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Fig. 1. The four spatiotemporal visualizations compared in our study: (a) Embedded View, (b) Linked View, (c) Temporal

Juxtaposition, and (d) Spatial Juxtaposition. In this example, the visualizations encode the values of an artificially-created
temporal attribute of the building facade with four time steps. In each visualization, three rectangular regions with colored outlines are
placed along the building surface. When comparing their attribute values, the blue region has the minimum average attribute value
between [t1, t2] time steps, whereas the red and black regions have the maximum average values in t3 and t4, respectively.

Abstract—Recent technological innovations have led to an increase in the availability of 3D urban data, such as shadow, noise, solar
potential, and earthquake simulations. These spatiotemporal datasets create opportunities for new visualizations to engage experts
from different domains to study the dynamic behavior of urban spaces in this under explored dimension. However, designing 3D
spatiotemporal urban visualizations is challenging, as it requires visual strategies to support analysis of time-varying data referent
to the city geometry. Although different visual strategies have been used in 3D urban visual analytics, the question of how effective
these visual designs are at supporting spatiotemporal analysis on building surfaces remains open. To investigate this, in this paper we
first contribute a series of analytical tasks elicited after interviews with practitioners from three urban domains. We also contribute a
quantitative user study comparing the effectiveness of four representative visual designs used to visualize 3D spatiotemporal urban data:
spatial juxtaposition, temporal juxtaposition, linked view, and embedded view. Participants performed a series of tasks that required
them to identify extreme values on building surfaces over time. Tasks varied in granularity for both space and time dimensions. Our
results demonstrate that participants were more accurate using plot-based visualizations (linked view, embedded view) but faster using
color-coded visualizations (spatial juxtaposition, temporal juxtaposition). Our results also show that, with increasing task complexity,
plot-based visualizations perform better in preserving efficiency (time, accuracy) compared to color-coded visualizations. Based on our
findings, we present a set of takeaways with design recommendations for 3D spatiotemporal urban visualizations for researchers and
practitioners. Lastly, we report on a series of interviews with four practitioners, and their feedback and suggestions for further work on
the visualizations to support 3D spatiotemporal urban data analysis.

Index Terms—Visualization, urban analytics, urban data, spatiotemporal data, empirical evaluation.

1 INTRODUCTION

Cities are the loci of economic activity and attract people looking for
the myriad of services only offered by urban centers. With the growth
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of urbanization, the process and problems that shape and form cities be-
come far more intertwined—transportation, housing, street layouts, and
land use are all becoming more complex and interconnected by the day.
In their attempt to meet the demands of an increasing number of urban
dwellers, cities resort to planning initiatives that lead to the verticaliza-
tion of their landscape. Far from being just another element of cities,
their verticality is perhaps the key feature that defines cities. While serv-
ing as a potential solution to many of the problems faced by cities (e.g.,
housing [8, 9]) verticalization can create new problems or exacerbate
existing ones, e.g., their impact on overall temperature [38]. Cognizant
of this phenomenon and the fact that cities are characterized by their
verticality, a growing number of domains (e.g., civil engineering, ur-
ban planning, architecture) have gone beyond the usual flatland that
defines a spatial region, and incorporated the third dimension (and its
properties) in many of their analysis tasks in order to study the dynamic
behavior of urban spaces. These tasks often rely on data that is intrinsic
to the surface of buildings. Some examples include sound propaga-
tion simulation for studying noise in the urban environment [74], solar
energy potential on facades for the installation of renewable energy
equipment [41], outdoor heat exposure [49], sunlight access for the
design of living spaces [37, 53, 55], and cellphone signal propagation
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through urban canyons for the deployment of cellular towers [1]. The
transitions to more sustainable environments, energy sources, housing,
and technologies have underscored the importance of leveraging the
geometry of cities in its entirety. As important in understanding cities
as it is, 3D urban analytics has remained fairly unexplored. Unlike
visual analysis on 2D maps, which has been thoroughly explored in
the past, visualizations and visual analytics tools designed with 3D
capabilities (and more importantly, that enable 3D-oriented tasks) are
few and far between.

Designing visualizations for domain experts with 3D urban scenar-
ios in mind is challenging, as it requires visual strategies to support
analysis of the data referent to the city geometry. Tackling this is funda-
mental to uncovering features that are valuable for decision-making and
problem solving in the aforementioned domains. Our goal in this work
is, therefore, twofold. Recognizing the fact that 3D urban analytics is
an unexplored yet growing area, our first goal is to have a deeper under-
standing of the requirements and analysis workflow usually employed
by domain experts and practitioners in 3D urban analytics. To achieve
this goal, we conducted a series of semi-structured interviews with
experts from different domains in order to elicit a list of requirements
that should be satisfied by visual analytics in the urban environment.

Our second goal is to better understand the effectiveness of differ-
ent design strategies in the visualization of 3D spatiotemporal urban
data: spatial juxtaposition, temporal juxtaposition, linked view and
embedded view. To achieve this goal, based on the previously elicited
requirements, we extended these designs to incorporate the geometries
of cities and allow the visualization of data on building surfaces. We
then performed a quantitative user study where participants performed a
series of tasks that required them to identify extreme values on building
surfaces over time. Our results point to the most performant designs to
solve common 3D-oriented analytical tasks in the urban environment.
Our contributions can be summarized as follows:
• A task characterization to inform visualization researchers and

practitioners new to the 3D urban domain. We report on a series of
semi-structured interviews with domain experts that routinely per-
form analytical tasks taking into account the 3D urban environment,
and summarize visualization tasks encountered in this domain.

• A controlled quantitative study comparing user performance of four
representative spatiotemporal visualizations, in which 32 participants
were asked to perform tasks that required the identification of regions
with extreme attribute values on building surfaces over time. We
report and interpret study results, leading to a set of design recom-
mendations on visualization choices for performant spatiotemporal
analysis in 3D urban data.

• A series of expert interviews with four practitioners from the urban
domain to get their perceptions and ideas for further work on the
visualizations to support analysis of 3D time-varying urban data.

2 RELATED WORK

In this section, we review previous visualization designs that combine
space, time, and thematic data dimensions. The review is not restricted
to urban contributions and includes general visualizations, to allow us
to establish a set of common designs. We also survey and classify 3D
urban visualizations according to the previously identified designs.

