfaces should be used and even if these interfaces are really useful at all.  

Additionally, there is no one set of user interface elements for using demonstrational interfaces.  

Another difficulty is that if this type of system uses inferencing, the system may incorrectly 

inference some aspect of the program.  Some final negative aspects include difficulties with 

giving useful feedback, in providing program editing and debugging features, and in building the 
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systems that implement demonstrational interfaces.  At the time of this article, Myers (1993) 

considered these difficulties as open research topics. 

 

2.6.3 Reuse in Programming by Example Systems 

Reuse is a major issue with PBE systems.  Users must “leap cognitively between two 

levels of representations”: the GUI level and the program level.  The difficult mapping of these 

levels is the “PBE representation chasm.”  Analogies permit new construction of knowledge 

from understood knowledge.  PBAE, or Programming By Analogous Examples, closes this 

chasm.  Macro mechanisms provide the recording and static playback of user text.  From the 

GUI level, macros are not editable once they are recorded.  Users can only make modifications 

on the programming level, such as in Microsoft Word where macros are supported (Repenning 

and Perrone, 2001). 

 

AgentSheets [1995] uses PBE and Graphical Rewrite Rules, known as GRR.  “These 

rules declaratively describe spatial transformations with a sequence of two or more situations 

containing objects…[O]ne or more actions [are] capable of transforming one situation into 

another.”  (Repenning and Perrone, 2001).  To help achieve reuse, users need to add semantic 

annotation.  With semantics, analogies can be drawn that permits generalization but limits having 

to consider abstract concepts.  To facilitate this end, some structure exists in base icons that 

permit syntactic or visual rewrite rules to transform the base icons into their multiple forms.  In 

an example from this article, a street and train track can be transformed from their base icon 

syntactically, i.e. its appearance, and semantically, i.e. the ability to connect other icons.   
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Another reuse mechanism is inheritance.  Even though “class [hierarchies] may be 

ontologically sound, [they introduce] serious problems [for the end user]” (Repenning and 

Perrone, 2001).  With inheritance, users would have to do the following: think abstractly, 

visually recognize an abstraction, and visually create an abstraction.   Additionally, 

overgeneralization may occur, but using constraints could prevent this problem.  For example, 

streets and train tracks are semantically equivalent since vehicles use them as a means of 

traveling from one place to another; however, only cars should drive on streets, and trains should 

only ride on tracks. 

  

2.6.4 A Description of the Ideal Programming by Demonstration System 

PBD usually eliminates the need for the user to learn a programming language.  Instead 

of complete reliance on machine learning, the “user must be allowed to provide information 

beyond examples the give the system information about the program’s internal workings”.  

“Plain demonstrations” occur when the system relies on inference along with the generalization 

of parts of specific examples.  Instead of having this scenario, the system should attempt to find 

the “hidden state” of the program from the user instead vice versa (McDaniel, 2001).   

 

Two methods exist to perform this inquiry.  The first is the passive-watcher method 

where either the system can infer something from user actions, or the user does the task without 

assistance.  Microsoft Word with its “auto-correct, auto-indent”, etc. approach.  However, this 

method is unable to be used for general programming.  The second method is where the user 

gives an example of the before state and the after state while the system “infer[s] the constraints 

between those changes” which results in code generation (McDaniel, 2001). 
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The ideal PBD system would provide an advanced program editor and “allow[s] the user 

to specify and abstraction in the way that is most comfortable for the individual.”  The user can 

give the system “hints” that “provide extra channels for the user to represent things that the 

system would find too difficult to infer on its own.”  This can be done by “creating special 

objects and programming widgets [in addition to] using selection techniques for pointing out 

objects at key times.”  These techniques come from systems not using PBD or inferring code 

(McDaniel, 2001).   

 

Another inclusion into the ideal PBD system would be a secondary drawing area not 

appearing in the application’s interface used for these objects.  This idea was used in Rehearsal 

World [1984] and Gamut [1999].  Also, one could also mix visible and invisible objects as is 

done with the “guidewires” in DEMO II [1992].  In the ideal PBD system, the  “a behavior of a 

[program] widget becomes similar to the operations one performs in a programming language.”  

A heavy reliance of program widgets “can cause the same problems as writing code textually.”  

(McDaniel, 2001). 

 

2.7 A Survey of Selected Visual Programming Systems 

Now that some different classification systems have been described, a number of 

different visual programming systems will be described in more detail.  The selection process for 

whether to include these systems was based on meeting one (or both) of the following criteria: 

the systems either were an important contribution to the field of VP or served as an incremental 

contribution to the area of VP; or, some portion of the system served as an inspiration or was 
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used directly in PTV.  The presentation order of the systems is chronological based on a paper 

was published on the system (unless otherwise noted). 

 

2.7.1 Pygmalion 

Pygmalion [1977] was a system developed “whose representational and processing 

facilities correspond to and assist the mental processes that occur during creative thought.”  

(italics from the paper).  This environment “has no representation for telling a program anything” 

about computation but only for performing computations.  It “is an interactive ‘remembering’ 

editor for iconic data structures exhibited graphically on the display screen.” (Smith, 1990). 

 

Its philosophy was constructed according to the following design principles: 

 

• Present a visually orientated system. 

• Abstract concepts are manifested graphically and directly manipulated through 

various interactions. 

• Data structures and routines may be partially defined, but, upon use, the user will 

complete the definition. 

• Multiple levels of detail are permitted (particularly data structures) under control of 

the user. 

• Icons act as representations for data structures or a program part. 

• Basic control flow and hierarchy units are provided to the user (i.e. conditionals, 

recursion, subroutines, classes, etc.).  A basic icon shape is also provided. 

• Programming is done incrementally and interactively. 
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• Information may be displayed in a temporal order. 

• The system will have context dependent modes within the system and the user’s 

program. 

• Pygmalion is a general purpose programming language. 

 

In Pygmalion, “icons provide the mechanism for storing and retrieving information and 

for representing procedures.”  Symbolically, the icon represents the attributes of a program.  

Icons also “provide an alternative representation which stimulates creative thought in the 

programmer.”  Smith (1990) also had a response to the current paradigm of using text editors for 

composing programs.  He believed that traditional text editors wait for an operation, perform the 

operation, “display the result”, and wait for a new operation.  If the editor “remembered” 

operations, then the result is a program that “correctly edited text once.”  Expanding this idea to 

performing operations on data structures with visual representations brings about a more 

powerful result. 

 

The system consists of a visual environment design space and runtime environment.  The 

display mode is used “for communicating the semantics of operations visually” with a remember 

mode “for writing programs.”  Performance of the program and creation of icons is done in the 

design space.  Visually, icons represent a “class”.  The visual environment has an icon text menu, 

a pointer for icon interaction and structure manipulation, icons for value of the pointed-to icon, 

icons with recently remembered operations, and icons for the SmallTalk evaluator (which the 

system is based in).  Performance of the program and creation of the icons is done in the design 
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space.  The system design creates the following characteristics (all quotations in this area come 

from Smith (1990) unless otherwise noted): 

 

• “The results of operations are immediately visible and mistakes are immediately 

correctable…Operations are concrete rather than abstract…Data and program are 

visually represented.” 

• “The standard mode for writing programs is what other systems consider to be 

debugging mode”, i.e. viewing “the step-by-step executions of operations on actual 

data.” 

• “The human programmer is considered to be part of the execution of the program.” 

•  “No additional medium besides the computer is used in designing software.”  A later 

paper by Smith (1993) describes the system as equivalent to an “electronic 

blackboard.” 

 

The system seeks to improve the tools of programming but not automate the 

programming process. 

 

2.7.2 Graphics-Based Program Support System 

The Graphics-Based Program Support System [1978] addresses the problem that 

“…more than half of total [programming] effort expended goes to defect removal activities in the 

forms of testing and post-release defect repairs.”  To remedy the situation, a Programming 

Support System was created “to help people produce correct programs that are self-documenting 

and easily read and understood by others”.  According to Frei et al. (1990), it is necessary to 
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develop techniques that improve the specification, production, and documentation of computer 

programs in the ways: 

 

• Specify programs that illustrate their structure and logic through charting techniques. 

• “[D]raw and edit these charts” with “an interactive graphics system.” 

• “[T]ranslate charts into executable code”. 

• “[Provide] self-documentation as a by-product of the program development process”. 

• “[Provide] better, interactive diagnostics and program development aids than is 

currently the case using a program interpreter.” 

• “[Evaluate] the Programming Support System in real applications.” 

 

The Graphics-Based Program Support System uses Nassi-Shneiderman (NS) diagrams 

that support “structured programming”.  A program statement consists of a rectangular figure.  

Assembling these rectangular figures together represents the program.  The contents of each 

rectangular figure may contain code “written in the base language…or other rectangular figures 

representing structured statements.”  “NSDs…specify the control flow”, while the contents of 

these constructs indicate the actions that the program executes.  The NSD contains a “data 

definition header”.  The data definition has a “diagram name, a comment about its function, and 

a definition of the local variables, and parameters used by the diagram.”  Other NSDs may 

contain “embedded language statements.”  (Frei et al., 1990). 

 

This system contains many different tools needed to create, edit, and execute NSDs that 

include the following: an editor, interpreter, preprocessor, compiler, “a dialog component for 
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answering questions about NSDs and system commands…[and] a set of utility routines.”  The 

user uses the editor for graphically creating an NSD as well as adding and modifying the text of 

the structure and program.  The question-answering mode is a help system that queries if various 

NSDs are available.  A preprocessor translates diagrams into a language that will later compile 

the code.  “Interpretive execution of NSDs will be provided to facilitate the development and 

debugging of programs.”  This includes stepping through code, stopping execution on 

breakpoints, pausing interpretation, viewing a variable display, and “resetting program variables” 

(Frei et al., 1990). 

 

2.7.3 Tinker 

Tinker [implemented in 1979] is based upon Lisp and is used by beginning programmers.  

Tinker uses programming-with-example to “define conditionals and recursive programs.”  

(Cypher, 1993).  Programmers must resolve ambiguities and provide an object for a function 

argument “which has the appropriate data description.”  It is not “a purely direct-manipulation 

interface” since the programmer must have knowledge of how to use Lisp.  The Object List 

contains a history list of “objects paired with their corresponding data descriptions.”  For 

performing an action, the programmer types the function name and selects function arguments 

from the Object List having the correct relation.  Incremental program development is supported 

such as demonstrating “a simple case” and later demonstrating “more complicated situations.”  

(Lieberman, 1993). 

 

Tinker is “the most procedural general PBD system” that can create conditionals when 

given multiple examples.”  Providing the appropriate examples is important for useful code 
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generalization since key relationships must be shown.  To decide which generalizations to use, 

the user must “define an expression to separate the cases”.  The state of the blocks is displayed 

graphically.  As the programmer types Lisp expressions, Tinker executes the program.  “The 

Object List can be edited or the resulting Lisp definition can be edited as text.”  (Lieberman, 

1993).  Additionally, “multiple examples define conditionals and recursive programs”, and there 

is no inferencing used in the system (Maulsby and Turransky, 1993).  

 

2.7.4 ThingLab and ThingLab II 

ThingLab [1981] was influenced by SketchPad.  It is built as an extension to SmallTalk-

76.  The system focuses on “the programming language aspects of a simulation laboratory.”  

“[C]onstraints are sued to specify the relations that must hold among parts of a simulation” 

which will be maintained by the system despite modification.  The user specifies a constraint 

using “a rule and set of methods”.  ThingLab uses a rule for testing whether a constraint is 

satisfied; if not, an error is given.  Methods provide other means to satisfy the constraint.  If the 

constraints are not met, a relaxation technique occurs that “approximat[es] the constraints on a 

given value” in some manner.  This process continues until all constraints are satisfied, an 

optimum situation for meeting the constraints is reached, or failure occurs (Borning, 1990a).   

 

The organization of the simulation is done through SmallTalk’s class hierarchy whereby 

an “object is an instance of a class”, methods of a class or its superclass are the only permitted 

operations on an object, and object data is internalized.  ThingLab extends this idea with 

prototypes by allowing object data to have default values before the programmer sets its values, 

and defining a class by example using the prototype ability of the class (not always possible if 
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this ability is not available).  Furthermore, the idea is extended through multiple superclasses and 

“the use of paths for symbolic references to subparts”, and “a part-whole hierarchy with an 

explicit, symbolic representation of shared substructure”.  This hierarchy organization results in 

intricate relationships of constraint satisfaction.  Code of existing classes can be viewed by 

selecting the appropriate items in the browser.  Changes can be made to the code where 

appropriate (Borning, 1990a).   

 

Simple graphics tools are provided for drawing items and connecting items and 

manipulating the diagram.  The manipulation of the diagram causes recalculation in order to 

satisfy constraints and makes the simulation interactive.  The drawing and constructing of 

diagrams take place in the space below the SmallTalk browser.  Other regular interaction 

expected within the SmallTalk environment is likely to also be supported since ThingLab 

extends SmallTalk. 

  

ThingLab II [1986], supports multiple views according to an abstraction mechanism.  The 

constraints express the relations amid the alternate views.  “Each of the alternate views may also 

have internal constraints, and an object must obey all the constraints specified for all its alternate 

views.”  A relation exists between the views and the part-whole hierarchies.  What could be 

compared to “an enclosing container object” would contain the object with “all its alternate 

views” and also allow the container object to own “[t]he constraints relating the views” (Borning 

1990b). 
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2.7.5 PIGS 

A programming system called PIGS [1983] continues the idea presented by Frei et al. in 

the Graphics-Based Program Support System where a single environment provides 

“development, debugging, testing, documentation, and maintenance of programs”.  Programs are 

created and edited graphically using NSD.  PIGS provides an interpreter that directly executes 

the chart form in the NSD program.  The system also permits the setting of breakpoints and 

graphical step-by-step program execution.  “On-line debugging and testing facilities are available 

which allow the user to examine and modify the program [being executed].”   PIGS may permit 

the recursive calling and direct invocation of NSD modules. 

 
 
2.7.6 Pict/D 

Pict/D [1984] has no underlying textual language.  Programmers compose their 

programs, using only a joystick, by placing icons into a flowchart creates programs.  The icons 

can consist of system-defined functions or can be defined by the user.  Pict/D permits recursion.  

The programmer may define icons.  System functions are accessed through various icons.  

Numerical input is performed using an on-screen numeric keypad.  Pict/D uses auditory cues to 

communicate system state, such as the rejection or acceptance of commands, to the programmer.  

