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Abstract—Figures within biomedical articles present essential
evidence of the relevance of a publication in a curation workflow.
In particular, visual cues of the image modality or experimental
methods can help expert curators identify relevant papers from
an increasing number of publications. Automating the identi-
fication of these content-bearing images can thus be helpful
in computer-assisted curation. However, the paucity of labeled
datasets and the specialized training required to label such images
hinder the development of such tools. To address this problem, we
present the design of ANIMO, a labeling system that integrates
extraction and segmentation tools to ease the annotation burden.
We first introduce two taxonomies of image modalities and
experimental methods, derived in collaboration with curators.
On the back-end of the system, we process batches of documents
and create a labeling task per document. At the front-end, expert
curators can access these tasks through a web interface and access
the article of interest. We describe the evaluation of this system
by a group of biocurators, and the human factor lessons learned
from this interdisciplinary experience.

I. INTRODUCTION

Biomedical research efforts, ranging from investigating
treatment options to uncovering mechanisms underlying dis-
eases, require targeted access to available information, primar-
ily from published literature. At the core of this information-
centric process, domain experts curate documents relevant to
their domain of expertise. Such curation workflow encom-
passes the selection, organization, presentation, and annotation
of relevant biomedical publications. However, with increasing
numbers of scientific publications, there is significant interest
in automating parts of the curation workflow, by providing
semi-automated techniques to assist human curation in the
principled collection and annotation of this type of biomedical
data [1], [2].

Most automated methods for biomedical document cura-
tion use text-mining techniques to retrieve information from
within articles [3], [4]. However, images provide essential
evidence for processes and experimental findings in these
publications [5]. For instance, image content reveals relevant
cues such as the target imaged, the image modality, or the
experimental methods, which curators can then associate with

the document topic. Therefore, automating the identification
of content-bearing images and their image modalities (or
image types) can be helpful in computer-assisted curation. At
the same time, the paucity of large labeled datasets makes
it challenging to train effective machine learning models,
creating a chicken-and-egg problem: too few labeled images
cannot support effective models, and ineffective models cannot
assist in the labeling of images. Furthermore, existing modality
classes may not match the granularity of the curator’s domain
requirements, and creating these taxonomies and then labeling
images accordingly requires a high level of training and
expertise on the side of the human user. Leveraging the domain
expertise of curators through user-friendly, interactive labeling
tools can help alleviate this problem.

Although most labeling tools provide capabilities to label
portions of an image (e.g., Label-Studio [6]), they are not
tailored to the biomedical curation task. First, figures within ar-
ticles often comprise several subfigures requiring the repetitive
segmentation of the original image (Fig. 1), a task that adds
significant overhead on time spent by the few available domain
experts. Second, curators often need context to label a sample
correctly. This context includes figure captions, neighboring
panes (Fig. 1), and even access to the original article. Yet most
general-purpose labeling tools [6] only show isolated images
and corresponding labels. For biomedical curation, there are
no tools for labeling image modalities that incorporate this
required context within one system. Furthermore, a better
characterization of the user domain and documentation of
the human factors behind the labeling process can increase
the success rate of such a tool, while leveraging domain
knowledge for downstream tasks.

In this work, we present the joint efforts of a team of
biomedical curators and computer scientists to build a system
for labeling images within biomedical publications, at the
level of individual subfigures. The main contributions of this
work are: 1) A description of a design process centered on
the curator activities, leading to the requirements of a tool
for labeling images from biomedical papers. 2) The design
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process of two hierarchical taxonomies of image modalities
and experimental setups, one specialized for biomed modali-
ties and one specialized for Covid-19. 3) The implementation
of the resulting design in a novel system named ANIMO
(ANnotation of Image MOdalities), which integrates a back-
end pipeline of image extraction and segmentation tools, a
centralized database, and a front-end interface (Fig. 3). 4)
A qualitative and quantitative evaluation of the system with
domain experts and a discussion of the human factors lessons
learned from this experience.