2.1 Visualization of 2D/3D spatiotemporal data
A survey conducted by Andrienko et al. on spatiotemporal visualiza-
tions for 2D geographic data mentions that existing visual strategies
can be grouped into two categories [5]. Linked views segregate and
display spatial and temporal dimensions in multiple coordinated views.
Embedded views merge spatial and temporal aspects into a single view.
Linked views is a standard approach to display time-dependent geospa-
tial data. It benefits from presenting data separately, which may prevent
the occlusion of useful map information due to interference between
the spatial and temporal data. However, a significant limitation of
this approach is the additional screen space required to show side-by-
side views. Additionally, the spatial decoupling between the 2D and
3D views may lead to mental burden related to the continuous con-
text switching while relating the spatial and temporal data [21, 29, 88].

Turkay et al. proposed a visualization system to study how attributes
vary over geographical spaces [78], where users create a linear selection
sequence across a 2D map using a semi-automated brushing. After the
brush sequence is computed, multiple linked sparklines are arranged in
a 2D table layout, with sparkline depicting single attribute changes.
Embedded views typically use the map to convey the spatial refer-
encing and superimpose time series plots as glyph overlays to present
the changes in the data over time. Liu et al. embedded a circular
time axis enclosing road trajectories on a map, and time-dependent
attributes such as speed and duration of those trajectories are displayed
as color-coded circular bar charts [50]. Andrienko et al. directly em-
bedded ThemeRiver plots onto geographical maps, but this method
led to severe clutter and occlusion of other map information [6]. To
mitigate occlusion issues, Sun et al. applied a non-linear zooming
algorithm to broaden map roads and overlaid temporal displays on the
roads [75]. Abstraction and aggregation can also serve the purpose of
de-cluttering and integrating space and time. Andrienko et al. discussed
aggregation methods used for movement data [4]. Kim et al. group
spatial 4D scientific visualizations into four categories: juxtaposition,
superimposition, interchangeable, and explicit encoding [44]. Gleicher
et al. follow a similar categorization in their taxonomy for infovis
techniques [33]. These typologies are relevant as they discriminate
visual strategies based on how data attributes are presented to the user,
and as a result which visual and motor perceptual mechanisms are used
while comparing multiple data instances.
Juxtaposition displays multiple data instances at the same time, but in
different coordinate spaces, e.g., side-by-side views [15, 42, 51]. The
benefit is that all instances are simultaneously visible for comparison so
that the user does not need to rely on their memory of past visualizations.
However, juxtaposition leads to spatial decoupling, which hinders
comparative judgments of slight variations between data instances.
Additionally, scalability of juxtaposition poses two main challenges:
available screen space and computational resources. When the number
of data instances is high, the data encoding displayed in multiple views
may become too small and hard to read. To deal with limited screen
space, strategies include filtering to hide data instances that are of
no interest to the user [46], clustering [51], or abstracting the visual
representation of the data to take less screen area [42]. In order to
maintain interactive frame rates as several model instances are being
concurrently rendered—progressive computation and sampling can be
used to alleviate computational costs [12, 39].

Johnson et al. propose multiple volumetric views juxtaposed in a
grid arrangement for exploratory analysis of moderate-sized 4D cardiac
data ensembles on the order of 10 data instances [39]. Each grid
column refers to a single data instance, i.e., one simulation run from
the ensemble at a given time step. An entire grid row of volumetric
views is created whenever users specify a box-shaped selection of a sub-
volume of interest on a given view (grid cell). In doing so, the technique
follows a “global-to-local” exploratory approach: users progressively
select sub-volumes of interest to interactively build up a comparative
spatially-juxtaposed view layout; users can make visual comparisons
of key features of interest across data instances and/or time steps.
Interchangeable displays only one data instance at a time and gradu-
ally transitions over time through either an automated or user-controlled
animation; the data instances are co-registered in the same coordinate
space. This has the advantage that each data instance is displayed at a
full scale, without occlusion from other instances. However, since all
data instances to compare are not simultaneously visible on the screen,
users must rely on remembering past instances. This cognitive load
increases with an increasing number of instances and may hinder com-
parison, especially for more detailed analyses [63, 82, 86]. Akiba et al.
proposed an animation tool for volume visualization where users create
a sequence by combining various individual effects that are set using
transfer functions [2].
Superimposition displays two or more data instances at the same
time and coordinate space. This is the only approach that displays
multiple data instances in a way that is spatially co-registered, simulta-
neously visible, and preserves the original data. However, clutter and
occlusion are major challenges that superimposed visual designs must
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Fig. 2. Examples of data on urban surfaces from different domains: (a)
flooding simulation analysis in the environmental domain [80], (b) view
impact analysis in urban planning [23], (c) building design performance
analysis in urban design [73], and (d) solar potential and sunlight access
analysis in urban planning and architecture [53].

overcome to allow the comparison between multiple data instances.
Glyphs are commonly used for overlaying various data instances in
a 3D space [65, 68, 90]. Van Pelt et al. proposed a technique that
combines established scientific visualizations with novel glyphs whose
designs are based on concepts from information visualization [79]. The
glyph-based visualizations support interactive filtering and details-on-
demand zooming to set different zoom levels and provide progressively
richer information within the glyph.
Explicit encoding does not display multiple data instances, but rather
derives a composite data from all the original instances and only dis-
plays the composite result (e.g., difference). The advantage of this
approach is that the derived composite is displayed in full scale. In
addition, for well-defined tasks, it is possible to set tailored encodings
and visualize the composite result directly. On the other hand, explicit
encoding does not preserve the original data; Therefore it is challeng-
ing to make comparisons between individual instances, even when the
encoding is known [3, 30, 36]. Melanie et al. proposed a glyph-based
visualization to study the progression of multiple sclerosis lesions from
MRI scans over multiple time steps [76].

2.2 Visualization of 3D spatiotemporal urban data
Visualization systems are important tools for the analysis of ur-
ban data [24, 92]. The majority of these applications use a flat
city metaphor—i.e., a 2D map, to represent the city environment
[25, 29, 40, 54, 92]. However, cities have inherent geometric features,
leading to an increase in the number of 3D urban visualization systems
in recent years (see Figure 2). These systems justify the need for 3D
since specialists evaluate and communicate to stakeholders using 3D
urban models (e.g., discussing building designs with varied impacts on
shadows, landmark visibility, and sky exposure [23, 28, 53, 58]).

After learning about the various visual designs for spatiotemporal
data, we wanted to obtain an overview of the designs commonly used
for 3D urban data. For this purpose, we reviewed recent 3D urban visu-
alization systems that deal with multi-dimensional 3D urban data and
classified them according to the visual designs discussed in the prior
section—see classifications in Table 1. It is worth noting that, at a high
level, the elicited spatiotemporal visual designs are essentially compar-
ative designs that can be used for any multi-dimensional data type if
reinterpreted slightly for the situation where multiple data dimensions
are compared. Hence, our review includes all multi-dimensional data
types such as temporal, multivariate, and uncertain.