Color is also used.  Program execution involves the animation of the current execution step in the 

diagram.  The system is considered a prototype and is not intended for general-purpose 

programming. 
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2.7.7 Rehearsal World 

Rehearsal World [1984] is “an environment for developing educational software.”  In this 

system “…only things that can be seen can be manipulated.”  Rehearsal World is based on the 

SmallTalk language and was designed for educational curriculum designers.  The system 

“extend[s] the [SmallTalk] object-message metaphor to a theater metaphor in which the basic 

components of a production are performers…that interact with one another on stage by sending 

cues.”  The design environment is dynamic and interactive because one can practice using a 

performer before including it on the stage and watch the performers execute the production on its 

own or in a debugger.  One can also learn SmallTalk through using the Performer Workshop that 

contains a limited SmallTalk browser and restricted abilities to create new primitive performers 

and cues.  (Finzer and Gould, 1990).  The following are the steps for creating a program: 

 

• Create an empty stage 

• Display the desired performer troupes (they contain similar functionality) 

• Select a performer in a troupe and observe responses to available cues 

• If the performer is appropriate, copy it onto the stage and resize it as needed 

• Repeat until all performers are present 

• Start having the system “record” the actions of the performers based on user 

interaction or other performers by demonstrating the actions within the system 

• If the recorded actions are adequate, store the production on disk 
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For items not to be seen by the user, they can be kept in the “wings”, a hidden area not 

seen by the user.  Designers can quickly understand the system and design small programs of 

some complexity within some time (Finzer and Gould, 1990). 

 

2.7.8 SmallStar 

SmallStar [1984] is a classic PBD system that “introduces the notion of programming in 

the user interface.”  Data descriptions of objects are used by the PBD system to “refer to objects 

in the users’ demonstrations” (Cypher, 1993).  The target audience for SmallStar is users of an 

office information system called Xerox Star who do not program.   

 

The programmer creates a program by opening a program icon and “pressing the Start 

Recording command in the resulting window.”  SmallStar does not record the “simple selections 

of Star objects.”  Actions are displayed using icons and text in a transcript part of this window.  

In order to better illustrate why an action was taken, the programmer should edit the “operand in 

the program”, which has received the action, “[press] the ‘Properties’ key”, and change the 

properties appropriately (Halbert, 1990).   

 

By performing the following similar measures, one could perform actions on a set of 

documents.  First, the user performs the actions on a document that would be in a certain set of 

documents.  Next, a user selects these actions that will be repeated.  Then, the user selects 

“’Repeat…’ from the pop-up menu in the program window.”  Finally, the user selects the criteria 

for repeating by copying one if the document descriptions into the “-fill-this-in-” section of the 

repeat line.  For conditional statements, the user will do the following: perform the actions that 
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would occur when the condition is true, highlight these lines in the program window, “[use] the 

pop-up menu in the program window…[to wrap] the statements in an ‘if’ statement”, select the 

predicate “-fill this in- = -fill this in-“, and open the property sheet to specify the operands of the 

condition (Halbert, 1990).   

 

When programming has been completed, the user presses the “Stop Recording” 

command and chooses a “Run” option to run the program.  Single-stepping option for the 

program running is available.  Error messages are displayed when countered and indicate the 

cause of the error (Halbert, 1990). 

 

2.7.9 PECAN 

PECAN [1985] “provides views of the program, its semantics, and its execution.”  

Internally, PECAN represents a program as an abstract syntax tree.  The system renders this 

format into different visual forms like: “[a] syntax-directed editor…[an] NS structured 

flowchart…[a] module interconnection diagram [for program organization].”  Each view can be 

modifiable or not modifiable.  Modifiable views allow programmer to perform manipulations 

that adjust the abstract syntax tree.  Since these actions affect the abstract syntax tree, all other 

views will be modified.  PECAN permits program execution by illustrating the current state of 

the program in the appropriate views.   

 

There are a number of views available in the system.  Among the program views are the 

syntax-directed editor and the uneditable NS view.  The syntax-directed editor contains a 

traditional editor and an editor based on the abstract syntax tree that allows syntax tree traversal 
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and template-based programming.  The semantic views include a symbol table, data type 

(currently edited data type only), expression (currently edited), and flow graph.  The execution 

views include a view of the current frame of the program stack, including the “variables in that 

frame, and their values”, and involve the updating of the other views.  Specifically during 

program execution, the current statement is highlighted in the syntax-directed editor and flow 

graph (Reiss, 1990). 

 

2.7.10 ThinkPad 

ThinkPad [1985] “model[s] graphical programming by demonstration.”  The underlying 

language of the system is Prolog.  Data structures are drawn graphically by the user and given 

appropriate names and types.  Constraints on a data structure may be specified so that there is an 

“[encapsulation of] the semantics of manipulating substructures.”  Many facets of the data 

structure definition utilize constraints including: for strong typing provisions and enforcement; 

for denoting “the internal and graphical hierarchy of the data structure”; and for expressing 

“dependencies and relationships among fields of a structure.”  Constraints may be used to control 

the graphical representation as well as the data representation of the data structure.  Multiple 

views, including graphics and constraints, exist for data structures and are organized onto the 

graphical representation called a form.  The environment consists of icons to call system 

components, and a Data Editor.  The Data Editor contains: a Data Window for the data object 

and constraints, a Type Display for types of data structures in the Data Window, and a Prolog 

Display for showing code from creating the data structure (Rubin et al., 1985). 
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“Functions on [data structures] are…defined by editing [their graphical] representation”.  

Each function has a name, arguments, and result types.  Functions are also “defined as a 

sequence of constrained transformations from the data structures that represent the input to the 

data structure that represents the result.”  A function should be demonstrated for each case.  A 

“case is based on a set of constraints…[which] can be based on all of the parameters to the 

function.” (Rubin et al., 1985).   

 

2.7.11 PLAY (Pictoral Language for Animation by Youngsters) 

PLAY (Pictoral Language for Animation by Youngsters) [1986] utilizes a drama 

metaphor in a system designed as an educational program for teaching children how to interact 

with computers and program computers.  Users can be in different modes: playgoer (watches a 

production), director (changes part(s) of a production), or playwright (writes a production).  A 

production consists of data objects including: script, characters (appearance and sequential 

movement images), and backgrounds (backdrop for the scene).  Editors are available for 

backgrounds, characters and their movements, and script.   

 

The script consists of iconic sentences (like a comic-strip) that illustrate in a somewhat 

restricted manner the sequence of actions in the production.  By pointing to a place in the script, 

the new action will be inserted after the selected icon.  When viewing a play as a playgoer, the 

current part of the script being performed is highlighted.  The play can also be started or stopped 

at any point.  Children who tried the system enjoyed seeing the work they made despite the time 

and effort in creating the production.  The interaction with the system occurs through selecting 

on-screen system icons and keyboard commands. 
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2.7.12 Chimera 

Chimera [initially implemented in 1987; constraints added in 1991] is a part of the group 

of “[g]raphical editing and interface editing” programs that does not utilize inferencing.  

Specifically, Kurlander (1993) focuses upon the search and replace utility of Chimera for 

graphics called MatchTool2.  Graphical objects can be drawn or copied into the canvases of the 

search or replace part of the window.  Additionally, one can select which graphical attribute of 

the search drawing should be matched and what graphical attributes from the “replace” drawing 

should replace those graphical attributes of the matched drawings (Kurlander, 1993).   

 

Besides using search and replace for graphical attributes only, one can use “constraint-

based search and replace”.  Constraints can exist both in the search graphic and replace graphic.  

“Constraints in the search pattern indicate which relationships must be present in each match, 

and those in the replacement pattern indicate which relationships are to be established and which 

are to remain unaltered.”  These search and replace rules of either type may be gathered into sets 

of rules that can be archived, “applied to a static scene, or can be expanded dynamically as the 

scene is drawn and edited.”  Constraints used “include distance, slope, angle, and others”.  This 

system uses no inferencing and is used by end-users.  Its purpose is to “automate repetitive 

search and replace tasks.” (Kurlander, 1993). 

 

2.7.13 Fabrik 

Fabrik [1988] is “an experimental interactive graphical environment designed to simplify 

the programming process by integrating the user interface, the programming language and its 
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representation, and the environmental languages used to construct and debug programs.”  Fabrik 

targets casual and novice programmers.  The system uses data-flow graphs to organize “function 

icons, called components”.  “[C]onnection points or pins” connect components within the graph.  

Pins can be input, output, or bi-directional.  Bi-directional pins have their direction chosen 

depending upon what pin connects to them.  By creating a data flow graph and enforcing input-

output rules on pins, “every Fabrik program is always syntactically correct.”  The Parts Bin 

contains all available components.  Components of related functionality are grouped in folders 

(Ludolph et al., 1993).   

 

To create a program, the programmer selects components from the Parts Bin and places 

them into the work area called the Construction Space.  Once different components are 

connected, the programmer enters appropriate information.  If there is a visual component for 

display, it can be designated as the user frame.  Thus, when the program runs, only the visual 

component is displayed.  Existing programs can be modified for a specific use.  Programming 

With Example (PWE) is used when drawing graphical elements in the Draw Component.  This 

activity will also generate a data flow diagram that can be added to by the programmer.  Since 

the system is interactive, any changes to part of the graph will cause values to be recalculated.  

Likewise, error reporting occurs after performing an illegal action. 

 

2.7.14 Geometer’s Sketchpad 

Geometer’s Sketchpad [implemented 1991] is a system that focuses on having students 

who have knowledge about geometry write programs by sketching.  The interrelationships within 

portions of the drawing serve as the parameters and inputs to a program.  By manipulating the 
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drawing, the input from the program will generate additional output.  Constraints may be visible 

or hidden.  Components of a drawing that are hidden permit the “synthesis of meta-constraints—

composite behaviors linking visible parental objects to child objects.”  “[M]eta-constraints 

afforded by duplicating constructions (with intermediate hidden objects) allow precisely the sort 

of scalability associated with modular code and static scoping.”  Relationships between 

components in a sketch are not dependencies but are truly relationships since the system’s 

primitives allow “the inverse of their function” to be “a function as well.”  Thus, the output of a 

sketch can serve to “work backward” from its input (Jackiw and Finzer, 1993).   

 

Geometer’s Sketchpad is dynamic and interactive.  When sketches have invalid 

relationships, these relationships may literally disappear.  To find the error, one may manipulate 

the sketch to determine what state set is valid or invalid.  The reversibility of the relationships 

produces what could be thought of as a two-way (backward or forward) stepping-through-code 

system.  One can also query a sketch part to reveal relationship inadequacies.  The sketch is 

generated in a textual script that may be recorded.  The scripts “[a]t any point…may be ‘played’ 

onto new objects, recreating the system of constraints.”  Writing a loop in the script and having 

objects in a script refer themselves allows for the creation of fractals.  Additional program 

constructs include variables and procedures with parameters (Jackiw and Finzer, 1993). 

 

2.7.15 Triggers and Future Work Based on Triggers 

Triggers [implemented 1991] is a system designed for researcher evaluation that permits 

Macintosh users to create macros based on demonstrated “condition-action rules” focused upon 

pixel patterns.  Triggers does not use inferencing methods and was created because data in a 
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program is not directly accessible to the users of the program.  In order to record a condition, the 

user specifies various areas of the screen where pixel patterns should be searched.  The user 

records a macro, which in this context is the recording of the trigger, by normally interacting in 

the program’s interface using the keyboard and/or the mouse.  In order to control when the 

system executes the rule, the user can set trigger flag that determines whether or not rule 

executes.  A user can use multiple trigger rules and interdependent triggers to create more 

complex actions.  Trigger rules have the ability to continuously execute without intervention or 

to have single-stepped execution.  Rules are editable on a limited basis and have their “condition-

action steps [displayed] as icons.”  A user can reorder rules and steps “by dragging icons.”  The 

user can also insert steps into already existing rules (Potter, 1993).   

 

One can watch program execution by allowing searched areas of a screen to become 

highlighted.  Also, icons in a “condition-action rule” can be highlighted during program 

execution.  The system allows the pausing of the program execution.  Some examples of using 

this system are for automating repetitive steps, graphical search and replace, and floating menus.  

Some limitations are mapping device-level programming to user goals, less efficient execution 

than by using higher-level constraints, and dependence on temporal interface features (such as 

size, placement, etc).  Another limitation is that the user interface devices cannot be shared 

efficiently, so automated tasks cannot easily run in the background (Potter, 1993).  

 

A paper by St. Amant et al. (2001) expands upon the ideas in the original Triggers paper.  

PBE systems have the “data description problem” that present the issue of how a system is able 

to realize the user intent of an object selection or manipulation.  This problem affects the 
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system’s ability to generalize user actions.  To remedy this problem, the paper introduces a 

visual generalization system that attempts to process visual information through the user 

interface where user tasks are performed (St. Amant et al., 2001). 

 

Many benefits result from this generalization system.  First, if the system is not tied to 

specific code or an API, the system could have wider applicability.  Second, “[F]unctional and 

visual consistency” across programs might permit flexibility within the PBE system, such as by 

using PBE for different  web browsers.  Third, visual information that is generally relevant to the 

application could be made accessible to the PBE system (St. Amant et al., 2001).   

 

There are challenges also presented by the introduction of a generalization system.  The 

first challenge is the task of image processing since real-time visual analysis of a screen is 

possible with high-end machines.  The second challenge is information management that poses 

the question: “How can a system process low level visual data to infer high-level information 

relevant to user intentions?”  For example, the system could be confused as to whether a user is 

clicking a rectangular area or pressing a button.  Another challenge is system brittleness.  

Another scenario is if the visual interface changes from what the PBE system expects, how will 

the system react to these changes?  An example involves how the system would differentiate 

between a banner ad containing GUI widgets and the GUI widgets that are actually related to a 

program (St. Amant et al., 2001).   

 

The foundation for this work is Triggers.  A “trigger is a condition-action pair” whereby 

a “user defined a trigger by performing a sequence of steps in an application.”  In an enhanced 
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system, annotations may also be added where appropriate.  Once defined, the user can execute 

the trigger.  In Triggers, the system can be used to extract pixel patterns.  For example, the task 

of moving up to a higher-level directory in a web browser would be dependent upon finding the 

pixel pattern of the directory divider, which is a forward slash (St. Amant et al., 2001).   

 

The ideas in Triggers are found in other programs.  One similar program is Yamamoto’s 

AutoMouse [1998].  Another system that conceptually extends Triggers to allow for visual 

generalization is Xettlemoyer and St. Amant’s VisMap [1999].  VisMap “is a programmable set 

of sensors, effectors, and skeleton controllers for visual interaction with off-the-shelf 

applications.”  Sensors create “structured representation of visual interface object” from 

analyzing display pixels in image processing.  An effector generates mouse and keyboard 

gestures to manipulate objects.  To improve upon the concept of visual recognition in PBE, the 

addition of visual grammars may be necessary (St. Amant et al., 2001). 

 

2.7.16 Geographic Information Systems 

Another system described is for end-user programming is Geographic Information 

Systems or GIS.  The purpose of the system described in this paper is to help end-users use GIS 

to help make decisions about their neighborhood.  Faculty members, who were serving the 

residents, could not use GIS because of its complexity.  They needed graduate students to 

simplify the GIS interface.  These people acted as the human interface between the system and 

the faculty.  This occurred because GIS systems required users to know technical terminology 

and concepts of the GIS knowledge domain as well as have a mental model of the software 

architecture, i.e. the sequence of tasks and the data representation, and “the system had no record 
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of how a display of information on a map was created.”  (Traynor and Williams, 2001).  

According to Traynor and Williams (2001), there were four goals for the new system: 

 

• “[P]resent the HCI in terms of the user’s task” 

• “[P]rotect the user from needing technical expertise [of domain-related fields].” 

• “[P]rotect the user from having to know about the software architecture.” 

