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A B S T R A C T   

Objective: Evaluate the effectiveness of machine learning tools that incorporate spatial information such as dis
ease location and lymph node metastatic patterns-of-spread, for prediction of survival and toxicity in HPV+
oropharyngeal cancer (OPC). 
Materials & methods: 675 HPV+ OPC patients that were treated at MD Anderson Cancer Center between 2005 and 
2013 with curative intent IMRT were retrospectively collected under IRB approval. Risk stratifications incor
porating patient radiometric data and lymph node metastasis patterns via an anatomically-adjacent represen
tation with hierarchical clustering were identified. These clusterings were combined into a 3-level patient 
stratification and included along with other known clinical features in a Cox model for predicting survival 
outcomes, and logistic regression for toxicity, using independent subsets for training and validation. 
Results: Four groups were identified and combined into a 3-level stratification. The inclusion of patient strati
fications in predictive models for 5-yr Overall survival (OS), 5-year recurrence free survival, (RFS) and Radiation- 
associated dysphagia (RAD) consistently improved model performance measured using the area under the curve 
(AUC). Test set AUC improvements over models with clinical covariates, was 9 % for predicting OS, and 18 % for 
predicting RFS, and 7 % for predicting RAD. For models with both clinical and AJCC covariates, AUC 
improvement was 7 %, 9 %, and 2 % for OS, RFS, and RAD, respectively. 
Conclusion: Including data-driven patient stratifications considerably improve prognosis for survival and toxicity 
outcomes over the performance achieved by clinical staging and clinical covariates alone. These stratifications 
generalize well to across cohorts, and sufficient information for reproducing these clusters is included.   

Introduction 

Head and neck cancers (HNCs) affect almost 65,000 individuals per 
year in the United States, with approximately 14,000 deaths from the 
disease [1]. The prognosis of HNCs is considerably variable in different 
tumor types, ranging from excellent prognosis, as in Human papillo
mavirus (HPV)-associated squamous cell carcinoma [2,3], to deadly 
disease as in advanced HPV-negative tumors [4,5]. The incidence of 
oropharyngeal cancer (OPC) has been increasing for the last few de
cades. The increased prevalence of HPV-positive cases has also led to 
improved treatment outcomes and has motivated the modification of the 
AJCC staging system and TNM Classification of Malignant Tumors 

(TNM), which is a standardized system for classifying the spread and 
extent of cancer for use in treatment planning and as a prognostic tool 
[6]. The current staging system relies however on only the primary tu
mor’s size and extension, and size and laterality of secondary nodal 
tumors, while overlooking other relevant features such as radiomics or 
the disease spread [6]. 

The ability to better personalize treatment approaches and further 
treatment efficacy requires better risk stratification models so that pa
tients with lower risk may benefit from treatment de-escalation (i.e. 
reduction of long-term toxicity) whereas patients with higher risk may 
benefit from treatment intensification strategies (i.e. increased tumor 
control rate) [7,8]. 
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Imaging radiomics is a method that extracts a large number of fea
tures from patients’ images. These features can identify tumor charac
teristics that cannot be appreciated by the naked eye. The inclusion of 
imaging radiomics in risk stratification of cancer patients showed 
promising results for many cancer sites [9–11]. In addition to radiomics, 
we recently showed that the anatomically-informed clustering of the 
lymph node patterns-of-spread (LN) is associated with treatment out
comes [12]. 

To this end, we sought to evaluate the effect of including patient risk 
stratifications derived from radiomics and patterns of lymph node 
metastasis to improve the prediction of oncologic and toxicity outcomes 
in a large cohort of oropharyngeal cancer patients. We consider two 
survival outcomes: Overall Survival (OS) and Recurrence-Free Survival 
(RFS), and radiation associated dysphagia (RAD) as a toxicity outcome 
associated with OPC patients. 

Methods 

Data 

Patients were retrieved from an internal University of Texas MD 
Anderson Cancer Center (UT MDACC) database after approval from the 
UT MDACC Institutional review board (IRB). All methods for this study 
were performed in accordance with the UT MDACC IRB guidelines and 
regulations. 

