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Abstract

Background: Molecular and systems biologists are tasked with the comprehension and analysis of incredibly
complex networks of biochemical interactions, called pathways, that occur within a cell. Through interviews with
domain experts, we identified four common tasks that require an understanding of the causality within pathways,
that is, the downstream and upstream relationships between proteins and biochemical reactions, including:
visualizing downstream consequences of perturbing a protein; finding the shortest path between two proteins;
detecting feedback loops within the pathway; and identifying common downstream elements from two or more
proteins.

Results: We introduce ReactionFlow, a visual analytics application for pathway analysis that emphasizes the
structural and causal relationships amongst proteins, complexes, and biochemical reactions within a given pathway.
To support the identified causality analysis tasks, user interactions allow an analyst to filter, cluster, and select
pathway components across linked views. Animation is used to highlight the flow of activity through a pathway.

Conclusions: We evaluated ReactionFlow by providing our application to two domain experts who have significant
experience with biomolecular pathways, after which we conducted a series of in-depth interviews focused on each
of the four causality analysis tasks. Their feedback leads us to believe that our techniques could be useful to
researchers who must be able to understand and analyze the complex nature of biological pathways. ReactionFlow
is available at https://github.com/CreativeCodingLab/ReactionFlow.

Background
Understanding complicated networks of interactions and
chemical components is essential to solving contempor-
ary problems in modern biology, especially in domains
such as cancer and systems research [1]. Pathways are
essentially subsets of a very large graph; their boundaries
are inherently ambiguous, but they are used to limit the
scope of analysis. Molecular activation pathways are of
critical importance to cancer researchers, who hope to
understand - and potentially disrupt - malignant cycles of
uncontrolled cellular growth, replication, and mediated
cell death [2]. Research in drug development involves
determining how proteins affected by a drug in turn
affect important cellular pathways, and in this domain

the downstream consequences of a particular drug effect
are especially important [3]. In a separate domain, stem-
cell researchers aim at initiating pathways that will preci-
pitate a desired cellular differentiation into specific cell
types [4].
Researchers who work with pathway data are con-

fronted with a number of challenges [5,6]. Pathway files
may contain hundreds of proteins and biomolecules
(often nested within protein “complexes”) that participate
in a variety of reactions. In an abstract sense, reactions
can be seen as state transitions with multiple inputs and
outputs. Participants can act as inputs or outputs to mul-
tiple reactions, and the relationships between reactions
inherently include feedback loops. Reactions often have
an effect on other reactions, inhibiting or promoting
their frequency. These molecular activation pathways are
inherently dynamic, which limits the utility of any static
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graph representation [7]. Representing complexity while
also enabling researchers to see higher order patterns is a
significant challenge [8].
We worked closely over a period of six months with

four computational and molecular biologists to identify
and prioritize visualization tasks that were important to
the biological community. The experts include: a bioin-
formatician working at a major cancer research lab
(designated by the National Cancer Institute as a Com-
prehensive Cancer Center); a graduate student with a
background in both biology and computer science; and
two professors in a molecular biology department at a
large public university, each running their own research
lab. Our in-depth interviews with these experts led us to
identify four important tasks that were not currently
well-supported in existing visualization tools for pathway
analysis. These four tasks each involve reasoning about
the causal relationships between proteins and biochem-
ical reactions within a pathway. We refer to these as
causality analysis tasks, in which an investigation of how
upstream and downstream participants of biochemical
reactions may lead to new understanding of the nature of
the pathway. The four tasks, described in more detail
later in the paper, include:
T1 Visualizing the downstream consequences of per-

turbing a protein or protein complex;
T2 Finding the shortest path between two proteins;
T3 Detecting feedback loops within the pathway;
T4 Identifying common downstream elements from

two or more proteins.
Working with the domain experts led us to design and

implement a novel, interactive representation of biologi-
cal pathways that emphasizes the causality within the
pathway, focusing on the biochemical reactions as the
“backbone” of the pathway, and highlighting the flow of
input and output participants of these reactions through
various visual encodings, including animation. Our tool,
ReactionFlow, visually separates the inputs and outputs
of biochemical reactions within a pathway, and empha-
sizes the relationships between reactions. Visual separa-
tion of input and output participants helps reveal highly
connected proteins and complexes which may be of par-
ticular importance to understanding the nature of a
pathway. Perhaps the most useful aspect of Reaction-
Flow involves the representation of causality within the
pathway, highlighting casual relationships between reac-
tions. We use animation as a means to clearly demon-
strate the causal relationships in the pathway.
To augment the visual representation of the pathway

