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ABSTRACT
This paper explores methods for the creative manipulation
of video signals and the generation of animations through
a process of analysis and synthesis. Our approach involves
four distinct steps, and different creative outputs based on
video inputs can be obtained by choosing different alterna-
tives at each of the steps. First, we decide which features
to extract from an input video sequence. Next, we choose a
matching strategy to associate the features between a pair
of video frames. Then, we choose a way to interpolate be-
tween corresponding features within these frames. Finally,
we decide how to render these elements when resynthesizing
the signal. We illustrate our approach with a range of dif-
ferent examples, including video manipulation experiments,
animations, and real-time multimedia installations.

Categories and Subject Descriptors
I.3.3 [Computer Graphics]: Picture/Image Generation;
I.4.9 [Image Processing and Computer Vision]: Ap-
plications; J.5 [Computer Applications]: Art and Hu-
manities—fine arts, performing arts

General Terms
Algorithms, Design, Experimentation

Keywords
Analysis/Synthesis, resynthesis techniques, video process-
ing, animation, media arts, computer graphics

1. INTRODUCTION
Signal alteration is a well established means for artistic

expression in the visual arts. Popular tools such as Photo-
shop, Instagram, and After Effects enable a user to explore
creative effects by, for instance, applying filters to an input
image or video. We introduce a powerful strategy for the
manipulation of video signals that combines the processes
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of analysis and synthesis. After an analysis process a sig-
nal is represented by a series of elements or features. This
representation can be more appropriate than the original
for a wide range of applications, including, for example, the
compression and transmission of video signals [27], or, as
we describe in this paper, this representation can be used
to generate new modified instances of the starting signal.
In the audio domain, Analysis/Synthesis (hereafter, A/S)
strategies have been used extensively in creative applica-
tions. The phase vocoder is perhaps the best known A/S
audio processing algorithm [8]. With the phase vocoder it
is possible to manipulate the duration of a signal and the
pitch of a signal independently. Other popular effects in-
clude dispersion, robotization, whisperization and automatic
tuning [44]. However, although A/S techniques are some-
times used for processing videos, in general there is less of
an emphasis on using A/S for creative, real-time techniques
on video signals.

In one sense, many effects applied on static images, includ-
ing mosaicing, pointillism, and other non-photorealistic rep-
resentations, can be thought of as A/S processes. In these
processes, a particular set of features (e.g, regions, lines,
or objects) are identified through an analysis of the input
image. These features are then used to describe new ele-
ments, which are then synthesized into a modified version
of the original image. Thus, despite even potentially ex-
treme modifications, the newly-created, non-photorealistic
image nonetheless retains many aspects of the identity of
the original input. In extending this technique to video in-
put, a common problem with the A/S techniques, and many
other non-photorealistic rendering approaches, is that when
frames are analyzed independently the detected features can
vary abruptly between consecutive frames. This is due to the
nature of the detection algorithm or its sensitivity to noise.
These rapid variations create distracting artifacts when the
independently synthesized frames are put together in an an-
imation. According to Bénard et al., this issue of tempo-
ral coherence has prevented non-photorealistic techniques,
or stylized animations, from being more widely adopted for
video manipulation [1].

We present a novel approach to the implementation of A/S
techniques applied to video signals. Our approach involves
matching elements between image pairs, i.e., video frames,
and involves constructing video processing techniques over
one or more of four distinct stages, each one of which enables
different creative decisions to be made. These matchings are
not necessarily constrained to the image itself, but instead,
as we show in Section 4, can take place in a different do-



main. Moreover, we utilize creative criteria for choosing the
matching strategy across image pairs. These criteria may
be sub-optimal in some senses, and we show that by select-
ing unconventional interpolation paths and exploring new
rendering techniques we can achieve interesting results that
are not based on emulating existing methods. The first step
of our approach is the analysis of the input image. During
this step a series of elements are extracted from the image,
each described by a set of parameters. The second step is
the matching of elements between frames. Again, different
criteria can be used to do this matching. The problem of
matching elements can be thought of as an assignment prob-
lem [5]; although efficient solutions exists for finding assign-
ments that are in some sense optimal, these solutions may
not be realizable in real-time, and thus not appropriate for
interactive experiences. In this paper, we evaluate the pos-
sibilities and limitations of sub-optimal matching algorithms
that can be implemented in real-time. Once the assignment
between elements is defined, the next step is to decide on
an interpolation trajectory in the parameter space; that is,
how the elements from one image are going to become the
elements of the other. The final step is the rendering of the
output image. The output does not neeed to be a faithful
representation of the input, but ideally aspects of its iden-
tity should be maintained. Many narrative possibilities can
be explored in this last step.
The contributions of the paper are as follows:

• We introduce a method for thinking of video processing
in a particular set of stages in order to enable a range
of creative possibilities (Section 3).

