
3D City Reconstruction From Google Street View

Marco Cavallo
University Of Illinois At Chicago

Chicago, IL
mcaval4@uic.edu

ABSTRACT
Despite laser scan 3D point cloud acquisition has greatly im-
proved over the next few years, the process of creating 3D
large scale city models is still quite expensive and not straight-
forward. At the same time, nowadays services such as Google
Street View provide a vast amount of geo-registered panoramic
imagery, guaranteeing a decent resolution for dense locations
at zero cost. Our idea is indeed to leverage this free infor-
mation provided by Google Street View in order to obtain a
cheap and automatizable 3D recontruction of an urban area, by
extracting the depth information related to the great number
of panoramic images available online.

ACM Classification Keywords
H.5.m. Graphical user interfaces; Computer Graphics; Visual-
ization

Author Keywords
Google Street View; Point Clouds; 3D reconstruction

INTRODUCTION
Google Street View can be considered as an online browsable
dataset consisting of billions of street-level panoramic images
acquired all around the world. Since 2007, the company has
continuously improved and updated its global image database,
now collecting on average one panorama each 5-10m in
urban environments [2]. Google provides public APIs for
requesting virtual camera views of a given panorama from its
GPS position or unique identifier. These views are rectilinear
projection of the spherical panorama with a user selected field
of view, orientation and elevation angle. These views can be
considered as undistorted images taken from pinhole cameras
[2], free of distortion, and need to be partially overlapped in
order to reconstruct the 360◦ panorama.
Additionally, the speed with which Google’s laser scanners
get reflected by surfaces allows the company to calculate the
distance from the camera to objects or buildings, allowing the
creation of 3D models to be used in other applications such
as Google Earth [1]. Google API indeed provides a way to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from mcaval4@uic.edu.

obtain the depth map corresponding to a specific panorama,
information that we will exploit in order to reconstruct the
3D scene. Once decoded and visualized in space, this depth
data and the models generated from it may turn out to be
useful for many different applications like navigation and
augmented reality, but also virtual reality oriented videogames.

RELATED WORK
Numerous previous works tried to exploit the possibilities
opened by Google Street View imagery, but not so many tried
to make a significant use of the corresponding depth informa-
tion. Some of the works which tried to leverage depth maps
are oriented to the world of Robotics, where panoramic im-
ages are used for camera pose estimation. The sample work by
Agarwal et al. [2] proposes a complementary method for robot
geolocalization based on matching the features of a geotagged
panoramic image with the input of a monocular camera, so that
the robot can orientate in an environment without the usual
need of pre-visiting a location. Some other approaches aimed
instead at trying to use depth information to add virtual content
to a single panorama, "augmenting" the traditional spherical
representation provided by Google Street View. This could be
meant for narrative or didactic purposes in order to increase
interactiveness in geolocated environments. Among them we
can cite projects like ARLearn [7] or the work proposed by K.
Hara [6], aimed at identifying street-level accessibility prob-
lems; another interesting example tending to an even more
interactive approach is a drive simulator [6] completely built
with panoramic images and a real car. However, all of these
works generally dealt with only one panorama at a time, ex-
ploiting depth information only for placing objects inside the
spherical projection of the panorama. Mikusic and Kosecka
[1] provide instead a method for combining more panoramic
images with the goal of building a 3D textured representa-
tion of an urban environment. Our work apparently goes in
their same direction, even though less oriented at photorealism
and with a future idea of combining 3D reconstruction with
augmentations, thus combining the previous approaches. In
addition to that, we provide a one-to-one mapping from the
real world coordinates to the virtual world coordinates, which
could be an advantage for positioning virtual objects, elimi-
nating the need of geometric computations when dealing with
the usual spherical panoramic projection.



Figure 1. Sample point cloud reconstruction based on the output of merging 6 different panoramic images along a street.

METHOD
In this section we will present the main methods used to imple-
ment the software, which has been conceived as an interactive
web application based on Three.js and WebGL.
The overall development process can be divided into three
parts:

1. Composing a panorama

2. Computing the depth map

3. Creating the point cloud

4. Composing points clouds

The first two parts leverage the use of Google Street View
API in order to gather and decode the data needed at the
following stages. They also exploit two tiny open-source
Javascript libraries, named GSVPano [13] and GSVPanoDepth
[14], which helped fetching and composing Google’s imagery.

