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Abstract
In the biomedical domain, taxonomies organize the acquisition modalities of scientific images in hierarchical structures. Such
taxonomies leverage large sets of correct image labels and provide essential information about the importance of a scientific
publication, which could then be used in biocuration tasks. However, the hierarchical nature of the labels, the overhead of
processing images, the absence or incompleteness of labeled data, and the expertise required to label this type of data impede
the creation of useful datasets for biocuration. From a multi-year collaboration with biocurators and text-mining researchers,
we derive an iterative visual analytics and active learning strategy to address these challenges. We implement this strategy in
a system called BI-LAVA—Biocuration with Hierarchical Image Labeling through Active Learning and Visual Analytics. BI-
LAVA leverages a small set of image labels, a hierarchical set of image classifiers, and active learning to help model builders
deal with incomplete ground-truth labels, target a hierarchical taxonomy of image modalities, and classify a large pool of
unlabeled images. BI-LAVA’s front end uses custom encodings to represent data distributions, taxonomies, image projections,
and neighborhoods of image thumbnails, which help model builders explore an unfamiliar image dataset and taxonomy and
correct and generate labels. An evaluation with machine learning practitioners shows that our mixed human-machine approach
successfully supports domain experts in understanding the characteristics of classes within the taxonomy, as well as validating
and improving data quality in labeled and unlabeled collections.

CCS Concepts
• Human-centered computing → Visual analytics; • Computing methodologies → Machine learning algorithms;

1. Introduction

Labeled image datasets are required in multiple practical applica-
tions of supervised machine learning (ML), from autonomous driv-
ing [GZL∗20], spambot detection [KKZE19] and medicine [SJZ21,
Bai21] to the image-based retrieval and to the identification and
classification of scientific publications into biomedical databases
(biocuration) [TLA∗21, TASM23, TLA∗20]. Not surprisingly, la-
beling solutions are urgently needed, rapidly creating a big industry
market forecasted to generate a revenue of more than $17 billion by
2030 [Gra23]. The most common labeling settings involve recog-
nizing and labeling the content captured in photographs, which is
often a task humans excel at, even without training (e.g., recogniz-
ing the content as a boy holding a toothbrush), and which the in-
dustry rewards with relative low-pay ($1 to $25 per task) [The23].
However, other labeling tasks, for example aimed at identifying a
specialized image type, require advanced knowledge at the post-
graduate level, and would result in a pay in excess of $300 per task.

† Corresponding author: gmarai@uic.edu

For example, biocuration aims to organize into taxonomies the vast
information published in the biomed field. Although biomed scien-
tific publications provide a vast source of unlabeled images, iden-
tifying the exact image type and subtypes from such a taxonomy
(e.g., Experimental –> Gel –> Northern blot) can typically be per-
formed only by highly skilled individuals named biocurators.

In such settings, incremental ML strategies, including but not
limited to active learning (AL) [BZSA18], can help reduce the
labeling costs by identifying smaller image subsets that require
human intervention [Set09] and then learning from these smaller
sets. In addition, strategies can leverage high-confidence predic-
tions on the unlabeled set to add more labels, even though they do
not come from a human source—i.e., they are pseudo- or weak-
labels. Finally, integrating such ML strategies with visual analyt-
ics (VA) can also facilitate identifying and selecting labeling can-
didates from unlabeled data pools, and discovering knowledge in
unfamiliar datasets.

When it comes to practical applications like the curation of
biomedical data, several challenges from model and user per-
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spectives hinder the integration of VA and ML techniques for
understanding and labeling images into classes. From a model
perspective, unlike typical systems [LCL∗19, XXX∗19, CSV∗18,
BNR20, CWW∗20] that handle a single classifier and a single,
non-hierarchical classification scheme (i.e., flat taxonomy), biocu-
ration fundamentally relies on hierarchical taxonomies that may
require multiple classifiers. This domain requirement complicates
both the ML solution and the VA approach, because available la-
beled data may not match the taxonomy at the required level of
specification—e.g., an image labeled as microscopy does not indi-
cate whether it belongs to the light or fluorescence microscopy sub-
categories, i.e., the provided label is incomplete. Further issues in
data quality, such as mislabels, imbalanced distributions of classes,
and a lack of representative samples, can affect the model’s perfor-
mance [YCY∗20]. In other words, the ML + VA solution should be
able to handle incomplete ground-truth labels for many image sets,
at multiple hierarchical levels, and possibly multiple classifiers.

From the user perspective, non-domain experts such as model
builders may lack the expertise to correct and label domain-specific
images. For example, classifying traffic light pictures is more
manageable than distinguishing between gel and plate figures.
Furthermore, although popular labeling tools such as Label Stu-
dio [TMHL20] or napari [nap19] can process a single image at a
time, they lack the features necessary to process image collections,
as in biocuration. Overall, model builders spend more time work-
ing with data than with models [Ana22], yet they have limited tools
to understand unfamiliar image collections. A VA solution should
support understanding such collections, because this type of sup-
port is crucial for labeling data efficiently and improving models’
performance.

In this paper, we introduce BI-LAVA (Biocuration with Hi-
erarchical Image Labeling through Active Learning and Visual
Analytics), a system that integrates feedback from an incremental
ML strategy to aid the hierarchical exploration, understanding, and
labeling of an unfamiliar image dataset. BI-LAVA is the first sys-
tem to support novice labelers working with unfamiliar datasets.
BI-LAVA is the only system to date to handle hierarchical classi-
fication schemes. BI-LAVA scales to thousands of images, and in
that process, deals with cluttering issues via spiral image layouts
which capture the neighborhood projections from embedding space
to 2D. Unlike any other labeling system, BI-LAVA’s ML backbone
enables further feedback to help labelers understand problems with
the classification models in terms of the data used for training (in-
cluding incomplete labels), testing, or validation, and low and high-
confidence samples.

Beyond the specific system capabilities above: 1) We introduce,
characterize and document the biomedical image labeling process,
from the novel perspective of model builders who collaborate with
domain experts in biocuration. 2) We design and build a novel VA
labeling system (BI-LAVA) to support this process, and leverage
custom encodings and interactions. 3) We report and discuss feed-
back and lessons learned from a BI-LAVA evaluation with ML
practitioners working with an unfamiliar collection of biomedical
images.

2. Related work

2.1. AL and visualization for image classification

While our ML backbone could leverage a number of different learn-
ing strategies, as long as they can identify low and high-probability
samples, our current instantiation uses AL and Cost-Effective Ac-
tive Learning (CEAL) [WZL∗17]. CEAL considers samples with
low entropy and high probability of being correctly classified as
pseudo-labels which are used to train the model in future steps.
Low-confidence, high entropy labels need to be acted on by human
labelers. Other approaches include Core-Set [SS18], which looks
for the best subset for AL. However, Core-set is not suitable for
large-scale labeled datasets. BI-LAVA uses CEAL due to its inex-
pensive, simple approach for separating low and high probability
predictions. CEAL also produced promising preliminary results on
our biomedical dataset, although it could be easily replaced by al-
ternative approaches.