with a “reaction-centric” view, we enable a variety of
user interactions that make it easier to search through
proteins, complexes, or reactions (especially useful in
larger pathways), to organize the layout so that reactions
are clustered via a topological ordering algorithm or so

that edge-crossings are minimized, and to control the
animation speed of the flow of activity through the
pathway from a selected starting point.
The process of developing ReactionFlow was an itera-

tive process that relied on feedback from the four
domain experts at various stages of the design and
implementation. Many of the ideas that were included
were first suggested by one of the domain experts, or
emerged organically through these conversations with
them. The contributions of this paper are centered
around the ReactionFlow application and the tasks they
enable:

- We identify four tasks related to understanding
causal relationships within a pathway;
- We introduce a novel visualization to enable caus-
ality analysis tasks;
- We make use of animation to highlight the flow of
activity through a pathway;
- We include mechanisms to search, filter, and
order pathways to more effectively present relevant
data;
- We evaluate the effectiveness of our approach
through interviews with domain experts.

Related work
The visualization of biological pathways is challenging
due to the complex nature of pathway data, as indicated
in the previous section. Given this complexity, publica-
tions in molecular biology frequently present biological
pathways with human-generated figures. Human creators
have the flexibility to arrange visual elements in ways
that make representations human readable, and this can
allow authors to efficiently encode large volumes of com-
plex information. The human-generated nature of these
diagrams allows this complex information to be encoded
through clear spatial layouts, organizing the pathway in a
meaningful way.
This hand-made approach has been replicated digitally

in public databases available online, such as the Kyoto
Encyclopedia of Genes and Genomes [9] as well as the
Reactome Pathway Database [10], allowing for clear com-
munication and dissemination of established pathways.
Several applications exist, such as Entourage [11], that
adapt these static figures to be interactive. While these
applications preserve the layout and presentation of path-
way information, they have several drawbacks. Creating,
updating, or modifying figures is a labor-intensive process,
and new data cannot be automatically integrated with
existing figures. Moreover, these human-generated figures
do not easily scale to large, complex pathways. As a path-
way increases in size and complexity, human effort to cre-
ate and to comprehend them also increases considerably.
These limitations are major problems in a research
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community that is continually generating and updating
molecular pathway data.
Several tools exist which automatically produce inter-

active pathway visualizations from structured pathway
data, rather than relying on layouts generated by hand.
The visualizations produced by these tools mimic the
style and visual encoding of human-generated figures in
an attempt to to communicate complex network infor-
mation efficiently. As the layout is computed algorithmi-
cally, it is easily updated with new data without requiring
extra human effort as networks increase in size. Promi-
nent examples of this approach include Cytoscape [12],
ChiBe [13], and VANTED [14]. Both of these tools load
pathway data that is represented in a standardized for-
mat, such as BioPAX [15]. Users can select from several
different layout configurations, and can choose to apply
certain visual encodings, such as assigning a color scale
to different protein categories.
In addition, ChiBe allows the user to search for pro-

teins of interest, to find relevant pathways, to interac-
tively trace paths between entities, and to identify
common regulators or targets of proteins. Finally, experi-
mental data, such as gene expression data or disease
association data, can be overlaid on these networks and
encoded through color [11]. These features allow
researchers to relate pathway visualizations to biological
questions more directly than with non-interactive path-
way diagrams. Cerebral [16], a Cytoscape plugin, includes
visual indications of intercellular context (such as the
relative location of the cell wall or nucleus), features that
are often included in human-generated diagrams.
VANTED enables the user to dynamically edit the net-
work and its layout, and additionally supports the ability
to map experimental data to network elements, to per-
form statistical tests, and to cluster data using machine
learning techniques; further analysis can be performed
via FluxMap [17], a VANTED plugin.
However, complexity remains a significant challenge

for these applications, particularly with respect to the cri-
tical task of viewing causality in a pathway. Pathway
visualizations show causal direction through directed
edges from one event to another, allowing researchers to
address questions about what lies downstream of one
protein or reaction in a pathway. To see these causal rela-
tionships, researchers must trace paths beginning at
some starting point and following directed edges through
the pathway, but as the number of steps or branches in a
pathway increases this task becomes cognitively
challenging.
In addition, since these tools mimic the style of path-

