
Comparison Operators

Comparison operators help to make decisions that determine
which lines of code should be run next.

Comparison operators allow you to compare values an test
whether a condition is met or not.

They return single values of True or False.

Comparison Operators

> Greater than

< Les than

>= Greater than or equal

<= Less than or equal

!= Is not equal to

== Is equal to

=== Strict equal to

!== Strict not equal to

5 > 3 returns true

4 < 9 returns true

7>=6 returns true

8<=8 returns true

‘Hello’ != ‘Goodbye’ returns true

‘Hello’ == ‘Goodbye’ returns false

‘3’ ===3 returns false

‘3’ !== 3 returns true

Comparison Operators

(score >= pass)

operand operand

comparison
operator

Comparison Operators

(score >= pass) > (highScore1 + highScore2)

operand operand

comparison
operator

Logical Operators

Logical operators allow you to compare the results of more than
one comparison operator.

&& Logical AND

I I Logical OR

! Logical NOT

Logical Operators

((2<6) && (3>=2)) returns true

((2<6) I I (2>1)) returns true

!(2 <1) returns true

Logical Operators

((5 > 2) && (2 >= 3))

expression1 expression2

logical
operator

Logical Operators - example

var score1 = 8;
var score2 = 8;
var pass1 = 6;
var pass2 = 6;
var passBoth = (score1 >= pass1) && (score2 >= pass2);

var msg = 'Both rounds passed: ' + passBoth;
var el = document.getElementById('answer'); el.innerHTML = msg;

Logical Operators – example

var score1 = 8;
var score2 = 8;
var pass1 = 6;
var pass2 = 6;
var minPass = (score1 >= pass1) || (score2 >= pass2);

var msg = 'Resit required: ' + !(minPass);
var el = document.getElementById('answer'); el.innerHTML = msg;

If statement

The if statement evaluates a condition.

If the condition is true, all statements in the subsequent code block
between opening curly brace and closing curly brace are executed.

if (condition) {
block of code to be executed if the condition is true

}

If statement

if (score >= 50) {
congratulate();

}

If … else statements

The if …else statement evaluates a condition.
If the condition is true, all statements in the first code block are
executed.
If the condition is false, the second code block is executed instead.

if (condition) {
block of code to be executed if the condition is true

} else {
block of code to be executed if the condition is false

}

If … else statements

if (score >= 50) {
congratulate();

}
else {

encourage();
}

If … else statements

If the time is less than 20:00, create a "Good day" greeting, otherwise
"Good evening":

if (time < 20) {
greeting = "Good day";

} else {
greeting = "Good evening";

}

If … else statements – good morning example

<!DOCTYPE html>
<html>
<body>
<p>Click the button to display a time-based greeting:</p>
<button onclick="myFunction()">Try it</button>
<p id="demo"></p>

If … else statements – good morning example
<script>
function myFunction() {

var greeting;
if (new Date().getHours() < 20) {

greeting = "Good day";
} else {

greeting = "Good evening";
}
document.getElementById("demo").innerHTML = greeting;

}
</script>
</body> </html>

If … else statements – good morning example
Exercise

Write a script to check someone’s age and determine if the person
can consume alcohol

to the minimum legal drinking age is 21

If … else statements – good morning example
Exercise

Write a script to print “DES 350 class day” if current day is M or W

If statement- example

var score = 75;
var msg;
if (score >= 50) {
msg = 'Congratulations!';
msg += ' Proceed to the next round.';
}

var el = document.getElementById('answer')
el.textContent = msg;

If statement- example
<!DOCTYPE html>
<html>
<head>
<title>- If Statement</title>

<link rel="stylesheet" href="css/c04.css" />
</head> <body>
<section id="page1">
<h1>Bullseye</h1>

 <section
id="answer">
</section>
</section>
<script src="js/if-statement.js”></script>
</body> </html>

If statement- example
<!DOCTYPE html>
<html>
<head>
<title>- If Statement</title>

<link rel="stylesheet" href="css/c04.css" />
</head> <body>
<section id="page1">
<h1>Bullseye</h1>

 <section
id="answer">
</section>
</section>
<script src="js/if-statement.js”></script>
</body> </html>

If …else statement- example

var pass = 50;
var score = 75;
var msg;
if (score > pass) {
msg = 'Congratulations, you passed!';
} else {
msg = 'Have another go!';
}
var el = document.getElementById('answer');
el.textContent = msg;