• We adapt signal processing approaches common in the
audio domain (such as the FFT vocoder, matching
pursuits, and cross-synthesis) to the processing of video
sequences (Section 2).

• We introduce techniques for creative video processing,
including the use of instantaneous frequency manipu-
lation for image transitions (Section 4.6) and the use of
2D Gaussian decomposition to create fluid morphing
between video frames (Section 4.3).

• We show that in some cases, sub-optimal matching and
other alternative interpolation strategies lead to cre-
ative approaches especially useful for real-time video
processing (Section 3.2).

• We introduce example artworks that illustrate how to
create computer animations that extend algorithmic
art techniques by showing that multiple scales (global
and local) can be used to explore simultaneous narra-
tives (Section 4).

In addition to describing details of our four-step A/S ap-
proach in Section 3, we introduce a series of example projects
that utilize this approach in Section 4. We show how radical
modifications in the synthesis stage can produce engaging
results.
The first two examples explore the use of simple feature

vectors that describe points defined solely by their x and
y position within the image. The third example presents a
dictionary-based method that can be combined with a finite
state machine to create animations with micro-narratives at
local level. In the fourth example we describe an application

Figure 1: An art installation showing trees created in real-
time from the output of a dithering algorithm using the
sub-optimal matching strategy. Section 4.1 discusses this
project. Image copyright c⃝Javier Villegas.

of a two-dimensional Gaussian decomposition. The fifth ex-
ample, similar to the previous example, instead uses Fourier
descriptors of the closed contours from a level set represen-
tation of a grayscale image. The interaction of video data
with different media streams is illustrated in the example
presented in section 4.5. Finally, in the last example we
present interactive animations that can be created by ma-
nipulating the transition of the frequency components of a
two-dimensional DFT. We discuss the audience reception of
our work in Section 5, as well as possibilities for future work
in Section 6.

2. RELATED WORK
Much of our present work is inspired by the impact that

A/S audio tools have had in the music community, which
have motivated the use of new artificial sonic textures in var-
ious music genres. In one of the examples we present here,
we use a strategy similar to the audio phase vocoder [8].
We detect the phases of different frequency components in
consecutive video frames and then use them to manipulate
the instantaneous frequency during the synthesis. We have
also created animations where the synthesis objects are de-
tected using a template matching algorithm whose structure
resembles dictionary-based methods, such as matching pur-
suits [18]. We also explore the concept of cross-synthesis [44]
applied to moving images, that is, images that are synthe-
sized with information from two different sources.

Different works of figurative computer art have used A/S
strategies since the 1960s. Mosaic-like versions of photo-
graphs have been created by a variety of artists, including
Kenneth Knowlton [19], Chuck Close [7], and Robert Sil-
vers [32]. Golan Levin has used similar strategies to algorith-
mically modify photographs [20, 21]. Daniel Rozin’s work
has investigated algorithmic “mirrors,” interactive systems
that recreate input images from a camera in real-time [2].



A/S strategies are also widely used for the effective com-
pression and coding of images [6], since frequency domain
representations of real world images tend to concentrate the
energy of the image in few coefficients. In Section 4.6 we ex-
plore the use of the frequency domain representation of an
image to explore different paths for transitions and instant
frequency modifications.
The implementation of A/S on moving sequences has also

been used to create “rewriting” video applications. In these
applications, the frames of a long video are rearranged to
create a new video. Bergler et al. used the audio chan-
nel on speech videos to associate “visemes” with phonemes,
and then automatically generated a video with a new audio
signal via a concatenation of visemes at different temporal
positions [4]. Schödl and Essa created a technique, “Video
Sprites,” that can rearrange and correct the perspective of
long video sequences of animals moving freely [30]. Our ap-
proach to video resynthesis is somewhat different as we are
not simply reorganizing the existing video frames, but rather
recreating new ones through resynthesizing and concatenat-
ing particular components of the video.
Non-photorealistic rendering (NPR) techniques investigate