Fig. 1. Example figure (edited Figure 2 from Ivonavska et al. [7], shared under
a Creative Commons 3.0 license) showing subfigure extraction instances with
bounding boxes. Subfigures A and E are correctly extracted, and retain all
of their content. Subfigure B has two panes with the same type of graph.
Subfigure C suffers from over-cropping. Subfigure D suffers from over-
fragmentation; each pane was extracted independently. Over-cropping and
over-fragmentation cases depend on the space between components.

II. BACKGROUND AND RELATED WORK

Document Triage. During document triage, curators evaluate
the relevance of a document for a particular domain. To sup-
port this process, researchers have proposed binary classifiers
based on features from titles, abstracts and post-publication
annotations such as MeSH terms [8]. Other approaches added
features from image captions to the vector representations [9],
[10]. However, none of these two approaches used features
from the figure content besides captions. In contrast, Shatkay
et al. [5] identified the presence of experimental and graphical
images to build feature vectors. Similarly, Li et al. [11] used
a more complex taxonomy and convolutional neural networks
to tag the images and create a vectorized representation. Our
work supports this line of research where image features
complement textual features.

Taxonomies for Image Modalities. In our work, we fol-
low ImageCLEF’s [12] definition for the term modality to
denote the biomedical modality that originated the figure
(e.g. light microscopy), or a general image type (e.g., line
chart). ImageCLEF’s taxonomy for the subfigure classification
task consisted of 30 categories for diagnostic and generic
biomedical illustrations; and several modality classifiers have

flourished since then to solve this task [13], [14], [15], [16],
[17], [18], [19], [12]. For document triage, Shatkay et al. [5]
used a smaller taxonomy to classify graphical images, gels and
microscopy images. We derived our biomedical curation and
CORD-19 taxonomies mostly from these pieces of work. Other
ad-hoc taxonomies have been used for classifying images by
modality [20], and for organizing content in search engines
like Open-i [21].

Tools such as SourceData [22] provide image curation tools
focused on experimental details (e.g. biological entities). In our
work, experimental methods are embedded in the taxonomy,
specifically for microscopy and gel categories (e.g. InSitu
Hybridization and Western Blot). We furthermore describe the
process through which we developed the taxonomies.

Image Labeling. A variety of open-source tools support
data labeling tasks for image classification, object detection,
or segmentation. In many cases, a single toolkit [6] supports
these and more general labeling options. However, for image
classification, such general domain tools consider an image in
isolation as a labeling task. Conversely, our work considers a
publication through the lens of a labeling task, and we extract
and arrange the content within the publication to provide
context to support this manual operation.

In more specific domains, labeling techniques attempt to
make such manual processes more efficient. For example,
active learning strategies reduced the labeling workload by
allowing a classifier to tackle unlabeled dataset. Gur et al. [23]
used such a strategy with ultrasound images. In our work, we
attempt to reduce the workload by integrating a segmentation
back-end pipeline to extract the image panes from article
figures. Another technique guides the domain expert through
stepwise labeling to reduce annotation time [24]. In contrast,
we organize labels in a matrix, provide context, and support
multi-instance labeling to tackle the task faster. Also, although
several techniques improve the quality of crowdsourced an-
notations [25], we do not explore crowdsourcing due to the
required expertise to identify modalities. To the best of our
knowledge, ANIMO is the first tool that supports interactive
labeling of figures from biomedical publications based on the
publication PDF content.

