
Working with Database

Client-server sides
AJAX
JSON
Data formats
Working with JSON data
Request
Response
Bytes Database

Web programming

Basic Web Programming:
HTML
CSS
JavaScript

For more Dynamic Web Programming:
ASP.NET
SQL
AJAX
PHP
JSON
etc. (But these are not part of this Tutorial)

Web architecture

Web Browser

HTML CSS JavaScri
pt

Web Server

Client-side

Server-side

Web Platform

InternetInformation Services (IIS), Apache, etc.

The	Web	Browser	creates	the	visual	web	page	you	see	in	the	browser	based	on	the	HTML	code

<!DOCTYPE	html>
<head>
</head>
<body>
<h1>	DES	421</h1>
<p>	paragraph</p>
</body>
</html>

Web	Browser

Web	Server

DES	421

Paragraph

The	code	runs	on	the	server	and	
converted	to	HTML	before	
sending	to	client	(Web	Browser)

HTML,	CSS,	JavaScript

Client-side

ASP,	PHP,	JSON,	Etc. Server-side

Web	Page	(HTML)

Data models

A data model is a collection of concepts for describing data

– The relational model of data is the most widely used model
today

• Main Concept: the relation- essentially, a table

A schema is a description of a particular collection of data, using
the given data model

– E.g. every relation in a relational data model has a schema
describing types, etc.

5

Data models

“Relational databases form the bedrock of western
civilization”.
- Bruce Lindsay, IBM Research

6

Server side programming

Short history
– CGI – separate programs launched by web server

• They produce an HTML document as output
• They receive arguments as input
• Strong isolation, bad performance

– Programs embedded inside web page (php, ASP, JSP)
• Program executed inside web server process

– Separate “code-behind” file for the code (ASP.NET)
What are dynamic pages used for?

– Personalizing based on user identity
– Interacting with databases (e.g. on-line banking)
– Web applications (e.g. web based email)

Separate database keeps persistent data

Lifecycle of static web page

Web	server	machine

Server	codeServer	data File
system

Web
client

HTTP	request

URL
Request

HTTP	response

HTML	file

Page with database interaction

Web	server	machine

Server	codeServer	data File
system

Web
client

HTTP	request

URL
Request

HTTP	response

Objects	representing	this	web	page

.aspx	file

codebehind

HTML	snippets
Database SQL	interaction

JSON

JavaScript Object Notation

Minimal

Textual

Subset of JavaScript

JSON

A Subset of ECMA-262 Third Edition.

Language Independent.

Text-based.

Light-weight.

Easy to parse.

JSON Is Not...

JSON is not a document format.
JSON is not a markup language.
JSON is not a general serialization format.

– No cyclical/recurring structures.
– No invisible structures.
– No functions.

JSON Is Not...

JSON is not a document format.
JSON is not a markup language.
JSON is not a general serialization format.

– No cyclical/recurring structures.
– No invisible structures.
– No functions.

Values

Strings
Numbers
Booleans

Objects
Arrays

null

Value

number

st r ing

value

objec t

false

null

array

true

Strings

Sequence of 0 or more Unicode characters
No separate character type

– A character is represented as a string with a length of 1
Wrapped in "double quotes"
Backslash escapement

String

st r ing

"
Any UNICODE c harac t er ex c ept
" or \ or c ont ro l c harac t er

\ "

\

quot at ion m ark

reverse so l idus

/
sol idus

b
bac k spac e

form feed

new l ine

c arr iage re t urn

hor izont a l t ab

4 hex adec im al d ig i t s

f

n

r

t

u

"

Numbers

Integer
Real
Scientific

No octal or hex
No NaN or Infinity

– Use null instead

Number

num ber

d ig i t
1 - 9

.0

dig i t

e

E

dig i t

-

dig i t
+

-

Booleans

true
false

null

A value that isn't anything

Object

Objects are unordered containers of key/value pairs
Objects are wrapped in { }
, separates key/value pairs
: separates keys and values
Keys are strings
Values are JSON values

– struct, record, hashtable, object

Object

{ : }valuest r ing

objec t

,

Object

{"name":"Jack B. Nimble","at large":
true,"grade":"A","level":3,
"format":{"type":"rect","width":1920,
"height":1080,"interlace":false,
"framerate":24}}

Object

{
"name": "Jack B. Nimble",
"at large": true,
"grade": "A",
"format": {

"type": "rect",
"width": 1920,
"height": 1080,
"interlace": false,
"framerate": 24

}
}

Array

Arrays are ordered sequences of values
Arrays are wrapped in []
, separates values
JSON does not talk about indexing.

– An implementation can start array indexing at 0 or 1.

Array

[]value

array

,

Array

["Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday"]

[

– [0, -1, 0],

– [1, 0, 0],

– [0, 0, 1]

]

Arrays vs Objects

Use objects when the key names are arbitrary strings.

Use arrays when the key names are sequential integers.

Don't get confused by the term Associative Array.

Data Interchange

JSON is a simple, common representation of data.

Communication between servers and browser clients.

Communication between peers.

Language independent data interchange.

JSON in Ajax

HTML Delivery.