From the literature, we searched papers on publication channels that
publish quality work on visual analytics. These venues were either
from the visualization or urban domains—e.g., IEEE Transactions on
Visualization and Computer Graphics; Computers & Graphics; Com-
puter Graphics Forum; and Symposium on Simulation for Architecture
and Urban Design. For these venues, although not exhaustively, we
surveyed the archive published over the last ten years and selected 34
papers presenting 3D urban visualization systems. Table 1 displays a
classification of recent 3D urban visualization systems. We observe
that, concerning visual designs coming from 3D sci-vis, 3D urban

Table 1. Classification of 3D urban visualization systems. The rows
group systems according to Kim et al.’s taxonomy for 3D spatiotemporal
scientific visualizations [44]. The first two columns group according to
Andrienko et al.’s topology for 2D spatiotemporal information visualiza-
tions [5]. The third column refers to 3D urban vis systems that do not
include 2D visualizations.

LinkedV EmbeddedV No 2D

Juxtaposition
[34,46,48,
58, 83, 84]

[57]

Interchangeable
[28,31,67,
82, 83, 89]

[17, 18, 63, 72,
77, 80, 91]

[13, 16, 22, 43,
45, 47, 52, 53, 59,
62,64,69,71,87]

Superimposition [58]
Explicit encoding [63] [47, 53, 85]

vis systems heavily rely on interchangeable (27), followed by juxta-
position (7), and very few systems seem to use explicit encoding (2)
and superimposition (1). Regarding designs drawn from 2D info-vis,
we observe that most 3D urban vis systems do include 2D abstract
visualizations (19). Among these, linked views is considerably more
commonly used than embedded view (12 and 7, respectively).

3 STUDY RATIONALE

Unlike well-established sub-areas of visualization, such as scientific
visualization, 3D urban visualization relies on ad-hoc solutions, pri-
marily driven by industry standards or one-off collaborations between
visualization researchers and domain experts. Our goal in this work is
then to offer a more comprehensive understanding and characterization
of visualization tasks and visualization designs that support exploration
of 3D time-varying urban data. In order to achieve this, we structure
our efforts in two different phases. First, we review the literature and
perform a series of interviews with domain experts to elicit representa-
tive tasks and visualizations used in the urban domain. Second, guided
by our previous findings, we select a subset of the elicited tasks and
design a quantitative user study to measure the effectiveness of four
techniques for the visualization of 3D spatiotemporal urban data.

This section reports on the first phase of our work. In Section 3.1, we
detail interviews with experts and outline common tasks they perform
for time-varying urban data analysis in 3D city models. In Section 3.2,
we discuss representative approaches to visualizing 3D time-dependent
urban data, with the second phase of our work detailed in Section 4.

3.1 Task characterization

We conducted a series of one-hour semi-structured interviews with
domain experts: a civil engineer interested in urban resilience, disaster
management, and earthquake simulations; an urban planner actively in-
volved in the analysis of the solar potential of buildings; and an architect
interested in the design of public and living spaces with more equitable
access to sunlight and views to landmarks. Our first aim during these
interviews was to better understand the types of temporal analyses they
commonly perform with the purpose of deriving a task characteriza-
tion that covers a range of representative tasks that 3D spatiotemporal
urban visualizations must be able to support. Since these visualizations
combine spatial, temporal, and thematic data dimensions, we frame our
characterization after these data facets as four guiding questions asked
during interviews (Q1-4), followed by a discussion of common use
cases in their domains (D1-4), and condensed responses (R1-4).
Q1: What actions are relevant for temporal data analysis in 3D city
models?
D1: In 3D city models, the visual analyses of spatiotemporal attributes
are driven mainly by the spatial rather than the temporal dimension. Ac-
tions include spatial search (e.g., search for buildings with increasing
solar incidence throughout the day), spatial comparison (e.g., compare
shadow behaviors between different facades; which one is most shad-
owed during the winter?), and temporal comparison (e.g., compare
shadow behavior between summer and winter months on a given street;
in which season does the shadow distribution have a sharper increase?
In which month does it receive less shadow?).
R1: Spatial search, Spatial comparison, Temporal comparison
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Q2: What spatial granularities are relevant for temporal data anal-
ysis in 3D city models?
D2: Domain specialists may be interested in different granularity lev-
els. Architects run performance-driven analysis of candidate building
designs (e.g., daylight performance due to its influence on aesthetics
and perception of space, energy conservation, and occupants’ health
and satisfaction). The evaluation of candidate designs typically oper-
ates on the facade level, and this includes both the entire and custom
region of the facade. Whereas urban planners commonly perform
multi-scale spatial analysis: from the street to facade to building to the
neighborhood level (e.g., how does the shadow behavior on a given
street/facade/building vary due to a new building development?).
R2: Street, Facade region, Facade, Building, Neighborhood
Q3: What temporal granularities are relevant for temporal data
analysis in 3D city models?
D3: Typical temporal resolutions include individual time steps and cus-
tom time intervals, and this may vary on a case-by-case basis according
to the analysts’ needs. For instance, when examining wind circulation
behavior on a given neighborhood, they can focus their analyses on
peak hours, or monthly and seasonal (e.g., summer, winter) trends.
R3: Time step, Time interval, Monthly, Seasonal
Q4: What attribute behaviors are relevant for temporal data anal-
ysis in 3D city models?
D4: Domain experts commonly examine extreme attribute values (e.g.,
which street receives most shadow during summer?), average values
(e.g., on a given facade region, what is the average solar incidence
during winter months?), and trends (e.g., on a given facade, is there
small variation in wind circulation throughout the day?).
R4: Extremes, Averages, Trends

In our task characterization, the combination of the previous dimen-
sions allow us to derive visualization tasks. For example, a common
visualization task reported in urban planning involves the evaluation
of sunlight access in the buildings of a given neighborhood, which can
be specified as a spatial search for facades with extreme attribute values at
certain months of the year. We build on this characterization to elaborate
representative tasks for our user study (Section 4).

3.2 Visualization analysis
During our interviews, we learned that our domain collaborators worked
with time-varying scalar functions defined on grids on top of the build-
ing surfaces. This data type therefore is set as the focus of study in this
paper. We also learned that the experts’ approach to visually examining
time-dependent 3D urban data consists of color-coding attributes on the
building surfaces, and using manual/automatic animations to display
the data over time. They mentioned that due to the 3D nature and
complexity of urban surfaces, relevant information may be missed or
occluded and therefore requires users to restart the animation several
times to inspect patterns in the visualization.