If …else statement with function- example

var score = 75;
var msg = '';
function congratulate() {

msg += 'Congratulations! ';
}
if (score >= 50) {

congratulate();
msg += 'Proceed to the next round.';

}
var el = document.getElementById('answer');
el.innerHTML = msg;

JavaScript Events

• Interactions create events
• Events trigger code
• Code responds to users

• Events are used in combination with functions
• Events trigger functions to be executed
• (such as when a user clicks a button)

UI Events

onerror The event occurs when an error occurs while loading an
external file

onload The event occurs when an object has loaded
onresize The event occurs when a document view is resized
onscroll The event occurs when an element's scrollbar is being

scrolled
onunload The event occurs once a page has unloaded (for <body>)

UI Events

<html>
<head>
<title>Random Script</title>
<script>
var myPix = new
Array("images/red.gif","images/green.gif","images/blue.gif”)
function choosePic() {

if(document.images{
randomNum = Math.floor(Math.random()*myPix.length)
document.image.src=myPix[randomNum]

}}
</script>

UI Events

</script>
</head>
<body onLoad="choosePic()">

</body>
</html>

Keyboard Events

onkeydown The event occurs when the user is pressing a key
onkeypress The event occurs when the user presses a key
onkeyup The event occurs when the user releases a key

<input type="text" onkeypress="myFunction()">

Mouse Events

onclick The event occurs when the user clicks on an element

ondblclick The event occurs when the user double-clicks on an
element

onmousedown The event occurs when a user presses a mouse button
over an element

onmouseover The event occurs when the pointer is moved onto an
element, or onto one of its children

onmouseout The event occurs when a user moves the mouse
pointer out of an element, or out of one of its children

onmouseup The event occurs when a user releases a mouse
button over an element

Mouse Events

<html> <head>
<title>bgcolor_change</title>
<script language="JavaScript">
function newbg(thecolor) {
document.bgColor=thecolor;
}
</script> </head>
<body textcolor="black" link="black" alink="black”>
 olive

 blue

 beige

</body> </html>

Focus Events

onblur The event occurs when an element loses focus

onfocus The event occurs when an element gets focus

Focus Events

<!DOCTYPE html>
<html>
<body>
Enter your name: <input type="text" onfocus="myFunction(this)”>
<p>When the input field gets focus, a function is triggered which changes
the background-color.</p>
<script>
function myFunction(x) {

x.style.background = "yellow";
}
</script>
</body></html>

Form Events

onchange The event occurs when the content of a form element, the
selection, or the checked state have changed (for

<input>, <keygen>, <select>, and <textarea>)
oninput The event occurs when an element gets user input
onreset The event occurs when a form is reset
onsearch The event occurs when a user writes something in a search

field (for <input="search">)
onselect The event occurs after the user selects some text (for <input>

and <textarea>)
onsubmit The event occurs when a form is submitted

Form Events

<!DOCTYPE html>
<html> <body>
<p>Write something in the text field to trigger a function.</p>
<input type="text" id="myInput" oninput="myFunction()”>
<p id="demo"></p>
<script>
function myFunction() {

var x = document.getElementById("myInput").value;
document.getElementById("demo").innerHTML = "You wrote: " + x;

}
</script> </body>

How Events trigger JavaScript code

1. Select element (<body>)
2. Specify event (onLoad)
3. Call code (function ())

DOM event handlers
element. onevent = functionName;

function checkUsername() {
//some code to check the length of username
}

var el = document.getElementById(‘username’);
el.onblur =checkUsername;

DOM event handlers
Example
event_handler.html

DOM event handlers
Assignment 6

Write a script to print “DES 350 class” if current day is M or W.
Create a function to determine current day using Date object.

Use DOM event handler to print the message.

Switch statement
Switch statement starts with a variable switch value.
Each case indicates a possible value for the switch variable
and the code that should run if the variable matches that value.

If a match is found, that code is executed. The break statement
stops switch statement.

Better performance than multiple if statements.

Switch statement
switch (level) { //switch value variable

case ‘One’: //if switch value is “One’ this code
executed

title=‘Level 1’;
break;

case ‘Two’: //if switch value is ‘Two’ this code
executed

title=‘Level 2’;
break;

default: //if none of the above this code executed
title=‘Test’;

Switch statement- example
var msg;
var level = 2;
switch (level) {
case 1:
msg = 'Good luck on the first test';
break;
case 2:
msg = 'Second of three - keep going!';
break;
case 3:
msg = 'Final round, almost there!';
break;
default:
msg = 'Good luck!'; break;
}

Switch statement
var el = document.getElementById('answer');
el.textContent = msg;

Switch statement
<!DOCTYPE html>
<html>
<head>
<title>Switch Statement</title>
<link rel="stylesheet" href="css/c04.css" />
</head>

<body>
<section id="page1">
<h1>Bullseye</h1>

<section id="answer"></section>

</section>
<script src="js/switch-statement.js"></script>
</body>
</html>

Weak typing

JavaScript allows you not to specify what data type each variable will be
(in declaration). JavaScript uses weak typing.
Data type for a value can change.