Visualizing Image and Text Data. Document figures pro-
vide cues related to the relevance of a publication. Yet, our
experience suggests that biocurators may require access to
textual data such as captions to identify the modality of
an image. In the data visualization field, some approaches
combine image and text data to provide convenient access.
For instance, Document cards [26] provide a compact rep-
resentation of a mixture of images and extracted key terms
in different layouts. Another approach creates captions for
every image in a collection [27], where image features and
text features fed a co-embedding projection to 2D space; the
resulting representation resembles a galaxy metaphor. In our
interface design, we built on these approaches and improved
data presentation by including extracted captions, in order to
avoid dropping relevant infrequent words or presenting to the
biocurators an unfamiliar, complex visual encoding [28], [29].
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III. METHODS

A. Collaboration Setting and Design Process

Over a period of four years, we participated in a multi-site
collaboration with researchers from two different organizations
(Protein Information Resource at the University of Delaware,
and WormBase at the California Institute of Technology).
One senior biocurator collaborator specializes in the curation
of proteins for Uniprot, and another senior biocurator spe-
cializes in gene expression curation for the model organism
Caenorhabditis elegans. Our team further included two data
mining researchers and two visual computing researchers.
Members of this team are all co-authors of this publication.
During this collaboration, we also gathered information from
a site visit to the Jackson Laboratory (Bar Harbor, ME, USA)
where biologists study genetic mutations in mice, rats, fruit-
flies, and zebrafish. Although the first step of our project
focuses on generating labeled data, we also collected informa-
tion on the researchers’ current curation workflows for further
downstream tasks.

In our system design, we followed an activity-centered de-
sign (ACD) paradigm, an extension of human-centered design
(HCD), because of ACD’s proven success rate in interdis-
ciplinary collaboration projects (63% for ACD compared to
25% for HCD) [30]. Furthermore, the ACD paradigm places
emphasis on user activities and workflows, and as such, the
final product gets its value from the importance of the activities
it supports, rather than from the number of users using a sys-
tem. The emphasis on activities fit our scientific collaboration
where the curator teams were relatively small and featured
high levels of expertise hard to replicate in naive users. We
implemented the ACD paradigm through a series of tight
iterations, where we met with curators to define functional
specifications; define, adapt and revise taxonomies; evaluate
prototype designs; and validate changes in the specifications.
We used an online shared journal to allow curators to keep
track of their questions, suggestions and concerns about the
system, the user interface and taxonomies. Our team met
monthly to evaluate progress, and we held frequent smaller
group meetings with the curators to continuously update the
system design or solve any lingering issues.

B. System Requirements

According to the activity-centered paradigm, we compiled
our analysis using the following dimensions: activities and
tasks, humans, data, workflow, and non-functional require-
ments. Data consists of biomedical article figures and captions
from more than 100 journals: each figure can comprise several
subfigures, and a subfigure can comprise one or multiple panes
(Figure 1, D). Our workflow actors, the curators, have typically
earned a Ph.D. and have several years of curatorial experience.

We identified two major activities and their respective
tasks. The first activity (A1) initiates a labeling task for each
document. Its first task (T1.1) extracts each figure and caption
from a PDF file. Then, for each figure, a task (T1.2) splits
the figure into its constituent subfigures. The next task (T1.3)

places the content and metadata into a database. The final task,
(T1.4), starts the labeling task for a user. The second activity
(A2) focuses on labeling subfigures in a document. Activity
tasks include: (T2.1) access each figure and subfigure extracted
from a document; (T2.2) annotate each subfigure based on the
assigned taxonomy; (T2.3) annotate each subfigure based on
the quality of the extracted content; (T2.4) whenever possible,
annotate a group of subfigures at once; and (T2.5) display the
PDF content when necessary.

Based on the non-functional requirements we gathered, we
could assume that a third-party is responsible for placing
the PDF documents to process and for starting the process.
Activity A1 could be supported by the back end of the system,
where it could run offline and without interactions from the
end user. For activity A2, the requirements specified access
through a web-browser in a desktop environment.

C. Taxonomies

Previous experiences of our text-mining experts with
biomedical taxonomies facilitated the starting design of the
biomedical taxonomy. In particular, our team members used
similar taxonomies when they built document triage classifiers
for curators working with the Mouse Genome Database [5],
and when they developed award-winning image segmentation
tools for the ImageCLEF Medical Task competition [31].