Our original cohort consists of 575 patients that were randomly split 
into two independent datasets for training (N = 391) and validation (N 
= 284) before the start of the study. Inclusion criteria for this study 
where: 1) histopathologically-proven squamous cell carcinoma of the 
OPC; 2) tumor present at the base of tongue, tonsil, soft palate, 
pharyngeal wall, glossopharyngeal sulcus, or vallecula; 3) HPV/p16 
positive status assessed via in-situ hybridization or immunohistochem
istry; 4) available pre-treatment contrast-enhanced CT scans, with con
tours for the primary gross tumor volume (GTVp); and 5) patients were 
treated with curative-intent intensity-modulated radiation therapy with 
concurrent chemotherapy. 

Clinical features including age at diagnosis, sex, ethnicity, smoking 
status and frequency, subsite of the primary tumor within the 
oropharynx, T category, N category, therapeutic combination, and AJCC 
stage (7th and 8th edition) were extracted from electronic medical re
cords. A detailed description of these data can be found in Elhalawani 
et al. [13]. 

We consider two survival outcomes and one toxicity outcome. 
Overall survival (OS) refers to the number of months survived after 
diagnosis or last follow-up time (for censored outcomes). Recurrence 
Free Survival (RFS) is a combined survival outcome including Local 
Control, Regional Control, and Distant Metastasis, whichever occurs 
first, or last follow-up time (for censored outcomes). RAD was defined as 
the presence of grade 2+ aspiration rate based on CTCAE guidelines 
[18], or feeding-tube insertion during treatment or after treatment 
completion [37]. No feeding tubes were placed prophylactically. 

For imaging data, contrast-enhanced computed tomography (CECT) 
scans acquired at diagnosis, prior to any local or systemic treatment, 
were exported via commercially available contouring software (Velocity 
AI v3.0.1). 3D volumes of interest (VOIs) including the gross primary 
tumor volumes (GTVp) were segmented by a radiation oncologist, and 
then inspected by a second radiation oncologist. The generated VOIs and 
CT images were exported to DICOM-RTSTRUCT format to be used for 
radiomics features extraction. The primary tumor volumes (GTVp) were 
contoured based on the ICRU 62/83 definition [14] and radiomics fea
tures representing intensity, shape, and texture were extracted using the 
freely available open-source software IBEX [15]. 

For radiomics, we extracted thousands of human-defined and 
curated features which describe tumor shape, intensity, and texture, 
among other characteristics [43]. This enabled us to choose and engi
neer radiomic features proven to be more immune to inter-scanner 

variability, boosting generalizability and significant clinical correla
tivity [44]. Acknowledging concerns for inter- and intra-observer vari
ability associated with manual segmentations, we assigned two expert 
radiation oncologists who were blinded to relevant clinical data. Dis
crepancies were resolved by consensus or the call of a third expert ra
diation oncologist. To decrease volume-dependence of radiomic 
features, pixels were resampled to 1 mm × 1 mm and Laplacian of 
gaussian and Butterworth smoothing were applied to non-shape feature 
extraction with standard deviations between 0.5 and 2.5 [45]. Previous 
work from our group has found that inter-observer variability of the 
selected radiomics features is low relative to inter-patient variability in 
squamous cell carcinoma [42,46,47]. The small number of features that 
fell below the acceptable stability threshold were excluded in this 
analysis. 

Regions in the lymph node drainage system (levels) that were 
affected (nodal tumors) were annotated for each patient. Involved 
lymph nodes in each patient were identified for both sides of the head. If 
at least one lymph node in a given level is affected with cancer cells, 
radiation oncologists refer to the corresponding node level as being 
involved with disease, and they involve the whole node level in treat
ment. Involvement was treated as separate covariates for the side of the 
head with the primary tumor (ipsilateral) and the side opposite the 
primary tumor (contralateral). When the primary tumor (GTVp) crossed 
the midline of the head (bilateral), the side with the larger bulk of pri
mary disease was treated as the ipsilateral side. A multidimensional 
vector was constructed to describe the patterns of affected nodes in a 
way that accounted for the relative anatomical positions of the lymph 
node levels, which was used for creating clusters of patients based on 
similar LN involvement, as described by Luciani et al.[16]. 

Data preprocessing 

Some radiomic features that relied on larger filters or large neigh
borhood sizes could not be extracted from smaller tumor volumes. In 
these cases, missing radiomics were imputed using Multivariate Impu
tation by Chained Equations [17], using classification and regression 
trees (CART). Imputation of the training data was done first, and then 
the validation samples were imputed using the complete training data. 
No clinical data was imputed, and patients with missing data or un
known HPV status were excluded from the analysis. 