Composing a panorama
The first part of the application has to deal with retrieving the
panorama image closest to the specified initial position. By
making a call to Google Maps REST API at the following
address

https://maps.google.com/cbk?output=json&hl=x-local&ll=LAT,

LNG&cb_client=maps_sv&v=3

it is possible to obtain the unique identifier of the panorama.
Google Street View Service Javascript API allows us to re-
trieve some information to be used in the next step: the
panorama identifier, the available resolutions for the whole
panorama, the resolution of the single tiles composing it, the
world heading, the real coordinates and eventual neighboring
panoramas.
Despite Google Street View may provide resolutions up
to 13312x6656 pixels, we considered the resolution of
3328x1664 pixels more than sufficient for our purposes. In this
particular case, the objective is to compose in a single image
7x4 tiles having a resolution of 512x512 pixels, since Google
doesn’t allow to download directly the panoramic image. So,
we need to download each of the 28 tiles by using the REST
API

Figure 2. Sample panorama reconstructed from 7x4 tiles

https://cbks2.google.com/cbk?cb_client=maps_sv.tactile&

authuser=0&hl=en&panoid=PANORAMAID&output=tile&zoom=

QUALITY&x=XPOS&y=YPOS&TIMESTAMP

where in our case QUALITY is 3 and XPOS and YPOS cor-
respond respectively to the position of the desired square tile
in the 7x4 image grid. After having combined all of them
in a single image by partially overlapping their borders, we
obtain a 3328x1664 RGB image corresponding to the desired
panorama.

Computing the depth map
Now that we have the panorama image, we need to retrieve its
corresponding depth map. Google Maps REST API allows us
to download a compressed JSON representation of the depth
image from the url

http://maps.google.com/cbk?output=json&cb_client=maps_sv&

v=4&dm=1&pm=1&ph=1&hl=en&panoid=PANORAMAID

which contains the distance from the camera to the nearest
surface at each pixel of the panorama. After having decoded
from Base64 the data and having converted it to an array of
unsigned 8-bit integers, we can fetch its header information
obtaining useful values, like the number of referenced planes.
In fact, each pixel in a grid of 512x256 pixels is corresponding
to one of several planes, which are given by its normal vector
and its distance to the camera. Therefore, in order to calculate
the depth at a pixel, we have to determine the intersection
point of a ray starting at the center of the camera and the plane

https://maps.google.com/cbk?output=json&hl=x-local&ll=LAT,LNG&cb_client=maps_sv&v=3
https://maps.google.com/cbk?output=json&hl=x-local&ll=LAT,LNG&cb_client=maps_sv&v=3
https://cbks2.google.com/cbk?cb_client=maps_sv.tactile&authuser= 0&hl=en&panoid=PANORAMAID&output=tile&zoom=QUALITY&x=XPOS&y=YPOS&TIMESTAMP
https://cbks2.google.com/cbk?cb_client=maps_sv.tactile&authuser= 0&hl=en&panoid=PANORAMAID&output=tile&zoom=QUALITY&x=XPOS&y=YPOS&TIMESTAMP
https://cbks2.google.com/cbk?cb_client=maps_sv.tactile&authuser= 0&hl=en&panoid=PANORAMAID&output=tile&zoom=QUALITY&x=XPOS&y=YPOS&TIMESTAMP
http://maps.google.com/cbk?output=json&cb_client=maps_sv&v=4&dm=1&pm=1&ph=1&hl=en&panoid=PANORAMAID
http://maps.google.com/cbk?output=json&cb_client=maps_sv&v=4&dm=1&pm=1&ph=1&hl=en&panoid=PANORAMAID