After multiple interview rounds and iterations through the
labeling interface, we have adapted and finalized the taxon-
omy for biomedical image curation to comprise five main
categories: Experimental, Organs & Organisms, Molecular
Structure, Graphics, and Others. Only the Experimental cat-
egory includes experimental methods (grey boxes in Fig.
2). This category is further divided into microscopy images
(Light, Fluorescent and Electron Microscopy), plate images
(i.e., techniques that monitor yeast/bacteria growth in plates),
and gel-based images (i.e., gel electrophoresis techniques for
proteins and DNA/RNA). Although fluorescence microscopy
is also a light-based modality, the curators preferred to keep it
in a distinct class from light microscopy [32]. Therefore, the
reporter genes and immunochemistry, and in situ hybridization
and whole mount methods appear under both modalities;
however, only fluorescence microscopy includes the Episcopic
fluorescence image capturing (EFIC) subcategory. In contrast
to the ImageCLEF microscopy taxonomy, the biomedical
curators we interviewed grouped scanning and transmission
microscopy under electron microscopy. The remaining experi-
mental methods appear under the gel-based modality: northern
blot, western blot, reverse transcriptase (RT-PCR) and others
(e.g., polyacrilamide and agarose).

The remaining categories did not include experimental se-
tups. Organs and Organisms groups MRI & CT-scans, X-Rays,
and visible light photographs. Molecular Structure includes
3D representation of molecules, chemical structures, and
macromolecule sequences (protein and DNA). Finally, in the
Graphics category we simplified, after several iterations, a vast
taxonomy of graphs into scatterplots, line charts, histograms
(and bar-based graphs), flowcharts (including pathways) and
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Fig. 2. Taxonomy of image modalities for CORD-19. Experimental setups are indicated by a grey background.

others. This taxonomy is not complete, but includes the most
common modalities and experimental methods used in the
study of most model organisms whose biological processes
and functions are subjects of the curated bio databases. A
preliminary version of this resulting taxonomy was used by
Li et al. [11] for document retrieval.

The advent of the COVID-19 pandemic and its research
questions motivated a second taxonomy, adapted to the re-
search publications in the CORD-19 dataset [33]. To better
reflect this new dataset, and based on biocurator input, it
became necessary to separate the microscopy branch from
the experimental category. Because the CORD-19 literature
explicitly studied the effect of SARS-CoV-2 on various human
body organs, we further divided the Organs & Organisms
class into a Radiology-based class and a visible light Pho-
tography class. Finally, we included Signals and Waves as a
subclass within the Graphics branch. These changes are in
agreement with the original ImageCLEF taxonomy; however,
the resulting new taxonomy (Fig. 2) does not include other
Image CLEF subcategories for signals, nor several of the
generic biomedical illustrations categories. Figure 4 shows this
CORD-19 taxonomy as used in the ANIMO user interface.

D. System Back-End Design

Fig. 3. ANIMO architecture. The pipeline processes a PDF document to
extract images and captions (PDFigCapX [34]), and then splits the figures
into constituent subfigures (FigSplit [35]). Finally, the pipeline starts a task
and stores the metadata and content in a database and file storage, which are
then accessed by the front-end.

The back end of the system consists of three components
that leverage state-of-the-art solutions for extracting content
from PDF documents. Given an input PDF document or a

batch of them, the first step uses PDFigCapX [35] to extract
the images and captions. Next, as the image-modality is a
property of an individual image, we process each output figure
to obtain its constituent panels. To do so, we use FigSplit [34],
a tool that uses a connected component analysis to identify
each panel. In the last step, we store the metadata in a
MongoDB database, and assign a task to one curator based on
a round-robin strategy. This strategy relies on user membership
information (organization and group), which is specified at the
start of the pipeline, along with the desired taxonomy. Our
complete back-end consists of a MongoDB database, a NodeJS
server, and a content extraction pipeline written in Python.