Previous work on Visual Interactive Labeling (VIAL) has ex-
plored the integration of visualization to augment human-in-the-
loop AL, [BZSA18, SSZ∗17, BHZ∗18]. Other work has identified
a taxonomy of data types and tasks in VIAL [BHS∗21] with sin-
gle views. We expand on this by exploring tasks for multiple linked
views. Other works have explored multi-instance labeling with self-
organizing maps [MBS∗10] and pixel averages [HNH∗12] to speed
up labeling. In contrast, we focus on exploring and labeling the
most similar images around an image of interest (i.e., image neigh-
borhood).

Beyond AL, visualization research can generally aid in label-
ing image data. Several visualization systems attempt to detect
and correct labeling errors [LCL∗19, XXX∗19, BNR20], identify a
lack of representation in the dataset [CSV∗18], and leverage unla-
beled data [CWW∗20]. Visual feedback also enables understanding
model performance [RFT18,BHS∗21]. Our work considers a more
complex combination of these goals. Specifically, we target cor-
recting label errors and analyzing labeled and unlabeled images,
and we provide visual support for understanding data collections
and model behavior. Furthermore, although most of these works
employ AL, none deal with hierarchical taxonomies connected to
multiple classifiers.

Two other works deal with related problems, but not for image
data. VIANA [SSKEA19] enables annotating argumentation data
using scrollable interactions to transition between different levels
of aggregation, similar to our hierarchical taxonomy. However, un-
like VIANA, we must always display the image labels and rely on
a multiple-view system for annotating data and encouraging famil-
iarization with the dataset. A second system, VASSL [KKZE19],
uses multiple views to identify spambots by focusing exploration
around an item of interest and filtering over dimensionally reduced
elements. However, VASSL focuses on binary labeling. Still, both
VIANA and VASSL are good examples of the need for contextual
data for labeling, a current limitation in labeling systems like Label
Studio [TMHL20] or napari [nap19].

2.2. Exploring sets or collections of images

Dimensionality reduction algorithms enable viewing and exploring
large unstructured sets and collections of images by transforming
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features derived from colors or latent representations to two dimen-
sions. Markers and thumbnails on scatterplots are commonly used
to display images [NW08], but they quickly clutter due to limits of
display sizes. Alternatives to deal with cluttering include hierarchi-
cal clustering with zooming [CYL∗21, XXX∗19], scatterplots sup-
ported by grid-layouts to display thumbnails [XXX∗19, LCL∗19,
CWW∗20], or density contours to summarize data distributions and
display a few samples [MG13]. Our design combines techniques
from density contours with filters, selections, and supporting views
to organize thumbnails.

Complementary techniques focus on placing thumbnails on a
canvas. Grid-layout algorithms transform image positions from a
projected space to a grid layout while preserving neighborhood
similarities [CMC∗21, FDH∗15, DSF∗14, BHA∗22, GNCM∗16].
While static treemaps may hurt thumbnail visibility [GCB∗15],
proposed variations support image exploration enabling interac-
tions [BHA∗22] or inspecting neighborhoods around an image of
interest [WRZ∗15]. Further techniques allow repositioning image
projections [AA20] and summarizing groups [LZC∗20] but are
limited to exploring a small subset. As BI-LAVA follows the ra-
tionale of exploring images of interest based on static positions, we
draw inspiration from spiral treemaps layouts [WRZ∗15] for dis-
playing thumbnails.

2.3. Hierarchy visualizations

Taxonomies of image modalities follow a hierarchical struc-
ture with different depths per branch. Typical encodings for
this type of hierarchical data include indented lists [DLSP18],
node-link diagrams (e.g., trees), icicles [KL83, vdWKB20] and
treemaps [Shn92]. However, juxtaposed encodings are required to
add further details [VBW15]. To aim for a compact representation
of our taxonomy and distribution of samples, we use a combination
of indented lists and horizontal bar charts, similar to work done for
confusion matrices [GHM∗22].

Figure 1: Taxonomy of image modalities for biomedical images
in COVID-19 papers [TLA∗21, TASM23]. Nodes indicate parent
classes with image classifiers; filled nodes further denote available
classifiers at the start of the project. Nodes with blank fills denote
expected classifiers where we did not have labeled data. For gels,
light and fluorescence, sub-classes denote experimental methods.

3. Application background

Unlike typical data labeling problems, we describe the challenge
of unfamiliar domains, the issue of hierarchical incomplete labels,

and specific tasks related to the intrinsic need for hierarchical tax-
onomies of labels and multiple classifiers.

Biocurators extract knowledge from biomedical publications to
populate scientific databases, saving an immeasurable amount of
time to fellow researchers [Int18]. While text-based ML mod-
els accelerate biocuration tasks, such as document classifica-
tion [JLK∗20, BLP19], work from our collaborators found that
complementing these models with image acquisition modality in-
formation produces better results [LJZ∗21, SCB06]. Such results
are consistent with the claims of how important images are for com-
municating scientific content [YAJC09, SCB06, CWM03]. How-
ever, integrating these modalities is underexplored due to the lack
of standardization of classification schemes and the consequent
lack of labeled data to train supporting image classifiers.

Modern attempts to automatically classify biomedical images
into taxonomies use deep learning models [GSdHSBM16]. How-
ever, these taxonomies are not detailed at the level of granularity
desired in biocuration. For example, they often classify images that
use microscopy, but do not consider the modality (e.g., electron
vs light microscopy) or sub-modality (e.g., scanning vs transmis-
sion microscopy), which has important information on the kind of
experiments performed. To support creating more granular labels
from sources with few or incomplete labels, we developed a hi-
erarchical set of image classifiers following the parent nodes of a
taxonomy developed for biocuration [TLA∗21, TASM23] (Fig. 1).

Over the last five years, we have collaborated remotely with
biocurators and text-mining researchers at three sites (Caltech,
Jackson Labs, and Delaware) to integrate image and textual fea-
tures to aid biocuration. Our team comprises two visual comput-
ing researchers and a senior undergraduate in ML. Some of our
goals include harvesting labels for biomedical images and train-
ing image classifiers for image modalities, which lead to us explor-
ing approaches for improving data labeling and the identification
of modalities relevant to biocuration [TLA∗21]. Through a series
of semi-structured interviews, repeated observation, and feedback
meetings, we became familiar with the existing labeling workflow
and the image modality taxonomy to be used for classification.

4. Methods

Unlike other systems, our solution leverages multiple views of im-
ages and supports the multiple classifiers required by hierarchical
taxonomies. BI-LAVA furthermore supports exploring unfamiliar
hierarchical datasets to understand model behaviors, identify label
errors, evaluate the ML performance, and identify data needs.

Our solution uses an iterative workflow that progressively pro-
cesses an unlabeled collection of images by leveraging trained im-
age classifiers and user inputs (Fig. 2). Following the VIAL frame-
work [BZSA18], BI-LAVA has three outputs: data, model, and vi-
sual analytics. Users interact with labeled and unlabeled images to
generate labeled data, which triggers the model output as a hierar-
chical set of image classifiers. Finally, the visual analytics compo-
nent amplifies the knowledge output by enabling the understanding
of the data and the model behavior.