the automatic recreation of different styles of hand painting.
Hetzmann unified many of those techniques under the term
“stroke-based rendering” [15]. In his survey, Hertszmann
describes the general problem as designing an optimization
algorithm that minimizes the placement error of different
types of strokes. Similarly, Gooch et al. [13] illustrate a
technique with two clear steps: first, finding the best posi-
tion for strokes and, second, rendering those brush strokes
on the virtual canvas. Other authors have used techniques
where an A/S process is more evident. For instance, Li and
Huang [22], Hausner [14], and Wen et al. [42] discuss the
detection of regions to be used as a stroke container or as
a render primitive, and Lin et al. [23] uses a combinato-
rial matching algorithm to track the propagation of strokes.
In our work we also suggest the use of combinatorial op-
timization to find correspondences between the elements of
pairs of frames, but we propose the use of different matching
optimization criteria as an important part of the creative
control. A recent review of different NPR techniques and
applications can be found in [29].
Gooch et al. emphatically state that the NPR community

has surpassed the stage of mimicking art styles from the past
and should instead be looking forward to generating novel
rendering styles that are only possible with computers [12].
We are also interested in creating visual experiences that
promote interaction and that can be implemented on mobile
devices. The computational power and hardware capabili-
ties of today’s mobile devices are an invitation to use them
as the destination platform for real-time A/S based manip-
ulations. Many contemporary artists have chosen to create
artworks for mobile platforms [9, 16, 33, 41].
Our approach can also be used to create transitions be-

tween two dissimilar images. Many morphing techniques
have been created to generate fluid transitions between pairs
of images [43]. In most of these techniques, there is a trade-
off between the complexity of the definition of the correspon-
dent points and the warping function. With our system, new
smooth transitions between pairs of images can be generated
even when it is not possible to define correspondent points
by visual similarity.

We present a variety of rendering primitives that are not
based on any form of painting or illustration (a common
approach of NPR techniques [15]) and that can moreover
be used with the combinatorial optimization matching al-
gorithms we present here to create animations and video
effects. Furthermore, we also present sub-optimal alterna-
tives that can be used effectively in interactive applications,
including on mobile devices.

Figure 2: An overview diagram showing the four stages of
the system. For step 1, we determine which feature to ex-
tract (and how to extract them) from the video sequence.
For step 2, we choose a matching strategy to associate spe-
cific features between image pairs. For step 3, we decide
how to interpolate between corresponding features. Finally,
in step 4, we choose a rendering technique that resynthesizes
the features and places them in an output video sequence.
Creative choices can be made at each of these four stages.

3. GENERAL DESCRIPTION
An overview of our four-step approach to A/S is depicted

in Figure 2. Pairs of images are analyzed to extract descrip-
tive elements from them. These elements are then matched
and the transitions between the correspondent pairs are cal-
culated. In the final stage a new image is created by render-
ing the modified elements back to screen.

3.1 Analyzing the Input Image
The first step in the process is the analysis of the image.

By definition, an analysis is the process of separating a whole
into its component parts, but many different alternatives can
be considered as “component parts.” We interpret this stage



(a) (b)

Figure 3: These figure depict different matching criteria between frames. In (a), two consecutive frames and the lines joining
the matched objects. The darkness of the lines is proportional to the distance. In (b), the same two frames as the previous
example but with matchings defined using the minimum maximum criterion. Here, we see that it is less likely that any one
match will jump a significant distance.

broadly, considering it as a process of identifying and ex-
tracting information that can then be used in later steps.
We explore a range of possible outputs from this stage, in-
cluding: the decomposition of the image into a transformed
domain, such as the DFT [11]; or the list of features from a
feature detection algorithm (e.g., black points in a dithered
image, straight lines from the edge map, connected regions,
or corners) [25]. After this process the input image is rep-
resented as a set of points in the transformed domain, that
is, in the space formed by the parameters of the detected
features.