Data type Purpose
string Text
number Number
boolean true or false
null Empty value
undefined variable has been declared but not yet assigned a value

Type Coercion

Converts data types behind the scenes to compete the operation.

(‘1’ >0) returns true

String is converted to a number

(‘ten’/2) returns NaN (Not a Number)

Type Coercion

Because of type coercion, the strict equality operators === and !==
Result in fewer unexpected values than == and != do.
false, 0 and ‘ ‘

(0 == ‘ ‘) true
(0 === ‘ ‘) false

(false == ‘ ‘) true
(false === ‘ ‘) false

For Loop

Loop checks a condition. If the condition is true, the statements
in curly braces will be executed. The cycle repeats until the condition
returns false.

for (var i = 0; i < 10; i++) {
document.write(i);

}

(initialization; condition; increment)

For Loop

Often used to loop through the items in an array.

<html>
<head>
<title>loop</title>
<script>

For Loop

function myFunction() {
var x="";
for (i=0;i<50;i++) {
x=x + "The number is " + i + "
";
}

document.getElementById("demo").innerHTML=x;
}
</script>
</head>
<body>

For Loop

<p>Click the button to loop through a block of as long as i is
less than 50.</p>
<button onclick="myFunction()">Try it</button>
<p id="demo"></p>

</body>
</html>

while Loop

While loop will run as long as the condition is true.

while (i < 10) {
statements;
i ++;

}

do while Loop

Do while loop will execute statements first, before it checks the
condition .

do {
statements;
i ++;

} while (i < 10);

do while Loop - example

var i = 1; // Set counter to 1
var msg = ''; // Message // Store 5 times table in a variable
do {
msg += i + ' x 5 = ' + (i * 5) + '
';
i++;
} while (i < 1); // Note how this is already 1 and it still runs
document.getElementById('answer').innerHTML = msg;

do while Loop - example
<!DOCTYPE html>
<html>

<head>
<title>Do While Loop</title>
<link rel="stylesheet" href="css/c04.css" />

</head>
<body>

<section id="page1">
<h1>Bullseye</h1>

<section id="answer"></section>

</section>
<script src="js/do-while-loop.js"></script>

</body> </html>

3 ways to use events

1) HTML event handlers – old fashioned

2) DOM event handlers
var el = document.getElementById(‘username’);
el.onblur = checkUsername();

3) Event listeners
var el = document.getElementById(‘username’);
el.addEventListener(‘blur’, checkUsername, false);

Event Listeners

Most recent approach
Can call more than one function at a time
Not supported by older browsers

Event Listeners

element.addEventListener (‘event’, functionName, [Boolean]);

DOM element ‘blur’ checkUserName false

Indicates capture
Usually set to false

Event Listeners – event-listener.html

function checkUsername() {
var elMsg = document.getElementById('feedback');
if (this.value.length < 5) {
elMsg.textContent = 'Username must be 5 characters or more';
} else {
elMsg.textContent = '';
} }
var elUsername = document.getElementById('username');
elUsername.addEventListener('blur', checkUsername, false);

Event Listeners – event-listener-with-ie-fallback.html

IE 5-8 did not support event listeners
Example fallback
attachEvent() method

Event Listeners – event-listener-with-ie-fallback.html

if (elUsername.addEventListener) {
elUsername.addEventListener('blur', function(){ checkUsername(5);

}, false);
} else {
elUsername.attachEvent('onblur', function(){
checkUsername(5);
});
}

Types of Events

W3C DOM Events HTML5 Events BOM Events

Under
development

submit
Input
change
hashchnage

Touchscreen devices,
accelerometer, etc.

touchstart
touched
orientationchange

UI Events

error The event occurs when an error occurs while loading an
external file

load The event occurs when an object has loaded
resize The event occurs when a document view is resized
scroll The event occurs when an element's scrollbar is being

scrolled
unload The event occurs once a page has unloaded (for <body>)