• “[P]rovide a program representation of the steps for creating an information display.” 

 

PBD requires an understandable program representation that should “view it while it is 

being constructed, [in order] to check whether the software is making correct inferences”, read 

and write the program representation to disk, permit its on-demand execution, and allow its 

editing “for performing similar tasks”.  A system named C-SPRL was created that has the 

following components: a neighborhood map serving as a GUI component, GUI menus and 

forms, recording and editing modes, a sequential comic-strip panel of the program with before 

and after images of a user command, hierarchical formatting (ex. high schools are a type of 

school), and multiple data displays (ex. information about the map and the map itself) (Traynor 

and Williams, 2001).  Traynor and Williams (2001) state that there is not a large number of 

symbols used in the system.  C-SPRL allows six classes of queries permitted in the system: 

 

• Displaying “one or more objects” 

• Displaying “one or more objects” that may or may not have “one or more features” 

• Displaying “one or more objects” that may or may not have “one or more features” 
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• Displaying “one or more objects” that may or may not have “one or more features” 

and may or may not have “one or more attributes” 

• Displaying “one or more objects” in the range of a specified distance “of one or 

more objects” 

• Displaying “one or more attributes for one or more objects” 

 

2.7.17 Stagecast Creator 

Stagecast Creator, referred to as Creator for the remainder of this section, had the 

purpose of attempting “to make computers more useful in education.”  Through years of 

research, it seemed necessary to create an environment that did not use a textual programming 

language.  Instead, the environment, “focus[ed] on simulations” because they have a power to 

teach effectively, with “programming by demonstration and visual before-after rules.” (Smith et 

al., 2001). 

 

Development in Creator is designed to permit teachers and students “to construct and 

modify simulations through programming.”  The textual language remains as a barrier as 

preventing novices from programming.  In the system, the syntax is “a list of tests and actions in 

a rule.”  Additionally, program is restricted to domain-specific concepts.  The physical system 

and user goals are separated by the “’Grand Canyon’ gap between human and computer”.  The 

user has to cross the  “gulf of execution” in getting the system to act in accordance with the 

user’s specified goals.  The computer has to cross the “gulf of evaluation” where the computer 

attempts to perform the user’s tasks according to the user’s expectations (Smith et al., 2001).   
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In Creator, the goal is to bring the system closer to the user by choosing analogical over 

“Fregean” representation.   Aaron Slowman defines an analogical representation as  “’the 

structure of the representation gives information about the structure of what is represented’”.   

Gottlob Frege, inventor of predicate calculus, has a representation where the relation “between 

parts of a configuration [is] the relation between ‘function-signs’ and ‘argument signs.’”  

Furthermore he states, “’[t]he structure of such a configuration need not correspond to the 

structure of what it represents or denotes.’”  For example, there is a map going from point A to 

point B.  A predicate calculus program would tell how to get from point A to point B.  More 

understandability results from the analogical representations.  Fregan tends to be “general and 

powerful.”  (Smith et al., 2001). 

 

Additionally “[e]ducational psychologist Jerome Brumer…asserted that any [knowledge 

domain] can be represented in three ways” which are enactive, icon, and symbolic.”  All three of 

these representations are crucial to creative thinking.  Enactive representations permit the direct 

manipulation and drag-and-drop capabilities of images.  “[V]isual before and after rules and the 

domain of visual simulations” are iconic.  The use of variables in simulations is symbolic (Smith 

et al., 2001).   

 

Many tests were conducted on with students using prototypes of Creator.  The subjects of 

the study were children, seen as novice users, who created running simulations with moving 

interacting objects.”  It was found that there was “no gender bias”.  This same system was tested 

with high school students.  They became better programmers if they began by using Creator 
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prototypes first.  As a result, “Creator shifts the language design emphasis from computer 

science to human factors.” (Smith et al., 2001). 

 

2.7.18 System by Beaumont and Jackson 

This is a system that had similar functionality to PTV.  The goal of this system was to 

provide a visual interface to the Motorola 68000 processor instruction set (no official system 

name was provided) in a paper by Beaumont and Jackson (1997).  Despite the lack of low-level 

programming by most programmers, it still has use today if a chip does not have a compiler from 

a language of a high-level available.  Other reasons for low-level programming include 

improving system performance and accessing microarchitectural level functions unavailable in a 

high-level language. 

 

Instead of creating a “universal intermediate machine code languages and notations…a 

set of lower level primitives [are defined] which can be used as building blocks to create higher 

level operation symbols.”  The code is generated for the Motorola 68000 microprocessor.  The 

main objective is to present “a concise visual form [that reduces] the potential for errors.” 

(Beaumont and Jackson, 1997). 

  

Each low level instruction has a relation to a template, which appears with a large icon 

and spaces for the operands, if any, as well as for the instruction.  An appropriate instruction icon 

is placed in its location in the template upon the selection of the instruction.  The template also 

displays the states of the “status” registers.  The programmer is able to understand the action of 

the instructions through data-flow arrows present in the diagram.  Also included in the system 
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are labels that illustrate which entities in the interface can be attached in order to form a 

syntactically correct low-level command.  To allow for syntactically correct commands, icons 

involved become inactive if they are inappropriate for a particular instruction (Beaumont and 

Jackson, 1997). 

  

Instructions are divided into logical groupings with each instruction represented with a 

single icon.  Input labels that represent an address or register appear to the left of the icon.  These 

input labels are the data to be manipulated.  The output labels appear to the right of the icon.  

These output labels indicate “where the manipulated data will be located” (Beaumont and 

Jackson, 1997). 

  

“Parameters are constructed first by selecting the relevant addressing mode and then 

inserting the relevant constants, or register names into that addressing mode.”  There are building 

blocks that correspond to a particular addressing mode where every block maps to an entity 

related to composing a parameter.  In the lower right corner in the area of the addressing mode is 

its label that links “the addressing mode with the instructions.”  In order to “distinguish between 

parameters that represent an actual number from those that represent a value in memory…[an] 

indirect icon appears at the top of some addressing modes.” (Beaumont and Jackson, 1997). 

  

The visual representation of a register in this system is similar to that found in 

architecture books.  A label may appear next to its register.  With a “group of registers, the 

alphabetic part of the label is written above the registers and the numeric part next to the 

registers.”  To divide the register into logical parts, vertical lines and an accompanying 
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description may appear.  Numbers appear in the area below the register to indicate the sizes of 

register parts or the size of the entire register (Beaumont and Jackson, 1997). 

  

The interface consists of four regions: “instructions, templates, addressing modes, and 

register description.”  A user selects an item from instruction group menu and then selects the 

related instruction icons appearing “in a scrolled window at the bottom of the interface.”  The 

Motorola “68000 instruction set requires seven templates” each of which can be chosen from the 

pressing the “’template menu button’ in the [center] of the interface.”  Once the user presses the 

button, the appropriate template will appear.  Other buttons appear in the template area to aid in 

configuring and editing the panel.  A user can select one of the eleven addressing modes that 

appear in the topmost region for use in a template.  The registers appear on the right area that can 

be selected by the user in order to have it placed into the template (Beaumont and Jackson, 

1997). 

 

2.7.19 ICE 

An excellent example of the ideal being sought through the work described in the paper is 

with the ICE program.  Children used a paint program that served as a GUI abstraction for 

writing Logo programs.  Children could choose from a variety of tools on the screen and then use 

the mouse to draw what they wanted.  Depending upon the editing mode, the Logo turtle, which 

indicates the location of the cursor relevant to the generated Logo program, the turtle would 

either follow the mouse pointer while something was drawn or would wait until the child issued 

a signal to have the turtle follow a straight line from its previous point to the current point.  ICE 

recorded the actions by having a scrollable “comic book” history that used icons found in the 
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user interface.  It is also possible using ICE, as is in Logo, to define procedures, which would 

allow previously drawn shapes to be repeated in the drawing.  Because of its success, the author 

of the paper wondered whether the abstraction provided an entry point of programming that was 

too low that would prevent children from planning their programs.  However, the author, decided 

that some planning would be performed as projects become more complex (Sheehan, 2000). 

 

2.8 Future Directions in the Field of Visual Programming 

2.8.1 Summary from “The Future of Visual Languages” 

Although there has been progress over the years in the area of developing better visual 

languages, there are many challenges that still remain.  To determine the future of visual 

languages, a panel discussion on this topic will be summarized.  Not all of the discussed material 

was relevant to the area covered by PTV, so those viewpoints were omitted.  To simplify citation 

references, all quotations in this section originate from the panel discussion in this paper: (Chang  

et al., 1999). 

 

S.K. Chang announced that research on visual languages should spread outward from 

programming languages to visual communication with consideration given to human-computer 

interaction.  Specifically, additional research should occur in multimodal interfaces, visual and 

multimedia computing, visual programming in the large, foundations, and applications.  For 

foundations, S.K. Chang wanted consideration of visual and spatial reasoning as well as other 

categories of languages such as multidimensional and multimodal.  In the area of applications, he 

wanted focus on distance learning design, visualization of systems and information, and visual 

interfaces. 
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Stefano Levialdi discussed how the success of applications is heavily determined by its 

interface to its intended class of users.  To improve visual communication of the interface to 

these users, there are a handful of items that he believes deserve consideration as described 

below: 

  

• People should study metaphors that map actions and objects in the user’s domain as 

well as the visualization of objects. 

• The user should be fully involved in interface design from the start. 

• Projects should be refined through “frequent testing, validation, and assessment”.   

• Difficulties should be presented during the initial stages of the development process. 

• One should find an optimum balance between mental workload and visual 

information. 

• It is necessary to create a “construction of a human-computer dialogue” which will 

guide and not dictate program execution. 

 

Kim Marriott stated that the area of visual language theory began over thirty years ago.  

Although a majority of the goals in this research area have been achieved, the area of visual 

language theory has been enlarged to include “all types of visual notations…and how they are 

used.”  As a result, the following issues still need to be addressed: 

 

• “The dynamic and interactive aspects of visual languages” 
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• An improved understanding of how “one visual formalism [is] more suitable than 

another for a particular application domain and when is a visual notation superior or 

inferior to a purely textual notation.” 

• “A better understanding of what makes one diagram better than another at 

communicating a particular message.” 

• How to map formal semantics to a visual language. 

 

Margaret Burnett stated that “[visual programming languages] (VPLs) are about 

multidimensionality” and include “the use of icons, …spatial relationships,…[and] time.”  To 

produce better visual programming languages, three objectives exist: 

 

• To empower a group of people with programming capabilities 

• To increase the level of correctness in performing programming tasks 

• To increase the rate that the user completes programming tasks 

 

Designers of VPLs use the following attributes in their languages: 

 

• Concreteness of various programming aspects. 

• A reduced “distance between a goal and the actions required of the user to achieve the 

goal.” 

• Explicitness of semantics 

• Immediate user feedback of these “semantic effects of program edits.” 
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In addition to studying multiple programming dimensions, “serious attention s needed to 

the [human-computer interaction] and cognitive aspects of visual programming.”  With the 

above attributes, the focus remains— “which language attributes help humans program”? 

 

2.8.2 Summary from “Historical Role and Capacity of Visual Languages” 

The author would like to share a summary of a paper by Yukio Ota entitled “Historical 

Role and Capacity of Visual Language”, whose paper describing the importance and future of 

visual language, seems to parallel the promise and importance of visual programming discussed 

in this work.   

 

Ota (1999) believes that the time for visual languages is now.  There are a variety of 

serious global problems that affects us.  In order for an individual to have an awareness and 

understanding of the problems, the information medium used to define the problem should 

become more universal.  Advances in transportation and communication have increased global 

collaborations that make the language barriers more evident.  People living in this current age 

have an unprecedented amount of information to absorb and digest.  The solution to this problem 

is visual language. 

 

Written and spoken languages are defined by culture and location.  They are 

“individualistic and restrictive”.  Written and spoken languages are “reasonable, analytical…and 

time-sequential requiring education and study for mastery” and “restricted by the logic of the 

sender”.  Visual languages allow people to understand each other regardless of group affiliation, 

do not require an education and study for mastery, and are “sensual, comprehensive, and 
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simultaneously understandable.”  Visual language “perceives and expresses the world as it is”, 

thus removing the need to switch between the abstract and concrete ideas and vice versa.  People 

“use the symbols…as clues to identify, recognize, judge, and evaluate the environment as 

information and then act.”  Signs have two important characteristics.  First, “signs are 

information elements and are considered to be the mark of things with meaning and situations.”  

Based on a person’s value standards, the individual selects signs.  It is the combination of signs 

that form the information.  Second, signs have signals that are “[perceived] and [reacted] to, as 

well as symbol systems as represented by languages.”  (Ota, 1999). 

 

The use of visual languages creates a paradigm shift.  The study of “the relationship 

between meaning and form, and…[gaining] the ability to see and understand instead of read and 

understand, were not done in school education.”  The education of an individual in technical arts 

and fine arts, where both fields managed color and forms, remained restricted by the “creation 

and appreciation of beauty or the field of cultivation of artistic sentiments.”  Visual language has 

its foundation in daily experiences with priority given to the subjective view of the individual.  

Visual language is the means through which one can “interpret and give meaning to a situation.”  

(Ota, 1999). 

 

Ota (1999) lists “the basic concepts of visual language which reflect the actual conditions 

of daily experiences”: 

 

• “Make it possible to structurally and time sequentially express composite intellectual 

information.” 
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• Its design should appeal to both reason and feelings. 

• Within the information medium, any form of information transmission means is used, 

such as “movies, cartoons, photographs, symbols and signs”. 

• “Such information media can freely carry out metamorphosis such as analysis and 

synthesis and time sequential development.” 

 

Such an environment produces interactions “between the will to transmit and the will to 

know, and it will probably function as…the situation in which the interface between information 

and information harmonizes and assimilates with the environment image.  It is easy to 

understand and can be ignored.”  This environment has been referred to as “sign-less-sign[s]”.  

Such an environment can be thought of as an individual’s home where this individual 

understands everything.  Movement in the environment is easy “and becomes spontaneous and 

transparent…The gap between the information environment and everyday environment 

disappears, and they willfully merge to become one.”  (Ota, 1999). 
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3. A CONCEPTUAL FRAMEWORK FOR VISUAL PROGRAMMING 

 

3.1 Explanation of Model-View-Controller 

Model-view-controller is a computer programming design pattern.  Design patterns are 

designed to provide heuristics for developing a solution to a programming problem.  In this case, 

the design pattern consists of three parts.  From this point, a discrete unit used in the system that 

implements the solution to the problem will be referred to as a subsystem.  The use of the term 

“object” may not be appropriate since a subsystem, or logical part of the system, may consist of 

many objects.   

 

The model is underlying representation of the subsystem.  It stores the data related to the 

subsystem as well as implementing the logic, or functionality, of the subsystem.  A programmer 

will interact with the model through its functionalities.  An end-user interacts with the model 

using the controllers.  An end-user perceives the state(s) of the model through the view(s). 

 

A view provides a representation of the model.  There can be more than one view for a 

model depending upon what is useful in a particular solution.  The view does not have to be 

visual since there might be better ways to represent the model through the uses of other 

modalities such as sound.   