To tackle the novel challenge of classifying image content at dif-
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ferent levels of granularity, BI-LAVA uses a hierarchical image tax-
onomy. Unlike other systems that deal with a single classifier, we
couple the taxonomy with a hierarchy of image classifiers where
each classifier is a parent node in the taxonomy. To address the
problem of incomplete or missing labels at different levels of gran-
ularity, BI-LAVA leverages a human-in-the-loop AL pipeline. This
strategy allowed us to use each labeled sample, even when incom-
plete. For example, an image labeled as microscopy is used by the
top classifier, while an image labeled as microscopy.fluorescence is
used by the top classifier AND the microscopy classifier. Further-
more, this pipeline allows us to identify and correct issues in both
the data and model. By allowing for an exploration of the dataset
with the front-end VA module, BI-LAVA further addresses the chal-
lenges of working with unfamiliar datasets while improving data
quality.

4.1. Data abstraction

Our system relies on data from images and the hierarchical in-
formation of the taxonomy of modalities. Most images were ex-
tracted from scientific publications from PubMed Central after we
extracted and segmented subfigures. In addition to using the raw
image data to train the classifiers and display thumbnails, the im-
age schema includes the data source, split set type (training, vali-
dation, test, unlabeled), and label and captions (although not avail-
able at subfigure level, i.e., sub-caption), if available. We further
derive latent representations, predictions, and associated probabili-
ties using deep learning models. Other attributes include projected
coordinates to 2D and metrics for the AL strategy (margin sam-
pling [SDW01] and entropy [Sha48]). Our taxonomy of modalities
is a tree structure where each child node increments the category’s
detail. Also, each parent node is associated with an image classifier
and its performance metrics.

4.2. Activity and task analysis

We formulated the activities and tasks from our experience de-
signing a labeling interface for biocuration [TLA∗21] and from
our attempts to find datasets that matched the specified taxon-
omy. Our previous labeling interface allowed biocurators to label
images within publications on a one-publication-at-a-time basis,
imitating their curatorial process. Although our system reduced
the labeling time, selecting publications to label made it chal-
lenging to identify under-represented samples, leading to imbal-
anced datasets. Our initial dataset required merging images gath-
ered from selected publications, competitions [GSdHSBM16], syn-
thetic charts [Ado19], and other biomedical sources [DFAST12]
in addition to a set of images labeled by curators. This laborious
process was time-consuming because biomedical images required
extra time to verify our labeling decisions. As model builders, we
needed more domain knowledge to discern between modalities eas-
ily.

After the start of the COVID-19 pandemic, our collaborators
wished to shift our image-harvesting efforts from biomedical pa-
pers to a growing collection of COVID-19 publications [WLC∗20].
However, our manual labeling interface did not scale well to
the much larger number of COVID-19 documents (more than

250,000). Our group could also not afford the time to manually
inspect samples to validate labels and image quality. Instead, we
aimed to leverage the image classifiers we had developed for the
much smaller set of labeled images and leverage our experience as
model builders to replace biocurators as data annotators. However,
as we approached the new classification problem and researched
possible solutions, we learned that other model builders faced sim-
ilar problems across domains related to the same lack of domain
expertise with a dataset. Consequently, providing visual cues to
support data understanding before labeling became essential.

We documented the issues encountered by our group and prob-
lems reported by other engineers with similar issues, and conducted
semi-formal interviews with several ML practitioners and with our
biocurator collaborators. By further contrasting the resulting needs
with tasks characterized for instance selection [BHS∗21] and sup-
ported by visual encodings [SG17] (both discussed in the Related
Work 2.1, 2.2), we arrived at the following list of activities and
tasks [Mar17]:

A1. Analyze labeled and unlabeled images for each class defined
by the hierarchical taxonomy

• T1.1 Display an overview of the labeled samples and their rela-
tionship to the image classifiers used in the taxonomy

• T1.2 Show images by similarity and allow the comparison be-
tween labeled and unlabeled data subsets

• T1.3 Explore neighborhoods of images to become more famil-
iar with data characteristics and characteristics shared between
similar images

• T1.4 Identify how model behavior changes for different types of
images, and what features commonly lead to labeling errors

A2. Select candidates to update and label images

• T2.1 Identify labeling errors in the labeled and unlabeled sets
corresponding to each image classifier

• T2.2 Update image labels for single or multiple images
• T2.3 Browse low-confidence samples to identify labels that re-

quire human-intervention
• T2.4 Browse high-confidence samples to support the evaluation

of the pseudo-labels
• T2.5 Evaluate modifications to data labels

Beyond general exploratory labeling (T1.1, T2.1 [BHS∗21]),
T1.2 - T1.4 are specified for our project’s labeling needs, although
they resemble tasks typically supported by scatterplots [SG17].
T2.3 - T2.4 are unique to our domain problem [BHS∗21]. Non-
functional requirements included handling large image datasets of
up to 500,000 images while allowing an interactive browser expe-
rience and supporting on-demand calculations of dimensionality-
reduced features (a computationally-expensive operation). Finally,
our system should be easily usable for model builders with limited
visual literacy.

4.3. Pre-labeling and image classifiers

Pre-labeling refers to annotating data offline before training the
classifiers [BZSA18]. We obtained labeled data from a few labeled
datasets, including ImageCLEF 2013 and 2015 [GSdHSBM16],
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Figure 2: Architecture of BI-LAVA’s active learning system. (a) An offline pipeline extracts images and captions from PMC COVID-19
related publications. (b) The AL strategy uses previously trained CNN models to predict labels, and extracts image features from unlabeled
images by fetching latent representations from the last convolutional layer. Next, it separates images based on the classifier’s confidence
according to two popular metrics. (c) A user accesses the visual analytics interface to understand the collection of images and label them.
(d) Labeled images and high-confidence unlabeled samples are used to retrain the image classifiers.

from approximately 6,000 data labeled by biocurators on our pre-
vious labeling interface [TLA∗21], and from a synthetic charts
dataset [Ado19]. In addition, we scrapped around 2,000 images
from Open-i [DFAST12] and added approximately 15,000 sam-
ples of experimental images provided by our collaborators. Ex-
cept for the synthetic dataset for charts, all the other images come
from scientific publications that guarantee verifiable provenance to
a biomedical source. We note that, in contrast, searching the web
for ‘light microscopy’ returns generic images of microscopes in-
stead of the expected light microscopy images. Our training efforts
focused on a subset of classifiers due to labeled data availability
(green nodes in Fig. 1). We made large efforts to guarantee that the
data was suitable for training; however, we could not guarantee that
mislabeling did not happen. In addition, we disregarded samples
labeled by biocurators that included extraction errors (e.g., wrong
segmentations in Fig. 6g) generated while extracting content from
PDF documents. We manually inspected the samples for every la-
beled dataset and matched them to our taxonomy. Our total pool of
labeled images contained 333,998 samples.

We trained each parent node of the taxonomy as a supervised
classifier independently where the classes were the node’s chil-
dren. To keep the training sets consistent across parent and child
classifiers, we first trained the lower levels of the hierarchy using
a stratified partition with training, validation, and test partitions of
70/10/20. For the parent classifiers, we follow a similar approach
but also force images previously selected for a training set to re-
main in the parent’s training set and avoid data leakage. For in-
stance, samples in the training dataset of the electron microscopy
classifier also belonged to the training dataset of the microscopy
classifier. Given its competitive results, our chosen architecture was
a ResNet18 [HZRS16] model. We trained these models using trans-
fer learning from ImageNet and early stopping to avoid overfitting,
with a learning rate of 1e−4, and saved the F1 scores.