A 5-year cutoff was used to generate an event indicator for each 
survival outcome. Only patients that experienced the outcome before 
the 60-month mark were flagged as having experienced the event. 

Radiomics clusters and features 
We created clusters of patients based on radiomic features as follows. 

First, a set of 3831 features were extracted using the IBEX package. 
Features with zero variance or that were highly correlated (>80 %), and 
then centered and scaled using the Caret R package [19]. Additionally, 
based on previous studies using the same cohort that identified tumor 
volume and intensity as highly predictive for local control [20], the 
features F25.ShapeVolume (first-order feature), and F29.IntesityDir
ectGlobalMean (shape feature) are always included a-priori in the final 
set of features. Using the final set of features, a penalized semi- 
parametric Cox regression model [21], which was tuned using cross- 
validation, was applied to select the most informative radiomic fea
tures. A radiomic signature was generated with the selected features and 
the linear predictor from the Cox model was used as a radiomic score. 
Lloyds (K-means) clustering was applied to generate patient stratifica
tion with three groups based on radiomic information, referred to as RM 
clusters from here onwards. 

Lymph-node similarity and clustering 
Pairwise similarity between patients was calculated using similarity- 

based on lymph node (LN) involvement over adjacent anatomical re
gions as described by Wentzel et al [12]. Similarity was computed using 
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the squared Canberra distance metric [22] using an anatomically-aware 
encoding of patients based on the patterns of involved LN levels. Hier
archical clustering with four clusters was performed using Ward’s 
linkage method [23] on a subset of the patient in the training set that 
had involved lymph nodes, based on the parameters used in the original 
study [12]. These four clusters were created from the LN spread patterns 
of the patients in the training cohort. Patients in the validation cohort 
were assigned to the clusters with their corresponding pattern. Patients 
in the validation cohort with patterns not present in the original cohort 
were assigned to the nearest existing cluster based on average euclidean 
distance, while patients with no lymph node involvement were grouped 
into their own fifth cluster. Finally, the five LN clusters were grouped 
into the low-risk group (No involvement or cluster 1), and a high-risk 
group (clusters 2–4), based on the relative incidence of toxicity found 
in the training cohort. For the remainder of this paper, “LN clusters” will 
refer to these two (high or low) risk strata, rather than the original five 
clusters. 

The RM and LN clusters were then combined into a RLN stratification 
with three risk groups. RLN 1 is a low risk group and corresponds to the 
patients in low risk groups for both RM and LN. RLN 2 is a medium risk 
group for patients with low/medium risk for either RM or LN, and RLN 3 
is a high-risk group with patients in either high risk for RM or LN. 

Statistical analysis 

Kaplan-Meier curves for OS and RFS were computed for strata 
defined by AJCC stage (8th edition) and RLN precision-imaging strati
fication. We compared OS and RFS among these strata using the log rank 
test. We then assessed the improvement of including the cluster labels as 
covariates in a Cox proportional hazards model, and evaluated the 
prediction improvement over the same baseline model without the 
cluster labels, e.g. using only the clinical features and/or clinical staging. 
Clinical covariates included age at diagnosis, smoking status (current/ 
former/never) and whether the patient received chemotherapy or not 
(yes/no). Clinical staging covariates include AJCC (8th edition). The a- 
priori tumor volume and intensity radiomic features (2F) were also 
tested as predictive covariates for some of the models. Models were built 
over the training dataset and evaluated over the validation dataset. 

Several metrics are used to evaluate the results. Over the training 
data we compute the Akaike information criterion (AIC) as a measure of 
the goodness of fit and simplicity of the model. We evaluate the 
improvement in model discrimination and calibration when including 
the radiomics and LN cluster labels for the validation datasets. For model 
discrimination, we computed both the area under the curve (AUC) of the 
Receiver Operating Characteristic (ROC), which considers sensitivity 
against specificity for consecutive cutoffs of the survival probability, and 
Harrel‘s C-index (i.e. probability of concordance). For toxicity outcomes 
we only report AUC, as the C-index is identical to AUC for binary out
comes [24]. For evaluating model calibration, we computed Brier score 
and the Nam-D’Agostino test statistic [25], which are suggested as 
relevant metrics in the literature [26]. All statistical analysis was per
formed using statistical software R version 3.2.3. 