JSON data is built into the page.
– <html>...
– <script>
– var data = { ... JSONdata ... };
– </script>...
– </html>

JSON in Ajax

XMLHttpRequest
– Obtain responseText
– Parse the responseText

• responseData = eval(
• '(' + responseText + ')');

• responseData =
• responseText.parseJSON();

JSON in Ajax

Is it safe to use eval with XMLHttpRequest?

The JSON data comes from the same server that vended the page.
eval of the data is no less secure than the original html.

If in doubt, use string.parseJSON instead of eval.

JSON in Ajax

Secret <iframe>
Request data using form.submit to the <iframe> target.
The server sends the JSON text embedded in a script in a
document.

– <html><head><script>
– document.domain = 'penzance.com';
– parent.deliver({ ... JSONtext ... });
– </script></head></html>

The function deliver is passed the value.

JSON in Ajax

Dynamic script tag hack.
Create a script node. The src url makes the request.
The server sends the JSON text embedded in a script.

– deliver({ ... JSONtext ... });
The function deliver is passed the value.
The dynamic script tag hack is insecure.

JSONRequest

A new facility.

Two way data interchange between any page and any server.

Exempt from the Same Origin Policy.

Campaign to make a standard feature of all browsers.

Where is JSON used

AJAX = Asynchronous JavaScript And XML.
AJAX is not a programming language.
AJAX just uses a combination of:
A browser built-in XMLHttpRequest object (to request data from a
web server)
JavaScript and HTML DOM (to display or use the data)
• Updates a web page without reloading the page
• Requests data from a server - after the page has loaded
• Receives data from a server - after the page has loaded
• Sends data to a server - in the background

Ajax

AJAX = Asynchronous JavaScript And XML.
AJAX is not a programming language.
AJAX just uses a combination of:
A browser built-in XMLHttpRequest object (to request data from a
web server)
JavaScript and HTML DOM (to display or use the data)
• Updates a web page without reloading the page
• Requests data from a server - after the page has loaded
• Receives data from a server - after the page has loaded
• Sends data to a server - in the background

Ajax

AJAX uses an asynchronous processing model.
The user can do other things while the web browser is waiting for the
data to load, speeding up the UX.

synchronous processing model
<script> - the browser stops and processes the script, DB calls

Asynchronous processing model
with AJAX the browser requests data from the server and
continues loading the page
updating only part of the page / content, etc.

Ajax

AJAX uses an asynchronous processing model.

Ajax

1
request

Ajax

2
server

3
response

browser request data from the server;
XMLHttpRequest object to handle
AJAX requests;
Once request is made, the browser
does not for a response from the server

Browser processes the content
and adds it to the webpage.
When the server finished the
request, the browser will fire an
event which will trigger the JS
function that will process the
data and incorporate it into one
part of the webpage (w.o.
affecting the rest of the page)

The sever responds with data:
JSON, HTML, XML.
Server-side tech. ASP, php, NodeJS, Ruby
generate web pages for each user. Upon
ajax request server can send data in HTML,
JSON, XML format which browser turns into
HTML

The response to an Ajax request usually comes in one of three formats:
HTML XML JSON

Data Formats

• Easy to write, request
and display

• Data from the server
goes straight to the page

• The server must produce
HTML in the ready to use
in the page format

• No good data-portability
• the request must come

from the same domain

• Stricter syntax
• Data is flexible, can

represent complex
structures

• Works with different
platforms and applics

• considered a verbose
language (tags add tons
of extra charcaters)

• Requires a lot of code
• the request must come

from the same domain

• Can be called from any
domain

• More concise (less
verbose)

• Used commonly with JS
• Stricter syntax (missed

quote, comma can
break the file)

• Security issues through JS
(can contain malicious
content)

• a text-based data format following JavaScript object syntax
• can be used independently from JavaScript
• many programming environments feature the ability to read

(parse) and generate JSON

JSON exists as a string — useful when you want to transmit data
across a network.
It needs to be converted to a native JavaScript object when you
want to access the data
JavaScript provides a global JSON object that has methods
available for converting between the two.

JSON - JavaScript Object Notation

JSON data is just plain text data
{
“location”: ”San Francisco, CA”,
“capacity”: 270,
“booking”: true
}

key value

JSON - JavaScript Object Notation

{
“location”: ”San Francisco, CA”,
“capacity”: 270,
“booking”: true
}

key value

JSON - JavaScript Object Notation

Key	is	separated	from	its	value	by	a	colon
The	key	should	be	places	in	double	quotes	“		“
Each	key/value	pair	is	separated	by	a	comma.
No	comma	after	the	last	key		

The	value	can	be	any	of	the	following	data	types	
string	 text	(in	quotes	“		“)
number
Boolean true	or	false
array of	values	or	objects
object JS	object	– can	have	child	objects	
null empty	value

The request for JSON data uses
XMLHttpRequest object

When the server responds, the JSON will be converted into HTML

When JSON data is sent from the server to a browser, it is transformed into a
sting.

When it reaches the browser, your script must then convert string into a
JavaScript object. This Is known as deserializing an object.

Done using parse() method.

Loading JSON with Ajax

Once the string has been parsed, the script can access the data in the
object and create HTML to be shown on the page.