Given our collaborators’ requirements for gathering COVID-19-
related images, we created our unlabeled dataset from the CORD19
dataset [WLC∗20]. This dataset contains entries to research articles
about COVID-19, updated periodically until recently. We extracted
approximately 32,000 documents from that subset available be-
fore January 2021 from PubMed Central. As the CORD19 dataset
does not provide images, we used the PMC identifiers to collect

the publications as PDFs using NIH’s interfaces. We detail the pre-
processing steps next.

4.4. Active learning strategy

We obtained the biomedical images for the unlabeled dataset by
pre-processing publications in PDF format. First, we pass every
document through an extraction pipeline [TLA∗21] to obtain ev-
ery figure, subfigure, and corresponding caption (Fig. 2a). The
pipeline internally invokes modules for image and captions extrac-
tion [LJKS18], and figure separation [LJS19]. We follow this ap-
proach as figures in biomedical publications can contain subfigures
with different modalities that would add noise to the training data.
We then store these images in our unlabeled database.

Next, we start our AL strategy on the unlabeled collection of im-
ages (Fig. 2b). Using the pre-trained models, we infer image labels
and prediction probabilities and extract the image features (from
the last convolutional layer in the model before the softmax layer).
We save the image features for the dimensionality reduction step
later in the workflow. This step is repeated per classifier in the tax-
onomy from top to bottom following a branch of the taxonomy in
order to treat each modality independently. High-confidence sam-
ples are identified in the dataset as images with an entropy [Sha48]
below < 0.05, based on the CEAL framework [WZL∗17], which
are used as pseudo-labels. Images with lower confidence are ranked
using the margin sampling score [SDW01] to provide more infor-
mation to prioritize labeling decisions.

The following step in the workflow involves a model builder in-
teracting with our visual analytics interface (Fig. 2c). We describe
the components in Sec. 4.5. In this stage, the model builder pro-
duces new labels by confirming or correcting predicted labels. Con-
firmed pseudo-labels become training data in the AL approach.
Finally, the training step (Fig. 2d) uses labeled data and high-
confidence samples as a training pool to retrain the models from
scratch before reinvoking the AL steps. Because training the model
takes a considerable amount of time, we only retrain the model
when training pools for a classifier, including new or updated la-
beled samples, are incremented by a user-defined threshold.
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Figure 3: Visual interactive labeling with BI-LAVA. (a) Dataset view displaying a taxonomy of image modalities and proportion of samples
per class. (b) Projection of a training set of microscopy images using t-SNE. Density heatmaps hide confident samples, while circle encod-
ings show samples with a neighborhood similarity below 50%. Brushing reveals samples in the lower region (b1). (c) Neighborhood view
displaying an image of interest from the scatterplot (b2) and neighbors in a spiral layout. Details on demand show the image caption and
prediction probabilities (c1). (d) Performance metrics from classifiers and filters. Scrolling down reveals the Update panel (d1 positioned on
the side for readability). (e) Gallery of images for different data subsets: mispredicted samples, samples from the selected area, confusing
samples, and uncertain samples.

4.5. Front-end design

We designed our visual analytics platform to address the previ-
ously discussed challenges of model builders when dealing with
unfamiliar datasets, ultimately leading to more efficient labeling.
BI-LAVA (Fig. 3) provides different views and interactions to sup-
port data understanding and labeling. The Dataset view (a) pro-
vides an overview of the distribution of labeled samples per class
in the taxonomy (T1.1) and an overview of the current label up-
dates (Fig. 4) in a user session (T2.5). The Projection view (b) al-
lows the exploration of projections from image features (T1.2-1.3,
T2.1) and inferring model behavior (T1.4). Users can filter the data
using the panel to its left (d). The Gallery view (e) provides dif-
ferent entry points to images (T1.3,T2.3,T2.1,T2.4). The Neighbor-
hood view (c) enables exploring the most similar thumbnails (T1.3-
1.4) and explains predictions (T1.4). Finally, users can update la-
bels (T2.2)(d1). This design results from a parallel prototyping ap-

proach [DGK∗10] with feedback from three visual computing re-
searchers. We implemented the front end using React, D3 [BOH11]
and ThreeJS, and used Flask, PyTorch, RAPIDS [RAP23], and
MongoDB for the back end.

4.5.1. Dataset view.

The Dataset view provides an overview of the labeled data and la-
beling updates performed in a session. Visual cues attempt to guide
model builders’ exploration, such as showing classifiers with im-
balanced distributions of labeled data. After selecting a node in the
taxonomy from the top left of the interface, the view for labeled
data summarizes the distribution of labeled images per category as
an indented list (Fig. 3a) with the total number of samples per cate-
gory. In this tree-like structure, each node represents an image clas-
sifier. Below, a horizontal bar takes the whole available width space
to display the distribution of images per category (T1.1). Conse-
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Figure 4: An alternative view in Dataset view (Sec. 4.5.1) for dis-
playing labeling updates during a user session.

quently, the bars are not comparable between classifiers. We made
this design decision as our exploration focuses on one image clas-
sifier at a time. Bars are color-coded following a chromatic scale
of 10 different colors. However, given the large number of nodes
in the taxonomy, some categories may share the same color across
different classifiers.

Design alternatives included trees and treemaps. However, jux-
taposing the taxonomy and image distribution details provided
a more compact and understandable representation. In contrast,
treemaps produced small squares due to the imbalanced number of
images between categories. Zoomable treemaps were another alter-
native, but they required more interactions and did not provide an
overview of all nodes.

Estimating the number of labels to update before finishing a la-
beling session is a hard challenge. Few images may lead to no sig-
nificant changes, while many label updates demand more participa-
tion from human annotators. Instead of recommending such a num-
ber, BI-LAVA displays an overview of the changes when the user
selects the updates option in the toolbar. A Sankey diagram (Fig. 4)
summarizes the label updates done so far in the labeling session, in-
cluding new labels, updated labels, and deleted items (T2.5). Boxes
to the left (with dashed borders) represent the taxonomy categories
affected by the updates, while boxes to the right (with solid bor-
ders) represent the updated values. A black box complements the
boxes to the right as a placeholder for deleted elements. Our rep-
resentation includes any parent category for an updated taxonomy.
These update flows in the view provide cues for common mistakes
in the current dataset, such as labeled samples moved to another
distribution (i.e., mislabeled).

4.5.2. Projection view

The Projection view displays the images associated with an image
classifier on a 2D scatterplot (Fig. 3b). Due to the documented ben-
efits for novice users, we followed the “overview first, zoom and
filter, and details on demand” mantra [Shn96] to support data un-
derstanding. Toolbar options enable selecting the classifier, projec-
tion technique, and dataset sub-set. BI-LAVA calculates the dimen-

sionality reduced features to 2D using either PCA, t-SNE [vH08]
or UMAP [MHM20], leveraging the RAPIDS GPU-based imple-
mentation to obtain acceptable on-demand processing times (e.g,
from 5.8s for 50,000 images to 3m for 500,000 images, using t-
SNE). The dataset sub-set options include training, validation, test,
unlabeled, unlabeled + train, or all the data. These options allow
the user to narrow down the dataset based on their intent (T1.2-
T1.4). For example, training samples include ground-truth labels
and high-confidence, which are more useful to get an initial idea
of the data and whether data expected to be correct has labeling is-
sues or erroneous predictions (T2.1). In contrast, unlabeled + train
shows how the unlabeled elements relate to the training pool.