Results 

Table 1 shows the patient demographics for clinical features, as well 
as the precision-imaging patient stratifications and survival outcomes 
considered. As expected, both training and validation sets follow the 
same demographic distribution. For the two survival outcomes, about 
16 % of the patients experienced the event before the 5-year cutoff for 
OS and RFS. For the toxicity outcome, 23 % of the patients experienced 
dysphagia. 

The Coxnet model selected 9 radiomic features using cross-validation 
over the training data (Table 2). Four radiomics-derived clusters were 
identified to represent different risk groups. The low and medium risk 
groups account for 95 % of the patients, while the high-risk group is the 

smallest group (5 % of patients) (Table 1). 
For the LN clusters, the low-risk group corresponds to patients with 

no lymph node involvement and cluster 1 (78 % of the training data and 
72 % of the validation), while the remaining groups are considered 
medium to high-risk. Fig. A1 in Appendix A shows a summary of the LN 
clusters found in the training data. 

To aid interpretation, Fig. 1 shows a visual summary [34] of the 
combined RLN clustering for the entire cohort of patients. Whereas 
AJCC is an aggregate risk staging system, our model adds additional 
anatomical information, and whereas our model correlates with AJCC, it 
has additional capacity at a more granular risk prediction. 

Fig. 2 shows the Kaplan-Meier (KM) curves for OS over training and 
validation stratified by AJCC staging, and the combined radiomics and 
LN clustering (RLN). There are significant differences in OS among the 
strata in the training set curves (p < .001), as well as the validation 
curves (p < .01). 

Table 1 
Summary of clinical and demographic features, follow-up time and event rate for 
the outcomes considered, as well as the data-driven patient stratifications for 
both training and validation sets. Table shows median (25th, 75th percentile) for 
continuous values and count frequency ( %) for discrete values.  

Number of patients Training Validation 
391 284 

Covariates Median and 25th-75th 
percentile or Count 
Frequency ( %) 

Median and 25th-75th 
percentile or Count 
Frequency ( %) 

Age 58.04 52.25–65.32 58.15 53.38–64.10 
Gender 
Male 346 88 % 243 86 % 
Female 45 12 % 41 14 % 
T Category 
T1/T2 281 72 % 182 64 % 
T3/T4 110 28 % 102 36 % 
N Category (8th ed) 
N0/N1 302 77 % 196 69 % 
N2/N3 89 23 % 88 31 % 
AJCC Stage (8th ed) 
I 239 61 % 143 50 % 
II 100 26 % 86 30 % 
III 52 13 % 55 20 % 
IV 0 0 % 0 0 % 
Smoking Status 
Former 146 37 % 109 38 % 
Current 80 20  % 34 12 % 
Never 165 42 % 141 50 % 
Tumor subsite 
Tonsil 159 41 % 126 44 % 
Base of Tongue 195 50 % 140 49 % 
Other 37 9 % 18 6 % 
Therapeutic Combination 
CC 203 52 % 76 27 % 
IC + CC 91 23 % 110 39 % 
IC + Radiation Alone 30 8 % 62 22 % 
Radiation Alone 67 17 % 36 13 % 
Response 
Overall Survival (OS) 
Alive 327 84 % 241 85 % 
Deceased 64 16 % 43 15 % 
Survival/Follow-up Time (in 

months) 
56.80 43.83–80.95 59.60 45.65–70.95 

Relapse Free Survival (RFS) 
Alive 320 82 % 244 86 % 
Deceased 71 18 % 40 14 % 
Survival/Follow-up Time (in 

months) 
52.53 39.57–77.57 58.45 42.15–69.33 

Dysphagia (RAD) 
Yes 79 20 % 79 28 % 
No 312 80 % 205 72 % 
Patient Stratifications 
RLN Clusters 
1 108 20 % 64 12 % 
2 250 64 % 177 62 % 
3 33 8 % 43 15 %  
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Fig. 3 shows the corresponding Kaplan-Meier (KM) curves for RFS. 
Training curves show significant differences for training (p < .001) and 
validation (p < .01). For clustering, the validation curves show the same 

behavior as the training curves which is a good indicator that predictive 
models built over the training data generalize well to unseen data. 

Table 3 shows the performance of the prediction models when RLN 

Table 2 
Radiomic features: name, mean, standard deviation, and weight coefficient from the Coxnet model, as well as the linear predictor cutoffs to determine the cluster 
labels, description and number missing from each dataset.  

