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Abstract 
Purpose: Using a 200 Head and Neck cancer (HNC) patient cohort, we employ patient 

similarity based on tumor location, volume, and proximity to organs at risk to predict 

radiation-associated dysphagia (RAD) in a new patient receiving intensity modulated 

radiation therapy (IMRT). 
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Material and Methods: All patients were treated using curative-intent IMRT. Anatomical 

features were extracted from contrast-enhanced tomography scans acquired 

pre-treatment. Patient similarity was computed using a topological similarity measure, 

which allowed for the prediction of normal tissues’ mean doses. We performed feature 

selection and clustering, and used the resulting groups of patients to forecast RAD. We 

used Logistic Regression (LG) cross-validation to assess the potential toxicity risk of 

these groupings. 

Results: Out of 200 patients, 34 patients were recorded as having RAD. Patient clusters 

were significantly correlated with RAD (p < .0001).  The area under the receiver-operator 

curve (AUC) using pre-established, baseline features gave a predictive accuracy of .79, 

while the addition of our cluster labels improved accuracy to .84. 

Conclusion: Our results show that spatial information available pre-treatment can be 

used to robustly identify groups of RAD high-risk patients. We identify feature sets that 

considerably improve toxicity risk prediction beyond what is possible using baseline 

features. Our results also suggest that similarity-based predicted mean doses to organs 

can be used as valid predictors of risk to organs. 

 

Introduction 
Radiation-associated dysphagia (RAD) is one of the severe sequelae of 

treatment in head and neck (HNC) cancer patients undergoing radiation therapy (RT), 

with chronic toxicity arising even after acute symptoms have ceased [1]. Chronic RAD is 

even more relevant in the era of Human Papillomavirus associated (HPV) HNC, where 

the majority of patients have curable disease with prolonged survival, and thereby 

endure later toxicities which are otherwise not encountered in patients with aggressive 

HPV negative disease and relatively shorter survival duration. Proper assessment of the 

risk of chronic RAD is essential to identify appropriate approaches to prevent and/or 

early treat patients before the occurrence of advanced, crippling toxicity [2,3,4]. 

Several studies have demonstrated that risk factors such as patient age and 

tumor subsite are associated with the development of late RAD [2,5].  Furthermore, the 

dose administered to anatomical structures such as the swallowing muscles has been 

used in normal tissue complication probability (NTCP) models [2,3,4,6] to predict the risk 

of chronic RAD following RT planning. However, these NTCP models require information 

that is only available after the development of two radiation treatment plans for that 
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patient, which is extremely time and resource expensive. Other examples of 

non-dosimetric clinical (surrogate) markers that may have a relationship with the risk of 

developing RAD are the tumor size or extension (e.g. TNM staging) [6,7], the location of 

high dose regions, and muscle invasion. Finally, the variations in spatial organization of 

organs at risk around GTVs may be equally important. 

Using these complex tumor and anatomical spatial distributions to identify and 

categorize similar patients can potentially provide a patient grouping methodology for 

RAD risk assessment before radiotherapy planning. To this end, risk assessment at the 

initial diagnosis, before radiation plans are available, would be extremely valuable in 

helping physicians make informed decisions regarding the treatment plan for 

personalized cancer treatments.  

Most studies that look at stratification of patients, such as TNM staging, are 

centered on overall survival, rather than toxicities.  This study proposes a novel HNC 

toxicity risk criterion based on unsupervised clustering of similar patients using 

diagnostic imaging data.  We hypothesize that spatial characteristics of target volumes 

and surrounding organs at risk, that are known during the initial diagnosis, can play an 

important role in determining risk of post-treatment swallowing complications in HNC 

patients. We further hypothesize that groups derived from unsupervised clustering of 

patients in the cohort, based on these tumor and organ at risk features, are associated 

with RAD. Furthermore, these groups act as a staging system for RAD risk.  This staging 

improves risk prediction using TNM staging and demographic information, without 

requiring dosimetric information. 