E. Front-End Design

Following discussions with the biocurators, we designed
the ANIMO front end to tackle one document at a time. An
inbox page provides access to every labeling task, and each
task is pre-processed by the back-end pipeline workflow that
implements the pre-processing tasks (A1). After selecting a
labeling task, the user interface in Figure 4 is shown.

The left side of this interface view allows the user to select a
specific figure or subfigure from the document (T1.1). Figures
in that document are shown as a list of thumbnails in the
leftmost column (Fig. 4 a). Next to it, the selected figure
is shown in bigger size, and below, we show the extracted
subfigures (Fig. 4 b,c). A colored background indicates the
figure elements, whereas a color-coded badge shows whether
the current element was reviewed (green), skipped (yellow)
or pending (red). A figure is marked as “reviewed” once the
curator reviews (i.e., labels) all its subfigures.

On the right side, curators can interact with each subfigure
to provide labels and observations, based on the curation
taxonomy derived and implemented. The image viewer shows
the subfigure assigned for labeling; clicking on it displays
the image at full size. Based on subsequent suggestions from
the biocurators, the remaining components shown include the
figure caption, the labeling matrix, the observations panel, the
actions panel, and the PDF viewer (Figure 4 d,e,f,h). These
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additional components provide contextual information for the
labeling task that was deemed beneficial by the biocurators.
We describe each component in detail below.

1) Labeling Matrix: The labeling matrix represents the
hierarchical taxonomy without representing each inner level
in the tree, which were not deemed useful by the curators.
Instead, the matrix representation prioritizes the leaves of
the tree, such that each row may be a node from different
levels. For instance, each microscopy class gets a row with
the corresponding experimental methods, thus reducing three
levels of depth to a single row. Curators preferred a matrix rep-
resentation instead of a list of badges or a search component,
due to its quick access characteristics, and as a useful visual
reminder of the whole taxonomy. In this manner, we place
the taxonomy knowledge “in the world” as opposed to “in the
user’s head” [36]. To annotate a subfigure, curators then check
the corresponding cells in the labeling matrix (T2.1).

Furthermore, our collaborators favored multi-label selection
over a single selection, due to ambiguities that arise from the
extraction process. For example, for some images, the curators
may not be able to decide between two classes; or the image
shown may include superimposed elements (e.g., a chemical
structure placed in an empty area of a line chart). In addition,
the segmentation tool may not correctly separate subfigures.
For these irregular cases, the curator is required to input further
comments in a text box.

2) Observations Panel: This panel shows the list of poten-
tial issues arising from the subfigure extraction process that
could hinder the use of the subfigure as a training sample.
The panel also includes a comments box for any feedback
that the curator may give and a ‘close-up’ checkbox to indicate
whether the subfigure represents a zoomed-in view of an entity.
Common issues with the extraction pipeline include:

• Compound-image: the extracted image contains two or
more subfigures from the original image (e.g., subfigures
‘A’ and ‘B’ are shown together). The curator needs to
indicate the number of subfigures and whether they all
belong to the same modality (homogeneous vs. heteroge-
neous).

• The image needs further cropping: Segmentation targeted
the subfigure correctly but failed to remove content from
its neighbours. This problem is common when there is
not enough separation between subfigures.

• Over-cropped: Segmentation misses boundary annota-
tions from the subfigure. Though overcropping commonly
affects the text on graph’s axis or subfigure organizers
(e.g., A, B, (a), (b), and so on), these mistakes do not
hurt the identification of the modality.

• Multipane: Segmentation identifies the subfigure, but the
subfigure has several panes. The element may still be a
suitable training sample only when all panes belong to
the same modality.

• Over-fragmented: Segmentation identifies a pane within
a subfigure due to the spacing between its elements.
Over-fragmented samples can be suitable training sam-
ples when they target a pane. When over-fragmentation

results in a subsection of the subfigure (e.g., a node in
a graph), the element loses the related semantics and we
recommend to skip it.