Feature Name Description Feature Type Mean () Std Dev () Weight 
(w) 

Missing 
(Training) 

Missing 
(Validation) 

F8.IntensityDirectKurtosis Measures the peakedness of 
all the voxel intensities. 

First-Order  41.81  54.05  0.012 86 0 

F12.IntensityDirectGlobalMean Mean intensity along all 
voxels 

First-Order  1.06  0.09  0.006 86 4 

F13.IntensityDirectEnergy Magnitude of voxel values First-Order  255.92  824.15  0.001 86 20 
F25.ShapeVolume The physical volume of the 

voxels 
Shape  12.25  14.61  0.207 86 0 

F28.GrayLevelRunLengthMatrix25… 
0LongRunLowGrayLevelEmpha 

The joint distribution of 
long-run lengths with lower 
gray-level values 

Gray Level Run 
Length Matrix 
(GLRLM)  

0.00  0.02  0.017 86 0 

F29.IntensityDirectGlobalMin Minimum intensity along all 
voxels 

First-Order  296.22  259.89  − 0.207 86 0 

F39.NeighborIntensityDifference25Contrast Measure of the spatial 
intensity change, dependent 
on the overall gray-level 
dynamic range. 

Neighboring Gray 
Tone Difference 
Matrix (NGTDM)  

0.32  1.48  0.059 86 0 

F52.NeighborIntensityDifference25Complexity Measure of the uniformity 
and number of rapid changes 
in gray level intensity 

Neighboring Gray 
Tone Difference 
Matrix (NGTDM)  

410056.46  1559470.22  0.149 86 0 

F29.IntensityDirectLocalRangeMax Maximum of the 
neighborhood intensity 
range of each voxel 

First-Order  1223.34  313.45  0.116 0 0 

aDefinition of the radiomics-derived clusters. The linear predictor is calculated as LP =
∑

{i=1− 9}
wi

Fi − ui

σi
. The cutoffs to determine the cluster labels are [ − ∞, − 0.197,

0.213, 0.866,∞] and correspond to the midpoint between the cluster centroids.  

Fig. 1. Average lymph node involvement and clinical staging categories of the 3 derived lymph node + radiomics clusters across both the training and validation 
datasets. (Top) Heat map of the percentage of patients with an involved lymph node within a cluster for each level. The left half of each heatmap encodes patients 
with at least one node involved, whereas the right encodes patients with bilateral involvement in the given level. The low-risk cluster has no bilateral nodal 
involvement, while the highest risk cluster has significantly higher bilateral involvement and disease spread in levels 3, 4 and 5. (Bottom) Radar chart showing the  % 
of patients within each cluster with a given staging level. The plot shading is mapped to the incidence of late treatment associated with dysphagia. The low-risk 
cluster is predominantly N-stage 1 and T stage 1–2, while the high-risk cluster is predominantly N-stage 2 with higher incidence of T-stage 4 and AJCC-stage 3–4. 
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cluster labels are also included in the model. A CoxPh model was trained 
for survival outcomes (OS and RFS) over AJCC staging (8th edition) 
alone and also over relevant clinical covariates (age, smoking status, and 
chemo). A logistic regression model was trained for dysphagia (RAD) as 
a toxicity outcome. AIC is reported for training, while C-index and AUC 
are reported for validation as measures of discrimination. The Nam- 
D’Agostino test statistic over the validation set is used as a measure of 
model calibration. Brier scores were consistently between 0.11 and 0.13 
for all models and are not included in the table for conciseness. Per
formance of the models on the training dataset, as well as baseline 
performance of clusters or AJCC staging alone are included in the Ap
pendix (Table A1). 

The performance of the Baseline model is considerably improved 
when including the precision-imaging clusters RLN in the model 
(Table 3). Models that include AJCC and clinical factors outperform 
models with clinical factors alone for all outcomes. In terms of AIC and 
validation AUC, modes are improved through the addition of the com
bined Radiomics + Lymph node (RLN) clusters. AUC improves by 7 % 
(0.61–0.65) for OS, 8.52 % (0.61 vs 0.66) for RFS, and 1.6 % (0.74 vs 
0.71) for Dysphagia. All improvements are larger when considering 

clinical-only models, possibly due to the overlap between the correlation 
between AJCC staging and lymph node spread, and tumor shape 
captured by the RLN clusters. 