way diagrams, they do not abstract away details to cap-
ture higher-order patterns. For instance, researchers may
want to use pathway diagrams to understand the impor-
tance of a particular protein in a pathway in order to find

suitable targets for drug design. However, critical pro-
teins in a pathway may appear in more than one place in
the visualization, perhaps because they are involved in
several reactions. To see this, the researcher must either
scan visually or use a search tool to find all instances of a
protein. Multiple instances of one protein are not imme-
diately evident from the representation, and can be diffi-
cult to find through exploration.
Other tools also make use of alternative approaches to

representing networks, such as the transition graphs intro-
duced by Pretorius and van Wijk [18], or the interactive
bipartite graphs explored by Schulz et al. [19]. Although
intended for representing text documents, the design of
Jigsaw [20] shares some features with ReactionFlow. Jigsaw
uses a table-style approach to represent entities of one
specific type; related entities that are of different types are
connected by links. However, there are basic differences
due to specific aspects of pathway datasets. For example,
proteins or biomolecules may participate in biochemical
reactions directly or they may first bind together in a com-
plex hierarchy before participating. The main visual com-
ponent of our application can be thought of as a hybrid
representation that uses features of network and table
layouts.

Methods
In this section, we describe details about our application,
ReactionFlow, which provides scalable views of pathway
data that reduce complexity while retaining important
pathway information relevant for causality analysis tasks.
All example biological pathways can be found in the Reac-
tome Pathway Database and are encoded using the Bio-
PAX format. ReactionFlow was created over the course of
six months via an iterative development cycle in which we
made changes or added features based mainly on the feed-
back from the four domain experts.

Overview of the ReactionFlow application
Figure 1(a) shows an example of ReactionFlow display-
ing several biochemical reactions, in this case using the
ERK activation pathway. Within this view - which
resembles a parallel coordinates layout - input proteins
are listed on the left, and output proteins are listed on
the right. Input proteins may directly participate in a
reaction (shown with green links) or they may form
complexes with other proteins (shown with green links)
before participating in a reaction (shown with blue
links). Complexes are displayed either as blue diamonds
or as blue triangles. Triangles represent complexes that
only appear as inputs or outputs, while diamonds repre-
sent complexes that act as both inputs and outputs
within the pathway. Larger triangles/diamonds indicate
complexes containing more proteins. In the pathway
shown in Figure 1(a), there are 11 biochemical reactions
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shown as circles in the center of the view. The circle
size is computed based on the number of input and out-
put proteins and complexes of each reaction.
When a reaction is selected via a mouse click, a textual

description is displayed, along with the names of all the
proteins that participate in this reaction. Figure 1(b)
shows an example of brushing the “Dissociation of phos-
pho-ERK-1:MEK1” reaction. In this biochemical reaction,
the complex containing p-S218,222-MEK1 and ERT2 is
dissociated into two separate proteins. In a similar

manner, when we select a protein or complex, Reaction-
Flow highlights all biochemical reactions that it partici-
pates in.
ReactionFlow also includes a search box to filter reac-

tions. As users type a phrase into the search box, reactions
and participants that include the typed phrase in their
description are highlighted. Typing the word “dissocia-
tion”, for example, highlights the reactions that dissociate
complexes into proteins. A user can also select words
from a list of the top 20 most common words that are

Figure 1 Visualizing biochemical reactions in the ERK activation pathway: (a) The reaction-centric view of the pathway (b) Brushing a
single reaction to highlight its inputs and outputs.
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found in the descriptions of biochemical reactions (shown
in Figure 2(a)) or in the descriptions of complexes (shown
in Figure 2(b)). The arcs in these lists connect terms that
frequently appear together in descriptions of reactions and
participants. Hovering over the word “phosphorylates,” for
example, will highlight reactions that are described

containing that term and that therefore involve phosphor-
ylation, as shown in Figure 2(c).