Following the interviews, we reviewed the literature in order to find
alternative visual designs used to integrate temporal information into
their 3D spatial references. As described in Section 2, our literature
review identified a number of possible designs from which we selected
four for comparison in our user study.

3.2.1 Selection of visualizations
To make our study tractable, our criteria for selecting representative
visualization designs was twofold. First, we chose designs based on
familiar 2D information visualizations in order to assess the efficiency
of two ways of combining the physical data (building geometry) and
thematic (temporal) data: linked and embedded views. Second, con-
cerning designs based on 3D scientific visualizations, we chose only
those derived from juxtaposition and interchangeable approaches. Not
only are these familiar to the domain specialists, they are also the most
popular designs used for 3D spatiotemporal data visualizations [44].

Our decision to discard explicit encoding designs is due to the fact
that they do not present the entire original data values but rather only
composite values derived from the original instances. Visualizing a
meaningful derived relation between two or more data instances may
provide a more focused encoding than would be possible by visualizing

all instances separately. However, we are interested in designs that
allow users to visualize individual data instances and to judge variations
between them to maintain accordance with experts’ analysis workflow.

Moreover, we also discard techniques based on superimposition
since they often suffer from overplotting and strongly rely on carefully-
tailored encodings [44]. The superimposed visual encodings need to not
only communicate data semantics, but also be perceptually separable
from one another so that users can perceive each encoding individually
(e.g., understand and discern encodings referent to a specific time
interval). Therefore, we discard superimposition as we feel they would
become a design challenge that could possibly bias study results.

Based on our choices, we identify four representative visual designs
used to combine thematic, spatial, and temporal data into one visual
representation. The visualizations can be classified into two major
groups according to the graphical encoding of the spatiotemporal the-
matic attribute: plot-based and color-coded designs. Plot-based designs
draw from 2D information visualizations and visually encode the at-
tribute as the position on a common scale of an abstract time series plot.
Color-coded designs build on 3D scientific visualizations and map the
attribute to the color visual channel of the building geometry itself. The
four visual designs are rationalized below, taking into account the fact
that the data type of our time-varying thematic attribute is quantitative
in nature. We refer the reader to the supplementary video for dynamic
frames of each visualization.
Embedded view (EmbeddedV) displays all data instances on a bar
chart embedded in the building surface geometry—Figure 1(a). The
quantitative attribute values are encoded as the bar charts’ ordinates,
while time stamps are encoded as abscissas. The choice for encoding
an attribute value as the vertical position on a common scale (bar
chart) is because this visual channel is known to be one of the most
effective for accurately decoding information [56]. Furthermore, adding
a coordinate system together with reference lines can facilitate the
judgment and comparison of different bars. This may be useful to
mitigate perceptual issues due to perspective distortion and discrepant
aspect ratios of different buildings—Figure 3(a,b).

To embed the bar chart into the building surface, we use a decal-
based approach similar to Rocha et al. [65]. A decal map is built from
the intersection of a sphere with a building surface; that is, the part of
the surface that lies inside the sphere. This leads to an area that follows
the surface geometry, like a decal. Afterwards, a local parametrization
is computed to map the bar chart texture to the building’s geometry.
Linked view (LinkedV) displays all data instances on a bar chart
similar to embedded view; however, the chart is arranged on the right
side of the screen, as depicted in Figure 1(b).
Temporal juxtaposition (TemporalJX) displays a single data instance
at a time in full scale, and a user-controlled slider widget allows switch-
ing to other instances—see Figure 1(c). A sequential colormap encodes
the temporal attribute, and this same coloring is used throughout all
time steps.
Spatial juxtaposition (SpatialJX) arranges all data instances in an
evenly-spaced 2×2 grid layout—see Figure 1(d). Since data instances
are not registered in the same coordinate space, we extend the views
with linked cameras and linked region highlights in order to provide a
common context between the multiple views. A sequential colormap
encodes the time-dependent quantitative attribute (e.g., shadow).

These visualization designs, while satisfying our previously men-
tioned criteria, also posses certain drawbacks: EmbeddedV can distort
visual information [81]; LinkedV requires additional screen space for
side-by-side views and the decoupling between 2D and 3D views may
lead to extraneous cognitive load related to the continuous context
switching [21, 29, 88]; TemporalJX does not show all data instances
simultaneously, users must rely on memory of past instances which also
increases cognitive load [63,82,86]; and SpatialJX requires available
screen space (see Section 2.1 for more details).

3.2.2 Interactions
The selected visualization designs support interactivity. The user can
control the camera with the mouse—rotation via the right mouse button,
zoom using the mouse wheel, and panning by pressing and holding
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Fig. 3. Reference lines may assist comparative data analysis in at least
two ways for EmbeddedV. (a, b) First, when plots are embedded in building
geometries with discrepant resolutions. Second, as perspective may
distort visual assets. A line, as well as the white area formed between
the top of a bar and that line, provides common baseline scales for
data comparison–e.g., when comparing values in time t4. (c, d) Direct
view of the same plots displayed in (a), (b) as a comparative baseline of
perceptual artifacts: the same plots without perspective distortion and
with equal resolution.

the mouse wheel while moving the mouse. Furthermore, in each vi-
sualization, users can also interact with regions. We define a region
as a compound area composed of 2× 2 grid cells along the building
surface. The region’s attribute value refers to the average values of
all cells composing that region. In this sense, the color-coded visual-
izations (SpatialJX, TemporalJX) require users to mentally compute
the mean value within a region based on its cells’ colors. In the plot-
based visualizations (LinkedV, EmbeddedV), users judge a region’s
mean value based on the vertical position along the bar chart.

Participants create a region by clicking the left mouse button over
the building surface; drag a region by pressing and holding the middle
mouse button over it while moving the mouse; and delete a region by
clicking on it with the right mouse button. Users can define up to four
regions simultaneously to compare attribute values on different parts
of the building surface; regions are discriminated by color—Figure 1
depicts three regions in each visualization design.

