
Image Denoising Using A Generative Adversarial Network

Abeer Alsaiari
1
, Ridhi Rustagi

2

Dept. of Computer Science

University of Illinois at Chicago

Chicago, USA

e-mail:
1
aalsai3@uic.edu,

2
rrusta2@uic.edu

A’aeshah Alhakamy
3

Computer & Information Science Dept.

Indiana University–Purdue University Indianapolis, USA

e-mail:
3
aalhakam@iupui.edu

Manu Mathew Thomas
4
, Angus G. Forbes

5

Dept. of Computational Media

University of California, Santa Cruz

Santa Cruz, USA

e-mail:
4
mthomas6@ucsc.edu,

5
angus@ucsc.edu

Figure 1. Gaussian noise image (left), our denoised image (middle) and ground truth photorealistic image (right).

Abstract—Animation studios render 3D scenes using a

technique called path tracing which enables them to create

high quality photorealistic frames. Path tracing involves

shooting 1000’s of rays into a pixel randomly (Monte Carlo)

which will then hit the objects in the scene and, based on the

reflective property of the object, these rays reflect or refract or

get absorbed. The colors returned by these rays are averaged

to determine the color of the pixel. This process is repeated for

all the pixels. Due to the computational complexity it might

take 8-16 hours to render a single frame. We implemented a

neural network-based solution to reduce the time it takes to

render a frame to less than a second using a generative

adversarial network (GAN), once the network is trained. The

main idea behind this proposed method is to render the image

using a much smaller number of samples per pixel than is

normal for path tracing (e.g., 1, 4, or 8 samples instead of, say,

32,000 samples) and then pass the noisy, incompletely rendered

image to our network, which is capable of generating a high-

quality photorealistic image.

Keywords-image denoising; rendering; deep learning

I. INTRODUCTION

Computer-generated imagery is a core component of
movies, video games, and commercials. From the early stage,
efforts are made to enhance the production of 3-dimensional
images and many algorithms are proposed to efficiently
render 3D scenes. During the 1960’s and early 1970’s,
algorithms are proposed to render 3D scenes with enhanced
realism. For example, algorithms like hidden-surface and
hidden-line are proposed to resolve the visibility problem.
Many other algorithms have been proposed over the years
for photorealistic rendering [1]. Nowadays, animation movie
studios, such as Pixar and Dreamworks, render their 3D
scenes using a technique called path tracing, which generates
high-quality photorealistic frames. Path tracing involves
shooting 1000’s of rays into a pixel randomly (Monte Carlo),
which will then hit the objects in the scene and, depending
upon the reflective property of the object, will reflect or
refract or become absorbed. The colors generated by these
rays are averaged to obtain the color of the pixel, and this
process is repeated for all pixels. Rendering scenes frame by
frame is computationally expensive and time consuming, as
thousands of rays per pixel are needed in order to render a
photorealistic image. GPU technology and efficient software
APIs have increased rendering speeds, but path tracing is still

126

2019 IEEE 2nd International Conference on Information and Computer Technologies

978-1-7281-3323-2/19/$31.00 ©2019 IEEE

nowhere close to real-time rendering. Due to the
computational complexity it can take hours to render even a
single frame.

Motivated by this problem, several attempts are being
made to speed up the process of obtaining high quality
images. Using a few samples to render a 3D scene can be
quickly evaluated, but the inaccuracy of this estimate appears
as noise in the final image. This problem can be addressed
using a denoising mechanism to generate a high-quality
noise-free image. Image denoising methods are applicable to
any noisy images either CGI, scanned images or images
taken by a camera. Limitations in signal transmission
equipment like cameras and scanners are the main source of
noise in images. Enhancing the quality of images is
important in many applications including, but not limited to,
medical images and geographical pictures. In addition, a
decent visual level is important for a better user experience
in all applications.