3.2 Matching Elements between Frames

3.2.1 Optimal Matching
The features on each frame are matched with the features

of the next frame. If the number of detected features is the
same on all frames then the matching can be posted as an
assignment problem as follows:

• Define the cost matrix C[n, n+1] of size M×M where
M is the number of features on each frames, and each
matrix element Cij represents the Euclidean distance
between the vector of parameters z of every feature i
on frame n to every feature j on frame n+1. That is,

Ci,j = d (zi[n], zj [n+ 1]) . (1)

• We then want to find the assignment matrix X[n] with
elements Xij , where Xij = 1 if the feature i on frame
n is matched to feature j on frame n+ 1 and Xij = 0
otherwise.

• The assignment matrix is restricted so that each fea-
ture on frame n is assigned to one and only one feature
on frame n+ 1 and reciprocally each feature on frame
n+1 is matched to one and only one feature on frame

n. That is,

M∑
j=1

Xij = 1 (i = 1.2...M)

and,

M∑
i=1

Xij = 1 (j = 1.2...M)

with,

Xij ∈ {0, 1} (i, j = 1.2...M)

• If the assignment matrix that is chosen is the one that
minimizes the sum of distances between features, that
is, if the matrix X[n] is chosen such that

M∑
i=1

M∑
j=1

CijXij (2)

is minimized, the optimization problem is known as
the linear assignment problem, and many algorithms
for solving this problem efficiently can be found in the
literature [5]. But on the other hand, if the matching
criterion is not to minimize the sum of distances but to
make the maximum distance as small as possible, the
assignment problem is transformed to the bottleneck
assignment problem. The problem now is to minimize
the maximum of CijXij ∀i, j = 1 · · ·M with the same
constrains presented previously. This is a very well
known variation of the original assignment problem for
which, fortunately, efficient algorithms also exist [5].

Figure 3a shows two frames of an animation where, for
simplicity of illustration, the synthesis objects are circles
with fixed color and size. Every feature can be described by
a vector of only two parameters (the x and y position) and
the matching between the objects is done using the minimum
sum criterion. Larger distances are plotted with a darker



tone. Note that in order to minimize the total sum, most
of the matchings are done between near objects. Figure 3b
shows the result of the bottleneck assignment problem with
the same two frames. Note that, though many matches have
significant distances (darker lines), there are no big jumps.

3.2.2 Sub-optimal strategies
Although some of the limitations of the combinatorial op-

timization approaches, such as the restriction on having the
same number of elements, can be easily overcome (for in-
stance by repeating elements on the less populated images),
they are nonetheless not feasible for real-time implementa-
tion. We explore a sub-optimal alternative to the matching
of elements that consists of these following steps:

• A maximum number of elements N is defined so that
the number of detected features in the analysis stage
is never larger than this number;

• At the beginning, N random elements are created;

• Starting with an arbitrary element, each one of them is
assigned to the closest (in the parameter space) unas-
signed feature in the currently analyzed frame;

• If all the target features are assigned, the closest one
with less source elements associated to it is chosen.

Despite the simplicity of this alternative and its sensitivity
to the starting element, we have obtained good results using
this algorithm in real-time interactive experiences. Some of
these results are described in section 4.1.

Figure 4: Using different paths to get to the same target
image. The left image is the final reconstruction with a
linear combination of two-dimensional Gaussian functions.
In the middle image the last parameter to be updated was
the angle. In the right image the last parameter was the
variance.

Figure 5: Block diagram of an Euler integrator used to gen-
erate a transition trajectory. Zk[n] is the current detected
feature, Xk[n] is the interpolated output.

3.3 Creating Intermediate Images by Interpo-
lation

Once the matching between elements has been decided,
the next aspect to be determined is the path in parameter

space that each source element will follow to become its
correspondent target element. One of the alternatives that
we have used is illustrated in Figure 5. The vector of the
difference between the current and desired position is used
as a steering force, and then the velocity and position of the
elements in parameter space is calculated by discrete time
integration. The two parameters Ka and Kd control the
degree of influence of the steering and drag forces and can
be modified to generate different trajectories.

Figure 6: A dictionary-based strategy to detect different
silhouettes in a black and white image.

Figure 7: The frame of an animation created with the
dictionary-based scheme. Every small element is a human
silhouette in a different pose. Image copyright c⃝Javier Vil-
legas.