Figure 3. Depth map correponding to the panorama in Figure 1

corresponding to the pixel. Iterating for all the planes, we can
then populate our depth map as 32-bit float array of 512x256
elements - which is much lower than the resolution of our
RGB panorama image.
As for the computation, for each point we consider its associ-
ated plane and we compute its distance as

forall indeces x,y do
planeIndex← indices[y∗width+ x]
φ ← w−x−1

w−1 ∗2π + π

2

θ ← h−y−1
h−1 ∗π

v← [sinθ cosφ ,sinθ sinφ ,cosφ ]
if planeIndex > 0 then

plane← planes[planeIndex]
t = plane.d

v·plane.n
v← v∗ t
depthMap[y∗w+(w− x−1)]←

√
v · v

else
depthMap[y∗w+(w− x−1)]← ∞

end
end

Algorithm 1: Depth map computation

where indeces is an array containing the plane associated to
each pixel. In order to obtain a more intuitive image repre-
sentation of the depth map monodimensionalw∗h vector, for
example we can simply create a colored canvas of width w
and height h where each pixel is defined as

forall pixels x,y do
depth← depthMap[y∗w+ x]
image[4∗ (y∗w+ x)+0] = 0
image[4∗ (y∗w+ x)+1] = depth∗255

50
image[4∗ (y∗w+ x)+2] = depth∗255

50
image[4∗ (y∗w+ x)+3] = 255

end
Algorithm 2: Depth map visualization

which will lead to an image similar to the one in Figure 2.

Creating the point cloud
Now that we have the depth information for each pixel, we
need to create our point cloud and map each point to its original

Figure 4. Comparison between a sample building reconstructed as a
point cloud and the original displayed on Google Street View

color in the panorama obtained at step 1. Considering npoints =
w∗h points, we define two npoints∗3 float arrays containing the
3D space position and the color of each point. Then we have
to consider that the points of the panorama image originally
belonged to a spherical image, so we have to reproject them
in space by using the following algorithm:

for ydepth← 0 to hdepth do
lat← ydepth∗180

hdepth
−90

r← cos lat∗π
180

for xdepth← 0 to wdepth do
depth←
depthMap[ydepth ∗wdepth +(wdepth− xdepth)]

lng← (1− xdepth
wdepth

)∗360−180

xpos←−r ∗ cos lng∗π
180

ypos← sin lat∗π
180

zpos← r ∗ sin lng∗π
180

pospoint ← [xpos,ypos,zpos]∗depth
xnorm←= 1−x

w
ynorm←= y

h
xcolor← int(xnorm ∗wcolor)
ycolor← int(ynorm ∗wcolor)
colorindex← ycolor ∗wcolor ∗4+ xcolor ∗4
colorpoint← imagecolor[colorindex]/255

end
end

Algorithm 3: Point cloud creation

Notice that, in addition to the reprojection, it was necessary to
normalize the pixels positions in 2D in order to retrieve col-
ors from the panoramic colored image, which has a different
resolution.

Composing points clouds
By exploting the links between locations provided by Google
Street View API, we know the identifier and geoposition of the
neighboring panoramas. We can then apply iteratively all the
previous steps to these new locations in order to populate the
3D scene with other panoramas in order to refine the one we
have with more points or to reconstruct a real world path. In
our case, we decided to rely on two parameters: the minumum
distance between two panoramas and the depth of iteration,
considering the first panorama loaded as the root of a tree to
be explored in a breadth-first fashion.



Figure 5. Sample point cloud reconstruction of the panorama in Figure 1 and Figure 2. On the left we can see the scene from a top view, while on the
right we have the same scene from a different perspective. We can notice how points are projected onto planes (i.e. buildings and trees in this case) and
how their density is much higher when they are closer to the origin of the point cloud.

On average, we noticed Google depth maps generally involve
real world distances of 3-200m and we decided to try to build
the scene with a scale of 1 virtual unit : 1 meter. So, we load
the first point cloud with center in (0,0,0) and then we add the
following data with an offset proportional to the real world
distance from the first panorama location. By using some
geometrical projection and a bit of approximation, we can
write the following algorithm to compute the distance vector
on the [x,z] plane:

Data: Latitute and longitude of a location
Result: [x,z] offset from the center of the scene
xo f f set ← lon∗20037508.34

180 − x0

zo f f set ← log(tan((90+ lat)∗ π

360 ))/
π

180 ∗
20037508.34

180 − z0
if first panorama then

x0← xo f f set
z0← zo f f set
return [0,0]

end
return [xo f f set ,zo f f set ]

Algorithm 4: Offset distance calculation

In addition to the translation, the point cloud needs to be ro-
tated along the y vertical axis by the heading specified by the
information retrieved from Google Street View. After combin-
ing multiple panoramas, we finally obtain a result similar to
the one showed in Figure 1.