4 STUDY DESIGN

We now present our user study, whose goal was to compare the effective-
ness of the four visualization techniques discussed in Section 3.2. The
study followed a between-subjects design—participants were only ex-
posed to one of the visualization techniques—and simulated an analysis
scenario in which users were asked to perform some of the visualization
tasks described in Section 3.1. Participants performed a total of 12 tasks.
The task presentation order was counterbalanced using Latin squares,
and the visualization assignment for the participants was randomized.
In total, the study consisted of 32 participants × 12 tasks = 384 trials.
Datasets. We synthetically generated two 3D city models—one model
for training and another for the main trials. The models incorporated
common urban patterns (e.g., medium-density downtown), and had, on
average, 100 buildings with regular shapes and varying sizes. For each
model, the time-varying attribute defined on the facades was created
by discretizing each facade into 5m× 5m cells. For each cell, we
computed the accumulated sunlight access throughout 8 hours of a day
for each one of the four yearly seasons, each season referring to one
timestamp. Lastly, we added noise to increase data variability.
Apparatus. The visualizations were implemented using Unity. The
experiments were conducted remotely on an Intel Core i3 and GeForce
GTX Titan and used Zoom and Parsec for remote access.
Participants. We recruited a total of 35 participants but had to exclude
one participant who declared during the session that s/he had misunder-
stood how to perform the tasks. We also excluded participants who had
internet connection issues during the remote session. From the final

Fig. 4. EmbeddedV trial (Task #5, multi-orientation 1 location in 1 timestep),
with three user-created regions: blue (region 2), red (3), and black (4).

32 participants (9 female and 23 male), none reported any color defi-
ciency, and they had normal or corrected-to-normal vision. Age ranged
from 21 to 47 (avg. = 29.18, std. dev. = 6.38), and most of them were
students (26 out of 32) from Computer Science graduate programs.
Their backgrounds were mainly in visualization and HCI. They were
all volunteers, and did not receive any monetary compensation.

4.1 Procedure
Each session consisted of three parts: introduction and tutorial, main
trials, and post-study questionnaire (60–90 minutes total). In the in-
troduction and tutorial, we explained the purpose of the experiment
and the visualization to be used in the session. Then, the participants
answered five training trials. After each trial, we would indicate if the
answer was correct or not. They were encouraged to ask questions
throughout the tutorial. If they made no errors and declared that they
had no further questions, they would start the main trials. In the main
trials, participants answered 12 questions and received no feedback
regarding the correctness of their answers. They were asked to answer
as quickly as possible without compromising accuracy.

Figure 4 shows a trial screenshot. For each trial, the building fa-
cade(s) pertaining to the trial was highlighted in green. Users could
create, delete, or move regions along these target highlighted facade(s).
On the top-left corner, the text box depicts the task number and ques-
tion for the trial. It also lists all existing regions at any given time. By
selecting a region on the list and clicking the ‘next’ button, the user
submits that region as the task answer. On the right is the 3D urban
visualization; the same visualization was used across the training and
main trials—SpatialJX, TemporalJX, LinkedV, or EmbeddedV.

4.2 Measures
For each trial, we defined two objective metrics: 1) task completion
time is measured from the moment participants saw the trial screen
until they submitted an answer; and 2) relative error is computed
as the absolute difference between the chosen attribute value and the
true value, normalized by the task’s maximum possible absolute er-
ror. During each trial, we also logged qualitative observations about
participants’ behaviors, interaction strategies, and aloud comments.
After completing the trial, participants also filled out a post-study ques-
tionnaire to share positive and negative opinions, as well as ideas to
improve the visualization used in their session.

4.3 Tasks
Guided by our task characterization, our study aims to compare the four
visualizations in regards to a relevant task: to spatially search for the
facade region with extreme attribute value over a certain time period.
We had no hypothesis about which action would be more difficult:
to characterize a region’s attribute value (by averaging its cell values
using position or color encoding), or to discriminate a region’s attribute
variation over time. Hence, we treated them as an integrated task that
requires users to assess both the mean attribute value within a region
and its changes over time, and varied the combinations of these two
spatial and temporal dimensions during the construction of our tasks.

Figure 5 illustrates our task construction. To define our tasks, we
used Peuquet’s framework for geo-temporal data that describes the
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Fig. 5. Illustrative scheme of the twelve tasks of our study, with varying levels of spatial (where) and temporal (when) granularities. In each cell, the
image illustrates the task scenario with highlighted facade(s), together with a sample question (what).

linked triad of what, where, and when [61]. Each task refers to a
question in the format: when + where → what, where what is the
participant’s characterization of extreme attribute values. We varied
the when and where dimensions in a way similar to other research [35,
60, 70], using varying spatial and temporal granularity levels. The
temporal granularity when was divided into 1 timestep and time interval
(two or three consecutive time steps). The spatial granularity where was
segmented into 1 location (one building), and N locations (two buildings).
The spatial granularity was further broken down into:

1. Single and multi-viewpoint: Single-viewpoint tasks target a single
facade in 1 location, and two facades in nearby buildings in N locations.
Multi-viewpoint tasks target a facade partially occluded by another build-
ing in 1 location, and two facades in fairly distant buildings in N locations.
For single-viewpoint tasks, users can look at the target highlighted fa-
cade(s) from a single point of view. For multi-viewpoint tasks, users
cannot capture the entire target facade(s) from a single viewpoint; thus,
users must navigate the camera and continuously switch spatial context
while searching for a facade region with extreme temporal value.

2. Single and multi-orientation: Single orientation tasks target two single-
viewpoint facades facing the same direction. Multi-orientation tasks target
two single-viewpoint facades whose surfaces are pairwise orthogonal.
Note that these conditions occur in both 1 location and N locations.

Crossing the spatial and temporal dimensions resulted in a matrix of
12 possible spatiotemporal tasks illustrated in Figure 5, along with a
sample task question for each one of them.

4.4 Task conditions and complexity
Although complexity may come in many forms, in accordance with
prior research [32], four conditions that drive the difficulty of our vi-
sualization tasks are: number of time instances, number of spatial instances,
camera navigation, and view angle. The idea is that an increase in com-
plexity will increase the number of spatial and temporal searches or
camera movements that users must perform in order to find the answer.

While being unequivocal that increasing either the number of time
instances or the number of spatial instances leads to an increase in com-
plexity due to the extra searches an expert will be required to perform,
camera navigation and the selection of a proper view angle, in particular,
also increase complexity and lead to loss of performance. These de-
pend on implicitly solving the inverse problem of where to direct our
view, given a mental image of the rendering we expect to see. This is

Table 2. Description of task conditions (rows). Each task condition
represents the difference in time and error between the two groups:
lower and higher complexity (columns).

Lower Higher

Number of time instances 1 timestep Time interval
Number of spatial instances 1 location N locations
Camera navigation Single viewpoint Multi-viewpoint
View angle Single orientation Multi-orientation

an inherently ill-posed problem as the expectation inferred from the
rendering might not properly correlate with the 3D geometry because of
common rendering artifacts (such as distortions caused by the camera
projection, occlusion, etc.). This is typically, and intuitively, solved by
trial and error: camera movements are tuned iteratively until adequate
choices are found. As a concrete example, consider the case where
data is presented in multiple locations. Occlusion prevents users from
setting a single camera view that would work for all the data, which
requires frequent manipulations of the viewpoint each time a different
location is inspected. It is in this way that camera navigation and view
angle conditions impact user performance: due to continuous camera
view adjustments and context switching, time and attention are not used
towards the user’s utmost goal that is to understand the data.