UI Events

Example- load.html

function setup() {
var textInput;
textInput = document.getElementById('username');
input
textInput.focus();

}
window.addEventListener('load', setup, false);

Focus & Blur Events

blur The event occurs when an element loses focus

focus The event occurs when an element gets focus

focusin same as focus

focusout same as blur

Focus & Blur Events

Example: focus-blur.html

A the text input gains and loses focus,
the feedback is shown to the user in the <div> element below

Mouse Events

click The event occurs when the user clicks on an element
dblclick The event occurs when the user double-clicks on an

element
mousedown The event occurs when a user presses a mouse button

over an element
mouseover The event occurs when the pointer is moved onto an

element, or onto one of its children
mouseout The event occurs when a user moves the mouse

pointer out of an element, or out of one of its children
mouseup The event occurs when a user releases a mouse

button over an element
mousemove occurs when the cursor is moved around the element

Mouse Events

Example: click.html

Where Events Occur

screen page client

screenX pageX clientX
screenY pageY clientY

Where Events Occur

Example: position.html

Where Events Occur
var sx = document.getElementById('sx');
var sy = document.getElementById('sy');
var px = document.getElementById('px’)
var py = document.getElementById('py’)
var cx = document.getElementById('cx’)
var cy = document.getElementById('cy’)

function showPosition(event) {
sx.value = event.screenX;
sy.value = event.screenY;
px.value = event.pageX;
py.value = event.pageY;
cx.value = event.clientX;
cy.value = event.clientY;
}
var el = document.getElementById('body');
el.addEventListener('mousemove', showPosition, false);

Keyboard Events

input Occurs when the value of <input> or <textarea> chnages

keydown The event occurs when the user is pressing a key

keypress The event occurs when the user presses a key

keyup The event occurs when the user releases a key

Keyboard Events

Example: keypress.html

Event listener checks for keypress event on the <textarea> element

Each time it fires, the charCount() function updates the character
count and shows the last character used.

Keyboard Events
var el;
function charCount(e) {
var textEntered, charDisplay, counter, lastkey;
textEntered = document.getElementById('message').value;
charDisplay = document.getElementById('charactersLeft');
counter = (180 - (textEntered.length));
charDisplay.textContent = counter;
lastkey = document.getElementById('lastKey');
lastkey.textContent = 'Last key in ASCII code: ' + e.keyCode;
}
el = document.getElementById('message');
el.addEventListener('keypress', charCount, false);

Form Events

submit Occurs when form is submitted

change occurs when the status of forms change (ex. radio
button selected)

input occurs when user types in text in the <input> or
<textarea>

Form Events

Example: form.html

The change events triggers the PackageHint() function.

JavaScript Events

User Interface events (load)
Focus & Blur
Mouse Events
Keyboard events
Form events
Mutation events
HTML5 events

Mouse Events

click The event occurs when the user clicks on an element
dblclick The event occurs when the user double-clicks on an

element
mousedown The event occurs when a user presses a mouse button

over an element
mouseover The event occurs when the pointer is moved onto an

element, or onto one of its children
mouseout The event occurs when a user moves the mouse

pointer out of an element, or out of one of its children
mouseup The event occurs when a user releases a mouse

button over an element
mousemove occurs when the cursor is moved around the element

Mouse Events

Example: click.html

Keyboard Events

input Occurs when the value of <input> or <textarea> chnages

keydown The event occurs when the user is pressing a key

keypress The event occurs when the user presses a key

keyup The event occurs when the user releases a key

Keyboard Events

Example: keypress.html

Event listener checks for keypress event on the <textarea> element
Textfiled is limited to 180 characters

Each time it fires, the charCount() function updates the character
count and shows the last character used.

Each key is shown in ASCII code

HTML ASCII Code

ASCII = American Standard Code for Information Interchange

It was designed in the early 60's, as a standard character set for
computers and electronic devices.
ASCII is a 7-bit character set containing 128 characters.

It contains the numbers from 0-9, the upper and lower case English
letters from A to Z, and some special characters.

The character sets used in modern computers, in HTML, and on the
Internet, are all based on ASCII.

HTML ASCII Code

Char Number Description
A 65 uppercase A
B 66 uppercase B
C 67 uppercase C
D 68 uppercase D
E 69 uppercase E
F 70 uppercase F
G 71 uppercase G
H 72 uppercase H
http://www.w3schools.com/charsets/ref_html_ascii.asp

ASCII Art

ASCII art is an early graphic-design technique, dating back to the
1890s when typewriters became more than just a new tool for writing.