 

The controller serves as a mapping to some model functionality.  As a result, there may 

be more than one controller pertaining to a model.  There can be more than one controller for a 

model, but there does not have to be one controller for each model functionality.  Furthermore, it 
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may be prudent to have more than one controller connected to one model functionality (or 

possibly vice versa).   As with the view, the controller is not limited to a visual GUI widget.  It 

may also take the form of another input modality. 

 

3.2 Background of the Creation of Panel-Tool-View 

There were many reasons for creating the conceptual framework of panel-view-tool 

because of two inherent difficulties associated with writing a program.  First, the time and effort 

needed to learn new programming languages and their related APIs is becoming more difficult 

with the proliferation of new languages catered to have specific strengths over existing 

languages.  Second, there are people with knowledge of their particular domain who need to 

write programs to complete various tasks.  However, they are unable to do so because they either 

do not have the time to learn or are intimidated by learning to program. 

 

In order to address these difficulties, a higher-level abstraction was created that would 

hide some of the prior knowledge one must have when writing a program.  This would seem to 

be a natural evolution.  The first computer programming language was assembler.  That dealt 

with the actual hardware of the computer.  Eventually, a higher-level abstraction appeared 

related to with the higher-level languages in use today that also include libraries of functions.  

The next step, which has already been taken by many companies and other research groups, is a 

visual abstraction.  My advisor, Dr. Andrew Johnson commented that this evolutionary step is 

analogous to how operating system commands were abstracted away with the visual desktop 

metaphor introduced by systems similar to Xerox Star and popularized in the Macintosh and 

Windows operating systems.   
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With the choice of a visual language came the issue of finding the correct representation.  

This is very important because a poor visual metaphor would make the language abstraction less 

desirable to use or even unusable.  For most popular programs that utilize a visual interface, the 

predominant property is a visual interface but also a direct manipulation interface.  If one 

combines these two concepts together, one would likely achieve a desirable, productive interface 

to an application.  Examples of this combination of interface characteristics include office suite 

and graphics software. 

 

The organization I used can best be described as a panel-tool-view conceptual 

framework.  This is based on model-view-controller design pattern (whose similarities to panel-

tool-view will be presented in more detail at a later point).  This conceptual framework began to 

take form in part when I was taking a class in my undergraduate computer science class 

involving algorithms and data structures.  In the fall of 1998, my professor at Elmhurst College 

in Elmhurst, Illinois, Dr. John Jeffrey, made an analogy about how to conceptualize OO-

programming.  He compared the OO-programming methodology to a vending machine.  My 

explanation of his analogy extends his basic idea.  The outer part of the vending machine was the 

public interface.  The wiring and internal control characteristics inside the vending machine were 

the private methods.  The internal state of the machine was the private data.  The front panel of 

the vending machine with the various buttons and slots were the public methods.  Of course there 

were other parts of an object that were not mentioned, but this essentially provides the basic idea 

of what the analogy involved. 
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3.3 Description of Panel-Tool-View 

I extended this metaphor to a general-purpose programming conceptual framework called 

panel-tool-view.  The panel is the vending machine outer panel that is accessible to the person 

using the vending machine.   There are different ways to display the data of the object related to 

the panel as well as other objects in the program.  These are rendered in different views.  Finally, 

there may be ways to manipulate objects on a panel.  Whether these items are GUI controls 

related to a panel or certain functionalities provided through a mouse cursor from selecting some 

menu or pressing a button, these items are tools.  To summarize, the panel is the organizational 

structure, or container, given to the user to interact with an object.  There are views related to the 

panel that present information about the object or different parts of the program.  Finally, there 

are tools related to the panel that allow the user to directly manipulate objects. 

 

In relation to the model-view-controller pattern, there is not a perfect correlation.  The 

view and tool parts of in this conceptual framework are analogous to the view and controller of 

model-view-controller.  The panel is more of a container view that contains the controllers 

(tools) and the views.  This conceptual framework had more of a focus on creating a visual 

design pattern that would serve the purpose of creating an interface where the programmer would 

not be limited to only a text editor. 

 

To actually place the conceptual framework of panel-tool-view completely within the 

context of the model-view-controller, additional clarification is required.  In this context, the 

model is the abstract code that should be generated for this panel that will be added to the 

abstract program.  This model is named code generator.  The mapping of the abstract program 
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to a specific programming language is considered to be a view typically exported to a file for 

compilation by the complier of this programming language.  As a result, many panels with zero 

or more views and one or more tools may be mapped to an appropriate model of the abstract 

code.  Another model, named translator, exists whose sole purpose is to determine if the input 

entered into the editable views and/or through the use of the tools of the panel or through the use 

of the other tools will produce a valid mapping to the abstract code.  If a valid mapping does not 

exist, errors must be issued.  Ideally, the translator, that contains the current configuration of the 

panel, responds immediately to changes and updates the state(s) of the views and/or tools in order 

to prevent the user from entering a situation where an error would occur either by issuing an 

error immediately or disabling certain views and tools.  In this context, one translator model 

maps to one panel-tool-view.  Many translators can map to one code generator since there can 

be more than one panel of the panel-tool-view that can exist for a set of abstract codes.  

 

For example, a set of abstract codes can relate to using the programming interface for a 

network-based socket.  There can be many panels-tools-views that may serve as the 

programming interface to the abstract programming concepts of a network-based socket.  

Because each of the panel-tool-view programming interfaces is different, there are different 

requirements needed to enter valid input.  As a result, a translator is required for each panel-

tool-view in order to properly map valid input from the panel-tool-view into the format required 

for the code generator.  Once the code generator has valid data, functions can be issued from 

this model to generate the abstract code. 
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Ideally, a programming environment that used panel-tool-view should allow for the 

creation of higher-level abstractions.  The series of abstract codes generated by the code 

generators from the actions of a programmer, who used many panels-tools-views, can map to a 

higher-level function.  This higher-level function and other higher-level functions can then have 

their related abstract codes mapped to a code generator.  From there, new panels-tools-views, 

each with its own translator, can serve as the programming interface for this new set of higher-

level functions.  This process can be analogous to the creation of a library of functions or the 

creation of a class in a traditional programming language.  One paper that might describe a 

somewhat similar approach in creating higher-level visual abstractions is by Jung et al. (2000).  

A similar idea is mentioned in an article from Dr. Dobb’s Journal called “Getting Skinned” by 

the magazine’s editor, Michael Swaine (2001), though the tone of the article seems more 

fictitious than real.  The article talks about someone who files a patent for a text editor that 

employs plug-in skins to create an alternate form of the original text entered into the editor even 

though there are more frivolous skins like the columnist skin and the marketing skin.  This could 

be considered similar to marking a document in SGML, like the abstract codes mentioned in the 

panel-tool-view framework, and then having different outputs created for HTML or for a printer. 
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4. PROTOTYPE PROGRAM: “PANELS, TOOLS, VIEWS” 

 

4.1 Previous Systems Related To and Inspiring “Panels, Tools, Views” 
 

The design of PTV evolved based on studying the work of others in the area of VP.  

Although some aspects of the design of PTV were already determined before studying previous 

work in VP, the studying of the work contributed to adaptations of the earlier designs of PTV.  

The following is a list of contributions from previous systems (and similarities of PTV to 

existing systems): 

 

• Pict/D used flowchart representation of a subprogram using icons.  There was a plan 

to allow macros or subprograms to be written and represented by a system-based 

icon, not a user-defined icon like in Pict/D, but this feature was not implemented in 

PTV. 

• The important contribution of PECAN was its presentation of multiple code views.  In 

PTV, there initially was plans for three separate views of the program code: visual, 

assembly, and pseduocode (English).  Eventually, the assembly language was 

dropped completely as a view and became an “exported view” that only appeared in a 

file.  The role of the pseudo-code view was lessened from an autonomous view to 

popup text in the visual code view. 

• Rehearsal World organized similar functionality into troupes, even if there was only 

one function in the troupe.  This system was very influential to PTV because the 

panel organizational structure is similar to the troupe organization in Rehearsal 

World.  If the user was permitted to create higher-level panels from existing code 
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generated from panels, then the manner of copying performers from a troupe to the 

stage would be even more applicable to PTV.  Additionally, interacting with the 

troupes generated code in SmallTalk which is directly applied to the generation of 

code that occurs (in an abstract sense since assembly code is generated in a separate 

step) in PTV. 

• PLAY presented iconic sentences for a visual representation of a program.  It allowed 

a “play” mode that permitted movement in iconic sentences to display the forms with 

their respective objects and settings.  Forward and backward movement was allowed.  

This work was applied to PTV through the use of iconic sentences displayed in the 

visual code view.  If the programmer wanted to see the panel related to the iconic 

sentence on a particular line, the programmer could select this option from the menu 

while right-clicking on the line.  The appropriate panel would then display the 

configuration that created the line of visual code.  If the programmer has selected the 

overwrite mode, making changes and reapplying the line to the visual code view is 

analogous to editing a line in a text editor. 

• Pygmalion supported two modes of interaction—display and remembering.  The 

remembering mode allowed functions to be created.  A similar feature was planned 

but never implemented for PTV in order to allow the regular usage of the panels for 

writing a program to be applied to a macro instead of the actual program.  These 

macros could then later be used in manner similar to a “library of functions” to 

eliminate some redundancies in coding. 

• Fabrik utilized data flow charts onto rectangular design areas called diagrams.  Pins 

determined the direction of the data flow from various items in the diagram, and icons 
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were used to represent functions.  Fabrik immediately reported if an error occurred.  

It utilized popup menus and allowed the editing of already existing components 

(functions).  PTV applied the features in Fabrik by using data flow charts were used 

as the visual representation in some panels.  PTV also implemented popup menus as 

the only manner in which to interact with the menu system.  PTV occasionally 

provides immediate feedback on errors (although most wait until the programmer has 

pressed the “Apply” button in the panel) but usually disables certain options so that 

the errors do not occur in the first place.  Again, since macros were not implemented, 

the modification of subprograms is not possible in PTV; however, the user can 

modify previously saved programs written using PTV, but only one program can be 

edited at one time. 

• The design of ThingLab initially was considered for a brief time for PTV, but in the 

end, it did not really impact PTV. 

• ThinkPad also was influential for PTV.  ThinkPad uses forms for organizing data 

structures, and PTV uses a similar organization for functions.  The programmer in 

ThinkPad manipulates the items in the forms to generate Prolog code, and PTV 

performs this same functionality.  ThinkPad displays a code window, as does PTV.   

 

4.2 System Design 

4.2.1 General Introduction to “Panels, Tools, Views” 

PTV is a direct manipulation, form-fill-in application.  The first main item of interest is 

the menu usage.  As is common with most applications today, popup menus tend to be context 

sensitive.  Even though PTV also utilizes context sensitive menus, it was decided to have the 
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menu that would usually appear at the top of a program to be completely contained in the popup 

menu.  This design choice was made to enable the menu to be readily accessible where the 

programmer is working instead of having to move the mouse to the top of the screen in order to 

select something from the menu.  One program that known by the author which does this is a 

graphics program by the name Suzie345. 

 

Another feature of PTV is the method of writing a program.  Except where it is necessary 

for the programmer to type something in, the important parts in the process of writing the 

program occur by using the GUI.  The programmer clicks in the operand area of an instruction 

panel and selects the object to place in the operand by using the popup menu.  If additional 

information is required, a dialog box appears.  The programmer might also have to press a 

function button when using the multifunctional Math Panel and the Compare and Branch Panel.  

To create a line of code, the programmer has to press the “Apply” button, which is found in 

every panel, that translates the configuration of the panel into a line of code once the panel has 

the proper configuration of operands and other items. 

 

It is also easy to edit a line of code.  The programmer simply moves the cursor in the 

visual code view area to the line that the desired line to edit and changes the editing mode to 

overwrite.  By right clicking in the code view area, the popup menu appears.  From the “View 

Panel” menu, the programmer should select “View Panel for This Instruction”.  This causes the 

correct panel for this line of code to appear with the configuration displayed in the line of code.  

Then, the programmer makes the changes to the panel and presses the “Apply” button.  This 

action results in the changes being made to the line of code. 
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It should be noted that PTV is simply a compiler that generates assembly language code.  

PTV does not provide a complete programming solution that would include a program editor, 

runtime environment, and debugger.  The intent of PTV is to demonstrate the concepts of the 

panel-tool-view conceptual framework for visual programming.  The ASSIST/I program used to 

run the program is separate from the PTV application.   

 

Another point that must be made is that the PTV framework is not necessarily limited to 

visual programming.  Visual programming is an alternative to traditional text based 

programming.  For people that are visually impaired, visual programming is more detrimental 

than helpful.  For this reason, PTV may be extended to a non-visual medium whether it is tactile 

or auditory because the conceptual framework is generic enough to be applied to any 

combination of the senses.  The panel is merely a container views and a workspace to use tools.  

The views may be rendered in any appropriate manner that is useful to the programmer.  Tools 

should be provided that operate directly or indirectly on the view related to the panel or some 

other view.  The panel-tool-view conceptual framework is embodied in most applications today 

that provide a multitude of tools to work on some internal model rendered through a variety of 

views.  As a result, this framework seeks to provide a more modern user interface onto the task 

of programming in order to allow the programmer to focus on coding the logic of the program 

instead of struggling with the task of coding. 

 

 

 



 

  69

4.2.2 System Overview 

The panel-tool-view conceptual framework was applied to a subset of an assembly 

language that was used on an outdated IBM mainframe.  This was done for two reasons.  First, 

assembly language involves very simple program interactions that permit simple mapping of a 

group of instructions to a panel.  Additionally, this particular assembly language was the only 

one known by the author.  Second, if this was a successful implementation, then this interface 

may scale well to a higher-level computer language.  The drawback of using an assembly 

language is that the panels are organized by similar groups of functions instead of being 

organized using an OO programming style.  Additionally, the abstraction provided by PTV may 

be insufficient to warrant its usefulness. 

 

In this program, there are six panels, three views, and two tools.  The six panels include 

the following instruction groups: math, move, move characters, compare and branch, comments, 

and declarations editor.  Two of the three views are related to the code of the written program, 

while the other view is the list of declarations.  The tools are simply a mouse pointer used in a 

typical manner in the GUI and popup menu.  In order to write a program using the application, 

the user directly manipulates the visual representation in the panels.  The manipulation of the 

instruction panels will affect the code view.  The manipulation of the declarations editor panel 

affects the declarations list view that appears in the same panel.  Once the user is satisfied with 

the program, the user can compile the program to an assembly language file.  The assembly 

language file could also be thought of as an exported view of the written code.  The assembly 

language file can then be executed through the use of a Windows-based emulator of the IBM 

mainframe called ASSIST/I.  In addition to compiling the code to a file, the code created in the 



 

  70

application can be saved or loaded at any time.  The program is stored as a serialization of the 

object declared in the application. 