To assess the complexity impact on user performance, we derive four
task conditions from the elementary tasks listed in Figure 5. For each
condition, we select a subset of tasks and divide them into two groups:
lower and higher complexity. Next, we compute the differences in time
and error between the two groups (lower and higher complexity) to
obtain the impact in efficiency for that task condition. Table 2 illustrates
the selection and grouping of elementary tasks for each task condition.

5 RESULTS

We now report and interpret findings for task completion time and
relative error from a total of 384 trials. We refer the reader to the
supplementary material for the data files. Our reporting methodology
uses estimation techniques and reports sample means with confidence
intervals (CI) rather than p-value statistics [20, 26], following recom-
mended practices [7, 19]. However, a p-value approach can always be
obtained from the data by following similar techniques. For our infer-
ential analysis, we use pairwise differences between means and their
95% CIs 1, indicating the range of plausible values for the population
mean. We use BCa bootstrapping to construct the confidence intervals.

We first provide an overview of the results across the tasks to evaluate
the efficiency of all four visualizations (Section 5.1). Afterwards, we
present results for varied task conditions to investigate efficiency with
increasing task complexity (Section 5.2).

5.1 Tasks
In this section, we investigate the question: “is there a difference in
efficiency (time, error) between the four visual designs?”. Figure 6 (top)
displays mean times per visualization and Figure 7 (top) shows pair-
wise time comparisons for all tasks collectively. Participants spent
45.64 seconds on average (CI = [42.93, 48.44]) using SpatialJX, and
slightly longer using TemporalJX (50.06s, [47.33, 52.85]). There is
a pronounced increase in task duration in the results of both LinkedV
(104.76s, [96.36, 113.28]) and EmbeddedV (104.97s, [95.98, 114.05]).
Pairwise comparisons show strong evidence that plot-based visualiza-
tions were slower than color-coded visualizations (by 57.03s on average,

1A CI of differences that does not cross zero provides evidence of differences.
The further away from zero and the smaller the CI, the stronger the evidence.
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Fig. 7. Pairwise comparisons between visualizations for completion
time (s) and relative error (%), for all tasks. Error bars represent 95%
Bootstrap CIs, with evidence of differences in orange.1

[47.78, 66.15]). However, there is no clear evidence that completion
times were different within each visualization group—i.e., LinkedV vs.
EmbeddedV, and SpatialJX vs. TemporalJX.

Figure 6 (bottom) displays mean errors and Figure 7 (bottom) shows
mean error differences for all tasks collectively. Participants’ average
error was 1.07% ([0.62%, 1.57%]) when using EmbeddedV, and 0.74%
([0.38%, 1.15%]) with LinkedV. When using color-coded juxtaposed
visualizations, the average error increased to 5.11% ([3.89%, 6.37%])
with SpatialJX and to 5.44% ([4.21%, 6.72%]) with TemporalJX. In
this case, there are significant differences between plot-based and color-
coded visualizations: the former is 4.36% on average ([3.06%, 5.69%])
more accurate than the latter. However, there is no clear difference
within each visualization group.

5.2 Task conditions and complexity
In addition to differences in efficiency between the visualizations, we
were also interested in investigating if their efficiency is affected with
increasing task complexity, i.e., “for each visual design, is there a dif-
ference in efficiency (time, error) with an increasing task complexity?”.
This sections reports results of efficiency impact based on the four task
complexity conditions discussed in Section 4.4—namely, number of time
instances, number of spatial instances, camera navigation, and view angle.

5.2.1 Completion time
Figure 8 (top) shows results across the task conditions and design. For
the TemporalJX visualization, the number of time instances had the most
impact on increasing completion time (15s, [10.4, 19.77]), followed
by camera navigation (6.31s, [2.28, 15.3]) and number of spatial instances
(6.16s, [0.81 , 11.62]). However, comparison within the view angle
condition shows no clear increase in completion time. For SpatialJX,
the number of spatial instances and camera navigation had the most impact
on task completion time: 12.65s ([7.65, 17.64]) and 11.54s ([4.64,
18.76]), respectively; this dropped for view angle (7.29s, [2.22, 12.35])
and number of time instances (5.86s, [0.47, 11.39]). For LinkedV, the

number of spatial instances and camera navigation had a significant impact
on increasing task duration: 48.09s ([33.96, 61.59]) and 49.83s ([30.87,
68.35]), respectively. This dropped to 33.12s ([13.85, 51.68]) in the view
angle condition, but no significant time difference was found with an
increasing number of time instances. For EmbeddedV, similar to LinkedV,
the number of spatial instances and camera navigation had a strong impact
on increasing task duration: 51.9s ([36.88, 66.6]) and 61.16s ([42.87,
78.96]). This dropped to 43.2s ([23.85, 62.06]) in the view angle case.
There is no evidence that increasing the number of time instances led to
an increase in completion time.

5.2.2 Relative error
Figure 8 (bottom) shows the results on task error increase across the
four task conditions.For TemporalJX, number of time instances had the
most significant impact on task error increase (4.52%, [2.2%, 6.82%]),
followed by number of spatial instances (3.25%, [0.82%, 5.66%]) and
camera navigation (3.15%, [0.12%, 6.14%]). For SpatialJX, camera
navigation had the most significant impact on error (4.61% increase,
[1.44%, 7.79%]), and dropped to 2.55% ([0.06%, 4.96%]) with an
increasing number of spatial instances. When considering LinkedV, none
of the four task conditions had a significant impact on task error in-
crease; and for EmbeddedV, camera navigation was the only condition
that significantly impacted task error (1.28%, [0.28%, 2.4%]).

6 DISCUSSION

In addition to examining the quantitative differences in performance
between the four visualization designs, we also observed participants’
behaviors and strategies when using each visualization. These observa-
tions, along with insights from participants’ questionnaires, allowed us
to more comprehensively characterize how they used each visualization.

6.1 Tasks
For the elementary tasks, we saw clear differences between plot-based
and color-coded visualizations, in terms of both accuracy and task
completion time—see Figure 7. Participants were considerably more
accurate on average when using plot-based visualizations than when us-
ing color-coded juxtaposed visualizations. This tendency is consistent
with participants’ perceived difficulty in conducting the tasks. It was
stated often in the post-study questionnaire that it is hard to perceive
minor variability in the data through color encoding.

