
Sending push notifications from web app

• Web push notifications (JavaScript / third-party providers)
• Native iOS push notifications
• Brief history
• Support
• How does it work
• Service workers
• Lab and demo

Web push notifications

introduced by Chrome in early 2015 (42 version)
The version included “two new APIs that together allow sites to push native
notifications to their users even after the page is closed—provided the user
has granted explicit permission.”
The update allowed websites to send notifications just like apps could, so far.

allegedly the most critical mobile feature that was missing from the web and
thus upon release witnessed a tremendous adoption by web publishers

Web push notifications brief history

2003- Blackberry OS launched push email. This saved executives and business class from constantly
checking their email. Almost everyone believes that this is what that fueled Blackberry’s success.

June 2009- Apple launched APN (Apple push notification). The first push notification service ever

May 2010- Google launched Android Cloud-to-device messaging (C2DM). The first notification
service by Google, introduced in Android 2.2

June 2012- C2DM was replaced by GCM to overcome the limitations that C2DM had. This is
important because the current delivery of push notifications is facilitated by GCM. It has been
added with additional features in its new version as FCM.

April 2015- Chrome launched Chrome 42 with support for native web push notification.

Jan 2015- Firefox extended support to web push with the launch of their version 44. This was not
applicable on mobile site.

Web push notifications brief history

Aug 2016- Firefox extended support to web push even on the mobile devices.

Feb 2017- Chrome introduced rich web push notifications with Chrome 56

Web push notifications brief history

Aug 2016- Firefox extended support to web push even on the mobile devices.

Feb 2017- Chrome introduced rich web push notifications with Chrome 56

From. https://monk.webengage.com/resources/webinar-getting-started-with-web-push-
notifications/

Web push notifications appearance

Appearance of a browser push notification varies
• according to the browser
• according to the OS

In the same Chrome browser, web push looks differently in Windows and
Mac and likewise for Firefox.

Web push notifications support

still in a nascent stage not all browsers and OS support it yet

currently supported on desktop:
• Chrome (version 42 and above)
• Firefox (version 44 and above)
• opera(version 27 and above)

currently supported on mobile platforms:
• Android (version 4+) default browser and on Android Chrome
• for Edge -under development
• for Safari - under development

Sending push notifications from web app

6. In Terminal run the command:

node send-sms.js

Sending push notifications from web app

6. In Terminal run the command:

node send-sms.js

Sending push notifications from web app

Using third party provider
basic subscription costing around 25-30$/month
Moengage
Pushcrew
Pushengage
izooto

How does it work

1. Adding the client side logic to subscribe a user to push (i.e. the JavaScript
and UI in your web app that registers a user to push messages):
- generate a set of “application server keys” unique to your server
- “subscribe” a user to push messaging
- done in JavaScript with the Push API
- send the PushSubscription details to backend server
- save this subscription to a database and use it to send a push message to

that user

From https://web-push-book.gauntface.com/chapter-01/02-how-push-works/

How does it work

2. The API call from your back-end / application that triggers a push
message to a user’s device.
-make an API call to a push service:
- what data to send
- who to send the message to
- how the push service should send the message

How does it work

3. Push event on the user’s device
- When the push service does deliver a message, the browser will receive

the message, decrypt any data and dispatch a push event in your service
worker.

- A service worker is a “special” JavaScript file. The browser can execute
this JavaScript without your page being open. It can even execute this
JavaScript when the browser is closed

- The service worker will receive a “push event” when the push arrives on
the device to show a notification.

How does it work

From. https://monk.webengage.com/resources/webinar-getting-started-with-web-push-
notifications/

Service worker

• script that runs silently in the background of a browser
• registered against an origin and path
• powerful > can be used to get into and reconstruct network connections

and responses
• runs only over HTPPS due to security reasons (therefore web push too only

works on https domains)
• localhost is used for development and testing (considered as a secure

origin)
• A registered service worker doesn’t need the webpage to be opened in

order to work.
• runs in a separate thread which is non-blocking in manner
• is designed to be asynchronous
• web push relies on ‘service worker’ to operate

Sending push notifications to users on iPhone

As of today a web app cannot receive push notifications on any iOS
browser (Safari, Chrome for iOS, ...)

iOS does not yet include an implementation of Service Workers, which are
needed for push notifications to work. It is currently in development, and it is
already working on Safari for OS X

Developers currently have to settle for a native implementation of the app
on iOS.