In many of the representations that are obtained after the
analysis stage, the visual salience of the parameters that
conform each element is not necessarily uniform (e.g., in the
Fourier representation of images, phase is much more impor-
tant than amplitude [11]). Therefore, perceptually different
transitions can be obtained if the parameters of each ele-
ment do not change in perfect synchronicity (See Figure 4).



Table 1: Summary of steps used in example projects

Project Analysis Features Matching Interpolation Synthesis Interactive?

Ant Theater
(Section 4.1)

Corner
detection

2D points Sub-optimal
Euler
integration

Ant textures Yes

Herbaceous
(Section 4.1)

Dithering 2D points Sub-optimal
Euler
integration

Tree structures Yes

Background
Singer
(Section 4.2)

Dictionary of
silhouette
templates

2D oriented
elements with
state

Minimum
maximum

Euler
Integration;
Viterbi

Human
silhouettes

No

Untitled
(Section 4.3)

Nonlinear
least squares

2D Gaussian
functions (6D
vectors)

Minimum
sum

Euler
integration

2D Gaussian
functions

No

Untitled
(Section 4.4)

Connected
regions;
Contour
detection

128D Fourier
descriptors

Minimum
sum

Euler
integration

Filled regions No

Slave of Your
Words
(Section 4.5)

Luminance
value

Rectangular
regions

Identity; One
on one

Zero-order hold
Audio
waveforms

Yes

The Fitting
Dance
(Section 4.5)

Ellipse Fit-
ting

Ellipses Sub-optimal
Euler
integration

Ellipses
w/audio-
controlled
contours

Yes

Untitled
(Section 4.6)

2D FFT
256x256
coefficient
matrix

Identity; One
on one

Asymmetric
frequency-
dependent
Euler
integration

Frequency
modulation of
the IFFT

Yes

In section 4.6 we illustrate these possibilities with specific
examples.

3.4 Resynthesizing the Output Image
The final step is to recreate a new image, that is, to render

the elements that have been interpolated previously. It is in
this step where narrative meanings can be injected into the
animation, for example, by replacing corners detected in the
original frame with new images related to a particular theme
(Section 4.1), or by introducing visual motifs taken from
other modalities (Section 4.5). This can allow the artist to
emphasis an aspect of the original video or reveal a new story
superimposed upon the original video. As we will illustrate
in Section 4, the elements drawn on screen do not have to be
exactly the same ones that were detected, nor do they need
to be abstract entities. Rather they can have an identity
of their own, based perhaps on the aesthetic goals of the
artwork. They can also be used as a starting point or as
input parameters for a more sophisticated final rendering
process.

4. EXAMPLES
In this section we will present examples of animations and

real-time installations that follow the approach presented
above. Table 1 summarizes the characteristics of each of the
examples, illustrating how our method enables a variety of
creative techniques at various stages of our A/S approach,
including feature extraction, matching, interpolation, and
rendering. We also indicate which techniques are appropri-

Figure 8: An “interactive mirror” using the sub-optimal
algorithm and rendering points as ants.

ate for interactive contexts; in general, techniques that use a
sub-optimal matching strategy can occur at real-time rates.

4.1 Point-like Features
We developed a real-time installation, Ant Theater [37],

where an input image is analyzed in real-time using a Shi-
Tomasi corner detection algorithm [31] (see Figure 8). The
assignment between frames is done using the sub-optimal
algorithm described in Section 3.2.2. To handle the different
number of elements detected on each frame, a maximum
number of elements is predefined (it is a number that is
always bigger than the maximum number of corners that



the algorithm can return). Some elements are matched to
to the same target point, so at render time some ants will
be simply hiding behind others. Intermediate positions are
calculated using the Euler integration scheme presented in
section 3.3. The features are the points detected as corners
but they are rendered as ants.
A similar approach was used for the real-time installation,

Herbaceous, shown in Figure 1 [39]. Here the analysis stage
instead uses a Floyd-Steinberg dithering algorithm [34] mod-
ified to return a restricted maximum number of points (the
points that represent darker areas). The points are again
two dimensional features that are matched using the sub-
optimal approach and then rendered as the leaves of a tree.
The body of the tree is constructed using the position of the
leaves, as suggested by Rodkaew et al. [28].

