
c

r

ARCS

 ▪ circular segments

c

θ
ɸ

ARCS

 ▪ circular segments
 ▪ angles are calculated
clockwise from 0˚
in the +x direction,
unless specified
otherwise

r

(x,y)

θ
ɸ

r

d3.path().arc(x, y, r, θ, ɸ[, counterclockwise])

p1

p2

QUADRATIC CURVES

 ▪ 1 control point

p1

p2

QUADRATIC CURVES

 ▪ 1 control point

cp

p1

p2

QUADRATIC CURVES

 ▪ 1 control point
 ▪ point lies on the curve

(cpx, cpy)

(x,y)

d3.path().quadraticCurveTo(cpx, cpy, x, y)

path starting point

cp2

cp1

p1

p2

CUBIC BEZIER CURVES

 ▪ 2 control points

p1

cp1

cp2

p2

CUBIC BEZIER CURVES

 ▪ 2 control points
 ▪ the shape of the curve is
influenced by the position
of the control points...

p1

cp1

cp2

p2

CUBIC BEZIER CURVES

 ▪ 2 control points
 ▪ the shape of the curve is
influenced by the position
of the control points...

 ▪ ...as well as their distance
from each other

path starting point

(cpx1, cpy1)

(cpx2, cpy2)

(x, y)

d3.path().bezierCurveTo(cpx1, cpy1, cpx2, cpy2, x, y)

var r = 5;

ctx = d3.path();

ctx.arc(0, -r, r, 0, Math.PI)

ctx.arc(-r, 0, r, -Math.PI/2, Math.PI/2)

ctx.arc(0, r, r, Math.PI, 0)

ctx.arc(r, 0, r, Math.PI/2, -Math.PI/2)

return ctx.toString();

PATH EXAMPLES

Both of my shapes used the arc function.

(Sorry, nothing too fancy!)

PATH EXAMPLES

There’s a surprising amount you can do with
circles... such as simulating wave motion!
http://bl.ocks.org/mbostock/c66ab1426f-
4b8945a7ef

If possible, try to keep the shapes simple. Let
your computer handle all the math :)

ADDITIONAL LINKS

 ▪ d3 path reference
https://github.com/d3/d3-path

 ▪ some decent d3 tutorials
https://www.dashingd3js.com/svg-paths-
and-d3js

 ▪ practicing bezier curves :3
http://bezier.method.ac/