Takeaway #1: Plots produce the most accurate results, and there is
no clear winner between linked and embedded visualizations.

However, the accuracy gain seen in the plot-based designs may
have come at the expense of a substantial decrease in overall speed.
Participants were considerably slower, possibly due to three factors: 1)
plot-based visualizations required users to identify the target attribute
values by scanning regions across the entire spatial domain, 2) since
plots allowed participants to extract more subtle differences in the data,
they likely spent more time on the task verifying their choices, and
3) occlusion—while most highlighted facades on the 3D city model
were directly accessible, we observed that partially-occluded areas
could make interactions that require direct access difficult (e.g., mouse
clicking and dragging regions). As a result, participants in our study
often needed to adjust viewing angles (sometimes repeteadly) to reach
a certain part of the building, drag the region, and see the visual plot.

Takeaway #2: Plot-based visualizations require spatial scanning,
which makes them slower to identify, verify, and access target data
values compared to color-coded visualizations.

6.2 Task conditions and complexity
6.2.1 Completion time
For the task conditions, we observed that task completion time increases
substantially given an increasing number of spatial instances, camera navi-
gation, and diverging view angles when using plot-based visualizations,
possibly because of the three factors previously stated. However, we
found no evidence that completion time increases with a higher number
of time instances. This is likely because plot-based visualizations make
it easy to see trends over time: collates all time steps across the individ-
ual bar chart; therefore, the cognitive load (time) did not significantly
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Fig. 8. Increase in completion time (s) and relative error (%). Rows: task conditions. Columns: visualization designs. Note that plots may present
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Fig. 9. The designs that scale best in completion time and error with in-
creasing condition complexity (i.e., no evidence of increase in time/error).

add up. The same was not true for spatially and temporally juxtaposed
visualizations, where participants spent longer with an increasing num-
ber of time instances likely because participants had a fair amount of
difficulty to collate information across different spatial and temporal
contexts, as we observed. Although spatially-juxtaposed visualization
displays all data instances at the same time, collating information across
somewhat distant screen areas seems to affect cognitive load (time).

Takeaway #3: Plot-based visualizations scale better in completion
time given an increasing number of time instances as they collate all
information needed at a specific location.

We also observed that the time increase for plot-based visualiza-
tions tends to be more than twice the increase for the color-coded
ones for task conditions that cover a wider or more convoluted spatial
domain—e.g., the number of spatial instances condition considers a higher
number of building facades, and the camera navigation condition deals
with partially-occluded facades. To illustrate, with an increasing number
of spatial instances, the time increase for SpatialJX was 12s against 48s
for LinkedV. This tendency may reflect our prior finding that spatial
scanning is a bottleneck for task duration in plot-based visualizations:
it requires not only sequential scan but also physical accessibility to
partially-occluded surface areas (Takeaway #2).

The results of our study indicate that participants spent substantially
longer when using plot-based visualizations; however, these designs
scale well when analysis grows difficult with an increasing number of
time instances, likely because the plots collate all the information needed
to identify temporal tendencies. Given these findings, Figure 9 (top)
shows recommendations of visual designs that were most effective in
task duration with increasing task condition complexity.

6.2.2 Relative error

LinkedV did not have significant error increase for any of the four
task conditions. A similar pattern was observed in EmbeddedV as
little evidence of error increase was found only in the camera navigation
condition—and we believe that the required context switches between
the different building facades was the dominant causal factor. Hence,
the plot representation seems to sustain accuracy irrespective of the
number of locations and timestamps taken into account.

Takeaway #4: Plot-based visualizations scale better in accuracy
given an increasing number of spatial instances, temporal instances, or
camera navigation. Yet, continuous context switching may be a concern
for embedded visualizations.

One interesting finding from this study is the inconclusive evidence
of task error increase with varying view angle for all four visualizations.
This is particularly intriguing as EmbeddedV raises concerns due to
distortion of visual information partly caused by perspective. The
lack of observed differences may be due to low statistical power; but
we believe it is more likely due to the referencing lines added to the
plot design. Participants’ comments indicate that they often used the
lines, as well as the empty space between the top of the bar and the
line, to make comparisons within and between individual plots—see
Figure 3. Yet, since aliasing artifacts appear on the reference lines with
increasing camera distance, we observed that participants had to move
close enough to the building model in order to make them legible.

Takeaway #5: Reference lines can serve as a visual aid in plot-based
visualizations to facilitate comparison, at least from a legible distance.

The results of our study indicate that plot-based visualizations
(EmbeddedV and LinkedV) can not only enhance the legibility of spa-
tiotemporal data on 3D city models, but also scale well when analysis
grows more complex. Based on our observations, Figure 9 (bottom)
suggests the visual designs that were most effective in task error with
increasing task condition complexity. Lastly, our design recommen-
dations depicted in Figure 9 demonstrate that, considering increases
in complexity in task conditions, plot-based visualizations more often
preserve efficiency (time, accuracy) compared to color-coded ones.

7 PRACTITIONERS’ PERSPECTIVE

In addition to examining quantitative differences in performance be-
tween the visual designs, we conducted interviews with four practition-
ers from the urban domain; two were the same who advised us on task
requirements for spatiotemporal analysis in 3D urban visualizations.
Procedure. Each session was divided into three parts. First, we started
with a description of the motivation and goal of our study. Second,
we performed four tutorials; these were the same tutorials previously
used in our study with the purpose of introducing the analysis tasks and
each of the four visualizations. Throughout the tutorials, participants
were encouraged to pose questions and asked to think aloud to express
reasoning. The researcher guided the trials, and adopted an inquiry-
based learning approach throughout the tutorial by posing questions to
the participants—e.g., “can you tell me a location to place a region?”
and “can you indicate which region has the highest average attribute
value in t1 and t2?”, and relying on them to assess the underlying task
analysis and recommend courses of action to complete each trial. The
third part of the session consisted of a semi-structured interview to
collect participants’ impressions as well as suggestions for further work
on the visual designs. Sessions lasted 45 to 60 minutes and were video
recorded. Comments were transcribed, and an open coding approach
was applied. Quotes have been lightly edited to remove extraneous or
repeated words, without changing the semantics of the sentence.
Results. Overall, all participants agreed on the usefulness of the visual-
izations to support analysis of 3D time-varying urban data. Although
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color encoding was acknowledged to be most familiar, three of the
four participants reported a preference for the plot representation. They
highlighted the fact that plots can inform various features of the tempo-
ral function (e.g., local/global extrema, increasing/decreasing intervals)
that would otherwise be difficult to extract from colors (P1, P2). They
also argued that they were more confident when comparing variations
between values using plots than they were with colors (P1, P2, P4). One
participant reported a preference for a hybrid visualization as “colors
could be used for rapid screening, and plots could be used to get and
compare regions based on more precise data” (P3). Some participants
remarked that embedded views minimize the seam between the plots
and their spatial references in a way that reduces mental workload as
“you no longer need to associate spatial regions with plots (...) you’re
(spatially) manipulating the plots themselves” (P4). Others remarked
that linked views allow plots to be always “accessible” (P2) and “adja-
cent” (P1) to one another, even when comparing distant regions.