The most recent promising results for many problems in
image processing, including image denoising, are
accomplished in particular by convolutional neural networks
(CNNs). Deep learning networks generate astounding results
in solving different tasks across a wide range of domains,
often outperforming traditional methods. CNNs have a
similar architecture as conventional deep learning neural
networks, but they explicitly assume the input is an image.
They have been used as an underlying architecture for image
processing such as in image classification, image denoising,
and super resolution. Dong et al. [2] claims that an image-
denoising pipeline that uses example-based Super Resolution
methods, such as the sparse-coding-based method, could be
equivalent to the convolutional neural network procedure.
However, sophisticated results depend on the power of the
network design and training process. With respect to visual
recognition tasks, the depth of the network is of central
importance. The deeper the network, the better the result.
Although training deep networks is very hard because of the
emergence of the vanishing gradient problem, some network
designs have been proposed to address this issue. Residual
nets [3] are powerful networks that can handle very deep
depths by heavy use of skip connections and batch
normalization.

In this work, we propose a neural network-based solution
for reducing 8-16 hours to a couple of seconds using a
Generative Adversarial Network. The main idea behind this
proposed method is to render using a small number of
samples per pixel, which creates a noisy output image, and
then pass the noisy image to our network, which generates a
photorealistic image, in effect denoising the image. Our
proposed network is based on ResNet [3]. The key for our
work is the defined loss function and the very deep GAN.
We define a refined perceptual loss that preserves not only
color and texture, but also properties of the scene like motion
blur and depth of field.

The rest of the paper is organized as follows. We provide
an overview of the most related work in section 2. Section 3
shows the architecture of our proposed GAN. In Section 4,
we discuss our experiments and achieved results. Finally, we
conclude in Section 5.

II. RELATED WORK

Artificial neural networks have been widely used for
regression problems that map continuous vectors of input to
another continuous vector of output by minimizing an
optimization function. In [4], a multi-layer perceptron neural
network is learned for image denoising formulated as a
regression problem. Pairs of noisy and clean patches are used
to estimate the network parameters that minimize the
difference between the noisy and clean patches. Each layer
applies weights to patches, which are then sent to the next
layer before outputting a new image. This output is
compared to ground truth value. To update the network
parameters, backpropagation is used and the mean squared
error is minimized. The learned MLP network is used then to
denoise images by dividing the image into overlapping
patches as continuous input vectors. Each patch is denoised
and the average of overlapping patches is calculated to
produce the denoised image.

MLP is also used in [5] to filter out Monte Carlo noise
from images. Monte Carlo rendering can produce high
quality images but requires calculating many expensive rays
resulting in lengthy render times. A few samples can be
quickly evaluated but will produce a noisy image. They
addressed this problem by applying a denoising filter to
produce a pleasing high-quality image. To achieve that, they
observed that the noisy image and the ideal filter parameters
have a complex underlying correlation. The rendered image
is a set of primary features at each pixel like screen position,
color, shading, etc. A set of statistical secondary features of
each pixel in relation to other pixels is achieved by
processing the pixel local neighborhood. Then, an MLP
network is learned with these features to output a set of filter
parameters. The filter module applies the learned parameters
to the noisy rendered image to filter the pixels and generate
the filtered image.

Convolutional networks have been used as architecture
for the image denoising process. Jain and Seung [6] proposed
an unsupervised learning approach for image denoising using
the convolutional network. In contrast to the typical structure
of a convolutional network that outputs a single score, their
network restores a denoised image from an input that is
subjected to the Gaussian noise model. The network
outperformed previous approaches with 4 hidden layers and
24 feature maps per hidden layer. During the unsupervised
learning, the network is trained with the Berkeley
segmentation dataset. This dataset contains noise free images
and therefore they formulated the denoising problem as an
unsupervised learning process. During the training, a noise
function with different variations is integrated into the
training process to synthesize noisy training samples from
noise free images. The network is then trained to denoise
images by minimizing the reconstruction error of noisy
samples as a loss function. That is, it’s trained to minimize
the difference between the free noise image and the noisy
reconstructed image.

Another related problem that is solved using
convolutional networks is the single image super resolution.
Super resolution processes a low-resolution image to

127

estimate its high-resolution counterpart. The convolution
network is proposed in [2] for single image super resolution.
Similar to [6], the input image is divided into overlapping
patches. Using two convolution operations, conceptually
high-resolved patches are computed and then aggregated to
compose a high-resolution output image. Due to the
difference in resolutions, the input image is upscaled first to
the desired resolution as a preprocessing step. The
parameters of the mapping function are learned during the
training by minimizing the mean squared error between the
reconstructed image and the ground truth image.