 

Methods 
Our model segments the cohort into 4 groups using hierarchical agglomerative clustering 

(HAC), a method commonly used in data-mining.  First, HAC considers each patient as a 

separate group. HAC then selects the two groups that are ‘closest’ according to a given 

distance measure, and merges them into a single cluster.  This process is repeated until 

HAC reaches the desired number of groups, chosen here as 4 to align with current TNM 

staging.  Our innovation consists of the use within HAC of a novel distance measure 

over spatially-aware covariates. This approach allows us to automatically generate 

clusters that are equivalent to high and low RAD risk groups.  To demonstrate the novel 

value of the clusters generated through this approach, we create a multivariate 
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regression model for predicting RAD and show that models which include our clusters 

outperform predictive models that rely only on standard clinical covariates. 

 

Patient Cohort 

Oropharyngeal cancer (OPC) patients who were treated using curative-intent 

IMRT [8] at MD Anderson Cancer Center between 2005 and 2013 were collected 

retrospectively using an IRB approved protocol. Demographics, diagnostic categorization 

and treatment information was retrospectively retrieved from the electronic medical 

records. Patients prospectively underwent physical and endoscopic examinations, as 

well as radiological and pathological assessments. RAD was assessed during  follow up 

that occurred 6 months after completion of treatment.  Inclusion criteria for our study 

were: 1) Pathologically proven OPC with at least 1 identified gross tumor volume (GTV), 

2) Received IMRT with/without chemotherapy with curative intent, 3) Patient surviving 6 

months post-treatment, and 4) Available pre-treatment imaging data for all ROIs as 

described below. All patients received diagnostic contrast-enhanced computed 

tomography (CECT) imaging. Imaging data for 245 patients were available over this 

period.  From this set, 45 patients were excluded due to missing contouring data on one 

or more of the 41 OARs considered.  We defined dysphagia as the presence of either a 

feeding tube insertion or aspiration.  Aspiration rate is defined as grade 2+ aspiration per 

CTCAE guidelines [9] .  No patients had feeding tube insertion at the baseline 

assessment, and three patients had pre-treatment aspiration (Table 1).  

After GTVs were manually contoured [10], other tumor spatial characteristics 

were automatically extracted from CECT imaging data for 41 OARs and all GTVs as 

described in (Appendix A).  Because treatment doses are not available at the time of 

diagnosis, mean radiation doses to each ROI were estimated using a published 

predictive model [11] (Appendix B). All candidate ROIs, along with their mean treatment 

doses, predicted mean doses, and minimum tumor-organ distances are listed in 

appendix table B.1.  Of the spatial and dosimetric characteristics, 5 covariates that were 

most representative of the anatomical information relevant for predicting RAD were 

identified using data-mining techniques as described in (Appendix C). 
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Statistical Analysis 

5 covariates were identified for the final model: the predicted treatment doses to 

the extended oral cavity, mandible, and medial pterygoids; and the minimum euclidean 

surface distances between the GTV and mandible and medial pharyngeal constrictor. 

Clustering was performed using hierarchical agglomerative clustering with a weighted 

linkage distance [12] and the L2-norm as the distance function, and all covariates were 

normalized to have a mean of 0 and standard-deviation of 1 across the cohort.  We 

report results for k = 4 clusters, to be consistent with existing TMN staging.  

To assess how well these clusters discriminate between high and low-risk 

patients when correcting for existing known clinical covariates [13], we trained logistic 

regression models on different combinations of existing clinical covariates (see Existing 

Clinical Covariates in Table 1), spatial covariates, and our cluster labels.  To prevent 

overfitting our model, we used leave-one-out cross-validation for generating the 

prediction for each patient (i.e. when predicting the risk for a given patient, we excluded 

that patient when training the model) [14] . To assess the predictive power of each 

model, we report the area under the receiver-operator curve (AUC) for each model, 

which has been traditionally used to evaluate medical diagnosis tests where there are 

many more negative cases than positive [15].  AUC score serves as a measure of how 

well the prediction ranks relative risk in the cohort by comparing the number of true 

positives against the number of false positives as the sensitivity of the prediction is 

adjusted, making it a more valuable measurement than accuracy or explained variance 

in a model than metrics such as accuracy or precision.  These results were run using 

feeding tube toxicity, aspiration, and combined RAD as dependent variables.  