 

4.2.3 Object Editor 

The declarations panel, known as the Object Editor, consists of a table acting as the view 

of objects already declared.  Each column describes a property of an object, while each row 

represents all of the properties of one object.  The first column is an icon visually depicting the 

structure and type of the object.  This will be the representation of the object in other panels in 

the program in addition to its name along with an array index, if appropriate.  The next column is 

the name of the object.  Since the internal representation of the code and the declarations are tied 

to the generated assembly language file for the purpose of demonstrating an example of the 

panel-tool-view framework, the name of the object is confined to the subset of legal names 

determined by the scope of this work.  In this case, the name must begin with a letter and be 

followed by any combination of letters and digits with a restriction of only using uppercase 

letters.  The third column is for the object type.  There are three permissible types: integer, 

character, and label.  The label type is not an object like an integer object.  The label type was 

used as a matter of notational convenience in the internal declarations representation in the 

application.  The label is used in program instructions for branching purposes.  The fourth 

column in the declarations list view is the restriction type that can either be a constant or 

variable.  The fifth column represents the object structure.  This object property will permit the 

object to have a single value or a one-dimensional array of values.  The sixth and final column 

lists the size of the object.  As a general rule, there is no enforced limit on how many objects may 

be declared. 
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In the bottom half of the Object Editor panel is the editing form in which the programmer 

can create new objects, modify existing objects, and delete existing objects.  There are some 

fields appearing in the editing form that are not in the table view above and vice versa.  In the 

editing form, a comments field used to describe the object declaration and a value field given to 

assign value(s) to the object having a restriction of constant.  Absent from the editor form is an 

area for object icon and total object size; although array size is available if the programmer 

selects the 1-D array structure for the object.  All fields are text-based except when there is a 

restricted range of values as in type, restriction, and structure.  The comments field is an optional 

field, while the value field is a required field only if the object has a restriction of constant.   

 

Object declaration validity only occurs when the programmer presses one of the editing 

form action buttons.  The available form action buttons are “Add”, “Modify”, “Delete”, “Clear”, 

and “Help”.  Values are entered in the following manner.  Single character values are surrounded 

by single quotes and may use a forward slash character for “escape sequences”.  However only 

printable characters may be used with escape sequences, and the programmer may not use 

numerical ASCII codes and Unicode codes.  Character arrays have all characters appearing 

inside of double quotes.  Again, “escape sequences” are permitted.  The programmer should 

enter a single integer value with a negative sign for negative values and no sign at all for positive 

values or zero.  Integer arrays must begin and end with opening and closing curly braces, 

respectively and have values inside the braces separated by commas, except for the last value.  If 

the programmer used objects in various lines of code and later changes or deletes these objects, 

this panel will apply the changes to the appropriate lines of code.  Legal name changes will not 
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cause errors, but changes made to the properties of the object may cause an error in line(s) of 

code.  It is the responsibility of the programmer to correct any errors in the code. 

 

4.2.4 Code View 

The other two views in PTV are the visual code view and the pseudo-code view.  The 

pseudo-code view is embedded within the visual code view.  If the programmer’s mouse hovers 

an empty area of a line of visual code, the pseudo-code appears as a text popup.  The pseudo-

code view is an alternate view of the visual code, and both are dependent upon the internal 

representation of the code hidden from the programmer in PTV.  The programmer can make 

changes to code through actions performed in panels or if the programmer decides to cut, copy, 

or paste parts of the visual code.  The visual code view is actually a table with only one column.  

However, this column is divided into different areas, and each will be described, as it appears 

reading from left to right.  Although objects are used in the code, they will be referred to as 

operands whose term is more pertinent since the underlying language is assembly-based. 

 

The first area is for a label.  The label serves as an identifier for a line of code used when 

branching.  It is not required for a line of code to contain a label.  A label uniquely identifies a 

line of code; therefore, it cannot appear in multiple lines of code.   

 

The second area contains the panel name and its icon.  If a panel has only one function, 

this area of the code will completely describe the function performed in the code; otherwise, the 

specific function from the panel will appear in another area of the visual code.   
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The third area is an operand with its icon and text name.  It will only be used for the 

Compare and Branch Panel.  This operand represents the left operand for the compare portion of 

the Compare and Branch Panel. 

 

Continuing, the fourth area is an optional function icon.  In PTV, it is only used for 

panels that have multiple functions that include the Compare and Branch Panel and the Math 

Panel.  Although the function icon does not have a text description below it, hovering over the 

function icon will produce a popup text that provides the description of the function. 

 

The fifth area has a meaning that is dependent upon what panel was used to create the 

instruction.  If the Compare and Branch Panel was used, this area represents the right operand of 

the comparison; otherwise, it is the source operand for the line of code.  In this paper, the source 

operand is defined as the operand passed to a function.  For a line of code generated by the Move 

Characters Panel, the numerical range of array indices of characters being moved appears in a 

second line below the name of the operand.  The first number is the starting array index, and the 

second number is the ending array index.  The range represents the contiguous region of 

characters used in the move characters operation.  Since this operand is the source operand, this 

region of characters will be copied into and replace an equally sized contiguous region of 

characters in the destination operand (located in another area).  In this paper, the destination 

operand is defined as the operand that receives the results from a function.  For operands that are 

arrays, a second line appears below its name indicating its array index.  In the case of an operand 

used in the move characters panel, a numerical range appears below the name of the operand.   
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The sixth area has varying meanings but always is an operand.  When used with the 

Compare and Branch Panel, the operand is the label of the line of code to execute.  As stated 

above, if the panel is Move Characters, this area becomes the destination operand receiving 

characters to be copied into its specified array range.  Similar to other panels, this area simply is 

the destination operand that receives the data from the function given in this line of code.  The 

ambiguity here relates to a conflicting representation of control flow versus data flow.  For the 

majority of the panels that generate lines of code, the visual representation in the code is data 

flow based.  That is, data flows from one operand to another operand.  In the case of the 

Compare and Branch Panel, the representation is control flow because the result of a comparison 

operation determines where execution control will be given.  This conflict was permitted to 

remain in order to retain visual consistency. 

 

The final area is the comments area.  Because of lack of space, an icon appears here 

indicating that there are comments related to this particular line of code.  If there are no 

comments for this line of code, the comments icon will not appear.  To view the comments, the 

programmer simply moves the mouse to hover over the comments icon, and the comments 

appear as popup text.  It may be more difficult to see longer comments because they appear on a 

single line, but most of the text of the comments should be visible. 

 

The visual code view can be directly manipulated and can manipulate other panels.  Basic 

editing functions (i.e. cut, copy, and paste) on a single line of code or contiguous lines of code 

can be performed using the editing instruction found in the menu.  Other capabilities that 

determine how a new line of code is placed into the existing code are the editing modes and the 
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cursor location.  There are two editing modes that are purposely analogous to text editing 

modes— insert and overwrite.  Just as in a text editor, an instruction will be placed in the current 

line of code where the cursor is and the previous line of code shifts downward.  While in 

insertion mode, the cursor appears as a single line that is visible below the icons and text of a line 

of code.  In overwrite mode, a newly added line of code replaces the original line of code.  The 

cursor appears as a rectangle surrounding the line of code in this mode.  Similar rules apply to 

cutting and pasting a range of rows and attempts to follow the conventions found in text editors.  

It should be noted that empty instruction lines are not permitted.  Additionally, adding a new line 

of code in overwrite mode in the last blank line of code is not permitted.  Regardless of mode, 

the cursor highlights the background of the line of code.  This background color will blend in 

with the default alternating gray background color of the line of code used to improve readability 

or if the line is highlighted in a shade of red to indicate an error. 

 

4.2.5 Instruction Panels 

All of the panels share a general structure no matter what group of instructions it is 

capable of generating.  The first commonality is a label area.  This is used to indicate that this 

instruction can be branched to after a compare instruction.  Each label object may only serve as 

the branch point once.  Another commonality is the comments area.  The programmer may type 

short comments that give any information about the purpose of this line of code.   

 

The third commonality is the action buttons labeled “Apply”, “Clear”, and “Help”.  

Pressing the “Apply” button causes the contents of the panel to be converted into a line of code 

that appears in the visual code view.  Only valid instructions are generated, so any errors will be 
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reported at the time the “Apply” button is pressed, and the programmer will be able to fix the 

contents of the panel so that the generated line of code will be valid.  However, it should be 

noted that attempts are made to disable a number of possibilities that would cause the 

programmer to create an illegal line of code.  The “Clear” button removes all comments, 

operands, and the selected button (if applicable) from the panel.  Pressing the “Help” button 

displays a window that contains information about how to use the current panel.   

 

Another commonality is the operand areas.  Right clicking in this area will allow the 

programmer to select the operand from the menus to place in this area.  The operand will then 

appear with its type and structure icon along with its name.  The border of this operand area 

represents the operand’s restriction.  A solid border indicates a constant or literal, while a dashed 

border represents a variable.  Almost every panel contains arrows.  These arrows represent the 

data flow in the function.  The exception is the Compare and Branch Panel in which the arrow 

represents control flow.  A line emanates from the source operand.  An arrowhead points to the 

destination operand.  Sometimes, a line has a solid rectangle on an end near a smaller panel with 

buttons on it.  These indicates that the source operand will be transformed by the function, 

selected in the smaller panel with buttons, and have the function output applied to the destination 

operand.  Because of the simplicity of the functions that map to the assembly language, this 

representation may be too literal, but the representation may be simple enough not to be easily 

misunderstood.  It should be noted that the only operand that may receive a label outside of the 

designated label area is the compare and branch panel. 
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4.2.5.1 Math  

The Math Panel has a source operand on the left and a destination operand on the right.  

Between the two operands is a smaller panel depicting all of the possible functions.  In this 

panel, the allowable math operations are the following: addition, subtraction, multiplication, 

division, and modulus.  Only one operation button may be pressed at a time.  According to the 

data flow diagram presented on the panel, the source operand has a math operation applied to it 

after which it is applied onto the destination operand.  The destination operand contains the result 

of the entire operation.  Acceptable data types and structures of this operation are single integers 

and registers.  The destination operand may not have a constant restriction or have a literal 

integer value. 

 

4.2.5.2 Compare and Branch 

The Compare and Branch Panel is the only panel that depicts both data flow and control 

flow diagrams.  The diagram is similar in structure to the Math Panel with some differences.  

There are two source operands and a button panel between them.  Arrows emanate from the left 

and right source operands and point to the button panel.  The button panel contains the following 

comparison operators: less than, less than or equal to, greater than, greater than or equal to, equal 

to, and not equal to.    The symbols used for the comparison operands are identical to the syntax 

used by most programming languages today.  One final button is named “Branch Always” that 

does not perform any comparison but simply accepts only a label operand that represents the line 

of code that will be branched to.  The icon for this function button is an arrow pointing to a flag.  

The two operands are compared to one another.  If the comparison is true, then program 

execution will jump to the next line of code marked by the label operand pointed to by the arrow 
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from the button panel.  If the comparison is false, then execution continues with the next 

sequential line of code.  The right comparison operands may be a constant, variable, or literal.  

The left operand may be a constant or variable but not a literal.  Both operands must have the 

same type and structure. 

 

4.2.5.3 Move 

The Move Panel depicts an arrow from the source operand pointing directly to the 

destination operand.  No functional transformation, as seen in the Math Panel and the Compare 

and Branch panel, occurs except with the single function of the panel that moves the contents of 

one operand into another operand.   

 

Although there is not a group of functionalities to select, most are applied implicitly 

based on the type and structure of each of the operands.  This is the only panel that permits a 

restricted set of type conversions.  These conversions include the following: 

 

• Integer, register →→ integer, register, character array (number converted to its text 

equivalent) 

• Single character →→ single character 

• Character array →→ integer, register 

 

The Move Panel also allows functionalities that permit data to be displayed on the screen 

or input from the keyboard.  These functionalities utilize two special system defined objects 

called “KEYBOARD” and “DISPLAY”.  In general, an object with any type and structure may 
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be displayed to the screen.  For this to occur, the programmer must place object for displaying in 

the source operand, while placing the “DISPLAY” object in the destination operand.  

Additionally, keyboard input may be stored in an object of any type and structure.  To 

accomplish this task, the programmer must place the “KEYBOARD” object in the source 

operand, while placing the object to store the keyboard input into the destination operand.  For 

any combination of objects, the destination operand cannot be a constant or a literal. 

 

4.2.5.4 Move Characters 

The Move Characters panel is similar to the Move Panel but only permits operations on 

single character objects or character array objects.  The programmer selects the appropriate 

object and then enters the contiguous array of character array elements.  As a result, the range of 

characters from the source operand is copied into the specified range in the destination operand.  

It should be noted that the number of characters moved from one object to the next must be 

equal.  The panel prohibits moving a single character object to another single character object 

since this same functionality is permitted with the Move Panel.  If the programmer chooses a 

single character object, only one character may be copied into a character array or vice versa 

because of the restriction of having the same number of characters moved between objects.  

Since the Move Characters panel prohibits the ability of moving data between two single 

character objects, it is recommend using the Move Panel to accomplish this task.  Another 

restriction on operands is that the destination operand cannot be a constant or literal. 
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4.2.5.5 Section Comments 

The final panel available for use is the Section Comments panel whose purpose is to 

allow a place to insert a block of comments to describe some section of the code.  These 

comments will appear in the visual code view as well as in the generated assembly language file.  

The text area placed in the line of code appearing in the code view displays approximately three 

lines for displaying the comments; however, if carriage returns were heavily used, not all of the 

text from this panel will appear.  Additionally, the ability of popup text appearing when the 

programmer hovers over the comments icon is not available here since the area provided for in 

the visual code typically should be sufficient.   One other note is that the visual code generated 

for the Section Comments panel will differ in appearance from the other visual code created 

from the panels because the only information to be presented is the comments (i.e. no operands 

or other information except for the panel icon and name appear).  Since this panel only generates 

comments, hovering the mouse in the background of the visual code for this line of code will not 

produce the popup pseudo-code text.  Just as in other traditional programming languages, the 

comments will not affect the execution of the code in any way. 
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5. DISCUSSION OF “PANELS, TOOLS, VIEWS” 

 

5.1 General Comments 

An attempt was made to accomplish the lofty goal of trying to make PTV an effective 

alternative to using a text editor to program for an assembly language; however, the reality of 

this goal was not realized.  Plans were made to conduct a user study that evaluated this particular 

claim, but the committee witnessing a demo of PTV was not convinced that this version of PTV 

accomplished this difficult goal.  Other comments about PTV included the following:  

 

• Having too low of an abstraction level to make the need for VP evident 

• Creating an interface that seemed more cumbersome and time-consuming to use than 

a traditional text editor 

• Providing a visual code view whose visual representation did not seem to add any 

additional meaning to an equivalent assembly language text statement 

 

The author designed PTV primarily as a prototype to showcase the possibility of utilizing 

the panel-tool-view framework and make a system that was more usable than a text editor so that 

using a panel-tool-view framework would become the primary user interface implementation for 

the task of general-purpose programming.  After listening to the comments made when 

performing a demonstration of PTV, the author continues to believe that improvements could be 

made that would allow some future programming tool to be written that would utilize the 

conceptual framework of panel-view-tool.  The reasoning for this belief is based upon, as 

Shneiderman (1983) indicated in his direct manipulation paper, the importance of finding the 
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correct visual metaphor in order for the potential of this design pattern to be realized.  There have 

been successes for end-user programming, which in this context could be considered as a 

domain-specific visual programming, in the area of spreadsheets, graphics, computer-aided 

design, and word processing, just to name a few examples.  These domains have found the 

correct user interface in order to allow the users to accomplish tasks within their domains while 

minimizing the effort of using the interface.  In the same manner, the author believes that there is 

some set of panels-tools-views that will permit general-purpose programming to occur across 

many programming domains and will present a consistent programming manner, which will 

supplant the text editor.  Regardless of whether the panel-tool-view framework is used or some 

other visual framework for VP, the author believes that it is not a matter of if it will happen, but 

when it will happen. 