The HTML is added to the page using innerHTML property. It should be used
only when you are confident that it contain no malicious code.

JSON object has method stringify()
Which converts objects into a string using JSON notation so it can be sent

from the browser back to a server. Known as serializing an object.

stringify() method can be used when the user has interacted with the page
to update the data help in JavaScript object (i.e. filling a form)

So that it can then update the info stored on the server.

Loading JSON with Ajax

1. To create Ajax request, browser use the XMLHttpRequest object.
When the server responds to the request, the same XMLHttpRequest object
will process the result. (var xhr)

2. xhr.open (‘GET’, ’db_URL’, true);
The XMLHttpRequest object’s open() method prepares the request. It has 3
parameters: I) the HTTP method (GET), II) the url of the database page,
III) a Boolean indicating if it should be asynchronous (true).

3. The send () method sends the prepared request to the server. Extra info is
passed in the parentheses (i.e. ‘search=arduino’). If no extra info is sent, null
is used (xhr.send(null);

JSON – the request

1. xhr.onload = function () {
2. if (xhr.status === 200) {

//code to process the results from the server
}

}

1. When the browser has received and loaded a response from the server,
the load event will fire. This will trigger a function
xhr.onload = function() { …..

2. The function checks the status property of the object. This is used to
make sure the server’s response was ok. (If this property is blank, check
the setup of the server).

JSON – the response

1. JSON data from the server is stored in a var responseObject.
2. When it comes from the server JSON data is a string, so it is coverted into

a JavaScript using JSON object parse() method.
3. The newContent variable is created to hold the new HTML data. It is set

to an empty string outside the loop so that the code in the loop can add
to the string.

4. Loop through the objects that represent each event using a for loop.
5. The data in the objects are accessed using dot notation.
6. Inside the loop, the contents of the object are added to the

newContent variable, along with their corresponding HTML markup.
7. When the loop has finished running through the event objects in

respinseObject, the new HTML is added to the page using innerHTML
property.

JSON – the response

JSON – data_json.html

JSON – request

1. XMLHttpRequest object creates
Ajax request / stores the object in a
variable xhr

2. xhr.open (‘GET’, ’db_URL’, true);
The open() method prepares the
request. 3 parameters: the HTTP
method (GET), the url of the database
page, a Boolean indicating if it should
be asynchronous (true).

3. The send () method sends the
prepared request to the server. Extra
info is passed in the parentheses (i.e.
‘search=arduino’). If no extra info is
sent, null is used (xhr.send(null);

JSON – response

1. When the browser has received
and loaded a response from the
server, the load event will fire. This will
trigger a function
xhr.onload = function() {
…..

2. The function checks the status
property of the object. This is used to
make sure the server’s response was
ok. (If this property is blank, check the
setup of the server).

JSON – data_json

1. JSON data from the server is stored
in a var responseObject.

2. When it comes from the server
JSON data is a string, so it is
coverted into a JavaScript using
JSON object parse() method.

3. The newContent variable is created
to hold the new HTML data. It is set
to an empty string outside the loop
so that the code in the loop can
add to the string.

JSON – data_json

4. Loop through the objects that
represent each event using a for loop.
The data in the objects are accessed
using dot notation.
Inside the loop, the contents of the
object are added to the newContent
variable, along with their corresponding
HTML markup.

6. When the loop has finished running
through the event objects in
respinseObject, the new HTML is added
to the page using innerHTML property.

http://parsec.evl.uic.edu:8080/api/scores -- this will respond with all scores
(this link is actually active right now, but it only has test data inside of it)
http://parsec.evl.uic.edu:8080/api/bytes -- this will respond with all bytes
http://parsec.evl.uic.edu:8080/api/bytes/id/23 -- byte 23
http://parsec.evl.uic.edu:8080/api/bytes/id/18 -- byte 18

To access bytes by category:
http://parsec.evl.uic.edu:8080/api/bytes/category/12 (Only byte 23)

or you can query all categories:
http://parsec.evl.uic.edu:8080/api/categories

Bytes database

http://parsec.evl.uic.edu:8080/api/bytes -- this will respond with all bytes
http://parsec.evl.uic.edu:8080/api/bytes/23 -- this will respond with byte 23,
http://parsec.evl.uic.edu:8080/api/bytes/id/18 -- byte 18

To access bytes by category:
http://parsec.evl.uic.edu:8080/api/bytes/category/12 (Only byte 23)

or you can query all categories:
http://parsec.evl.uic.edu:8080/api/categories

Bytes database

http://parsec.evl.uic.edu:8080/api/bytes -- this will respond with all bytes

Bytes database

http://parsec.evl.uic.edu:8080/api/bytes/id/18 -- byte 18

Bytes database

http://parsec.evl.uic.edu:8080/api/bytes/id/23 -- byte 23
http://parsec.evl.uic.edu:8080/api/bytes/id/18 -- byte 18

Bytes database

Bytes database

http://parsec.evl.uic.edu:8080/api/scores --

Bytes database

http://parsec.evl.uic.edu:8080/api/scores --

Bytes database

categories

Bytes database

Category 12