Because clusters can be sensitive to changes in the data when the dataset is 

small, we performed an additional experiment to assess how varying and reducing the 

cohort size affected our results.  Specifically, we randomly removed a number of patients 

P from the dataset, such that at least 2 patients with RAD-related toxicity were included 

in the cohort.  We then re-performed the clustering using our 5 selected spatial 

covariates on the new subset of patients, and calculated the AUC score for logistic 

regression as before, using the baseline clinical covariates with and without adding in 

our 4 spatial clusters.  We repeated this process 500 times for each P, for 0 < P < 150 

(75%) patients.  The mean AUC score and 25% confidence intervals were then 

calculated for each P with vs. without using spatial clusters.  By testing multiple 
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variations of the data, we can better validate that our results are not due to overfitting the 

model and can be applied to smaller cohorts. 

Additional analysis was performed to compare the performance of our model to 

other swallowing related muscles as well and an analysis of the relationship between our 

clusters and relevant swallowing muscles (Appendix D), as well as an analysis of 

clusters performed on clinical features (Appendix E).  

Hierarchical clustering was implemented using the scipy library [16,17].  Fisher’s 

exact test was performed using the R software package [18] using a two-tailed test and a 

95% confidence interval.  Logistic regression was implemented using the scikit-learn 

package using L-BFGS solver [19], and an L2 regularization penalty [20] was used for its 

ability to provide numerical stability when dealing with many correlated variables, as in 

[21].  After tuning, the regularization penalty coefficient was set to 1 for all models as it 

yielded the highest validation AUC score for all models.  

  

Results 
Cohort statistics, including demographics, clinical covariates, and spatial features 

included in later statistical analysis are reported in Table 1. At the 6-month follow-up, 34 

patients (17%) required either feeding tube alone (15), aspiration (12), or both (7). 

Per-cluster summaries of the 5 covariates included in our clusters are detailed in Table 

2.  

Using these 5 spatial variables, four spatial clusters were identified. Table 2 

shows a cluster breakdown of the spatial features’ mean values and the percentage of 

patients experiencing toxicity. Visualizations of the predicted doses and tumor-organ 

distances for each cluster are shown in Figure 1.  Cluster labels are significantly 

associated with RAD toxicity (p < .0001). In particular, Cluster 4 is a high risk group with 

half of the patients  experiencing toxicity. Clusters 1, 2 and 3 have considerably lower 

risk. Cluster 4 groups patients with the highest predicted doses and a larger tumor 

spread. Clusters 2 and 3 group patients with lower predicted doses, where Cluster 2 

captures patients with lateral tumors and Cluster 3 captures patients with central tumors 

with considerable overlap with the tongue. Interestingly, Cluster 1 identifies three outlier 

patients with tumors positioned at the base of the tongue, with relatively high predicted 

mean doses, but surprisingly low toxicity risk. ‘ 
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Table 3 reports the AUC from the logistic regression model with several different 

combinations of features included.  Scores for the baseline set alone (AUC = 0.79) were 

markedly lower than the baseline features with spatial cluster labels added (AUC = 

0.84). This difference was most pronounced in identifying feeding tube toxicity (AUC 

increase = .07) compared to aspiration (AUC increase = 0.02).  Receiver-operator 

curves (ROC) for our classifier results when including vs. excluding spatial clusters are 

shown in Figure 2.  Of the clinical covariates, T-stage was the most important predictor 

of RAD, and overall performance is comparable between using T-stage or the spatial 

clusters as the independent variables in the model. However, when both T-stage and 

spatial clusters are combined within a single model, AUC notably improves from .68-.70 

to .82. Furthermore, when the spatial clusters are combined with the clinical features, 

AUC improves to .84 (the maximum observed in our experiments). 