 

5.2 Suggestion for Improving the Code View in “Panels, Tools, Views” 

5.2.1 Using a Textual Representation in the Code View 

 Displaying code in a visual format may not be suitable for the general-purpose 

programming context because the use of a visual metaphor may be more suitable for portraying 

simple ideas instead of complex concepts.  This may be most effective with international signs 

and symbols that have some kind of common elements or exhibit among them a gestalt principle.  

The seed for the idea began when having a conversation recently with a friend, Mubeen Ahmed, 

about the VPT program, and the concepts involved with panel-tool-view.  He remarked that he 

would prefer to specify a program to the computer using words (English).  It is known that this 

was attempted before with a programming language such as COBOL.  Today, specification 

languages are still in use today but tend to be used by major companies, to the best of the 
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author’s knowledge.  Based on this conversation, it seemed that unambiguous specification is 

important to the programming process.  As Mubeen wanted to use a natural language to write a 

program, other people such as those in Gilnert (1990) and Lieberman (2001) want a application 

that interprets what the programmer is trying to do in a application’s user interface and have the 

application write the program based on PBE and PBAE concepts.  As a result, using all text or all 

visual symbols (or even mostly inference/AI) may not be the best way to display the code one 

would write in a VP environment.  Perhaps it is better to use the strengths of each code 

presentation for more specific purposes. 

 

 The author remains convinced that the panel-tool-view framework is strong for program 

specification.  Trying to use some related visual metaphor for a literal transcription of the actions 

of the programmer, i.e. the program code portrayed graphically, probably is not a good idea.  As 

Shneiderman (1983) warns in his seminal paper, a visual presentation can take up much more 

screen space than another text.  Moreover, the visual presentation may not be more 

comprehensible than its textual equivalent.  This was very evident in the criticism of the Code 

View for the PTV program.  However, the Code View did encompass a combination of views.  If 

the programmer hovered the mouse over different areas of a line of visual code, a text message 

would popup either describing the data object or the line of code in text (English).   Based on 

this reasoning, it seems appropriate to use a pseudocode text representation as the primary 

representation in the Code View.  This is not to say that other views of the code may not be more 

appropriate as the complexity of the program grows— perhaps software engineering-related 

views such as a UML diagram or metrics showing the coupling and cohesion in program 

modules. 
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5.2.2 Organization of the Pseudocode 

The Code View of the PTV program would render the internal representation of the 

program code into a pseudocode view.  It seems that this would be successful because the 

programmer would tend to be comfortable with text descriptions as long as the descriptions use 

vocabulary that the programmer would be accustomed to.  Even if the programmer is not 

completely familiar with the word order and usage produced from a particular line of code, 

patterns would emerge as the programmer would see identical word order and patterns for 

functions used in different locations and begin to understand the meaning of the pseudocode. 

 

Just switching to a primarily text representation of the code is alone not the answer.  

There are additional enhancements that the primarily text representation of the Code View could 

provide.  Though the text is much denser than visual code, interspersing small icons by the name 

of the data object used in a function or an icon for the function name might improve quick 

readability, improve the ability to detect patterns in the code, and assist with the overall 

understandability of the code.   

 

One other enhancement would be dealing with control flow in the code by relegating any 

code in a control construct such as an if-then, switch, do-while, while-do into 

separate areas from the main area of the code.  Only within this section, the term “main area” is 

In this manner, the control construct appears with its conditional in the main area of the code 

along with an icon, such as a solid-colored diamond (with reference to a decision flowchart 

symbol) followed by some unique identifier (which is not bound to code but used only for the 

ability to locate it in the code).  For instance, if there was a control construct on the screen, this 
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line of code could be preceded by a diamond, followed by its unique identifier, and ending with 

the actual condition while hyperlinked in order to reference the code that would execute if the 

conditional for this particular code construct was true.  In a paper copy of the code, an approach 

similar to flowcharts and tax forms could be taken.  The code not related to the blocks of code in 

control constructs for a program file would first be printed in its entirety.  Then, on the trailing 

pages, the blocks of code appearing in control constructs would appear.  Each control construct 

on this page would appear with its solid-colored diamond, a unique identifier-- either some 

numerical ID or a short text phrase that would describe the purpose of the condition--, and 

reprint its conditional such as if (flag==true).  For an else condition that appears after 

one or more if statements, all of the if statements could be listed, along with their particular 

identifiers, followed by the phrase “are false”, followed by the block of code related to the else 

statement.   

 

There were many sources of inspiration for this particular solution to presenting code in a 

text view in the manner described above.  The original idea was based on a comment made while 

demonstrating the PTV program.  It was thought that the linear presentation of the code was a 

poor choice since being aware of a branch that occurred from a conditional in the program hardly  

would be evident.  One of the possibilities recommended was that the code parts related to each 

branch could be placed side by side, which is the convention used in NSDs.  Thinking about the 

representation further resulted in the idea for hyperlinking to the code related to the control 

constructs, so as to allow side-by-side comparisons of the code on the screen.  The author is 

almost certain that there was a web site and possibly a newspaper article that described this idea 

of hyperlinking within program code, but there was not a successful attempt to know for certain 
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who exactly the person was.  The inspiration for referencing a code portion on another page 

comes from the usage of jumping around in assembly language code with some text-based line 

identifier, referencing other flowcharts not on the paper using a flowchart symbol, and thinking 

about how the federal 1040 tax form serves as the main filing form with other appropriate tax 

forms plugged into various lines of the 1040 form. 

 

The particular confidence in presenting the written code in a text format comes from a 

few different sources.  First, this is the standard method to create code, so the text presentation of 

the code would be a more acceptable means instead of a visual presentation of the code that 

would at best be viewed very skeptically.  Next, when someone provides directions to go 

somewhere, such as how to travel to a location, or for preparing food, text is the primary means 

of explaining the task with pictures serving as a secondary means to communicate an aspect of 

the task.  Finally, it seems that people understand how conditionals work in their own life 

experiences but not in the programming experience.  When someone offers to pour another 

person a glass of some drink, the one who pours may say some expression as “say when” which 

would translate to “I will continue pouring until you say the word ‘when’.”  This is a do-while 

condition in real life.  Furthermore, people are able to make a selection from a list of choices, 

such as in the case with shopping (a salesperson may offer many colored shirts to buy from 

which the customer selects one).  Therefore, as long as the programmer can understand where 

“forks in the road” are occurring in the program and compare the different paths, the different 

paths of the program will be understandable without having to directly use a visual metaphor to 

describe the control construct.  Furthermore, the pseudocode view of the program code might 
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serve more like reading documentation about what the code does; however, the author views the 

purpose for documentation as not only explaining what was done but why it was done. 
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6. FUTURE DIRECTIONS OF PANEL-TOOL-VIEW 

 

6.1 Creating a Panel-Tool-View Development Framework 

The purpose of the P-T-V framework is to alleviate the difficulty of specifying an 

algorithm and its related data structures to the computer.  Instead of using the ubiquitous text 

editor, the author prefers to have a programmer use panels that will represent a set of concepts in 

a knowledge domain.  This could be thought of as a mini-compiler where the panel is like a very, 

very narrow language that uses a small number of symbols to allow the programmer to utilize the 

functions related to the panel.  By making the tools and views of the panel intuitive, the 

programmer can perform the task of programming without being bogged down in the details of 

the task of programming.  If necessary, the panel could even guide the programmer to avoid 

coding in a manner that would harm the efficiency of the program, i.e. providing tips for guiding 

the programmer to optimize the program.   

 

However, to be effective in its extensibility, the P-T-V framework must be applied to 

itself in order to become truly powerful.  That is, an environment must be created that will allow 

panels with their tools and views to be created for abstracting anything.  To be that powerful, a 

development framework must be created which accounts for the two most important tasks when 

programming— coding and debugging.  Additionally, each of these tasks must have at its core a 

manner in which to describe the data for coding and debugging in a platform- and language- 

independent manner.  This framework will include and extend the ideas from section 3.3.  

Additionally, each layer of the framework as well as the other components in the panel-tool-view 

framework will be described as objects with respect to OO methodologies. 
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This idea is not without precedent.  NetBeans from Sun Microsystems (2002a, 2002b) 

provides a framework for building a generic desktop application whereby plugging in modules 

within this framework will give the specifics needed to create a specific environment for an 

application.  The NetBeans architecture embodies the concepts of the P-T-V framework and 

provides the ideas for what is described in the following sections.  However, NetBeans provides 

a framework for its implementation in Java (for coding and debugging-runtime) and is bound by 

the environment described through the NetBeans framework, though NetBeans is very 

extensible.  The following development framework based upon P-T-V could at least be equally 

extensible. 

 

6.1.1 Coding Framework 

The means to create any code relies on panels and also serves as the top layer of the 

coding framework.  Each panel has tools and views and even other panels.  Tools and views as 

well as other panels are independent of their containing panel since the containing panel merely 

is where the tools and views are located.  One could organize the previously created tools, views, 

and other panels into some sort of hierarchy so that they could be found easily during the process 

of creating new panels or changing aspects of existing panels.  For the purpose of this part of the 

framework, the panels will be referred to as coding panels, or CP, since the presentation may be 

different for the process of coding than the process of debugging.  For instance, the text editor 

serves merely as an editor for specifying the code, but, during the process of debugging, the 

currently executed line is highlighted.  The CP serves as the first layer of the coding framework. 
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The next layer is named Coding Panel To Abstract Code, or CPTAC.  Each CP has a 

CPTAC, and this is a one-to-one correspondence.  Using the P-T-V framework, the CPTAC 

takes the state of the CP and translates one of its possible Abstract Code representations, or ACs.  

Because there would tend to be many different functions provided by the panel, there is a one-to-

many relationship between a CP and ACs.  More details about the AC will be given later.  The 

CPTAC would consist of a translator specific to the coding panel as well as a code generator 

that would take the data related to the translator and store it into the AC representation.  All of 

the ACs generated from all the actions performed by the programmer using the CPs consists of 

the Program AC or PAC. 

 

The AC is the core of the coding framework.  Each CPTAC has a one-to-one 

correspondence to an AC.  However, all ACs will have the exact same encoding format despite 

the differing knowledge domains that they represent and the varying levels of abstraction that 

they represent.  In other words, there should only be one AC specification for all ACs.   The AC 

could be thought of as an SGML, a markup language, preferably in XML because it is a subset of 

SGML and a standardized markup language that can describe every aspect of coding from class 

definitions to simple data declarations.  Just as the CP consists of panels, tools, and views, the 

AC should consist of text or binary data surrounded in appropriate XML tags related to the AC 

specification. 

 

The AC specification should account for all possible coding paradigms, the major ones 

being OO and logic or functional  (typically used for AI applications with languages such as 

LISP and Prolog).  Additionally, it should be able to handle scripting abilities that would relate to 
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configuring an application (more about this later).  One AC specification will allow for the 

extensibility that the coding framework of P-T-V needs to enable programming for any domain.  

As for defining the AC specification, the author is not certain at this time what the ideal 

representation should be.  With reference to the idea given in the article by Swaine (2001), “an 

algorithm-representation language like Donald Knuth’s Mix” was used in the text editor skins.  

Perhaps one specific AC specification would be inadequate to handle all of the subtle variations 

of the all the languages possible that could be generated from one AC specification.  However, 

there are categories of languages that share similar properties.  Therefore, having categories such 

as OO, non-OO, declarative, etc. would be sufficient.  The downside is that by being specific to a 

category, more complexity entered the AC specification.  By possibly trying to fit every possible 

language into an OO format might be best because there are atomic programming units that 

could be grouped into an object regardless of language.  This would create a simple extensible 

language that should allow for any language to be validly mapped to the AC.  Deciding on the 

specific details of creating this XML-based language could best be accomplished by studying a 

book on programming language design such as one by Pratt and Zelkowitz (1996).   

  

The next layer below the AC is the Abstract Code To Target Language or ACTTL.  

ACTTL is merely a code generator that takes the code represented in the AC specification, 

shared by all ACs generated by all CPTACs, and changes it into the specified Target Language, 

or TL, which would be the final level of the coding framework.  There is a one-to-one mapping 

between the ACTTL and the TL in the same manner that there is one CPTAC for each CP.  With 

this analogy, the CP is a visual language as where the TL is more likely textual.  The only 

difference between CPTAC and ACTTL is that the CPTAC has a translator that “interprets” the 
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state of the CP to some intermediate form that would then be used by its code generator to create 

the AC relevant to a CP. 

 

Though the coding framework is generally complete, it does not easily allow for 

providing abstractions below the AC.  As these abstractions are created, how can code be 

generated that allows the written program to remain language-independent and platform-

independent while allowing for changes in the code at the algorithmic or data structure level?  

For instance, a programmer may need to change the algorithm for sorting a certain type of object 

or translate some graphics functions to take advantage of a new API that is conceptually similar 

to the old API.  This is where a cascading ACTTL would be most useful.   

 

To better describe the cascading ACTTL, it would be best to think it terms of what makes 

an application, in the same way that NetBeans provides a framework for creating a generic 

desktop application.  As with a CP, the purpose of the AC is to map some aspect of domain of 

knowledge to a language, and the AC is used to ensure platform-independence as well as 

language-independence (note that it is not necessary to provide for a cascading CPTAC because 

an abstraction mechanism should be provided for that permits the creation of higher-level CPs by 

using lower-level CPs).  Again as with CPs, a set of ACs constitutes a complete domain of 

knowledge.  For example, let a set of ACs constitute an application of an IDE for P-T-V 

development.  The highest-level ACs are analogous to a scripting language for the application.  

Lower-level ACs consist of the domains of knowledge used to create the application such as I/O 

APIs, GUI APIs, various data structure APIs, and so forth.  On an even lower level, there are 

ACs which consist of the language (such as C++, C#, Java, etc.) used to implement the APIs.  On 
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the lowest level, and taking the place of compilers, is the ACs that maps the language to the 

assembly language level.  Therefore, if it seemed more advantageous to use C# instead of C++, it 

should just be necessary to tweak an ACTTL-AC pair within a cascading ACTTL.  Thus, the 

higher-level abstractions (higher-level APIs, for example) remain intact, but one of the AC levels 

changed.  The same thing could be done for porting to a different assembly language or porting 

to a different operating system-specific set of APIs. 

 

Even with the cascading ACTTL, it is important to remember that there is one and only 

one AC specification in which all other ACs are encoded.  The AC serves as input to the highest-

level ACTTL.  Then, the ACTTL uses its code generator to take the AC (or in the case of an 

entire program, a PAC) and translate it into a conceptually lower-level AC.  In order for the 

cascading to continue, it is important that the output from this first step is in an AC specification 

format; otherwise, the output of a TL in the cascading ACTTL makes the process language-

specific and stops the ability to abstract upon an abstraction.  This process of feeding a lower-

level AC into the ACTTL continues until a TL is produced.  In this case, a TL is a language 

format that does not conform to the AC specification. 