SRGAN [7] introduces an approach similar to ours.
Unlike previously proposed convolutional networks for
image super resolution that are based on the mean squared
error as an optimization function, they propose a new loss
function that resolves perceptually satisfying high-resolution
image. The architecture consists of a very deep residual net
architecture, which is a GAN-based network consisting of
discriminator and generator networks. The generator
network is trained to generate an indistinguishable image
from the ground truth, fooling the discriminator with the
reconstructed image. Similarly, the discriminator is trained to
distinguish reconstructed images from real images. The
training of the network is achieved by minimizing the
perceptual loss function, that is, by minimizing the weighted
sum of its components: content loss and adversarial loss.
Instead of relying on pixel-wise error measures such as
MSE-based optimization, they proposed a novel perceptual
loss function consisting of content loss and adversarial loss.
The goal of adding content loss is to handle the solution with
respect to perceptual high-level features. The content loss is
based on perceptual similarity. Using pre-trained 19-layers
VGG network, feature maps are obtained for the
reconstructed and reference images. The feature map is
computed by encoding each image vector by layer filters.

The difference between features maps of reconstructed
images and reference images is computed as a Euclidean
distance to define the content loss. The adversarial loss
makes the discriminator and generator push the solution to
the natural image space in which the generator tries to fool
the discriminator with the reconstructed image and the
discriminator tries to distinguish the reconstructed image
from the real image. The architecture is based on the ResNet
[3] deep convolutional network. ResNet is defined to
enhance the training of very deep networks by adding
―shortcut‖ connections that feed the input to deep layers. The
residual layers then retain spatial information and tune the
output with reference to the input.

Recent work by Chaitanya et al. [11] and Bako et al. [12]
also explores the application of deep learning to denoising
images, but our approach differs in that it utilizes a GAN
architecture.

III. METHOD

We built a GAN network structure for image denoising,
which, like SRGAN, is based on ResNet [3]. A generator
network is trained to generate noise free images through
competing with a discriminator network, using ground truth
reference images to improve the quality of the generated

images. Our architecture makes use of residual blocks, skip
connections, and batch normalization. In our initial
implementation, due to training time limitations, we used
three residual blocks. Having a larger number of residual
blocks would increase the training accuracy significantly, but
at with the incurred expense of requiring longer training
times.

A. Generator Network

The goal of single image denoising is to generate a
photorealistic image with high quality. The generator should
be able to fill in the noises with neighboring pixel colors
without losing any information present in the original image.
We adopt a symmetric structure, similar to traditional CNN
frameworks, that directly learns an end-to-end mapping from
input noisy images to their corresponding ground truth. A set
of three convolutional layers, using batch normalization and
Lrelu activation, are stacked in the front of the network,
which extract semantic attributes from the input image.

Three residual blocks each containing two convolutional
layers are used to increase the depth of the network. We
involve symmetric skip connections in this sub-network to
improve efficiency in training and to promote faster
convergence. The skip connections feed the input to the deep
layers so each residual layer tune the output with reference to
input and retain spatial information. These are followed by
three sub-pixel convolutional layers, each corresponding to
the convolutional layers in the front of the network. Each
sub-pixel convolutional layer consists of a resized image
block followed by convolutional layer. The images are
resized from 64x64 to 128x128, and the final image output is
of size 256x256. We use sub-pixel convolutional layers
instead of deconvolutional layers to avoid checkboard like
patterns in the image. Since the sub-pixel convolution is
similar to deconvolution, we will refer to those layers as
deconvolutional layers in this paper. The first two
deconvolutional layers have Lrelu activations and the final
deconvolutional layer providing the denoised output has a
sigmoid activation. For all layers we use stride of 1. The
generator network is as follows:

where CBL(K) is a set of K-channel convolutional layers

followed by batch normalization and Lrelu activation, and

DBL(K) is a set of K-channel deconvolutional layers

followed by batch normalization and Relu activation. Skip

connections are added via every two layers.