From our sensitivity analysis experiment, mean AUC scores across different 

cohort sizes are shown in Figure 3.  Prediction improvement from including spatial 

information was maintained even after removing up to 75% of the cohort, with a mean 

AUC improvement across all tests of .028, and a mean improvement of .036 with 75% of 

the cohort removed.  AUC improvement was confirmed to be statistically significant 

when comparing subsampled populations for all subsample sizes using a dependent 

t-test (p < .001). Overall, our results show that our spatial clusters robustly improve 

prediction scores, even when there are large perturbations to the data, which supports 

the hypothesis that our methodology should be beneficial when generalized to similar 

cohorts. 

 

Discussion 
Our results support the hypothesis that relative tumor-OAR positioning has a 

strong association to the development of late-stage dysphagia. This paper demonstrates 

a novel classification method based on unsupervised clustering of patient-specific 

anatomical features and predicted dose parameters in HNC patients receiving 

(chemo)-radiation therapy. We demonstrate that clustering of anatomical OAR and tumor 

distribution can meaningfully improve the prediction of radiation-induced toxicity, 

compared to commonly used non-dosimetric clinical variables, such as T-stage and age 

(Table 1).  
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The resulting clusters allow for sophisticated, combined representation of 

complex three-dimensional proximity of OARs to the tumor location, which is unique per 

patient due to variations in anatomy and tumor extent. Subsequently, we showed that 

the identified patient clusters, defined by these proximity features and surrogate OAR 

dose parameters, are highly associated with the risk of developing dysphagia-related 

toxicity 6 months following radiotherapy.  In particular, Cluster 4 showed the strongest 

association with development of RAD. These results show that our clustering can identify 

patients with similar anatomic distribution, and related dose distributions. Despite not 

using learned parameters, these clusters are notably correlated with RAD. 

Our final model used predicted doses to the extended oral cavity, mandible, and 

combined medial pterygoid muscle doses, along with the minimum distances between a 

GTV and the mandible and medial pharyngeal constrictor.  Predicted doses for the three 

included OARs were highest for the high-risk cluster (Table 2, Cluster 4), suggesting that 

they are the most representative of the doses to all the organs around the oral cavity, 

which as a whole may contribute to RAD.  This hypothesis is consistent with the fact that 

median doses are highest for all OARs for this group compared to any other group 

(Figure 1). Additional analysis in Appendix E, Table E.1 shows that SPC proximity is the 

best indicator of membership in the high risk cluster, which further supports the idea that 

the predicted doses in our clusters encapsulate dosimetric information relevant to 

swallowing or mastication muscles that are not explicitly encoded in our covariates. The 

extended oral cavity and mandible represent large ROIs around the mouth, and thus 

together serve as an indicator for the overall doses to the muscles used for mastication. 

The addition of the geometric mean of the predicted doses to the medial pterygoid likely 

further segments out patients with and strong dosing to both sides of the head rather 

than thoses with unilaterally biased dosing.  The two tumor-organ distances, the 

mandible and MPC, represent organs central to the mouth and throat, respectively, and 

are thus indicative of the spread of disease near the organs responsible for mastication 

and swallowing.  In this case, the MPC was likely selected over the SPC as it has less 

overlap with the throat, which is more consistently captured by the extended oral cavity. 

One cluster, Cluster 3, had significantly smaller tumor-organ distances for both the 

Mandible and MPC, as well as overall, than other clusters, despite having below-average 

predicted doses to relevant ROIs. Cluster 3 then represents a cluster with slightly 

elevated risk than the baseline due to having a high tumor spread, despite low treatment 
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dose. Our spatial clustering furthermore identified a surprising group with high 

predicted-doses but low toxicity (Cluster 1), which featured tumors located at the base of 

the tongue.  This grouping may capture an overlooked phenomenon in estimating the 

NTCP in standard models where only certain OARs dosimetric criteria are considered. 