3) Actions Panel: Curators can save the updates to the
selected labels and annotations by interacting with the action
panel on the right bottom corner. The ‘apply to all subfigures’
checkbox provided multi-instance labeling (T2.4), but only
for all the subfigures of the selected figure. For example, a
majority of subfigures may belong to the same modality. In
this case, curators may use the same label for all subfigures
by checking their thumbnails, and then proceed to make any
corrections. For images not worth labeling due to incorrect
extraction, labelers can use the Skip button. Examples of
skipped subfigures include pieces of text wrongly extracted
or over-fragmented elements that break the semantics of the
subfigure.

4) PDF Viewer: While designing the user interface, we
expected that the figures, subfigures and captions could pro-
vide enough context to determine the modality label. However,
curators explained that sometimes they need to refer to the
PDF documents for paragraphs mentioning the figure (T2.5).
Therefore, we added a PDF Viewer as a collapsible component
displaying the page where the figure appears.

Finally, we complemented our web interface with a search
page. Users can search labeled images by modality, state, or
by the presence of observations. Potentially incorrectly labeled
images can be flagged for later inspection. In addition, a bar
chart shows the number of samples labeled, by modality.

The front-end of ANIMO was implemented using React,
with code available at github.com/uic-evl/ANIMO.

IV. EVALUATION

We evaluated ANIMO through a qualitative and quanti-
tative approach, as appropriate in this type of collaborative
design [37], [38], [39]. Because no design approach is fail-
proof, we first report results provided by the two domain
experts who participated in ANIMO’s design. Because we
recognize these experts as co-authors, we minimize reports
of subjective feedback. Instead, we include a factual report of
their analysis, and report the difference in capabilities relative
to our collaborators’ previous process [40]. We furthermore
report qualitative and quantitative feedback from an evaluation
with a set of researchers who were not involved in our design
and development process.

A. Expert Usage Evaluation and Case Study

Quantitatively, our two curator collaborators tested ANIMO
intermittently for eight months and labeled approximately
6,000 images, with approximately 5600 reviewed images and
400 skipped images. During this time, the domain experts
recorded labeling concerns in the shared online journal docu-
ment, including observations to use during labeling, explana-
tions of exemplar cases for certain labels, and the granularity
of the taxonomy.

We furthermore performed a detailed case study with these
experts, where we asked each curator to work through a couple
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Fig. 4. Front-end interface for labeling a document showing a taxonomy adapted for the CORD-19 dataset. Thumbnails show document figures and subfigures
(a-c), captions and access to the PDF document (d, h). Annotation features (e-f) capture modality labels and extraction errors.

of articles from their field of expertise. We processed those
four documents through the back-end pipeline such that each
curator received four tasks. We then asked the curators to label
each document during a Zoom meeting with screen sharing
while using a think-aloud protocol. The objective was to define
a common ground for observations during labeling, evaluate
the interface’s ease of use, and reflect on the taxonomy. For
this case study we used ANIMO with the first taxonomy.

Throughout a two-hour session, the domain experts dis-
cussed their perspectives on using annotations and how an
image classification algorithm would benefit from these labels.
For example, in a group of line chart figures, one subfigure was
severely overcropped. From other similar samples, the curator
could guess that the image was also a line chart; however, the
facilitator and curators agreed to disregard severely affected
samples from the training set. In this case, the context helped
the curator but the resulting label would most likely affect
the classifier. In a separate case, participants agreed that a
subfigure missing any text indicating its subfigure label (e.g.
Figure ‘A’) represented an overcropped sample where the
observation may not have had a bad effect on the classifier.
Furthermore, curators identified the need to annotate over-
fragmentation cases, and the need of indicating whether multi-
pane cases contained homogeneous or heterogeneous panes.
The subjective expert feedback was enthusiastic, and both
curators commented on how intuitive the interface was, how
easy it was to label images, and how helpful the error reporting
and multi-instance labeling features were. In addition, we
observed that curators often provided further information about
the image in the comments box; such comments resembled
keywords from finer taxonomy subcategories, or objects iden-

tified within the image. As a consequence of this case study,
one of the curators released a set of labeling guidelines for
their students and collaborators to use as future reference.