Introduction to causality analysis in ReactionFlow
Our visualization of biochemical reactions also enables
new tasks related to the analysis of causality in

Figure 2 Visualizing the RAF cascade pathway: (a) Arcs diagram of popular terms in reaction descriptions (b) Arcs diagram of popular
terms in complex descriptions (c) Filtering the reactions containing the word “phosphorylates” in their descriptions.
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biological pathways. In ReactionFlow, we have defined a
“causal relationship” between two reactions if the output
participants of one reaction act as the input to another
reaction. Causality is therefore a directed relationship,
and in our visualizations causality is depicted through
the use of gradient-filled lines, where direction flows
from yellow to black as depicted in Figure 3. In other
words, reaction 2 is “downstream” of reaction 1.
Figure 4 shows a simple example of the “ERK1 activa-

tion” pathway. Figure 4(b) shows 5 causal relationships
between 6 reactions in this pathway. “Downstream”
reactions are shown with the gradient-filled arcs, which
flow from yellow to black along the center column of
the visualization. Significantly, we use animation to
emphasize the relationship between multiple inputs and
outputs in chains of biochemical reactions. Figure 5
shows downstream animation after selecting a reaction
in Figure 5(a). The “MEK1 binds ERK-1” reaction pro-
duces ERK1 and p-S218,222-MEK1 complex which then
serves as the input for the second reaction in Figure 5

(b). In the two branches shown in Figure 5(d), only one
of them is continually animated since the other one cre-
ates a loop back to the first reaction. Figure 5(f) shows a
VCR control metaphor which enables the regulation of
speed and the mechanism for rewinding the animation.
As it is difficult to describe animation in static images,
we also invite the reader to refer to the video in our
supplementary materials associated with this paper. It
should be emphasized that the use of animation is
always optional. In cases where animation introduces
visual clutter, the user can simply disable this feature.
As discussed later in this paper, the use of animation
was found to be effective at providing an overview of
the causal relations within a pathway.
Numerous causal arcs are difficult to follow in large

pathways. Figure 6(a) shows all causal relationships
between 19 biochemical reactions in the “RAF cascade”
pathway which itself contains the “ERK1 activation”
pathway in the previous example. To make it easier to
keep track of visual relationships within the pathway, it

Figure 3 Gradient colors (yellow to black) are used to indicate the “causality” from reaction 1 to reaction 2.

Figure 4 Causality visualization for the ERK1 activation pathway: (a) The reaction-centric view of the pathway (b) The causal
relationships (indicated by the arcs) overlaid on top of the biochemical reactions in the center column.
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is helpful to ensure that downstream reactions appear
later in the list. However, this is usually impossible
because a reaction can be both downstream and
upstream of another reaction, which is very common in

pathway data. To address this, we introduce a modifica-
tion to the topological sorting algorithm (i.e., “toposort”)
so that it can handle directed cyclic graphs (usually not
appropriate when a graph contains directed cycles).

Figure 5 Animation in the ERK1 activation pathway: (a) The first reaction contains the selected protein ERK1 in the input (b) Second
reaction (c) Third reaction (d) Fourth reaction (f) Fifth reaction (e) Animation controllers.
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Since a pathway may contain cycles, in our modification
when there is no node without an input, we instead
select the one with maximum outputs (i.e., direct down-
stream connections) in an attempt to remove as many

cycles as possible. This results in a clustering of interre-
lated reactions, where the clusters tend to be grouped in
descending downstream order. Figure 6(b) shows the
result of applying our revised topological ordering. This

Figure 6 Ordering reactions in the RAF cascade pathway: (a) Reactions are ordered by their input and output proteins/complexes (b)
Topological ordering of causal links.
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ordering reveals interesting structures within the RAF
cascade pathway. The first two reactions (“RAF1 phos-
phorylates MEK1” and “RAF1 phosphorylates MEK2”)
belong to the “RAF phosphorylates MEK” sub-pathway.
These reactions generate phosphorylated MEK1 and
phosphorylated MEK2 which serve as the inputs for two
other sub-pathways. The first one is the ERK1 activation
pathway which contains the next five reactions in the
list. The second one is the ERK2 activation pathway
which contains the five next reactions. Notably, ERK1
activation pathway and the ERK2 activation pathway
have identical causal structure. Topological ordering of
reactions also helps to visually reveal feedback loops.
Below we describe key tasks relevant for understanding
causality.