Sending push notifications to users

check for installed service workers on your browser for different domains;

In Chrome:
chrome://serviceworker-internals

In Firefox:

about:serviceworkers

Sending push notifications to users

Ex. project structure:
index.html
index.js
manifest.json
server.js
service-worker.js

-home screen with the form to send push notifications
-where service worker registration is initiated
-controls what the user sees when launching the home screen --
-server side script
-adds event listeners to the service worker workspace upon
registration

Source by:
https://www.cronj.com/blog/browser-push-notifications-using-javascript/

service-worker.js

"use strict";

var url = [];
var count = 0;

self.addEventListener('install', function(event) {

event.waitUntil(self.skipWaiting()); //will install the service worker

});

self.addEventListener('activate', function(event) {

event.waitUntil(self.clients.claim()); //will activate the serviceworker

});
// Register event listener for the 'notificationclick' event.

self.addEventListener('notificationclick', function(event) {

event.notification.close();

event.waitUntil(

service-worker.js

event.waitUntil(

clients.matchAll({

type: "window"
})

.then(function(clientList) {

if (clients.openWindow) {

var c = count;
count++;

return clients.openWindow(url[c]);

}
})

);
});

index.js

var endpoint;

var key;

var authSecret;

// Register a Service Worker.

navigator.serviceWorker.register('service-worker.js')

.then(function(registration) {

// Use the PushManager to get the user's subscription to the push service.

//service worker.ready will return the promise once the service worker is
registered. This can help to get rid of

//errors that occur while fetching subscription information before
registration of the service worker

return

index.js

navigator.serviceWorker.ready.then(function(serviceWorkerRegistration) {

return serviceWorkerRegistration.pushManager.getSubscription()

.then(function(subscription) {

// If a subscription was found, return it.

if (subscription) {
return subscription;

}
// Otherwise, subscribe the user (userVisibleOnly allows to specify

that we don't plan to

// send browser push notifications that don't have a visible effect
for the user).

return serviceWorkerRegistration.pushManager.subscribe({

userVisibleOnly: true

});
});

});

index.js

}).then(function(subscription) { //chaining the subscription promise object

// Retrieve the user's public key.

var rawKey = subscription.getKey ? subscription.getKey('p256dh') : '';

key = rawKey ?

btoa(String.fromCharCode.apply(null, new Uint8Array(rawKey))) : '';
var rawAuthSecret = subscription.getKey ? subscription.getKey('auth') : '';

authSecret = rawAuthSecret ?

btoa(String.fromCharCode.apply(null, new Uint8Array(rawAuthSecret))) : '';

endpoint = subscription.endpoint;

// Send the subscription details to the server using the Fetch API.

fetch('/register', {

method: 'post',

index.js

headers: {

'Content-type': 'application/json'

},
body: JSON.stringify({

endpoint: subscription.endpoint,

key: key,
authSecret: authSecret,

}),
});

});
// Ask the server to send the client a notification (for testing purposes, in real

// applications the notification will be generated by some event on the server).

document.getElementById('doIt').addEventListener('click', function() {

index.js

fetch('/sendNotification', {

method: 'post',

headers: {

'Content-type': 'application/json'

},
body: JSON.stringify({

endpoint: endpoint,

key: key,
authSecret: authSecret,

title: document.getElementById("notificationTitle").value,

body: document.getElementById("notificationBody").value,

icon: document.getElementById("notificationIcon").value,

link: document.getElementById("notificationLink").value

}),
}); });

manifest.json

{

"name": "Push Notifications",

"short_name": "push Notifications",

"start_url": "./index.html",

"display": "standalone",

"gcm_sender_id": "xxxxxxxxxxx",

"gcm_user_visible_only": true

}

index.html

<!doctype html>

<html>

<head>

<meta charset="utf-8">

<title>Service Workers -Push Notifications</title>

<meta name="viewport" content="width=device-width, initial-scale=1">

<link rel="manifest" href="manifest.json">

</head>
<body>

 Title

<input type="text" id="notificationTitle" />

 body

<input type="text" id="notificationBody" />

index.html

 Icon Url

<input type="url" id="notificationIcon" />

 Link

<input type="url" id="notificationLink" />

<button id="doIt">Send notification</button>

<script src="./index.js"></script>

</body>

</html>

server.js

var express = require('express');

var app = express();

var webPush = require('web-push');

var bodyParser = require('body-parser')

app.set('port', 5000);
app.use(express.static(__dirname + '/'));

app.use(bodyParser.json())

webPush.setGCMAPIKey(process.env.GCM_API_KEY);

app.post('/register', function(req, res) {

// A real world application would store the subscription info.

res.sendStatus(201);

});

app.post('/sendNotification', function(req, res) {

console.log(req.body)

server.js

webPush.sendNotification(req.body.endpoint, {

payload: JSON.stringify({

'title': req.body.title,

'icon': req.body.icon,
'body': req.body.body,
'url': req.body.link

}),
userPublicKey: req.body.key,

userAuth: req.body.authSecret,

})
.then(function() {

console.log("sent push")

res.sendStatus(201);
}, function(err) {

console.log('webpusherr', err);

}); });

app.listen(app.get('port'), function() {

server.js

app.listen(app.get('port'), function() {

console.log('Node app is running on port', app.get('port'));

});

Github demo

https://github.com/gauntface/simple-push-demo

References

based on the following studies and publications:

https://monk.webengage.com/resources/webinar-getting-started-with-web-push-notifications/

https://monk.webengage.com/web-push-notification-guide/

https://monk.webengage.com/web-push-notification-guide/
https://monk.webengage.com/resources/webinar-getting-started-with-web-push-notifications/

https://www.cronj.com/blog/browser-push-notifications-using-javascript/