These standard models are likely an over-simplification, as other OARs may contribute 

to toxicity.  Specifically, dysphagia can be induced through many different combinations 

of muscle, mucosal or glandular damage [22–24].  

Of pre-existing clinical variables considered, T-stage was the most significant 

predictor of dysphagia. This is an intuitive result, considering that T-stage is an indicator 

of tumor size – thus an indicator of high dose reach – and potential tumor muscle 

infiltration. The most important aspect was whether the patients were in T-stage 4, with 

72.2% of all patients in this category experiencing RAD and 55.5% experiencing 

aspiration.  T-stage alone performed comparably to our spatial cluster labels alone (rows 

1 and 2 in Table 3), likely due to the fact that they both consider similar spatial features, 

such as the extension of the tumor into the pterygoid muscle [25]. T-stage is likely 

predictive as it acts as an indicator of tumor size and the aggressiveness of the 

treatment a patient may receive, but doesn’t capture all relevant spatial information that 

affects dose distribution and toxicity. In contrast, our approach captures specific radiation 

dose distributions across T-stage labels (e.g., T3 and T4 in the high-risk cluster), as well 

as additional features related to tumor-location that are specifically relevant to feeding 

tube toxicity or other toxicity that may manifest later. Furthermore, combining our spatial 

clusters with T-stage improves the toxicity prediction performance of either T-stage alone 

or spatial cluster alone (Table 3, row 3). Notably, the best AUC scores are observed 

when the cluster labels are included in the predictive model in combination with T-stage 

and other clinical features (bold values in Table 3).  

Importantly, these results have the potential to impact early-treatment decision 

making, as these predictions are performed with imaging data alone, do not require 

time-intensive dose optimization, and can be fully automated after GTV contouring. In 

contrast to synergistic NTCP models that require actual dose parameters, our results 

indicate that adequate pre-radiation risk forecasting can be used with diagnostic CT data 

in combination with tumor annotation and OAR contouring. By providing a granular and 

continuous risk prediction at the patient level, our approach can be used to identify 

patients who are in need of exceptional efforts to maintain swallowing function in a 
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granular way. Low risk patients can be encouraged to maintain oral intake and 

prophylactic swallowing exercises. Intermediate risk cases can have pre-therapy 

assessment for short-interval PEG placement in an adaptive manner, as well as more 

frequent surveillance (e.g. mid-therapy MBS assessment). High-risk patients can be 

given nutritional support, aggressive swallowing exercises, low-threshold for PEG 

placement or prophylactic PEG placement, rapid effort to accelerate nutrition in the 

post-therapy interval (e.g. goal PEG duration <3 months), short-interval post-therapy 

MBS, and high-frequency post-therapy surveillance for dysphagia symptoms.  High risk 

patients can also be pre-selected for proton therapy referral without doing an elaborate 

dose comparison [26]. Using our model, “low”, “intermediate”, and “high” risk 

stratification thresholds can be determined by local resource availability, 

patient-physician discussion, and clinical considerations.  

One limitation of our study is the homogeneity of the cohort.  Data was drawn 

from a single institution, tumor site was limited to oropharynx, and the cohort was largely 

white and male, similar to previous studies of HNC patients.  Our demographic also 

showed a higher count of patients with HPV-driven tumor and fewer smokers, which is 

consistent with previous findings showing this trend [27], but makes it difficult to draw 

any conclusions about the relationship between HPV status and toxicity.  Finally, our 

cohort is also restricted to patients that received IMRT, which was state-of-the-art at the 

time of treatment.  However, more recent studies should consider volume-modulated arc 

therapy as well. 