Task 1: Visualizing Downstream Effects
Viewing the downstream components of a biochemical
reaction in a pathway helps biologists understand how a
drug that perturbs a particular protein might also affect
other proteins and complexes that participate in down-
stream reactions [21].
Different proteins play different roles in a pathway. A

few proteins control aspects of an entire pathway while
other proteins are responsible for a small part (a subset
of reactions) in the pathway. For example, the ERK1
protein effects the entire ERK1 pathway while ERT2 is
only involved in two reactions. Figure 7 shows examples
of how three different proteins are related to down-
stream reactions and participants in the “vitamin and
cofactor metabolism” pathway. In ReactionFlow, simply
clicking on any of the biochemical components starts an
animation that highlights the downstream effects from a
given starting point. A user can use the animation tools
described above to play, pause, speed up, slow down, or
loop through the downstream effects.

Task 2: Finding the Shortest Path Between Proteins
ReactionFlow also provides a tool that highlights the
shortest path between two proteins in terms of the
number of reactions between an input and an output.
When users select an input protein, say, for example,
cRaf, ReactionFlow displays numbers in front of output
proteins that indicate the minimum number of reactions
- the number of biochemical “hops” from cRaf - that are
needed to generate each output protein from the
selected starting point. The color of the links in this
view indicate whether steps involve proteins directly
(red links) or proteins within a complex (green links).
The path from a selected protein to other downstream
proteins can also be animated.
Figure 8 shows the shortest path from the protein ERK1 to

other proteins in the ERK1 activation pathway. The anima-
tion begins with the first reaction that is ERK1 is an input

into, which ultimately generates the ERK1:p-S218,222-
MEK1 complex. We can also reach p-S218,222-MEK1 (as
an individual protein) from ERK1 after 3 biochemical reac-
tions. We can also see that p-MEK1 and MEK1 are not
downstream participants of the protein ERK1.

Task 3: Detecting Feedback Loops
We can also use ReactionFlow to detect feedback loops
within a pathway. This makes it easier to identify where
cyclical processes are occurring, and thus where pertur-
bations in the network influence both downstream and
upstream events. Figure 9 shows feedback loops in the
influenza infection pathway (there are 52 biochemical
reactions in this pathway). In particular, Figure 9(c)
shows all feedback loops. Figure 9(d) shows a selected
feedback loop. The benefits of topological ordering can
be seen by comparing Figure 9(a) to Figure 9(b), where
the topological ordering in Figure 9(b) helps to reveal
feedback loops. When the “feedback loop” mode is
enabled (via a button on the application), by default all
feedback loops are shown, and rolling over any of the
reactions in the center column highlights only the feed-
back loop that reaction is part of (if any).

Task 4: Finding Common Downstream Elements
An important task for understanding the effects of path-
ways involves finding common downstream elements
that may participate in biochemical reactions. For
instance, understanding the functionality of pathways
through understanding downstream elements is an active
area of cancer research [22-24]. In some cases drugs do
not yet exist that target cancerpromoting proteins
directly, but but studying pathway data researchers may
discover that an existing drug has an indirect influence
on cancer-promoting proteins via downstream effects
[21]. In other cases, understanding the complex mechan-
isms behind certain cancers requires an understanding of
how multiple activation pathways interact [24].
ReactionFlow provides a “common downstream” func-

tion that highlights all reactions that are “downstream”
of two or more input participants. Figure 10 shows an
example of finding common downstream elements on
the “NGF signaling via TRKA” pathway. In particular,
Figure 10(b) highlights downstream reactions and their
causal relationships of the NTRK1 protein. Figure 10(c)
highlights downstream reactions and their causal rela-
tionships of the Atctive TrkA receptor:Phospho-PLCG1
complex. Figure 10(d) highlights common downstream
elements (in blue) of the NTRK1 protein and the Atc-
tive TrkA receptor:Phospho-PLCG1 complex.

Reducing visual clutter
Although an aim of ReactionFlow is to simplify the
visual representation of a pathway, especially to aid in
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Figure 8 Shortest path from protein ERK1 to other proteins in the ERK1 activation pathway.