We also asked participants to provide suggestions for further work to
build on the current designs. Participants suggested investigating plot
designs. An example are designs to aid comparison between regions:
“stacked” (P1) or “multiseries” (P3) bar charts, or even charts that
encode operations between data points from two or more regions—e.g.,
“the difference in the solar irradiance from candidate areas to install
solar panels” (P3). The comparative designs could “be particularly
useful for comparing data from dispersed regions using e.g., embedded
views” (P1). Another example is multivariate designs to aid the co-
analysis of damages incurred to both outer and inner layers of the
building—“it could be very interesting to see, e.g., in a story, not only
the damage (e.g., stress, displacement, fatalities, cost of repair) of the
facade but also the damage profile of internal areas (e.g., partition
walls) (...) maybe by projecting it to the facade itself ” (P1).

Participants also suggested considering plot interactions. An ex-
ample is filtering as “time responses of structural damages tend to
vary significantly along the building facade due to vertical earthquake
motions (...) apply filters on the plots to specify separate time periods
makes sense for assessing damage severity e.g., at a story by story level”
(P3). Other examples include hovering, reordering, and even orient-
ing plots since “for vertical earthquake motions, comparing regions’
responses at different story levels (..) ‘rotating’ the bar charts and (ref-
erence) lines would likely make it easier comparing them” (P3). Lastly,
participants suggested other region shapes to cover areas considered
during damage analysis: story, multi-story, and corners (P1, P2, P3).

8 CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this paper, we first presented a domain task characterization as a
series of abstract tasks that benefit from 3D spatiotemporal urban visu-
alization by conducting interviews with experts from urban planning,
architecture, and civil engineering; we hope that this serves as a re-
source for the visualization community to better understand the growing
area of 3D urban analytics. Afterwards, we selected a subset of these
tasks and presented a quantitative study comparing user performance
of four representative visual designs used for the analysis of time-
varying 3D urban data. Our findings indicate that participants were
more accurate using plot-based visualizations but faster using color-
coded visualizations. The plot-based visualizations improve accuracy
for analytical tasks as participants tend to perceive higher discriminabil-
ity in the data with the position on a common scale encoding compared
to color—interestingly, this result is aligned with perceptual accuracy
rankings previously found in controlled experiments for 2D information
visualizations [14, 56]. Our findings also reveal that plot-based visual-
izations more often preserve user performance compared to color-coded
visualizations with increasing task complexity. Based on our findings,
we were able to derive a series of takeaways that offer practical design
guidelines for visualization researchers and practitioners. Lastly, we
presented a qualitative evaluation with four practitioners from the 3D
urban domain. The interviews confirmed the overall usefulness of the
visualizations for 3D spatiotemporal urban data analysis, and revealed
practitioners’ impressions and suggestions for further work.
Limitations and future work. We acknowledge some limitations of
our study. Although our quantitative study included participants with

considerable experience with 3D visualizations, none of them were
practitioners working with 3D urban visualizations in a professional
setting. We also acknowledge that the findings of our study may be
limited by a relatively small sample of participants—mostly graduate
students. We feel that general trends found in our study would still apply
across domain practitioners as they are familiar with 3D visualizations,
similarly to the recruited participants. However, further work is needed
to verify how our study results alter with a large sample and how well
the visualizations fare when used by domain practitioners. Additionally,
we recruited participants who might be more familiar with some of the
techniques (e.g., temporal juxtaposition) than others (e.g., embedded
view). While we believe the general trends still apply, it is possible that
this effect could bias the results in favor of some techniques.

We also acknowledge the limitations of our visual designs in tack-
ling a key challenge encountered in 3D urban spaces: occlusion. We
carefully controlled the amount of occlusion between buildings in our
trials as we primarily aimed at evaluating the influence of space and
time at different granularities on users’ ability to interpret attribute
values with different visualizations. Hence, we refrained from adding
too many factors to an already complex experimental design. Our
discussion section provides thoughts on how (partial) occlusion im-
pacts performance, but further work is needed and could consider a
combination of our designs with de-occlusion designs such as the ones
presented by Elmqvist et al. [27]. Another limitation is that we used
a single 3D city model in the study, which reflects only a subset of
possible geographical configurations. Additional studies may be nec-
essary to measure participants’ performance in a more diverse range
of model types. While plot-based visualizations performed well for a
medium-density model with partial occlusion, they may provide less
of a benefit for a high-density model with strong occlusion between
buildings. Our city model also did not include buildings with facade
textures that portray structural information. Further work could con-
sider blending thematic and structural data, and study to what degree
users perceive each information individually. Furthermore, our city
model only included buildings with regular geometry. It is possible that
irregular geometries could affect the perception of the representation of
the thematic variable in our visualizations. Although we believe general
trends of our study findings would persist in building models with less
pronounced deformations (e.g., facades with smooth, wide curves), fur-
ther work is needed to consider cases with acute geometric irregularity.
In such cases, irregularities may cause undesired distortions on the
plot representation of an embedded visualization that conforms to the
surface geometry like ours; therefore, further work could investigate
how well the visualization fares with increasing levels of irregularity
and consider redesigning it for legibility purposes, if needed. Some
redesign ideas could build on prior work from GIS research on varying
the level-of-detail of building models [10], or consider using proxy
surfaces as simplified, smoother approximations of a given polygonal
model [11, 66].

Finally, although we covered a spectrum of analytical tasks elicited
in our task characterization with domain experts, our study was also lim-
ited to a few tasks—spatial search for a facade region with extreme attribute
value over a time period (a time step or a time interval). It is possible
that other task settings could have yielded different study results and
may be worth further investigating—e.g., in temporal comparison tasks,
where target locations are already known by users, it is very likely
that time performance differences between plot-based and color-coded
visualizations would be less pronounced. Additionally, due to the study
feasibility purposes, we limited our tasks to deal with only a few spatial
and temporal instances. Although our results provide insights on how
well visualizations scale in such cases, future work could concentrate
on perceptual scalability and investigate finer granularity levels.
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