Most studies that look at stratification of patients, such as TNM staging, are 

centered on overall survival, rather than toxicities.  Thus, many of these studies fail to 

capture negative outcomes in surviving patients.  However, with growing survival rates in 

HNC patients more work needs to be done to improve post-treatment quality of life for 

survivors. Importantly, this work is designed to be methodologically rigorous and 

generalizable, and thus we have eschewed highly simplified single dose/volume 

thresholds in order to achieve a degree of statistical validity across dose/volume as 

continuous metrics. Specifically, this work enables us to circumvent single dose/volume 

metrics in favor of more accurate, individualized risk profiles, rather than population 

threshold approaches based on high-dimensionality reduction, such as Lyman-Kutcher 

NTCP models, where the entire dose-volume histogram (DVH) is compressed to a single 

generalized equivalent uniform dose value (gEUD). The clinical value of the model is 
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thus targeted less at general dose prescriptions per-se, and more as a granular risk 

stratification tool for identifying personalized patient-specific risk. Operationalizing 

conceptually compact predictions as an “app” or API that could integrate within a 

treatment planning system remains the focus of future work.  

In conclusion, using medical imaging information and estimated dosimetric 

information created at the time of diagnosis, our proposed methodology identifies four 

groups within a cohort of 200 patients that were significantly correlated (p < 0.0001) with 

dysphagia. Furthermore, our risk-stratification results improve predictive models for 

dysphagia that already incorporate all possible relevant demographic or clinical 

information, such as tumor staging, age, and total dose-to-tumor.  We believe that our 

proposed methodology of automatically generating a simple stratified risk score for 

dysphagia could be applied to identifying high-risk groups of other negative patient 

outcomes and better guide future treatment recommendations. 
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Tables 
Table 1. Cohort demographics not included during classification 
 

Characteristic Count (Percent) 

General Demographics 

Gender 

Male 172 (86%) 

Female 28 (14%) 

Race 

White/Caucasian 189 (94.5%) 

African American/Black 5 (2.5%) 

Hispanic/Latino 3 (1.5%) 

Other 3 (1.5%) 

Dysphagia 

Pre-Treatment Aspiration 3 (1.5%) 

Post-Treatment Aspiration 19 (9.5%) 

Post-Treatment Feeding Tube 22 (11%) 

Treatment Modality   

One Side of Neck 18 (9%) 

Both Sides of Neck 182 (91%) 

Existing Clinical Covariates* 

Smoking* 

Never 94 (47%) 

Former 69 (34.5%) 

Current 37 (18.5%) 

T Classification* 

T1 54 (27%) 

T2 85 (42.5%) 
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T3 43 (21.5%) 

T4 18 (9%) 

N Classification* 

0 7 (3.5%) 

1 25 (12.5%) 

2 163 (81.5%) 

3 5 (2.5%) 

Ajcc 8th Edition* 

1 20 (10%) 

2 103 (51.5%) 

3 7 (3.5%) 

4 19 (9.5%) 

N/A 51 (25.5%) 

HPV Status* 

Positive 130 (65%) 

Negative 20 (10%) 

Unknown 50 (25%) 

Pathological Grade* 

1 1 (0.5%) 

2 53 (26.5%) 

3 105 (52.5%) 

4 2 (1%) 

N/A 39 (19.5%) 

Tumor Subsites* 

Base of tongue 103 (51.5%) 

Tonsil 81 (40.5%) 

NOS 11 (5.5%) 

Glossopharyngeal sulcus 3 (1.5%) 

Soft Palate 2 (1%) 

Therapeutic Combination* 

Chemoradiation 115 (57.5%) 
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Induction Chemotherapy + Chemoradiation 42 (21%) 

Radiation Alone 22 (11%) 

Induction Chemotherapy + Radiation Alone 21 (10.5% 

Tumor Laterality* 

Right 102 (51%) 

Left 80 (40%) 

Bilateral 18 (9%) 

Age* 

Mean (Range) 59.4 (37-82) 

Total Dose To Tumor* 

Mean (Range) 68.5 (60-72) 

Spatial Features** 

Extended Oral Cavity Predicted Dose (Gy)** 

Mean (Range) 
51.98 
(44.87-62.66) 

Mandible Predicted Dose (Gy)** 

Mean (Range) 39.5 (32.85-51.95) 

Medial Pterygoid Predicted Doses (Combined)(Gy)** 

Mean (Range) 77.23 (64.86-92) 