EVALUATION

Projection and position accuracy
Though we still have not defined any accuracy metric to be
optimized, due to the correspondence between virtual units
and meters it is possible to make some direct observations
from a coarse-grained perspective. Despite on average the
output of our method still produces non-photorealistic repre-
sentations which convey a good idea of geometry, when it
comes to bring the 3D reconstruction to a more texture and
color representation we can easily notice some smaller issue.
For example, in Figure 7 we can notice how the correspon-
dence of depth map and RGB panorama is still not perfect:

Figure 6. Combination of multiple panoramas along a street.

the border of the building, indeed, is characterized by the light
blue of the sky next to it. In addition to this, the projection of
the points on the planes often includes points relative to the
sky that, in normal conditions, should have a distance tending
to infinity (and so they should not be visible). One of the main
differences with respect to Micusik’s approach [1] is indeed
outliers elimination, which in their case is accompained by
much more sophisticated machine learning algorithms.
Another issue is represented by far points: when each
panorama is loaded, the furthest points become more sparse
and accuracy decreases. When combining multiple points
clouds, some of them simply don’t match and may just add
unwanted noise to the reconstruction, as we can see from FIg-
ure 8. A simple solution could be filtering them out basing on
their distance when composing multiple panoramas.
Finally, while heading and latitude projection of single panora-
mas seem to be matching, longitudinal accuracy is still un-
precise in the measure of few meters and so vertical planes
may result shifted with a sort of "duplicate" effect when com-
posing multiple panoramas. This could be possibly due to the
approximation in the formula proposed at the fourth step of
the Method section.



Figure 7. Still imperfect alignment with the panorama image and pres-
ence of sky unnecessary data.

Exploring the world
In order to make the evaluations listed above, we considered
necessary to build a specific user interface to give the user the
possibility to explore the world from different perspectives. In
particular, we added tre cameras:

• A static top-down camera directed to the origin, useful to
see step-by-step the reconstruction of the city while the al-
gorithm loads consecutive panoramas. Its position is always
updated to the offset of the most recently loaded point cloud
and its rotation is never changed.

• A rotating camera following elliptic trajectories in order to
give a broad perspective view of the whole reconstructed
point cloud. Its movements for each frame are defined as

lon← lat +0.15
lat← max(−85,min(85, lat))
φ ← (90− lat)∗ π

180
θ ← lon∗ π

180
pos← 100∗ [sinφ cosθ ,cosφ ,sinθ ]
lookAt←last pointcloud center

Algorithm 5: Camera trajectory computation

• An interactive camera to allow the user complete freedom
in the generated world. The camera moves along the [x,z]
plane according to the pressing of the directional arrows on
the keyboard and changes orientation basing on the mouse
movements.

In addition to this, a minimalistic menu allows changing the
camera field of view and reprojecting the last panoramic image
onto a sphere around the scene. This last feature is particu-
larly useful for visually matching the point cloud with the
panoramic image.

FUTURE WORK
As stated before, this is just an initial approach to 3D modeling
from Google Street View imagery. A first future work is to
increase the accuracy of the projection of the pixels, especially
filtering out unwanted points and leaving only the ones
corresponding to the actual buildings. This comprehends both
realigning the depth map with the panorama colored image
and removing sky and far points in general. In relation to this,
we should test which is the optimal number of panoramic
images (and points) needed to reconstruct an urban area

Figure 8. Noisy points of far panoramas sometimes get projected out of
correct position. When connecting more relatively close panorama, they
could simply be excluded during the computation of the point cloud.

and the suggested distance between each of them. Also,
it would be interesting to reconstruct from the point cloud
the meshes of the buildings and to project texures onto the
corresponding vertical planes, in order to have more realistic
building facades.
On top of that, until now the normal panoramic images has
been reprojected onto a sphere for debug purposes, but a
possible idea could be to combine it with the point cloud
by finding some geometric correspondences, in order to
allow the insertion of virtual additional content like in the
projects Urban Jungle [10] and Hashima Island [11]. In
particular, our work would differentiate from these previous
applications thanks to the possibility of exploring a combined
world made up of multiple panoramas, where there is a direct
correspondence between real-world and virtual positions and
distances. Other examples of augmenting Google Street View
imagery can be found in [6], [7], [8], [9] and [12].

