ARCS

= circular segments




ARCS

= circular segments

= angles are calculated
clockwise from O°
in the +x direction,
unless specified
otherwise




(x,y)

d3.path() .arc(x, y, r,

©, o[,

counterclockwise])




QUADRATIC CURVES

= 1 control point



QUADRATIC CURVES

= 1 control point



QUADRATIC CURVES

= 1 control point
= point lies on the curve

cp



(cpx, cpy)

(xy)

path starting point

d3.path () .quadraticCurveTo (cpx, cpy, X, V)




CUBIC BEZIER CURVES

= 2 control points

cpl

cp2



CUBIC BEZIER CURVES

= 2 control points

= the shape of the curve is
influenced by the position
of the control points...

cpl




CUBIC BEZIER CURVES

= 2 control points

= the shape of the curve is
influenced by the position
of the control points...

= ...as well as their distance
from each other

cpl

cp2



(cpx1, cpyl)

path starting point

s
(cpx2, cpy2)

d3.path () .bezierCurveTo (cpxl, cpyl, cpx2, cpy2, x, V)




PATH EXAMPLES
Both of my shapes used the arc function.

(Sorry, nothing too fancy!)

var r = 5;

ctx = d3.path();

ctx.arc(0, -r, r, 0, Math.PI)
ctx.arc(-r, 0, r, -Math.PI/2, Math.PI/2)
ctx.arc(0, r, r, Math.PI, 0)

ctx.arc(r, 0, r, Math.PI/2, -Math.PI/2)

return ctx.toString() ;



PATH EXAMPLES

There’s a surprising amount you can do with
circles... such as simulating wave motion!
http://bl.ocks.org/mbostock/c66ab1426f-
4b8945a7ef

If possible, try to keep the shapes simple. Let
your computer handle all the math :)

""""
. »
T S N AR AL .'.- * g

........
.....
L] - - -



ADDITIONAL LINKS

= d3 path reference
https://github.com/d3/d3-path

= some decent d3 tutorials
https://www.dashingd3js.com/svg-paths-
and-d3js

= practicing bezier curves :3
http://bezier.method.ac/