Figure 7 Downstream consequences if a protein/complex is “knocking out” in the defects in vitamin and cofactor metabolism
pathway: (a) GIF protein (b) TCll:Cbl complex (c) MTRR:MTR complex.
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the causality analysis tasks described above, visual clut-
ter can still be an issue, especially in larger pathways
containing many proteins and reactions. ReactionFlow
thus provides various methods to mitigate the visual

clutter. For instance, edge crossings can be reduced by
reordering reactions and participants, as in Figure 1(b).
To order the proteins, we start with a random protein.
The next protein is selected if it participates in the same

Figure 9 Feedback loop detection in the influenza infection pathway: (a) All causalities (b) Topological ordering (c) All feedback loops
(d) Brushing a feedback loop.
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Figure 10 Example of task 4 on the NGF signaling via TRKA pathway: (a) All causalities (b) Downstream elements of the NTRK1
protein (c) Downstream elements of the Atctive TrkA receptor:Phospho-PLCG1 complex (d) Common downstream elements of the
NTRK1 protein and the Atctive TrkA receptor:Phospho-PLCG1 complex.
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reaction and/or the same complex with the current pro-
tein. This selection criteria make sure that proteins in
the same complex/reaction are placed next to each
other. Consequently, this helps to reduce edge crossings.
In the next example, we use a larger pathway, NGF

signaling via TRKA from the plasma membrane path-
way containing over a hundred biochemical reactions.
Figure 11(a) shows the random order of proteins and
reactions. A user can organize proteins in the same
complex or reaction so that they remain close together,
as in Figure 11(b), significantly reducing edge crossings.
Users also have options to “fade out” a specified type
(or types) of links in order to make the visualization
appear less cluttered, as depicted in Figure 11(c), where
the reaction links are tapered and rendered with a low
opacity.
Regarding the issue of clutter, we compare Reaction-

Flow to other popular tools. Cytoscape features
advanced layout algorithms that can minimize edge
crossings. Nonetheless, even a medium-sized pathway
network, such as HIV life cycle which contains 206 pro-
teins and molecules, 184 complexes, connected via 112
biochemical reactions, demonstrates visual clutter due
to link crossing. ChiBE 2 avoids the issue of edge cross-
ing by introducing duplicates of proteins if necessary.
However, this makes it more difficult to keep track of
reactions involving a selected protein or protein com-
plex (although ChiBE 2 mitigates this somewhat by
using different colors to encode proteins). Another pro-
blem with node duplication is that for a set of n pro-
teins there may be, at least potentially, up to 2n

complexes, greatly increasing the scale of the network.
Figures 12(a) and 12(b) show screenshots of these tools
displaying the HIV life cycle. Since ReactionFlow pushes
proteins and complexes participating into the same
reactions together, Figures 12(c) presents two disjoint
set of reactions which are not obvious in ChiBE 2. The
lower reaction set is associated to the early phrase of
HIV life cycle while the upper reaction set is associated
to the late phrase of reaction HIV life cycle.
The right panel of Figures 12 shows another example

of these tools on a larger input data, the signaling to
GPCR pathway. GPCRs stands for G proteinlinked
receptors, also known as seven-transmembrane domain
receptors. GPCRs are the largest receptor superfamily
(with more than 800 G-protein coupled receptor) and
also the largest class of drug targets [25]. This pathway
contains 413 proteins and molecules, 389 complexes,
connected via 292 biochemical reactions. As depicted in
the screenshot of ReactionFlow shown in Figure 12(c),
most inputs of biochemical reactions in this pathway are
individual proteins (red links) while most outputs are
complexes (blue links). In other words, these are binding
reactions of proteins and molecules to form complexes.

Figure 11 Visualizing the NGF signaling via TRKA pathway:
(a) Random order (b) Order proteins by their reaction/complex
participations to minimize edge crossings (c) Fading out
reaction links.
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In fact, there are 157 (out of 292) biochemical reactions
belonging to the GPCR ligand binding sub-pathway.
Within this sub-pathway, ligands bind to the GPCRs
causing conformational changes. These GPCRs can then

activate associated G proteins [26]. Since Cytoscape (in
Figures 12(d)) and ChiBE 2 (Figures 12(e)) do not sepa-
rate inputs and outputs, these patterns are not evident
even with the same color encodings.