The best performing models for each outcome are highlighted in red 
in Table 3. Clinical + AJCC models with combined RLN clusters and 
fixed radiomic features (2F) performed the best in terms of validation 
AUC for OS and Dysphagia, while Clinical + AJCC + RLN performed the 
best for RFS. Radiomics clusters alone improved model predictions for 
OS and Dysphagia, while LN clusters alone improved model predictions 
for RFS. Models with AJCC included outperformed the baseline model 
with only clinical attributes. 

Discussion 

Our findings demonstrate that the simultaneous inclusion of cova
riates derived from imaging radiomics and anatomical patterns of lymph 
node metastasis improves the prediction of both toxicity and oncologic 
outcomes when compared to the standard of care staging system. The 
models that include Radiomics + LN consistently have superior 
discrimination and calibration compared to models that do not include 

Fig. 2. Kaplan-Meier curves for Overall Survival (OS) over the training (left) and validation datasets (right), stratified by AJCC staging (2.a and 2.b), respectively 
stratified by the combined RLN clusters (2.c and 2.d). The RNL clusters show a significantly improved separation between the curves (p-val < 0.01), and yield the 
same stratification for both training and validation datasets. 
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these features. The improvement in discrimination over the hold-out test 
set indicates that the proposed patient stratifications generalize well, 
and offer predictive ability for both toxicity and oncologic outcomes 
even when the model includes other proven predictive covariates. 

The KM curves stratified by the RLN clusters show significant dif
ferences in the expected survival outcomes for both training and vali
dation (p-val < 0.01). Moreover, the curves show the same relative 
stratification, i.e. patients in cluster 1 show better prognosis than pa
tients in cluster 3 for both training and testing. While the KM curves for 
OS and RFS (Figs. 1 and 2) stratified by AJCC staging are also significant, 
the training set for RFS shows an inversion for AJCC staging (8th edi
tion), where stage III has a better expected survival than stage II. This 
can be partially explained by the fact that AJCC staging is optimized for 
OS. In contrast, the RLN clusters correlate well with both survival out
comes, OS and RFS, as well as RAD, a toxicity outcome. 

Several recent studies have demonstrated correlation of radiomic 
features of the primary tumor and of the lymph nodes with toxicity 
[27–28] and oncologic [29–32] outcomes. However, these studies use 
the radiomic features directly into the models, and as shown in a large 
study, the reproducibility and robustness of these models trained using 
radiomic signatures for predicting OS are not warranted [38]. In 

contrast, we use the radiomic features to identify a discrete variable, i.e. 
the cluster label, to be subsequently used as a predictive covariate, and 
we account for anatomical LN patterns of spread. Our experiments 
consistently show that the cluster label as a risk strata offers better 
generalization than the raw radiomic features [35]. Finally, prior studies 
focus on the improvement of a single toxicity or oncologic outcome 
while in this work we propose the same stratification for improving both 
toxicity and oncologic outcomes simultaneously. 

Our study, however, has some limitations. First, all analyses were 
done using a single institution retrospective dataset and an independent 
validation dataset from the same institution. The performance of our risk 
prediction models was not prospectively evaluated. Finally, given the 
good prognosis for oropharyngeal cancer, there is a relatively small 
number of events (i.e. failure and death) in the data that may introduce 
uncertainty in the results. In the future, we would like to include 
radiomic features from lymph nodes [41] as well as anatomical infor
mation relating to tumor location and organs at risk [33,36] into the 
patient stratifications as well as other end-points and toxicity outcomes 
[39,40]. 

In conclusion, our results demonstrate that precision risk stratifica
tions derived from imaging data can improve the performance of 

Fig. 3. Kaplan-meier curves for Recurrence Free Survival (RFS) over the training (left) and validation datasets (right), stratified by AJCC staging (3.a and 3.b), and 
combined RLN clusters (3.c and 3.d). The RNL clusters show a significant separation between the curves (p-val < 0.01), and the same stratification for both training 
and validation datasets. 
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predictive models for oropharyngeal cancer patients’ toxicity and 
oncologic outcomes. The proposed stratifications incorporate anatom
ical information available at diagnosis such as radiomic features of the 
primary tumor, as well as patterns of lymph node spread. In our ana
lyses, the addition of the cluster labels as predictive covariates consis
tently improves model AUC performance when compared to the same 
models only including clinical covariates and cancer staging. The per
formance improvement over the hold out test set shows the models are 
generalizable to previously unseen data for both oncologic outcomes 
such as OS and RFS as well as toxicity outcomes such as radiation 
associated dysphagia. 
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