We asked both labs to briefly explain how ANIMO changes
their workflow.

Dr. Raciti responded: “While WormBase does not classify
images based on type (e.g. electron microscopy, fluorescent
microscopy, etc..), [instantiating ANIMO with our ontologies
and entities (e.g., genes)] will be extremely useful for curation.
[It] will be very easy to use the modality taxonomy to further
classify the images. It will also be instrumental to append
annotations to the images themselves. In addition, in our
current image curation workflow, curators need to manually
crop relevant panes, save the image as a separate file, and
annotate it. ANIMO provides an intuitive interface and does all
the cropping and file naming work behind the scenes, saving
substantial curator time.”

Dr. Arighi responded: “Biocurators greatly need tools
to assist in the annotation/tagging process of publications.
ANIMO interface greatly facilitates the image visualization
and tagging tasks in my project. It is interoperable with tools
that process the publications in PDF to extract the figures
and segment these into their corresponding panels. It has great
features. I have been using ANIMO for tagging images to train
systems for image classification in biomedical domain. How-
ever, this is just one application of ANIMO. Once a dataset
of manually and/or automatically tagged images is available,
this system would be ideal for retrieval of publications with
images based on specific image types, which would be very
useful for biocuration of specific biomedical data. This system
will become very powerful when combined with a text mining
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component, as it will provide a very efficient method for
biocurators to find experimental information about their topic
of interest and the underlying methods providing evidence. ”

B. Quantitative Evaluation

We asked seven biocurators, including five not affiliated
with the project, to interact with ANIMO and provide quali-
tative and quantitative feedback. From this group, three were
researchers working with different model organism databases
(WormBase, ZFIN), two were senior graduate students work-
ing on the curation of proteins, and two were our collaborators.
To provide a better motivation and alignment with the re-
searchers’ activities and workflows, we uploaded to the system
publications from each researcher’s domain of expertise. No
personal data or further information about the evaluators was
collected.

Each evaluator was provided with the following set of in-
structions: First, they were asked to select a labeling task from
the interface inbox, based on their research interests. Second,
they read a brief manual (one page) that described the main
features of the labeling interface. Third, they proceeded to
label the subfigures, and finally, they filled out a questionnaire
(5-point Likert scale) about ANIMO.

Results from the questionnaire were overwhelmingly posi-
tive. We found that the majority of biocurators believed it was
easy to label all the figures in the document (M = 3.86± .83),
although one curator found the task hard to complete. Sim-
ilarly, they found the taxonomy easy to understand (M =
3.71±.88), and biocurators found its representation as a matrix
very helpful (M = 4.29± .69), as opposed to other common
representations (e.g., lists or dropdowns). Other features like
reporting segmentation issues (M = 4.29± .45) and labeling
multiple subfigures at the same time (M = 4.14 ± 1.12)
had also a positive impact. Notably, biocurators considered
contextual features like reading captions (M = 4.57 ± .5),
seeing thumbnails (M = 4.57 ± .5) and accessing the PDF
document (M = 4.0 ± .76) to be very useful; however,
they reported that they were often able to assign a modality
label to the subfigure without looking at any of these features
(M = 3.85± .35).

We also received several suggestions, such as having a
glossary of definitions and examples, or issues with figure
shared axes/legends when those elements are not always
repeated for all subfigures. Therefore, it is relevant to also
show the original figure. Other suggestions included reminders
to save any changes before selecting another figure, allowing
multi-instance labeling for a selected group of images as well
as skipping that selected group if needed, and adding open text
when selecting the ‘other’ category on any taxonomy branch.