We use a combination of a scatterplot and density heatmaps to
represent the image data. Given the large dataset size, we first show
an overview of the data by displaying the different clusters of im-
ages as density heatmaps. Similar to Splatterplot [MG13], we then
display images of interest on top of the heatmaps. Since we are
interested in images that are more likely to be mislabeled (T2.1),
we show images whose neighborhood hit metric [PNML08] (per-
centage of neighbors with the same label) is below a user-defined
threshold. The rationale behind this decision is that users may be
interested in exploring first images surrounded by different neigh-
bors, which usually lie on cluster borders. Users can manipulate
this threshold at will (Sec. 4.5.3). We encode each sample as a cir-
cle where the background color represents the ground truth, and
the border color represents the prediction label, following the color
scheme used in the Dataset view. For unlabeled samples, we fill the
circle background in gray. Image thumbnails appear as details on
demand after clicking on a circle mark.

Analyzing these sub-sets enables understanding model perfor-
mance and problematic regions [RFT18]. Thus, this view depends
on the notion of similarity obtained in the 2D space to guide explo-
ration. However, these projections could suffer from distortion er-
rors [NA18]. The Neighborhood view mitigates this effect by show-
ing the raw image data (Fig. 3c).

This view supports interactions to ease exploration and is linked
to other views in the interface. First, users can zoom into an area
with mispredicted samples to inspect neighbors and reveal their
thumbnails by clicking on a circle mark. Then, clicking on the top
right of the thumbnail triggers the Neighborhood view (Sec. 4.5.5).
Next, by brushing over a region, the view reveals the samples hid-
den due to the neighborhood hit threshold (Fig. 3b1). This image
selection is also displayed on the Gallery view (Sec. 4.5.4) as a grid
layout of thumbnails. At last, the Filters view allows filtering of the
view by image metadata (Sec. 4.5.3).

4.5.3. Filters view

BI-LAVA leverages image metadata to filter an image collection
(T1.2). Bar charts and histograms summarize the values of the cur-
rent data sub-set, including unlabeled data if applicable. We use
bar charts to show the distribution of the ground truth labels, pre-
dictions per class, and data sources. Each bar in the charts acts as
a filter, and updates to the bar fill indicate the active filters. Users
can identify discrepancies in model behavior by combining these
filters. For example, filtering electron microscopy images should
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ideally display only images predicted as that category. Hence any
other misprediction is worth reviewing.

For the model predictions, we use a histogram for each class to
show the log distribution of samples for each probability bin. We
chose a log distribution to account for the imbalanced distribution
of samples. Two color-coded bars are displayed side by side per
prediction probability, one for labeled and one for unlabeled sam-
ples (T1.2); this setup allowed us to gain vertical space. Sliders
filter the values. For example, we can filter samples with predic-
tion probabilities lower than 60%. Finally, the top area displays the
classifier’s performance metrics.

4.5.4. Gallery view

The Gallery view (Fig. 3e) complements data exploration by show-
ing images of interest based on user interaction, classification out-
puts, and outcomes of the AL strategy. Content is organized using
tabs. The first tab groups the mispredicted images. For example,
discrepancies between ground truth and predicted labels indicate
potential issues in the classifier (T2.1). The second tab groups se-
lected images from the Projection view. Finally, the last two tabs
group high-confidence samples, starting with the most confident
images, and low-confidence samples, starting with the most uncer-
tain images, respectively (T2.4,T2.3).

This view places these images using a paginated grid to show
the image content. We place a circle mark for each image on the
top left, following the same color-coding convention as in the Pro-
jection view. In addition, a red circle mark on the top right indicates
an image marked for deletion, while a color-coded circle mark in-
dicates that the image label has been changed to the color-coded la-
bel. As images in our dataset have different aspect ratios, we chose
squared elements to display and fit their content to the constrained
space. However, hovering over a thumbnail expands the image con-
tent.

As an alternative to the "overview first" approach in the Pro-
jection View, the gallery enables a "details-first, show context,
overview last" approach [LBS∗18]. Model builders can click on
an image in the gallery to reveal its context, depicted as a neigh-
borhood of thumbnails (Neighborhood view), and later inspect
the neighborhood’s location in the whole projection space. For
instance, unknown unknowns [CSV∗18] appears when a sample
with high confidence is mispredicted. If users spot one of these
cases, they can inspect the neighborhood for more potential er-
rors. Finally, selecting thumbnails indicate labeling candidates
(Sec. 4.5.6).

4.5.5. Neighborhood view

While the projection view provides flexibility for viewing, filter-
ing, and selecting regions in the dataset, visualizing image thumb-
nails is challenging due to clutter. We overcome this problem by
inspecting image thumbnails on a separate view from the perspec-
tive of an image of interest. This rationale allows expanding the
exploration from an image sample presented on the Gallery view
or found through investigation on the Projection view. For exam-
ple, an uncertain image can reveal more patterns in a neighbor-
hood that may confuse the model. In particular, the Neighborhood

view (Fig. 3c) sorts the neighboring images based on their proxim-
ity (i.e., similarity) to this image of interest using three layouts: a
spiral layout [WRZ∗15] (Fig. 3c), a novel variation of this spiral
layout that preserves the relative position of the projected features
in the 2D landscape (Fig. 6e,g), and a traditional grid layout. While
grid layouts are more common than spiral layouts, we decided to
use spirals as the default layout as they highlight the image of in-
terest by placing it in the center of the canvas. The local exploration
in this view aids the inspection of visual features per region. Un-
derstanding these similarities helps model builders create a mental
model of the classifier’s behavior (T1.3,T1.4), like identifying re-
gions with chest X-rays.

Spiral layout. The spiral layout for images [WRZ∗15] places
the image of interest in the center and neighbors in concentric rings.
The order of the neighbors, sorted by distance, starts from the top-
left quadrant of the central image and proceeds clockwise (Fig. 5b).
We calculate the neighbors based on the Euclidean distance in the
2D projected view and mitigate distortion errors by displaying the
thumbnails in this spiral layout. In addition, the layout organization
approximates the elements’ position in 2D to provide consistency.
Each ring contains thumbnails with the same aspect ratio as the
central image to fit perfectly on every edge of the central element.
If required, the method is flexible enough to consider further size
reduction of outer rings by dividing the width and height in mul-
tiples of 2. As the spiral layout follows a treemap algorithm, the
spiral pattern can recursively appear for boxes with hierarchical el-
ements. However, as image sizes shrink fast, the recursion affects
the visibility of the thumbnails. Thus, we restrict our design to di-
vide each rectangle into four elements at most if required (Fig. 5c).
We use the spiral layout as the default setting.

Spatial spiral layout. Although the spiral map arranges ele-
ments by distance to the central image, the position of each el-
ement does not preserve the structure of the elements in the 2D
projection. Figure 5 displays an example case of this problem. The
scatterplot (a) displays a set of random points, color-coded by the
quadrant where they appeared, with the point of interest in the cen-
ter. The spiral layout (b) uses the distance to the center to orga-
nize items in concentric rings. However, the resulting arrangement
places items from the same quadrant far apart, violating the struc-
ture given by the scatterplot. Our alternative arrangement (c) orga-
nizes items by similarity while preserving quadrant membership. It
should be noted that an unequal distribution of elements per quad-
rant requires a subdivision of the space to fit the boxes. These ideas
lay the foundations for our spatial spiral layout.