Mandible-Tumor Minimum Euclidean Surface Distance 
(mm)** 

Mean (Range) 4.7 (-1.2-16.33) 

Medial Pharyngeal Constrictor-Tumor Minimum Euclidean 
Surface Distance (mm)** 

Mean (Range) 8.43 (-2.06-26.61) 

 
* Features considered for the baseline clinical features 
** Features included in the spatial clustering 
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Table 2. Statistics of each spatial cluster.  Values include toxicity and 5 features used for 
generating the spatial clusters.  Cluster labels were tested for correlation using Fisher’s 
exact test.  Feeding tube alone and Aspiration were both significantly correlated with 
cluster labels (p < .001) as well as overall RAD (p < .0001). 

Spatial 
Cluster Count 

%  
RAD 

%  
Feeding 
Tube 

% 
Aspir
ation 

Extended 
Oral Cavity 
Predicted 
Dose (Gy) 

Mandible 
Predicted Dose 
(Gy) 

Average 
Medial 
Pterygoid  
Muscle 
Predicted 
Dose (Gy) 

Mandible-Tu
mor Distance 
(mm) 

Medial 
Pharyngeal 
Constrictor-
Tumor 
Distance 
(mm) 

Spatial 
Cluster 1 3 0 0 0 51.96 (1.97) 39.92 (2.16) 37.94 (0.5) 13.35 (1.44) 0.29 (1.64) 

Spatial 
Cluster 2 114 5.3 3.5 2.6 50.84 (1.37) 38.21 (1.02) 38.03 (1.1) 7.18 (3.82) 12.23 (4.55) 

Spatial 
Cluster 3 35 11.4 8.6 5.7 48.66 (3.20) 36.33 (2.82) 35.91 (2.1) 0.04 (1.81) 0.28 (0.60) 

Spatial 
Cluster 4 48 50 31.3 29.2 57.11 (2.93) 44.84 (3.69) 42.03 (1.9) 1.64 (2.28) 5.86 (4.23) 
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Table 3. AUC Scores From Logistic Regression Classification using Leave-One-Out 
Cross-Validation 

Leave-one-out Cross-Validation AUC Scores (Logistic Regression) 
 
 

Feeding 
Tube Aspiration RAD (Either) 

Spatial Clusters 0.64 0.66 0.68 

T Stage 0.60 0.76 0.70 

T Stage + Spatial Clusters 0.76 0.82 0.82 

All Clinical Features 0.64 0.85 0.79 

All Clinical Features + Spatial Clusters 0.71 0.87 0.84 
Spatial Features 0.72 0.80 0.77 

Spatial Features + Clinical Features 0.67 0.86 0.80 
 
 
Figure Legends 
 
 
Figure 1. Visual summaries of the tumor proximity and predicted mean doses to each 
OAR for the 4 identified spatial clusters.  Distances are quantile-scaled to give uniform 
distribution across each axis within the cohort. Dark lines show the mean values for each 
cluster while darker shading represents the portion of the cluster within a given quantile. 
Cluster 4 (n = 48) has a higher predicted mean dose and toxicity, while cluster 3 has a 
high tumor-proximity and a predicted mean dose with low mean values but high 
variance. Cluster 2 consists of the majority of the low-risk cohort, while cluster 1 consists 
of a group of 3 patients with more localized dose distributions and no RAD. 
 
Figure 2. Receiver-Operator curves (ROC) for 3 outcomes using Clinical Features vs 
Clinical Features + Spatial Clusters. 
 
Figure 3. AUC scores for Logistic Regression cross-validation AUC score when using 
clinical variables and our spatial clusters, vs using clinical variables alone.  For each step 
the trail was rerun 500 times with patients randomly removed, with at least 2 patients 
with toxicity included in the remaining set, so that cross-validation could still be run. 
Spatial clustering was re-calculated at each run and cross-validation AUC scores were 
calculated with and without clusters in the model on the reduced subset of patients. 
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