4.2 Template Matching
Figure 7 shows a frame from an animation where the anal-

ysis stage involved the detection of human silhouettes in dif-
ferent positions and orientations. This scheme, depicted in
Figure 6, resembles dictionary-based decompositions such
as the matching pursuits algorithm [18]. Matching between
frames is done using the minimum maximum optimization
criterion. Elements in this representation have position, ori-
entation and state. Position and orientation can be inter-
polated with the strategy depicted in Figure 5, but for the
interpolation of states, a variation of the Viterbi algorithm
was used to generate the intermediate states [24]. This tech-
nique was used for the creation of a short animation that
explored the possibilities of narratives a two different levels
[38].

4.3 Gaussians in a 6D Space
Figure 11 shows the morphing between two images using

features that belong to a six dimensional space. The features
are Gaussian functions. The target image was analyzed us-
ing non-linear least squares [26] to find the best fit of a linear
combination of 2D Gaussian functions. That is, a grayscale
image is approximated by:

I (x, y) ≈
N∑

n=1

gn (x, y) (3)

where

gn (x, y) = Ane
−an(x−µxn)2+2bn(x−µxn)(y−µyn)+cn(y−µyn)

2

with

an =
cos2 θn
2σ2

xn

+
sin2 θn
2σ2

yn

bn = − sin 2θn
4σ2

xn

+
sin 2θn
4σ2

yn

cn =
sin2 θn
2σ2

xn

+
cos2 θn
2σ2

yn

Thus, each Gaussian function can be represented as a point
in a six-dimensional space using the six parameters: An,
µxn, µyn, σxn, σyn, θn.
In the sequence depicted in Figure 11, 144 Gaussian func-

tions are used to represent each one of the images. The
Gaussian functions are then matched using the minimum
sum criterion, and the parameters from the source image
are slowly transformed to the destination image.

4.4 Fourier Descriptors in a 128D Space
A similar experiment in morphing two images can be re-

peated with a different set of features. This time we used
the set of closed contours of a level set representation of a
grayscale image (see Figure 9).

Figure 9: Generating a list of the level sets of a grayscale
image.

Each contour is represented using a 128-length vector of its
Fourier descriptors [17]. The list of contours of the original
image is matched using the minimum sum criterion with the
list of contours of the destination image. To calculate the
cost matrix C[n, n+1] of equation 1, we used the Euclidean
distance between the magnitude of all but the first element of
each vector of Fourier descriptors. By doing that we consider
differences in shape, scale and position and ignore differences
in starting point and (unfortunately) orientation. Figure 13
shows a sequence of frames created in the morphing between
the two representations.

Figure 10: Two images showing the use of an audio signal
before the resynthesis. On the left the RMS value of the
audio signal is used to change the contours of the ellipses.
In the picture on the right the waveform of the audio signal
is used to draw the input image.

4.5 Intermodality
A/S approaches are powerful in part because strong ma-

nipulations can be performed before rebuilding the output.
Figure 10 shows examples where an external signal (i.e. an
audio stream) is used to transform the input image. The
left image shows an image where the RMS value of a mu-
sical input is used to determine the amplitude of the sinu-
soidal signal added to the ellipse contours. This strategy was
used for the creation of a short animation titled The Fitting
Dance [35]. The right image shows a zoom in to a frame of
the interactive installation Slave of Your Words [36]. In this
installation the waveforms themselves are used as synthesis
elements.

4.6 A/S in the Frequency Domain
The Fourier transform is a powerful analytical tool com-

monly used for signal transformations [3]. For this last ex-
ample, we use the two-dimensional Fourier transform in the



Figure 11: Morphing between two images using a six-dimensional representation for each of the detected feature (a 2D gaussian
function), and matching them with a minimum sum criterion.

Figure 12: A frame of the FFT animation. The right side
shows the resynthesized version created by frequency mod-
ulation of the IFFT of the phase interpolated version of the
input. The middle image shows that low frequencies are
updated first.

analysis stage. After this process, the image is represented as
a linear combination of two-dimensional sinusoidal functions
of different phases and amplitudes. We used a trivial iden-
tity assignment of the frequency components from frame to
frame, but we used the interpolation scheme shown in Figure
5 for the phases of the low-frequency detected components.
The high frequency components are updated only after the
low frequency elements are close enough to their targets.
The resulting animation is rendered as the frequency mod-
ulation of the inverse Fourier transform of the interpolated
components. To interact with the piece, the phase of the low
frequency components can be manipulated in real time with
dragging gestures. This example is illustrated in Figure 12.