 

To summarize, there is one CP that maps to one CPTAC, and one CPTAC that maps to 

many ACs since a CP usually provides many different functions.  The AC conforms to a 

specification, probably in an XML format, as do all other ACs.  The ACs from the other panels 

used by the programmer will be assembled into a sequence consisting of the PAC.  This single 

AC can be rendered using the ACTTL that will eventually create the TL.  One AC can map to 

many TLs.  However, there is a one-to-one correspondence between the ACTTL and a TL.  The 



 

  94

ACTTL may also have cascading layers that will permit varying levels of coding abstraction 

where each one of the cascading layers has an ACTTL and non-PAC.  The cascading continues 

until the final ACTTL in the cascading layers produces the TL. 

 

6.1.2 Debugging-Runtime Framework 

One of the problems that was encountered with the PTV program was that a separate 

program performed the runtime and debugging activities.  In order to have a complete 

development framework within P-T-V, it is crucial to include these activities.  However, this 

begins to leave the intended scope of this project since it only sought to demonstrate that P-T-V 

could be an effective framework for writing programs.  This aspect falls into the area of software 

visualization, or SV.  SV intends to use metaphors, although the traditional highlighting of a line 

of code in a text editor still would qualify to some extent, that tend to utilize the time dimension 

for illustrating changes in a program.  However, in a complete development environment that 

would allow the creation of panels, tools, and views within the P-T-V environment, it is 

important to have a debugging-runtime framework to complete the development framework.   

 

In this case, by creating a runtime panel, or RP, that is different from the CP, animating 

the actions related to the metaphor for this particular domain of knowledge would be more 

helpful than using the coding panel for the same purpose.  Additionally, the repeated structure 

that could be found in the CP with buttons such as “Apply”, “Clear”, and “Help”, in the example 

of the PTV program, would be much less relevant.  By seeing the animation of the data 

structures, it is hoped that the algorithms involved in a program would be much more 

understandable to the programmer.  The debugging-runtime framework would have a similar 
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layered structure as the coding framework except for the primary difference in what is being 

modeled, i.e. code versus a runtime environment.   

 

The topmost layer is the Runtime Environment, or RE.  Information contained in the RE 

would consist of a call stack, a list of data objects currently in scope, etc.  RE is the specific 

runtime environment provided using the TL provided in the coding framework.  In essence, the 

RE provides the runtime state of the PAC from the coding framework.  The next layer down is 

the Runtime Environment To Abstract Runtime Environment, or RETARE.  This layer translates 

the RE to an ARE, or Abstract Runtime Environment.  Cascading layers of RETAREs are 

permitted.   The state of the RE propagates to the RETARE, and, within the RETARE, an ARE is 

generated. 

 

As with the AC, there are many AREs, but they must all adhere to the same specification.  

Unlike the multiple ACs that are sequenced together to create a PAC, the ARE would be 

arranged more in a hierarchical fashion as is typically found in most debugging-runtime 

environments today.  Therefore, because of the ability to cascade RETAREs, embedded 

definitions can exist in an ARE where some runtime object has a lower-level runtime state and so 

forth until its lowest runtime level is reached.  Yet at each level, the runtime data conforms to the 

ARE specification.  The ARE specification would probably exist as an XML document that is 

constantly changing.  Although seemingly more complex than creating a single specification for 

an AC, it might be possible to provide for a single specification for an ARE.  For information 

about creating the specification for an ARE, the author advises consulting a book on language 

design such as Pratt and Zelkowitz (1996).  As a result, there is a one-to-one correspondence 
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among the RE, RETARE, and ARE.  There is only one ARE active at one time unless there is a 

facility to allow for multiple AREs to run concurrently.  This is analogous to running more than 

one debugger at one time in possibly another language environment.  It is possible but dependent 

upon a set of circumstances, as in the case of running concurrent programs written in different 

languages. 

 

The remaining bottom layers consist of the ARETRP, or Abstract Runtime Environment 

To Runtime Panel, and the RP, or Runtime Panel.  The ARETRP interprets the ARE(s) to 

generate the correct rendering of the RP.  Some of the responsibilities of the ARETP include 

generating the animations relevant to the RP and updating the RP to illustrate the current state of 

the ARE(s).  The RP is simply the rendering of the domain of knowledge during the running of 

the program.  Again, it may not be wise to have a CP identical to an RP.  Also, it is important to 

have an RP with the appropriate panels, tools, and views that facilitate the task of debugging and 

understanding the underlying algorithms related to the domain of knowledge represented by the 

RP.  There is a one-to-one correspondence between RPs and ARETRPs, and there are many pairs 

of RPs and ARETRPs for the single ARE specification from which would allow for the creation 

of many different AREs, as with the ACs.  

 

The framework for debugging-runtime alone will not be sufficient for providing adequate 

debugging-runtime functionality.  The PAC should always be visible in order to provide an 

orientation for what part of the program is executing in relation to the remainder of the program.  

Also, the framework should provide additional panels that allow for setting watches of objects 

and for setting breakpoints in the PAC that would be implicitly encapsulated within the RE.  To 
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correctly illustrate the interactions between the different levels of CPs used for the PAC, it is 

necessary during step-by-step debugging to allow lower-level RPs to be skipped over or further 

analyzed depending on the programmer’s preference.  This is very similar to stepping through 

the code line-by-line and either choosing to look at the steps occurring in a function call or 

simply skipping over the intermediate steps of a function to go to the next line of code. 

 

Because of the animation capability, it would also be nice to have a recording system that 

would record what the debugging process is doing so that if something unexpected happens, the 

programmer can pause the execution of the program and play back the steps leading to the 

unexpected behavior.  If the state and actions of the ARE are fully recorded during the 

debugging process, it may be possible to “rewind” to a previous state, set different values, and 

continue recording the debugging process from the new point.  Likewise, “rewinding” to a 

previous state can allow instant replay of events to better understand the reason for an 

unexpected event.  Watches should not be recorded since they represent a selected view of the 

ARE.  Only the actual ARE should be recorded, but the amount of data recorded may be too 

large, and this entire process may be impractical unless only a small window of time of the 

debugging process was recorded. 

 

To summarize the debugging-runtime framework, there typically will only be one RE 

active at one time unless it is necessary to concurrently debug multiple programs or multiple 

instances of a program.  If multiple REs are running, each RE will typically be bound to a 

different TL.  An RE serves as input to the RETARE in order to create the ARE.  The RETARE 

may utilize cascading layers where each layer consists of a RE-RETARE pair.  At some point, 
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each of the higher-level REs generated from the cascading layers will be converted into one 

cascaded ARE.  The data represented in the ARE serves as input to the ARETRP.  The output 

from ARETRP is the proper configuration and possibly animation of components within the RP. 

 

6.1.3 Possible Contributions 

The first possible contribution is a mix of the NetBeans platform and the idea alluded to 

in an article by Duntemann (1998).  Duntemann predicts how software development will settle 

into programmers choosing which of the following layers or categories to program for: operating 

systems, operating systems drivers, development tools, software components, applications, 

databases, and structures of meaning.  The term “structures of meaning” can best be described by 

Dunteman (1998) in the following way: “Many of these will be what you could call ‘active 

documents’…In this category falls much of what we now call multimedia authoring, scripting, 

HTML, XML, SGML…It’s not quite programming in the traditional sense, but it’s not just 

writing or drawing pictures either.”  Both the NetBeans architecture and this article inspired the 

coding framework.  From the Duntemann (1998) viewpoint, the task of programming becomes 

more focused on thinking about the knowledge domain instead of about the programming task.  

For example, I can have an AC, similar to the core that is present in the NetBeans platform, that 

could specify the configuration of a hypothetical P-T-V IDE, while the code used to compose 

this APIs (maybe scripting language would be more appropriate at this high level) first begins 

with APIs for I/O, GUIs, data structures, etc.  The next lower level would consist of high-

language implementation of these APIs in C#, C++, Java, etc.  At the lowest level, is the 

assembly language level that implements the high-level language to the chip level— that is, what 

compilers do.  If P-T-V provides an abstraction for the assembly level, one could write a 
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compiler using P-T-V, and the creation of higher-level panels from the assembly level would be 

analogous to the syntax of a high-level language.  Then one could abstract the abstraction and so 

forth.  However, the argument against this is that the AC specification becomes the language and 

there is really nothing new other than what C++ and Java do for algorithm portability across 

many OS platforms.  

 

The second possible contribution is with the debugging-runtime framework.  Being able 

to provide an animation of the runtime environment might be useful in assisting the programmer 

to better understand an algorithm.  These ideas of software visualization are collected into a book 

by Stako et al. (1998).  If implemented properly, this would be especially useful in programs that 

rely on concurrent execution.  Being able to implement an RP onto an ARE would allow 

different aspects of a library of functions or an object depending on what the programmer was 

trying to understand.  Additionally, one could use multiple RPs that map to the same portion of 

the ARE in order to have alternate views of the same library of functions or object during 

execution.  On a simpler level, having multiple layers of ARE as a result of the layered AC may 

further assist a programmer in understanding the processes occurring in the code.  However, one 

could also argue of the existence of this idea because debugger-runtime environments now can 

show the various data represented in objects from a more abstract level of an object to the 

primitive level of the actual bit pattern stored for the data or the value of the primitive data types 

in human-readable form. 
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7. CONCLUSION 

 

 An attempt was made to try to describe a visual programming framework that is based on 

two of the cornerstones in user interfaces today— direct manipulation and the model-view-

controller design pattern.   This framework, named panel-tool-view, provides the means to 

improve the tasks related to programming by simplifying the process of specifying the program 

through providing a more intuitive interface that, in the author’s opinion, surpasses the text 

editor.  A panel, with its related tools, views, and perhaps other panels, represents an aspect of a 

domain of knowledge, while a set of panels represents a complete domain of knowledge.  By 

freeing the programmer from the syntax, non-programmers could begin to program because the 

metaphors presented in the panel-tool-view framework would focus on the relations between the 

visual metaphors for the functionality provided in the panels.  The framework does not become 

overwhelming because of the manner in which related knowledge within a domain is grouped 

together into the panels and will not allow the programmer to be completely overwhelmed by 

trying to learn a new visual language. 

 

 From the panel-tool-view framework, a program called “Panels, Tools, Views” was 

written to illustrate the concepts of the panel-tool-view.  The author believes that because the 

target language was assembly language-based, this was one of the reasons for its poor evaluation.  

The visual translation of the assembly language was too literal and greatly offset the possible 

gains of using a visual environment to write assembly language code.  Additional reasons for the 

failure of the program included menu organization that made working in the environment more 

cumbersome, a lack of keyboard shortcuts, and the inability to organize the panels to be present 
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on the screen at all times.  Finally, the possible gains achieved in being able to specify a program 

without knowing the syntax were offset by a visual presentation of the written program that did 

not seem to have an advantage over textual code.  By applying improvements described in a 

previous chapter and providing a means for the programmer to create higher-level abstractions, 

perhaps a future incarnation of “Panels, Tools, Views” will be more purposeful and user-

friendly. 

 

 Finally, a glimpse into the future of the panel-tool-view framework was provided through 

the description of a development environment for the framework.  This development framework 

consists of two parts— a coding framework and a debugging-runtime framework.  The coding 

framework tries to provide the ability to introduce a core representation for any programming 

language now or in the future (as long it becomes mapped into the programming framework).  

From this abstract code core, panels will generate code to this abstract code specification.  

Additionally, the abstract code encapsulates the concepts of the algorithm allowing multiple 

panels that have different appearances to generate the same code.  Furthermore, through the use 

of cascading levels of abstract code and the translation of abstract code to a target language, this 

process allows algorithms to be defined to any level of abstraction and implemented in any 

existing or future textual language.  Ideally, algorithms will now have a platform-independence 

and language-independence that was not known before.   

 

The debugging-runtime framework allows for a layered runtime environment in the same 

way that there is a layered runtime environment in debuggers today starting at the lowest level of 

bit patterns and memory locations for all the data of an object all the way up to the highest level 
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abstraction where high-level object consist of the data members of this object.  Special runtime 

panels are introduced that allow for the actions of the program to be animated with the help of 

the abstract runtime environment.  By viewing actions that are occurring in the code, as one 

would view the workings of a physical machine, the algorithm becomes more understandable 

and easier to debug if there are problems.  Also, this animation of data changing would hopefully 

facilitate a more pleasant experience when debugging concurrent programs. 

 

 There is still a lot of work to be done in the area of visual programming.  Progress has 

been made in opening up the field of programming to individuals who have not chosen 

programming as their careers.  However, additional work is necessary in the area of visual 

programming to not only further provide the tools that simplify the task of programming but to 

provide tools which also enable the writing of programs with fewer errors and faster running 

times.  The author believes that the ideas described in the panel-tool-view framework and in its 

future work of a complete development environment built around this concept provide hope for 

the future because the ideas are built upon a strong foundation of the concept of direct 

manipulation and the design pattern of model-view-controller which is prevalent in the user 

interfaces of software today.  Eventually, the ideal of programming may be reached which Ota 

(1999) describes where “[t]he gap between the information environment and everyday 

environment disappears, and they willfully merge to become one.” 
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Panels, Tools, and Views:
User Guide

Allan Spale
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Visual Code Area

Work Area

Can adjust the location of the divider

Environment
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Right-click in this area to make 
the main menu appear

Main Menu
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Electronic Visualization Laboratory University of Illinois at Chicago

New Program / 
Rename Program

Select New Program
from the menu

•Enter a program 
name with 8 or less 
characters.

•Start with a letter. 

•Can use letters or 
numbers.

•Program name will 
appear in the window 
title.

Later, if you want to rename the program, 
select Rename Program from the menu, 
and follow the same naming process.
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Electronic Visualization Laboratory University of Illinois at Chicago

Open Program

Select Open from the menu •Select a file 
from the list of 
available Panel-
Tools-Views 
files (.ptv)

•Or, type the 
name of the file 
in the File 
Name field (no 
extension is 
required).
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Panels

Select View Panel
from the menu

List of 
available 
panels

•A panel is an 
organization for 
groups of similar 
functions

•User and system 
defined objects are 
used as arguments 
in the functions of a 
panel

•Panels have a 
visual metaphor with 
respect to the 
functionality provided
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Defining Data Objects:
Object Editor Panel

Select Object Editor 
from the View Panel 
menu

Define all data objects using this table 
and form
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Name: Unique identifier used to 
reference data objects in a program.

•Must start with a letter

•Can contain 
characters and 
numbers but no special 
symbols (?,!,_,etc.)

•All letters must be 
uppercase

•Cannot use the 
program name or a 
system-defined data 
object name

Defining Data Objects:
Name
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Type: A category for a fixed set of values 
such as integer and character.  A label is 
also included though it does not have a 
value.

•Integer
•Any number between -2 
billion to +2 billion approx.