V. DISCUSSION AND CONCLUSION

One of the main lessons learned from this project was
that fine-tuning a taxonomy of biomedical images is inten-
sive, and highly dependent on the biocurators’ focus and
interests. During several months, we iterated through the
categories and subcategories to be captured in the labeling

interface taxonomy. The curators themselves changed their
views about the relevant aspects of the taxonomy as they
used the interface. Different biocuration groups also expressed
different preferences concerning the taxonomy organization
and even regarding the depth of the taxonomy. For example,
our collaborator stated: “In the past, we were interested in
identifying pathways images from the biomedical literature. If
the images were already labeled as such, it would have been
very easy to pull them out. So, adding a graphics pathway tag
would help”. Although we started with one fixed taxonomy,
we later made the taxonomy assigned to a task configurable.
Figure 4 shows the taxonomy used for the CORD-19 dataset.

Another lesson learned was that different laboratories might
interpret the same terms differently. For example, one group
argued strongly, not incorrectly, for Charts being a type of
Experimental data since some “charts” capture time-series of
organ measurements, like EKGs. In another situation, a curator
questioned whether ‘histogram’ provides the best description
for bar-based charts. In several cases, clarifications and edits to
the terminology used in the interface were necessary. Tooltips
and sample images can ease the understanding of elements in
the taxonomies.

Interaction-wise, curators agree on the usefulness of multi-
instance labeling, given the composition of figures in publica-
tions. Curators preferred to label every subfigure in an image
based on the majority class and then perform corrections. As a
limitation, we only support multi-instance labeling per figure
but, as seen in Figure 4, multi-instance labeling for all sub-
figures may speed up the process. Curators mentioned that
in some cases, it would be helpful to provide multi-instance
labeling for skipping figures with extraction errors.

An additional factor emerging from this experience was that
the distribution of labeled images among the different classes
is not uniform. As such, having the two-layer pipeline and
assigning additional labeling tasks to the curators to generate
more samples for a particular class is extremely helpful.
In this respect, it was essential to manage annotation tasks
for multiple batches of documents and multiple users. This
observation also reinforces the importance of user expertise in
biomedical image curation and the fact that crowdsourcing is
a less viable option.

Given the variability in figure composition within biomed-
ical articles, understanding which observations are helpful
for labeling purposes remains a challenge. For instance, we
noticed that a considerable number of over-cropped images
are suitable for training purposes. Similarly, over-fragmented
samples (panes in subfigures) can also be helpful for training
purposes. However, our figure splitting component targets
subfigures primarily. For this reason, our modeler had to ex-
plore the resulting dataset manually to flag undesired training
samples. Adding a further step in the pipeline can solve this
problem by including tools to edit the image bounding boxes
and match them to the user-provided labels. Alternatively, we
are training modality classifiers to pre-label subfigures and cut
down curation time [32].

In conclusion, in this work, we introduced and evaluated
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a novel labeling tool, ANIMO, to annotate image subfigures
from the biomedical literature. The tool was designed with
a focus on the user workflows and the human factors behind
the biocuration process. ANIMO integrates extraction and seg-
mentation tools to ease the annotation burden, and introduces
taxonomies of image modalities and experimental methods
revised in collaboration with curators. It supports multiple
taxonomies, and includes the relevant controlled vocabulary
for image types, which could be adapted for other projects.
It offers the ability to add the same figure type tag to all
panels at once when needed. It provides a quick way to
report on image segmentation problems (e.g., when figures
are over cropped, or need further separation into panels) that
can be used to provide feedback to developing teams. Finally,
ANIMO allows fast access to the publication content and full
figure view to provide context when needed. A quantitative
and qualitative evaluation with domain experts demonstrates
that ANIMO effectively supports the annotation of biomedical
literature figures.
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