ASCII Art

ASCII Art

Keyboard Events
var el;
function charCount(e) {
var textEntered, charDisplay, counter, lastkey;
textEntered = document.getElementById('message').value;
charDisplay = document.getElementById('charactersLeft');
counter = (180 - (textEntered.length));
charDisplay.textContent = counter;

lastkey = document.getElementById('lastKey');
lastkey.textContent = 'Last key in ASCII code: ' + e.keyCode; }

el = document.getElementById('message');
el.addEventListener('keypress', charCount, false);

Form Events

submit Occurs when form is submitted

change occurs when the status of forms change (ex. radio
button selected)

input occurs when user types in text in the <input> or
<textarea>

Form Events

Example: form.html

The change events triggers the PackageHint() function.
This shows different messages below the menu to reflect the choice.

Form Events

Exercise: modify the form.html and javascript to offer the user a drop
down menu with two choices : 20 or younger / 21 or older.
When the use interacts with the drop-down menu, the messages
below say “ You can drink” or “You cannot drink”

Mutation Events

When elements are added to or removed from the DOM,
its structure changes.

These changes trigger mutation events.

Mutation observers are designed to wait until a script has finished its
task before reacting, then report the changes as a batch (rather than
one at a time).

Mutation Events

DOMNodeInserted Fires when a node is inserted into the
DOM tree e.g. using appendChild(),
replaceChild(), or insertBefore()

DOMNodeRemoved Fires when a node is removed from
the DOM tree e.g. removeChild()

DOMSubtreeModified Fires when the DOM structure
changes after the two events listed
above occur.

Mutation Events

DOMNodeInsertedIntoDocument Fires when a node is inserted
into the DOM tree as a
descendant of another node
that is already in the
document.

DOMNodeRemovedFromDocument Fires when a node is removed
into the DOM tree as a
descendant of another node
that is already in the
document.

Mutation Events

Example: mutation.html
Two event listeners each trigger their own function.

The first listens for when the user clicks the link to add a new list item.
It then uses DOM manipulation events to add a new element
(changing the DOM structure and triggering mutation events).

The second event listener waits for the DOM tree within the
element to change. When the DOMNodeInserted event fires, it calls a
function updateCount(). This function counts how many items there
are in the list, and then updates the list count at the top of the page
accordingly.

HTML5 Events

DOMContentLoaded Fires when the DOM tree is formed (images,
css and js might be still loading). Script starts
to run earlier than using load event which
waits for other resources such as images to
load.

hashchnage Fires when the URL hash changes (w/o the
entire window refreshing). Hashes are used
on links to specific parts (known as anchors)
within a page and also on pages that use
AJAX to load content.

HTML5 Events

Anchor link

Useful Tips Section

Visit the Useful Tips Section

HTML5 Events

beforeunload Fires on the window object before the page is
unloaded. It should only be used to help the user
(not to encourage them to stay on the website if
they are trying to leave). Example. It could be
helpful to let a user know that changes on a form
he competed have not been saved.

HTML5 Events

Example: html5_events.html

As soon as the DOM tree has been formed the focus is given to the
text input.

The DOMContentLoaded event fires before the load event.
If users try to leave the page before they press submit button, the
beforeunload event checks that they want to leave.

HTML5 Events

Example.html
Shows an interface for a user to record voice notes.
The user can enter a name which is displayed in the heading,
and they can press record (which changes the image that is shown).

Keyup event triggers a function writeLabel() which copies the text from
the form input and writes it into the main heading.

The record button has an attribute data-state. When the page loads,
its value is record. When user presses the button, the value of this
attribute changes to pause (and triggers a new css rule to indicate
that it is now recording).

JavaScript Events
Events are the browser’s way of indicating when something has
happened (e.g. a page has finished loading, button has been clicked)

When an event occurs on an element, it can trigger a JavaScript
function. When this function then changes the web page in some way,
it feels interactive because it has responded to the user.

You can use event delegation to monitor for events that happen on all
of the children of an element.

The most commonly used events are W3C DOM events, although there
are others in theHTML5 specifications as well as browser-specific
events.

JavaScript Events
Assignment: JavaScript events.

Write a script that will calculate a 15% and a 20% tip.

The users type into a text field the amount that they wish to tip on.

The user selects 15% or 20% they wish to tip via a drop-down menu.

When they click on a "Calculate" button the amount of the tip and the
total amount (tip plus original amount) are displayed.