To build a spatial spiral layout, first, we choose the number of
rings in the layout. Next, we build each ring by subdividing a sorted
list of points by quadrant until we fill in all the rings. When ele-
ments in a new ring have the same size as in the previous ring, the
new ring allocates four more elements. However, when the outer
ring halves the size of the elements, it contains double the elements
plus 4. Then, we traverse the list of ring elements in reverse order
and subdivide each element into four. Our Neighborhood view con-
siders cases for 2, 3, 4, and 5 rings called small, medium, large,
and very large views, respectively, that can allocate from 32 to 180
images (supp. materials).

Features and interactions. In contrast to the Gallery view,
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Figure 5: Spiral layout vs Spatial spiral layout. (a) Random distribution of points in a 2D projected space, color-coded by Cartesian
quadrant, surrounding a point of interest in the center. (b) Spiral layout with two concentric rings. Color encodes quadrants and unused
space (black), and numbers show distances between an item and an element of interest. (c) Spatial spiral layout positioning points based on
their quadrant and distance. The top-left quadrant requires subdivisions.

scaled images match the rectangular space available in the lay-
out. From previous experiences working with biomedical im-
ages [TLA∗21], images with unusual aspect ratios (e.g., skinny
images) may indicate the presence of extraction errors while pro-
cessing PDF documents. Showing thumbnails covering the squared
space, as in the Gallery view, is also available. Markers for labels
and updated information are consistent with the design in Gallery
view. Additional features support the exploration and actions in
the neighborhood of thumbnails. To provide a proxy for the in-
terpretability of our image classifiers, we provide saliency maps
using GradCAM [SCD∗17]. We color-encoded the saliency maps
using red for areas with low activations and blue for areas with
high activations. Users can see more details by clicking on mark-
ers, such as captions, data sources, and predicted probabilities per
class (Fig. 3c1). Finally, as in the Gallery view, users can indicate
the images to update by clicking on the thumbnails or using the
toolbar options.

4.5.6. Update panel

This panel allows updating the selected samples from the Projec-
tion or Gallery views (T2.2). Users can indicate new labels or mark
items for deletion (Fig. 3d1). We also allow specifying child la-
bels or different parent nodes if the samples were misplaced (i.e.,
out-of-distribution).

5. Evaluation

Beyond manual labeling, which BI-LAVA partially automates and
thus clearly outperforms, there are no other labeling systems that
BI-LAVA could be reasonably compared quantitatively against. In-
stead, we evaluate BI-LAVA through two case studies with sev-
eral practitioners and rigorous qualitative feedback. In the first case
study, a senior model engineer with experience with biomedical
images used BI-LAVA to analyze two subsets of images extracted
from COVID-19 publications in conjunction with labeled sources.
In the second case study, five ML practitioners independently used
BI-LAVA on a subset of a biomedical image dataset, which was un-
familiar to them. In both case studies, we used a think-aloud proto-
col with note-taking, followed by a questionnaire.

5.1. COVID image modality labeling

This case study aimed to identify problematic instances from two
types of imaging modalities in the COVID-19 dataset and update
the labels accordingly. The study was completed by a senior model
engineer working with the dataset as part of the biocuration project
using a think-aloud protocol with note-taking. The engineer first
sought to investigate the imbalanced distributions of samples he
had used to train image classifiers—namely, the subset of gels
and plates in the experimental (exp) assays category. Second, the
engineer analyzed the molecular (mol) category, whose images
are known for containing text strings such as RNA and DNA se-
quences. The experimental and molecular classes are handled by
two different classifiers in the second level of the hierarchical tax-
onomy.

The engineer started his analysis by inspecting the Dataset view
to locate a modality category with an imbalanced distribution of
samples (T1.1). After noticing a significant disparity between the
gel and plate sub-classes (15,737 gel vs. 591 plate samples) in
the experimental node (Fig. 6a), he loaded the training and high-
confidence unlabeled data using UMAP, due to previous experience
with this technique (T1.2). Figure 6b shows one big cluster in the
center dominated by gels (in orange) and two small clusters on the
sides, mainly grouping samples of the same class (plates shown in
blue). He preferred first to analyze the small clusters to determine
the reason for the presence of few gels in a dominant plate region,
or vice-versa.

By zooming in on the cluster on the far right (Fig. 6c), the en-
gineer identified three samples with a ground-truth label of gel
predicted as plates within a blue region (plates). Then, he clicked
on the instances in the Projection view to visualize the thumb-
nails: two looked pretty similar, while the last one looked like an
out-of-distribution sample (T2.1). Next, the engineer tried to brush
over the area to open more thumbnails, but the view became clut-
tered. Therefore, he selected one suspicious sample and opened the
Neighborhood view (Fig. 6d, T1.3). As most neighbors appear to
the sample’s right, he switched the view to the spatial spiral layout
(Fig. 6e). "It becomes clear now that this image is mislabeled as gel
while it is a plate. They all share these circular patterns", he added.
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Figure 6: Interaction during the case study: COVID-19 Image Modality Labeling. (a) Imbalanced distribution of samples for gels and plates.
(b) Projected image features for gel (orange) and plate (blue) samples using UMAP. (c) Zoom in to the plate region on the right displaying
the thumbnails for three samples labeled as gel but predicted as plate. The cluster contains an out-of-distribution sample. (d) Mispredicted
image of interest and immediate neighborhood in the plate cluster. (e) Neighborhood view using a spatial spiral layout and saliency maps.
Circular patterns yield higher activations (in blue). (f) A plate sample (blue) is predicted as gel (orange). (g) Neighborhood view for a plate
image with unconventional colors in a gel region. Neighboring elements include out-of-distribution and under-segmented samples. (h) An
experimental gel sample. (i) Uncertain samples in the molecular category representing portions of text.

An inspection of the saliency map further corroborated that the cir-
cular patterns caused the highest activations in the model. The engi-
neer then selected the other mispredicted sample, also a mislabeled
instance, and updated the ground truth label to plate. The engineer
commented on the remaining mispredicted gel sample: "I have seen
these images before when working with the microscopy classifier. It
probably is a fluorescence sample, so it is peculiar to find it clas-
sified as a gel" (Fig. 6c right). After opening the details for each
of the three images of interest and checking the image source, he
added: "These three samples came from the same labeled collection
we generated using a previous version of a classifier. I now see that
we most likely got something wrong and need to revisit several la-
beled samples." In addition, he identified several thumbnails with
very narrow aspect ratios, which he confirmed were over-cropped
figures that needed to be discarded (T2.1). He ended the cluster in-
spection by deleting the errors and moving the mislabeled sample
to the microscopy set (T2.2).

Next, the engineer wished to check the isolated plate instance
within the gel cluster on the left side (Fig. 6f). This sample looked
like a plate but used a different color scheme (Fig. 6g). After brush-
ing over the plate cluster previously explored, he hovered over the

selected tab in the Gallery view. He commented: “For me, this im-
age is a plate, but the color is different; no caption is available
to be sure. Also, this gel cluster has many instances that should
not be under the experimental category.” After filtering samples by
source, he stated again that one of the labeled datasets needs to be
revisited as it contains noisy samples, including images with mul-
tiple modalities (T2.1).