Figure 12 Visualizing the HIV life cycle (left) and signaling to GPCR pathway (right) by three different tools.
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Although we show all edges connecting reactions to
input/output proteins and complexes for the compari-
son to other existing tools, this is not the main interface
of our visualization. Instead, a view where only causal
arcs connecting biochemical reactions are displayed is
the starting point of our pathway analysis. The input/
output participants are only displayed on demand for
selective biochemical reactions. Therefore, the original
tasks are still viable on a system of large size, such as
examples in Figures 12. The lower panel of Figure 13
shows the main screen of Reaction-Flow when visualiz-
ing the early phrase of HIV life cycle. In this figure, we
compare our application (in the lower panel) to
VANTED (in the top panel). Notice that VANTED

displays all biochemical reactions, proteins, and complex
participants in the same network. In ReactionFlow, we
separate input/output proteins and complexes to both
sides and reserve the middle section to present causality
between reactions in the pathway. This helps Reaction-
Flow to scale more effectively when representing larger
networks.
As depicted, both tools successfully reveal the linear

nature in the first part of the network (the longest path
contains 30 hops). The main difference of two tools is
how they display parts of the pathway that contain
cycles. A close-up of this sub-network is displayed to
the right of each visualization for comparison. Since our
revised topological ordering algorithm attempts to push

Figure 13 Visualizing the early phrase of HIV life cycle by VANTED (in the top panel) and ReactionFlow (in the bottom panel).
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the downstream arcs to the right of the reactions, every
arc on the left potentially creates a feedback loop. In
this example, we can easily detect the feedback loops
associated with these arcs; the same information is not
as easy to discern in VANTED without further analysis.
Following the recommendation given in a user study
conducted by Holten and van Wijk [27], our use of
tapered edges also helps to emphasize directionality.

Implementation and requirements
ReactionFlow is implemented in Java and built on top of
Processing framework. It is cross-platform, with a mini-
mum requirement of Java 7. ReactionFlow uses Paxtools
[28] for managing BioPAX data. The application, source
code, and sample data are provided via our Github
repository, located at https://github.com/CreativeCodin-
gLab/ReactionFlow.

Results and discussion
We presented ReactionFlow to two domain experts, one a
molecular biologist and the other a systems biologist,
both active researchers highly familiar with particular
families of biological pathways that they investigate in
their research. We conducted in depth, in person inter-
views regarding the relevance of our approach to their
research tasks, and specifically asked them to carry out
each of the four causality analysis tasks. Additionally, we
recorded comments about the user interaction and the
animation. We also provided a link to the application so
that the experts could download the application to their
own computers and explore it more at their leisure. We
further solicited detailed feedback via email regarding
specific functionality related to causality analysis tasks, as
well asking for more general feedback about the usability
of each of the visualization tools and for suggestions
about other features that could be of importance to their
research and to other experts in their field.
While we regard this as only first step toward a com-

prehensive, empirical evaluation of our application and
the main visualization techniques it features, we are
already encouraged by the positive expert feedback. For
instance, both of the experts were excited about how we
represented causality. One of them told us: “The causal-
ity mapping is very cool. I’ve not seen anything like it
before, and I can see it being very useful.” The other
noted that the software was surprisingly user-friendly
for a prototype application, and appreciated “the causal-
ity connecting upstream/downstream reactions and the
animation showing each reaction input/output.” One of
the experts characterized one aspect of his work as
“making hypotheses” about the downstream effects of
introducing new variables into a pathway, and appre-
ciated that he could quickly mouse over proteins and
protein complexes to find the shortest path from an

input to output proteins. This expert also provided us
with suggestions for additional functionality for Reac-
tionFlow, including the ability to load in multiple path-
ways simultaneously, and also the option to manually
select and cluster a group of proteins in order to quickly
declutter the view, hiding information less relevant to
testing a hypothesis.
One of the experts commented explicitly on the unu-

sual layout, mentioning that he was used to seeing path-
ways organized as node-link diagrams and saying that
“the difficulties in this layout could be with the under-
standing the flow from left to right, but the animation
helps you see how the pathway is organized.” After the
initial interview, this expert wrote us further comments
about the animation: “Animating the flow of biochem-
ical reactions is very useful for understanding causality
in the network. Flexible control of that animation is
essential, because networks have very different levels of
complexity, so some can be viewed quickly, but others
must be slowly stepped through.” We also asked the
experts to comment on the specific tasks. In response to
a question for feedback on Task 1, one expert compared
our visualization positively to the “gold-standard” of
hand-drawn diagrams: “I like hand-drawn diagrams
because there is an order... and [ReactionFlow ] helps
capture some of that, which can be lost in some net-
work layouts. Once you figure out what’s going on this
tool seems more intuitive.” When pressed on how an
interactive layout could better support the ordering in
hand-drawn diagrams, he replied: “You can’t completely
avoid the complexity - it’s inherent. But it’s good to get
different views that give you some more information
from a different perspective.”
Regarding Task 2, one expert found out implementa-