5. EVALUATION
In this paper, we presented a novel approach for thinking

about how to generate moving sequences from video data.
We have used this approach to create a wide range of ani-
mations and real-time installations that have been received
positively by audiences and curators.

In many of the applications we have created, the rendered
elements are constantly moving towards a target. Because of
that, a faithful reconstruction of the input is accomplished
only when the image stays still for a few frames. That con-
straint defines what type of sequences work best as sub-
ject matter. For instance, we have used slow moving faces
in animations like The Fitting Dance [35] and Background
Singer [38], both of them were presented in multiple interna-
tional venues, including the 2009 Japan Media Arts Festival1

(more than 10,000 attendees), the 2011 Byte Gallery Inter-
national Exhibition2, and the 2012 Portland Experimental
Film Festival3 (each with ∼1,000 visitors). Audience reac-
tion was enthusiastic as the artworks engaged the audience
with a narrative in which the synthesis elements changed
with time according to a backstory. There is always a mix-
ture of joy and surprise when familiar objects (like human
faces) are created slowly from the synthesis objects.

In real-time installations we have found that, rather than
being a limitation, the non-immediate response of the sys-
tem in fact adds suspense. It becomes a way to engage the
viewer as a participant and to invite him or her to spend
some time with the artwork. We have observed this behav-
ior in some of the more popular installations, such as Herba-
ceous [39] and Ant Theater [37]. Both of these pieces have
been presented in international exhibitions, including the
2014 Digital Latin America Festival4 (still ongoing, ∼5,000
attendees expected), Currents 2013: The Santa Fe Interna-
tional NewMedia Festival5 (>5,000 attendees), and the 2012

1http://j-mediaarts.jp/about/index?locale=en
2http://www.transy.edu/music/BYTE_GALLERY
3http://effportland.com/
4http://issuu.com/516artsabq/docs/digital_latin_
america_program_guide
5http://currentsnewmedia.org/



Figure 13: Features of dimension 128 matched between two images and the intermediate images that they generate.

Prospectives International Festival of Digital Art6 (∼1,000
attendees).

6. FUTURE WORK
We have shown that it is possible to use our approach to

create A/S techniques for video sequences similar in many
ways to A/S techniques in the audio domain. Despite the
perceptual differences between aural and visual stimuli, the
most successful audio tools can still be used as inspiration
to explore the possibilities of A/S in animation. In particu-
lar, we showed how the two-dimensional Fourier transform
can be used to create a continuous manipulation of frequency
components at interactive rates, similar to the way the phase
vocoder does for the manipulation of audio partials. Fu-
ture work can include the use of an oscillator bank in the
resynthesis stage instead of the IFFT. That implementation
will allow more direct manipulation of frequency, orienta-
tion, phase, and amplitude before the resynthesis step.
We strongly believe that the use of A/S techniques on

video sequences can support the creation of new visual nar-
ratives. For example, we showed in section 4.1 that the
rendering step can be used to impose an additional “local”
meaning to the elements to be rendered. This simultaneity
of subject matters at multiple scales can be used to explore
new parallel narratives [40].
We have shown that our approach is general enough to

be adequate for the creation of non-photorealistic represen-
tations that are not intended to mimic art styles from the
past, but instead seek to find novel creative renditions of
moving images. Although some of the alternatives we pre-
sented here are currently not suitable for real-time imple-
mentation, we expect that in the near future that situation
will be overcome.

6www.unr.edu/art/prospectives12.html

We have created animations [38, 35], real-time installa-
tions [10, 37, 39, 36] and tablet applications [41] with our
techniques, but an interesting direction to distribute and
further evaluate the creative potential of our work will be
to create public domain tools that allow other people to ex-
periment with our techniques. Although not discussed here
in this text, future work will explore the creation of plu-
gins and interfaces that help artists to better make use of
A/S techniques, such as those described above. Addition-
ally, we plan to introduce authoring tools that enable mul-
timedia programmers to more easily develop and test novel
A/S techniques appropriate for their own projects.
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