Then, the engineer focused on the remaining mispredictions and
evaluated the predictions in the unlabeled dataset. He noticed that
the issues appear in a tiny area in the bigger cluster’s boundaries of
gels and plates. Thus, he decided to open the mispredicted tab in the
Gallery view to understand the issues in these 58 instances (T2.1).
He quickly identified more microscopy images that should not
have been in this dataset. Then, curious about the classifier’s per-
formance on the unlabeled dataset, he inspected the confident tab
(T2.4). Approximately 95% of unlabeled samples were predicted as
gels, and fewer than 1% of instances had issues. In contrast, plate
predictions contained roughly 10% of out-of-distribution samples,
such as radiology CT scans of chests and brains. He commented
that these particular samples were problematic as the model classi-
fies them as highly confident predictions. Based on this inspection
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of the confident samples, he decided to show only unlabeled sam-
ples on the Projection view, brush over the dense gel regions in
the middle, and open one unlabeled sample in the Neighborhood
view. The image caption listed the term western blot, a subclass of
gel. As all the images in the neighborhood looked quite similar, he
displayed 180 neighbors and confirmed the label of the unlabeled
samples as gel (T2.2). He finalized this inspection by mentioning
that the 99% F1 score of the experimental classifier cannot be fully
trusted as it hides many errors, such as mislabels and lack of repre-
sentation.

Last, the engineer targeted the molecular dataset. He hypothe-
sized that images containing text annotations could affect predic-
tions for subclasses mainly containing characters, such as protein
sequences. He started the analysis by plotting the unlabeled subset
for the molecular (mol) category. Surprisingly, the uncertain tab
did not show instances of confusing biomedical images containing
text but instead showed small chunks of text extracted from para-
graph regions in the PDF (Fig. 6i). He marked these images for
deletion and commented: “These samples indicate an error on our
extraction algorithm. It would be good to mark them as an ‘other’
class within the molecular dataset as a proxy for these mistakes”.
In contrast, an inspection of the confident samples showed a good
performance on chemical structures and DNA sequences, which
appear as phylogenetic trees of nucleotide samples.

5.2. ML practitioners exploring unfamiliar data

This case study aimed to collect qualitative feedback about the ben-
efits of BI-LAVA when an ML practitioner targets an unfamiliar
dataset for data labeling. We recruited five ML practitioners to use
BI-LAVA and perform a series of tasks to achieve this goal. Only
one practitioner (P4) had previous experience with data visualiza-
tion. Also, four practitioners were not affiliated with our project.
Although we recognize the fifth practitioner (P5) as a co-author,
his contributions focused on the AL components. We completed
four in-person sessions and conducted the last session over Zoom
and Parsec due to our remote collaboration. For in-person sessions,
practitioners interacted with 31” monitors (1920x1080). For the re-
mote session, the practitioner used a 15” monitor (1366x768). Ev-
ery session lasted approximately 90 minutes and employed a think-
aloud approach with note-taking.

At the beginning of each session, the practitioners read a de-
scription of the project background, and a facilitator addressed any
additional questions. Then, the facilitator demonstrated the system
features in one of the taxonomy classes. Next, the practitioners per-
formed the following four tasks on the experimental assay (exp)
dataset: (1) explore the dataset and identify characteristics for each
class; (2) identify noisy samples; (3) identify high confidence sam-
ples from the unlabeled dataset to leverage as training samples;
and (4) label low confidence samples from the unlabeled dataset.
Finally, they provided qualitative feedback in an online question-
naire. During the session, the facilitator addressed any concerns.
We chose the experimental assay as the unfamiliar dataset as it only
contained two classes, and as shown in the previous case study, it
had an imbalanced distribution of samples.

The first task aimed to familiarize practitioners with the dataset

by exploring the samples used in the training dataset and the unla-
beled samples with high confidence. t-SNE was the dimensionality
reduction algorithm most used (4/5), in contrast to PCA and UMAP
(P4). Different exploration strategies (T1.2) arose for this task, in-
cluding sampling thumbnails across regions (similar to Fig. 3B),
exploring regions far from the overlapping region, starting from an
overlapping region, and starting with low-density regions. During
this stage, few practitioners (P3, P4) used filters and preferred using
the Neighborhood view (T1.3).

The most common approach to validate their hypothesis about
the data was using the Neighborhood view to inspect neighboring
thumbnails. Some practitioners (P1, P3, P4) also used a combina-
tion of the Neighborhood, Gallery, and Projection views by show-
ing thumbnails in the scatterplot, selecting a distant region to dis-
play thumbnails on the gallery, and then contrasting those samples
with the neighborhood. The spatial spiral layout was often pre-
ferred as it matched better the structure in the scatterplot. By the
end of this task, practitioners noticed that circular patterns were
prominent on plates (Fig. 6e) while stripes were more common on
gels (Fig. 6h). A practitioner added that there was some grid orga-
nization between the elements in gels and plates.

For identifying noisy samples in the second task, practition-
ers followed different strategies (T2.1). Most practitioners (3/5)
navigated to the overlapping regions or sought isolated samples
on opposite clusters. For example, they identified a plate sample
surrounded by gels (Fig. 6c). P2 preferred the mispredictions tab
as a starting point for exploration, while P3 used filters to show
gel labels predicted as plates and samples with low probability
scores. Once the practitioners got more confident about the data,
they commented on their desire to include functionality to filter out
high-confidence pseudo-labels from the Neighborhood view as la-
beled neighbors increased their trust compared to unlabeled ones.
Saliency maps helped validate cases when the image of interest
shared patterns with the neighbors and was mislabeled (Fig. 6e), but
these heatmaps did not help explain well out-of-distribution sam-
ples (Fig. 6c).

To identify the high-confidence samples to leverage during train-
ing, most practitioners remained in the training subset and used the
confident tab (T2.4). After iterating over that panel, three practition-
ers spotted out-of-distribution samples for the minority class (gels).
P4 preferred to inspect the unlabeled subset alone and use filters to
visualize the regions for high-confidence samples (T1.2). He ex-
plained that the lack of filters in the Gallery view was a disadvan-
tage; thus, he preferred to use the scatterplot. He added: “Predicted
gels look good, but plates are a bit weird; it looks like there are
not many predicted plates in this unlabeled collection.” To inspect
the low-confidence samples for the last task, they preferred to use
the uncertain tab (T2.3). A couple of practitioners (P1, P2) com-
mented that they needed a way to look back at labeled data as they
forgot some data characteristics. In particular, one of them iterated
back and forth between projections. While none of the practitioners
had major troubles updating labels, one indicated his preference for
selecting elements per Neighborhood rather than the sorted thumb-
nails in the Gallery view.
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5.3. Feedback

BI-LAVA yielded excellent feedback from the ML practitioners
participating in our evaluation. For example, P1 told us he has to
deal with many videos in his daily work; he commented: “(BI-
LAVA) is so powerful to help a practitioner understand their data
and develop ideas to improve the model. By the way, I like this tool
so much, and if possible, I will consider using it in my research”. In
addition, practitioners agreed that the interface provided encodings
and interactions helpful in speeding up labeling, identifying errors
in labeled data, exploring and understanding the data in different
ways, identifying imbalanced distributions, inspecting the quality
of the pseudo-labels on high-confidence samples, and labeling low-
confidence samples.