•Character
•Any valid character typed 
on the keyboard (for this 
application)

•Label
•Used to uniquely mark a 
program line

•Used to jump to a 
program line during 
execution

Defining Data Objects:
Type
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Structure: The number of storage areas 
allocated for a type arranged 
contiguously.

•None
•Has no structure

•Only occurs for Label 
type

•Single Value
•Only one storage area 
allocated for a type

•1-D Array
•Multiple storage areas 
allocated contiguously for 
the same type

•If used, an Array Length 
must be specified

Defining Data Objects:
Structure
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Restriction: Permission that determines 
whether or not a data object may be 
modified.

•Constant
•Literal Value required

•Value cannot be changed

•Variable
•No Literal Value required

•Value can be changed

•None
•A default value when the 
Label type is used

Defining Data Objects:
Restriction
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Array Length: The number of contiguously 
allocated memory spaces to allow a data 
object to hold multiple values.

•Available only when 
Structure is 1-D Array

•The size of each array 
element is dependent 
on the memory needed 
to hold the values of a 
Type.

•The total size of the 
data object is the 
Array Length
multiplied by the type 
size

Defining Data Objects:
Array Length
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Literal Value: The value permanently 
assigned to a data object with the 
Restriction of constant.

•Values assigned are 
dependent on Type and 
Structure

•Single Value Character: One 
character surrounded by ‘’.  
Escape character is /.  (ex: ‘a’)

•Character Array: Characters 
surrounded by “”.  Maximum of 
35 characters including escape 
character.  (ex: “My Program”).

•Single Value Integer: Any 
value between approx. –2 
billion and +2 billion.

•Integer Array: Series of 
integers each separated by a 
comma (,) and surrounded by 
{}.  (ex: {1, 2, 3, -4})

Defining Data Objects:
Literal Value
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Description: A text description that 
describes the purpose of the data object.

•Can contain any 
printable text

•Can have any length

•Can be used for any 
data object

Defining Data Objects:
Description
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Defining Data Objects:
Icon

Icon: Pictorial representation of the Type 
and Structure of the data object.

System-defined

Single Register

Display (output)

Keyboard (input)

User-defined

Integer Array

Single Value Integer

Single Value Character

Character Array

Label
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Defining Data Objects:
Size

Size: The amount of memory in bytes 
allocated to the data object.  This value is 
not modified by you directly.

•Each type has a 
certain size

•Integer = 4 bytes

•Character = 1 byte

•A Single Value data 
object will have the 
Size value of its type 
size

•A 1-D Array data 
object will use this 
formula: 

Array Length x Type Size
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Defining Data Objects:
Object Editor Action Buttons

•Add
•Create a new data 
object with a name not 
used before

•Modify
•Change some or all 
properties of an 
existing data object

•Delete
•Remove an existing
data object from the list 
of data objects

Function buttons: Submits the data in the 
fields for validation and entry into the list 
of data objects.
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Defining Data Objects:
Object Editor Action Buttons

•Clear
•Remove data from all 
of the fields and set 
drop-down boxes to 
default values

•Help
•Display help that 
explains how to use 
this panel

Function buttons: Submits the data in the 
fields for validation and entry into the list 
of data objects.
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Using Panels:
View Panel Menu

Select View Panel from the 
menu and choose a panel.  

A panel will 
appear.  Most 
panels have a 
similar 
appearance and 
functionality.
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Using Panels:
Placing Data Objects
Right click on an area like this.

A menu will appear 
where User Objects or 
System Objects may 
be selected.  Your data 
objects will appear in 
the appropriate 
submenu.  The data 
objects in System 
Objects remains fixed.



 

  123 

APPENDIX 

 
 
 
 
 
 
 
 

Electronic Visualization Laboratory University of Illinois at Chicago

Using Panels:
Placing Data Objects

Select the desired 
object from the 
menu, and it will 
appear in the 
rectangular area.

The style of rectangle indicates the data object restriction:

None/ 
Constant Variable
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Using Panels:
Clearing Values in Data Objects

•Because data objects are not initialized at the start of the 
program with default values, it is the responsibility of the 
programmer to make sure the data objects have default 
values if necessary.

•This means the following:

•Assigning 0 to integer type and register data objects 

•Assigning an array of spaces to a character array

•Assigning a space to a single character

•If these precautions are not taken, unexpected behavior may 
result in your program such as in the printing of unexpected 
characters or incorrect results from math calculations.
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Using Panels:
Selecting an Array Element

If you select an array 
structured data object, you 
may be prompted as to 
whether or not you want to 
select an array element.

Select either a data object 
whose value in that 
instruction will represent 
the data object index, or 
select the index directly.
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Using Panels:
Selecting an Array Element

The result will appear in the rectangular area.
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Using Panels:
Entering a Literal Value

Based on the Type and Structure value selected from 
the drop-down list, enter a Literal Value that 

corresponds a legal value.  For information on legal 
values, please view the slide named “Object Editor:

Data Object Literal Value”



 

  128 

APPENDIX 

 
 
 
 
 
 
 
 

Electronic Visualization Laboratory University of Illinois at Chicago

Using Panels:
Entering a Literal Value

The literal value will appear in the rectangular area as it 
was entered.  If the value is too long to be displayed in 
the limited space provided, move the cursor over this 

data object, pause, and text will appear that will display 
the complete literal value.
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Using Panels:
Editing Data Objects

It may be necessary to perform 
an Edit menu function on the 
data object.  The Edit menu 
function uses two different 
buffers– one for data objects 
and another for instructions.

•Cut
•Remove the data object in the 
rectangular area and place it into the 
data object buffer.

•Copy
•Keep the data object in the rectangular 
area and place a duplicate of it into the 
data object buffer. 

•Paste
•Place a duplicate of the data object in 
the data object buffer into the 
rectangular area.
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Using Panels:
Function Button Panel

•Because a panel contains similar functions, it may be necessary 
to specify which function you would want to use.  Simply press 
one of the toggle buttons in a button panel to select the function to 
perform on the operands.

•If you are uncertain about the meaning of a function icon, move 
your mouse over the button, pause, and text will appear 
describing the purpose of the function.
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Using Panels:
Label and Comments

•Label: 
•This is the area for marking the instruction-to-be in the program.  Using the 
Compare and Branch panel, you can jump to a specific area in a program marked 
by a label.  A label may only be used once to identify a line of program code.

•Comments: 
•Write a description about the instruction-to-be here.  Space is limited to about two 
short lines of text.  For more extensive comments, use the Section Comments 
panel.
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Using Panels:
Action Buttons

•Apply: 
•Commit the instruction into the program at the location marked by the code cursor.

•Clear: 
•Remove all data in all areas and, if necessary, any function button pressed will 
become unpressed.

•Help: 
•Display information about how to use this panel.
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Instruction Panel:
Math

•Perform addition, subtraction, multiplication, division, 
and modulo operations on operands.

•The destination operand receives the result of the 
operation (ex: LEFTINT = LEFTINT x RIGHTINT).

Source 
Operand

Destination 
Operand
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Instruction Panel:
Compare & Branch

•Compare the values of two left and right operands of the same 
type and structure using the comparisons less than, less than or 
equal to, greater than, greater than or equal to, equal to, and not 
equal to.

• If the comparison is true, have program execution jump to the 
part of the program marked by the label given in this instruction; 
otherwise, continue execution with the next line of the program.

Right 
Operand

Left 
Operand

Label 
Operand
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Instruction Panel:
Compare & Branch

•If the function button with the arrow pointing to the flag is chosen, 
this indicates a unconditional branch.  The program will begin 
execution at the part of the program marked with the label 
specified in this panel.

•No comparison operands are used for this function.

Unconditional 
Branch Icon

Right 
Operand

Left 
Operand

Label 
Operand
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Instruction Panel:
Move

•Move the contents of the source operand to the contents of the 
destination operand.  There are only a certain number of 
combinations of types and structures permitted.

•For operations involving converting a number to its text 
representation and vice versa, it is your responsibility to ensure 
that valid text or a valid number is used for the conversion.

Source 
Operand

Destination 
Operand



 

  137 

APPENDIX 

 
 
 
 
 
 
 
 

Electronic Visualization Laboratory University of Illinois at Chicago

Instruction Panel:
Move

•If the source operand is the Keyboard, user input from the 
keyboard is stored in the destination operand.

•If the destination operand is the Display, data from the source 
operand is converted to its text equivalent representation and 
displayed on the screen.

Display Keyboard

Source 
Operand

Destination 
Operand
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Instruction Panel:
Move Characters

Source 
Operand

Destination 
Operand

•Copy a range of characters from the source operand to replace a 
range of characters in the destination operand.

•The operands must be character arrays.

•The range of characters used in the source operand and 
destination operand must be the same length.
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Instruction Panel:
Move Characters, Array Range

Source 
Operand

Destination 
Operand

•To select a range 
of characters, click 
one of the array 
range boxes with 
the left mouse 
button.

•Move the sliders to 
obtain the desired 
array range, and 
press OK.

•The result will 
appear in the array 
range box.
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Instruction Panel:
Section Comments

•Enter any text information about a part of the program in the text 
area.

•Can be of any length.  Scrollbars will appear on the right side of 
the text box to accommodate viewing of all text typed.

•Will “serve” as an instruction in the code but has no effect on 
the execution of the program.



 

  141 

APPENDIX 

 
 
 
 
 
 
 
 

Electronic Visualization Laboratory University of Illinois at Chicago

Writing a Program:
Editing Modes

Code Insert Mode

Code Overwrite Mode

•Select an editing mode from the Edit menu.

•Code Insert Mode will place the newest instruction in the line 
with the cursor and shift all other instructions down.

•Code Overwrite Mode will replace the old instruction in the 
line with the cursor with the newest instruction.  Good for 
editing a single line of the program.  Cannot overwrite the last
empty line of code.



 

  142 

APPENDIX 

 
 
 
 
 
 
 
 

Electronic Visualization Laboratory University of Illinois at Chicago

Writing a Program:
Visual Code Layout

Press the Apply button in the instruction 
panel to add a line to the program.
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Writing a Program:
Visual Code Layout

1 Label uniquely identifying the line of code (optional)

2 Panel icon

3 Left operand (used only with Compare & Branch)

1 2 3 4

4 Middle operand (Compare & Branch) / Source Operand

Operand restrictions-- Constant: solid line; Variable: dotted line
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Writing a Program:
Visual Code Layout

5 6 7 8 9

5

6

7

8

9

Function icon (optional)*

Triangle illustrating data flow 

Label operand (Compare & Branch) / destination operand 

Pseudocode describing instruction in English (* in empty area)

Instruction comments*

* = information pops up when 
mouse pauses over the area
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Editing a Program:
General Procedure

•Highlight the rows of code to 
edit.

•Right-click on any part of the 
visual code area to bring up the 
menu seen here.

•Select the menu function of 
your choice.

•If performing a Copy or Paste, 
move the cursor to the desired 
location (this is important)

•Select Copy or Paste from the 
menu
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Editing a Program:
Using the Edit Menu

•Cut
•Remove the line(s) of code from the 
program and place the line(s) into the 
code buffer.  Remaining code shifts 
upward.

•Copy
•Keep the line(s) of code in the program 
and place a duplicate of the line(s) of 
code into the code buffer. 

•Paste
•Place a duplicate of the line(s) of code 
into the program at the cursor location.  
Remaining code shifts downward.

If more than one line of code is 
highlighted and the paste 
operation is performed, the 
copied lines of code will first 
overwrite the highlighted lines of 
code.  Then, if there are still more 
lines of code, the remaining 
copied lines of code will be 
inserted into the program.
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Editing a Program:
Correcting a Line of Code

•Enter Code Overwrite 
Mode.

•Move the cursor to the 
program line that you want 
to edit.

•Select Panel for This 
Instruction from the View 
Panel menu.

•The appropriate panel will 
appear with all of the 
operands, function button 
selection, comments, and 
label.
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Editing a Program:
Finding an Error

Most errors are detected before you are able to add a line 
of code to a program.  However, it is possible to receive 
errors later.  For instance, if a Single Value Character
named CHAR has its type changed to Integer, it is likely 
that any line of code using CHAR will have an error.  If a 
line has an error, the background of the line will become a 
shade of red.  When the error has been corrected through 
editing, it will no longer have a red color.

•Move the mouse 
cursor over the 
erroneous line 
and pause.

•Text will appear 
indicating the 
reason for the 
error.

•Correct the error 
by editing the line 
or by changing 
data object 
properties in the 
Object Editor.
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Save Program
•Save As: Select a file from 
the list of available Panel-Tools-
Views files (.ptv), or type the name 
of the file in the File Name field (no 
extension is required).  If the file 
name already exists, you will be 
asked if the new version should 
replace the old version.

•Save: The first time the 
program is saved, it will act as Save 
As.  Otherwise, file will save without 
any other intervention.

•The name of the file does not 
have to resemble the program 
name but must adhere to the file 
naming conventions of the OS.
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Save Program

If a file has not been saved, the word “unsaved” surrounded by [ ] 
will appear after the name of the program.

Once the file has been saved, the “unsaved” surrounded by [ ] will 
disappear.
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Generate Assembly Code
•This functions the same as saving 
the file except that the saved file 
has naming restrictions tied to MS-
DOS file naming conventions.  No 
filename extensions should be 
used.

•Assembly code will be written to 
the given file only if there are no 
errors in the code.  A message will 
appear indicating if the file was 
created.

•To view the assembly language 
file, open the file in your favorite 
text editor.
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Running the
Assembly Language Program

•Open a program 
named CAS.EXE

•Select Run a 
Program from the 
menu by pressing the 
“R” key.

•Enter the name of the 
assembly file (use full 
pathname if 
necessary, or copy the 
file to the directory of 
CAS.EXE).
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Running the
Assembly Language Program

•The important aspect is to 
interact with the program.  
So, if you see a screen 
similar to the one here, 
press the “G” key at the 
prompt to Go to continue 
execution of the program.

•Repeat this each time this 
screen appears.

•One execution is 
complete, you should 
return to the main menu 
screen.

Once execution is complete, you can 
view a “log file” of the execution in a text 
file (.txt) having the same name as the 
assembly language program.
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Finding Errors in the
Assembly Language Program

•If there are errors in the program, execution may stop prematurely or 
an error message will appear.  To fix this error, open the text file (ex. 
PROG1.TXT, where PROG is the name of the assembly language 
program), and search for the error.

•The error is highlighted here.  A $ appears at the location of the error 
followed by the error message below.
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Finding Errors in the
Assembly Language Program

•The error is caused implicitly.  
Labels cannot be defined, so 
when a label is used in 
Compare & Branch, a line of 
code must exist that is 
identified by this label; 
otherwise, an error like this will 
occur.

•From this, a lesson should be 
learned that not every error will 
be caught by PTV (although 
this one could have), but most 
will.  The awareness of how the 
assembler works is important 
in debugging errors.

After you have determined an error, edit 
the program in PTV to correct the error.  
Then repeat the process of generating 
the assembly code and running the 
assembly language program. 
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Help is Available
•While using the program, 
simply select the Help menu to 
obtain help on a number of 
different topics discussed in 
this introduction.

•A window will appear containing the 
information you requested.
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Enjoy coding.
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