CONCLUSION
In summary, we proposed an alternative approach to the nor-
mal use of panoramic images, aimed at visualizing through
point clouds the depth information contained in these panora-
mas. By combining multiple point clouds, we demonstrated
how it is possible to create a sparse-point reconstruction of
an urban environment in a completely free and automatizable
way, creating an explorable 3D world that could be used for
many different purposes.

ACKNOWLEDGMENTS
This work was produced under the supervision of Professor
Angus G. Forbes, assistant professor in the Department of
Computer Science at University of Illinois at Chicago.

REFERENCES
1. Branislav Micusik, Jana Kosecka, Piecewise Planar City

3D Modeling from Street View Panoramic Sequences,
IEEE Conference on Computer Vision and Pattern
Recognition, 2009



2. Pratik Agarwal, Wolfram Burgard, Luciano Spinello,
Metric Localization using Google Street View, IEEE
Conference on Computer Vision and Pattern Recognition,
2015

3. Jay Bolter, Maria Engberg, Blair MacIntyre Media Studies,
Mobile Augmented Reality, and Interaction Design, ACM
Interactions, February 2013

4. Zeljko Medenica, Andrew L. Kun, Tim Paek, Oskar
Palinko Augmented Reality vs. Street Views: A Driving
Simulator Study Comparing Two Emerging Navigation
Aids, MobileHCI ’11 Proceedings of the 13th International
Conference on Human Computer Interaction with Mobile
Devices and Services, 2011

5. Dragomir Anguelov, Carole Dulong, Daniel Filip,
Christian Frueh, Stephane Lafon, Richard Lyon, Abhijit
Ogale, Luc Vincent, Josh Weaver, Google Street View:
Capturing the World at Street Level, Computer, vol. 42,
2010

6. Kotaro Hara, Victoria Le, Jon E. Froehlich, Combining
Crowdsourcing and Google Street View to Identify
Street-level Accessibility Problems, CHI ’13 Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems, 2013

7. Stefaan Ternier, Roland Klemke, Marco Kalz, Patricia,
Ulzen, Marcus Specht, ARLearn: Augmented Reality
Meets Augmented Virtuality, J-jucs journal vol. 18, August
2012

8. Mark Graham, Matthew Zook, Andrew Boulton,
Augmented reality in urban places: contested content and
the duplicity of code, Transactions of the Institute of
British Geographers, vol. 38, July 2013

9. R. Diaconu, J. Keller, E. Triponez, HybridEarth: Social
Mixed Reality at Planet Scale, Consumer Communications
and Networking Conference (CCNC), 2014 IEEE

10. Urban Jungle, http://inear.se/urbanjungle

11. Hashima Island - The Forgotten World,
http://hashima-island.co.uk

12. Floating Shiny Knot, http://www.clicktorelease.com/
code/streetViewReflectionMapping

13. GSVPano Library, https://github.com/heganoo/GSVPano

14. GSVPanoDepth Library,
https://github.com/proog128/GSVPanoDepth.js/tree/master

http://inear.se/urbanjungle
http://hashima-island.co.uk
http://www.clicktorelease.com/code/streetViewReflectionMapping
http://www.clicktorelease.com/code/streetViewReflectionMapping
https://github.com/heganoo/GSVPano
https://github.com/proog128/GSVPanoDepth.js/tree/master

	Introduction
	Related work
	Method
	Composing a panorama
	Computing the depth map
	Creating the point cloud
	Composing points clouds

	evaluation
	Projection and position accuracy 
	Exploring the world

	future work
	Conclusion
	Acknowledgments
	References 