B. Discrimintator Network

The goal of denoising a noisy image is not only to make
the denoised result visually appealing and quantitatively
comparable to the ground truth, but also to be of
photorealistic high quality. Therefore, we included a learned
discriminator sub-network to classify if each input image is
real or fake. We use five convolutional networks with Batch
Normalization and Lrelu activation throughout discriminator
network.

CBL(K) – CBL(K*2) – CBL(K*2*2) – CBL(K*2*2) –
CBL(K*2*2) – CBL(K*2*2) – DBL(K*2) – DBL(K) – DB(3)-Tanh

(1)

128

Figure 2. Generator network.

Figure 3. Discriminator network.

Once we calculate the learned feature from a set of these
Conv-BN-Lrelu, a sigmoid function is stacked at the end to
map the output to a probability score normalized to [0,1].
The structure of the discriminator sub-network is as follows:

where CB(K2) is a set of K2 channel convolutional layers
followed by batch normalization and C(1) is a set of 1-
channel convolutional layers.

C. Refined Loss Function

To ensure that the results have good visual and
quantitative scores along with good discriminatory
performance, we combine pixel-to-pixel Euclidean loss
(pixel loss), feature loss, smooth loss and adversarial loss
together with appropriate weights.

Adversarial loss helps the generator to produce better
output to fool the discriminator. Pixel loss helps to correctly
fill the noise with colors by comparing every pixel of
generated image with the ground truth image (Euclidean
distance). Feature loss helps to extract features accurately
and is calculated in the same way that pixel loss is, but is
determined by examining the image data extracted from the
Conv2 layer of VGG16 network. We add a smooth loss
function to the existing loss functions. The intuition behind
this is to prevent ―checkboard‖ artifacts across neighboring
pixels in the image. To determine the smooth loss, we slide a
copy of the generated image one unit to the left and one unit
down and then calculate the Euclidean distance between the

shifted images. The new loss function is then defined as
follows:

 (3)

where LA represents adversarial loss (loss from the
discriminator D), LP is pixel loss (pixel-to-pixel Euclidian
distance between generated image and ground truth image),
Lf is feature loss (pixel-to-pixel Euclidian distance between
generated image and the ground truth image from the Conv2
layer of VGG16), and Ls is smooth loss. λa, λp, λf and λs are
pre-defined weights for adversarial loss, pixel loss, feature
loss and smooth loss, respectively.

IV. EXPERIMENT AND RESULTS

In this section, we present details of our experiments
investigating our denoising network and discuss the dataset
and training details.

A. Dataset and Training

Due to the lack of availability of large size datasets for
training and evaluation of single image denoising, we
synthesized a new set of training and testing samples in our
experiments. We downloaded 40 Pixar movie image frames
and added Gaussian noise to create the dataset, which
included different standard deviations to generate a diverse
training and test set— each image was denoised with five
different amounts on noise. The training set consists of a
total of 1000 images and the test set has 40 images. The
images with noise form the set of observed images and the
corresponding original images form the set of ground truth

CB(K2)-CBL(K2*2)-CBL(K2*2*2)-CBL(K2*2*2*2)-C(1)-Sigmoid

(2)

129

images. All the training and test samples are resized to
256×144.

B. Model Details and Parameters

The entire network is trained on AWS p2.xlarge GPU
using the TensorFlow framework. We used a batch size of 7
and the performed 10,000 training iterations. During training,
we set λa=0.5, λp=1.0, λf=1.0 and λs=0.0001. We set K=32
and K2=48 for the generator and discriminator networks.

The first convolutional and deconvolutional layer of the
Generator (G) is composed of kernel of size 9 with stride 1.
All the other convolutional and deconvolutional layers in the
Generator are composed of kernel of size 3x3, also with
stride 1. All convolutional and deconvolutional layers in the
first three layers of the discriminator (D) are composed of
kernels of size 4×4 with a stride 2 and zero-padding by 1.
The last two layers in D are composed of kernels of size 4x4
with a stride 1 and a zero-padding of 1.

 Input Output Groundtruth

Figure 4. Here we show resulting denoised output images using our approach using a test set of images

130

 Input Output Input Output

Figure 5. Here we show resulting denoised output images using our approach, here using a test set of noisy photographs under natural light (which our

network was not trained on).