tion a bit confusing, even after explanations of how it
worked. Based on his evaluation, we plan to clarify the
visual encoding in a future version of the application.
The other expert didn’t have trouble understanding the
task, but told us that it didn’t correspond to his interpre-
tation of what it meant to find the shortest path: “I’d like
to be able to click on two proteins and see the shortest
path between them.” In our current implementation, the
user clicks on a single protein, and all downstream com-
ponents are highlighted, with a number appearing to
indicate how many “hops” away it is from the selected
protein. The expert thought that provided too much
information and was perhaps too similar to Task 1.
Both experts found Task 3 straightforward and easily

to understand, and both commented on the importance
of identifying feedback loops across multiple pathways, a
feature we plan to include in later versions. Regarding
Task 4, both experts remarked that it was useful to see
which biochemical reactions are “common downstream”
components from multiple proteins. One expert told us
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that one main component of his research was precisely
related to this task, which was difficult to visualize in
other tools without extensive manual curation: “Some-
times I am interested in understanding how multiple
upstream input signals are integrated to drive cellular
responses.” The other expert also described the useful-
ness of Task 4: “Families of related proteins are com-
mon in human biology. These proteins often share
many reactions, but differ in a few key reactions. A view
that highlights these commonalities and differences is
very useful to parse out these subtleties.”
We also asked the experts to point out any other fea-

tures of ReactionFlow which they found to be either
effective or ineffective. Both appreciated the grouping of
reactions using the topological ordering. One expert
noted “it helps to organize the reactions into modules
for cleaner layout and visualization.” The other also told
us: “A key use for pathway representations is to quickly
grasp causality. The topological ordering helps a great
deal in this by clustering groups of closely related
reactions.”
Both experts noted that they thought that node-link

diagrams, though imperfect in many ways, nonetheless
were a more familiar representation for pathways and
wondered if that would make it difficult for our tool to
be adopted by other biologists. Again, they also both
suggested as an obvious next step that we make it possi-
ble to load in multiple pathways and moreover then be
able to easily remove the elements that were not rele-
vant to them, so as not to overwhelm the visualization
with too much information. One expert was initially
confused about the use of arcs to indicate relationships
in the search terms, since it seemed to clash with the
main use of the arcs to illustrate causality between bio-
chemical reactions.
Despite these concerns, both experts were highly posi-

tive about the ability to observe and reason about the
causality within a pathway. One of the experts also
repeatedly expressed his appreciation that our tool
emphasized the biochemical reactions within the path-
way, since that was a main interest in his own research,
and since other visualizations he had used sometimes
made it difficult to see only the reactions.

Conclusions
ReactionFlow presents an alternative visual representa-
tion of biological pathways, not found in other visualiza-
tion tools. Our visualization enables a series of novel
tasks related to finding patterns within a pathway and to
the analysis of causal mechanisms involving proteins
and biochemical reactions. Enabling these tasks is
potentially very useful to biologists and cancer research-
ers, as it provides with a means to more deeply under-
stand aspects of biological pathways, such as the

downstream connections related to a specific protein
complex, or quickly identifying feedback loops.
Our interviews with domain experts show that our

visualization techniques, and especially our ability to
represent causality in different ways, have the potential
to be useful to the larger community of researchers
investigating biological pathways. Although we are
encouraged by the positive feedback, we have already
identified areas for future investigation. For instance,
although this paper focuses largely on an alternative
representation to a node-link diagram, we believe that it
may be possible to present our visualization techniques
alongside (instead of in replacement of) a node-link dia-
gram. Although one advantage of our representations is
that they are less cluttered than node-link representa-
tions, we plan to further investigate the scalability of our
system and to explore other ways of interactively com-
pressing or expanding parts of the pathway as needed,
something that may prove important for very large path-
ways containing more than a few dozen reactions.
Finally, as suggested by the interviews with domain
experts, we plan to explore ways of visualizing multiple
pathways simultaneously. A future aim is to enable biol-
ogists to understand not just the functionality of a single
pathways, but also to help clarify how each pathway
functions within a forest of pathways.
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