 Input Output

Figure 6. Here we show a resulting denoised output image using our approach, here using a test CT-scan (which our network was not trained on).

131

V. CONCLUSION

In conclusion, we developed a technique to perform
image denoising using a generative adversarial network. Our
network inputs a noisy image and generates a denoised
version in less than a second, preserving edges and avoiding
blurriness. Fig. 4 shows examples of output images in
comparison to the ground truth. In our initial implementation,
we trained our network with Gaussian noise, but we believe
our generative adversarial network can be extended to handle
both uniform and non-uniform noise, given an appropriate
training dataset. Interestingly, we found that our network,
trained with only 40 images from a specific domain for only
10,000 iterations, was successful at generating denoising
images outside the domain it was trained. The network gave
impressive results for grainy photos (Fig. 5), CT scans (Fig.
6), as well as frames from a noisy video capture.

In the future, we plan to include noise produced by
Monte Carlo rendering. This is will allow us to investigate
whether our technique can be used for making an efficient
real-time path tracer which can be used for games or medical
visualization applications. Currently, we generate the
denoising image based on the available pixel color
information. However, we would like to investigate whether
or not our network can be modified to fill in noisy areas
based on the semantics of the neighboring pixels, or by
providing the network with additional information, such as a
depth map of a 3d scene. Finally, we would also like to
investigate whether our network can perform denoising with
motion blur, depth of field, shadows, caustics, and global
illumination [10].

The work described in this paper was initially developed
as a class project for a graduate seminar in applied deep
learning in the Electronic Visualization Laboratory at the
University of Illinois at Chicago in early 2017. All code and
instructions for running the code are available on GitHub at:
http://github.com/CreativeCodingLab/ImageDenoisingGAN.

REFERENCES

[1] "3D Rendering History: Part 1. Humble Beginnings". The CGSociety.
2017.

[2] Dong, C., Loy, C.C., He, K. and Tang, X., 2016. Image super-
resolution using deep convolutional networks. IEEE transactions on
pattern analysis and machine intelligence, 38(2), pp.295-307.

[3] He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning
for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (pp. 770-778).

[4] Burger, H.C., Schuler, C.J. and Harmeling, S., 2012, June. Image
denoising: Can plain neural networks compete with BM3D?. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2012. (pp. 2392-2399).

[5] Kalantari, N.K., Bako, S. and Sen, P., 2015. A machine learning
approach for filtering Monte Carlo noise. ACM Trans. Graph.,
34(4):122.

[6] Jain, V. and Seung, S., 2009. Natural image denoising with
convolutional networks. In Advances in Neural Information
Processing Systems (pp. 769-776).

[7] Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A.,
Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z. and Shi, W.,
2016. Photo-realistic single image super-resolution using a generative
adversarial network. arXiv preprint arXiv:1609.04802.

[8] Zhang, H., Sindagi, V. and Patel, V.M., 2017. Image De-raining
Using a Conditional Generative Adversarial Network. arXiv preprint
arXiv:1701.05957.

[9] Yeh, R., Chen, C., Lim, T.Y., Hasegawa-Johnson, M. and Do, M.N.,
2016. Semantic Image Inpainting with Perceptual and Contextual
Losses. arXiv preprint arXiv:1607.07539.

[10] Thomas, M.M. and Forbes, A.G., 2017. Deep Illumination:
Approximating Dynamic Global Illumination with Generative
Adversarial Networks. arXiv preprint arXiv:1710.09834.

[11] Chaitanya C.R., Kaplanyan A.S., Schied C., Salvi M., Lefohn A.,
Nowrouzezahrai D., and Aila T., 2017. Interactive Reconstruction of
Monte Carlo Image Sequences Using a Recurrent Denoising
Autoencoder. ACM Trans. Graph., 36(4):98.

[12] Bako S., Vogels T., McWilliams B., Meyer M., Novák J., Harvill A.,
Sen P., Derose T., Rousselle F., 2017. Kernel-predicting
convolutional networks for denoising Monte Carlo renderings. ACM
Trans. Graph., 36(4):97.

132