Although our system uses multiple views and entry points, prac-
titioners commended BI-LAVA’s ease of use. “Fairly intuitive and
easy to use”, P3 commented. "Good looking front-end, it’s easy to
use, and it has powerful functions", P1 added. Positive feedback
was also given for these multiple views, filters, and supporting en-
codings: "(P4 liked) the filtering and neighborhood configuration,
as well as the view that filtered images by different metrics. Grad-
CAM was useful in figuring out what the classifier looked at for
the more simple images and finding the noise’s source". Regarding
potential improvements, two practitioners suggested adding flexi-
bility to the panels, such as readjusting their size or showing them
on demand.

The interaction between the Projection and Neighborhood Views
was the primary component to explore, understand, and validate the
data. In addition, our spatial spiral layout served as a proxy for the
projected image features: “... I was mainly interested in the neigh-
borhood as a proxy for similar points, and a way to get more details
on them, and less in terms of ranked similarity to a given image”,
commented P4. Three practitioners also stated their preference for
our spatial spiral encoding, highlighting its consistency with the
projected samples; one preferred any spiral variation (P2), and one
stated he could use any layout (P3). Regarding labeling, practition-
ers liked the multi-instance selection feature; P2 commented “hav-
ing as many images as possible on the page is best”.

Last but not least, P5 commented: “As a junior researcher and
active competitor in ML contests, I spend more time designing mod-
els than visualizing datasets. I usually do error analysis of the top
mispredictions to understand why my model might fail. I usually
use Python and slowly interact with Jupyter. But, while using the
interface, I noticed that this process can be improved and acceler-
ated.”

6. Discussion

Our evaluation shows that BI-LAVA aids in understanding the char-
acteristics of different classes in a hierarchy, validating the quality
of data and models, and labeling an unlabeled collection of biomed-
ical images. Although BI-LAVA’s multi-view interface is complex
at first glance, our evaluation shows that ML practitioners could
use it properly after only a few minutes. Furthermore, an expert
audience adapted quickly to the interface complexity and provided
positive feedback on usability.

Results from our case study with a domain expert highlight

the importance of reviewing data quality for AL. The Projection
view helped the user spot mislabeled images. The target explo-
ration in the Gallery view led to identifying mistakes in the ex-
traction pipeline. For all cases, the Neighborhood view was essen-
tial to compare images and expand the search for similar images,
which supports our multi-view design. Identifying errors through
our interface supported the evaluation of his extraction and model-
ing tools on a broader data scope.

Results from our second case study with ML practitioners
demonstrate BI-LAVA’s potential to familiarize users with an un-
familiar dataset, regardless of their familiarity with data visual-
ization. Our multiple-classifier strategy helped users focus on par-
ticular data subsets while BI-LAVA leveraged incomplete ground-
truth labels to provide information in the form of latent features
and predictions. In addition, through multiple exploration strate-
gies involving single and multiple views, users could explain the
characteristics of each data class, identify and correct mislabeled
instances and even reason about issues in parent classifiers that in-
serted out-of-distribution samples to the inspected subset.

The literature on visual interactive labeling formalizes several
strategies for single-view exploration [BHS∗21]. We confirm these
strategies are also used in our Projection view. For instance, users
explored the projected samples by examining areas with low and
high density first, inspecting overlapping regions first, checking el-
ements with disagreement among neighbors, or sampling thumb-
nails among areas for coverage.

While a single view can support many labeling strate-
gies [BHS∗21], our work shows that multiple connected views fur-
ther expand these actions. Exploration following an overview-first
approach [Shn96] benefited the practitioners with no previous ex-
perience with our dataset as it allowed them to leverage the spa-
tial positions on the layout or data characteristics through filters to
get a better grasp of the data. Once users got more familiar with
the dataset, the details-first approach [LBS∗18] through the gallery
became more widely used. In particular, users started to use the
feedback from the AL backend when inspecting low- and high-
confidence samples. The preference for displaying thumbnails in
spiral layouts in contrast to a grid layout suggests the benefits of
maintaining the spatial similarity between items. Our spatial spiral
layout matched the projected view more closely than the spiral lay-
out. In addition, we observed that displaying thumbnails in a jux-
taposed view, as opposed to a superimposed one, encouraged more
comparisons between regions, as users can visualize more images
simultaneously without clutter.

Our second case study also suggests that the user guidance pro-
vided by our neighborhood view is helpful when exploring pro-
jected data and avoiding misleading exploration strategies. In par-
ticular, after projecting the data using t-SNE, one user explored first
groups of images further from the overlapping areas between class
boundaries. Then, progressively the user looked at groups closer to
the overlapping region while checking the variations among image
groups. The rationale was that groups closer to an overlapping area
might have similar features to another image class. However, the
distortions resulting from t-SNE may provide incorrect cues for the
t-SNE projection used. As Wattenberg et al. [WVJ16] mentioned,
distances may not map to the user’s intuition and are tightly coupled
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to the perplexity parameter, which we did not allow users to manip-
ulate. Enhancing our Projection view with encodings to show dis-
tortions can avoid these wrong conclusions [NA18]. We minimize
these problems by using the Neighborhood View as a secondary lay-
out enrichment [NA18], which requires additional interaction from
the user.

Reflecting upon this experience, we identified the following
three lessons for researchers addressing similar challenges:

• L1. Use complex multiple views, as long as they support desired
functionality. Despite the common advice to use simple inter-
faces for beginners, our clients valued the multiple coordinated
views and appreciated the system’s enhanced functionality.

• L2. Show neighborhood information to support trustworthiness.
Our clients prioritized identifying trustworthy data samples over
precise similarity ranking. Maintaining neighborhood spatiality
in reduced embeddings and using connected views for thumb-
nails were helpful, but researchers should note and communicate
potential projection distortions to users.

• L3. Provide slicing support to find and contrast trusted items.
Clients unfamiliar with the data used trustworthy samples
as reference points. Comparing different data slices, such as
train/validation/test sets, against unlabeled sources aided in as-
sessing model generalizability and data quality.

Regarding limitations, BI-LAVA assumes that model builders
can learn a new dataset through progressive exploration by lever-
aging pre-trained classifiers. However, we did not consider more
complex bootstrapping scenarios. Next, due to our goal of pro-
viding an efficient labeling tool, we analyzed the functionality of
multiple views and did not compare performance metrics between
layouts. As BI-LAVA’s front end only depends on algorithms to
classify low and high-probability samples, more recent AL or other
strategies could easily replace the CEAL component. Model train-
ing can be further expanded to use self-supervised learning in an
AL setting [MVBA21] to improve the use of unlabeled data. Fi-
nally, GradCAM might fail to produce correct explanations and can
fail to adversarial attacks [VWLE19], where appropriate. Our sup-
port for neighborhood exploration, however, helps to alleviate this
issue by allowing users to explore additional evidence.

BI-LAVA is designed for scalability. Our Neighborhood view
displays and enables labeling up to 180 images at once, and we
have been able to render up to 850,000 images simultaneously
in the Projection view. The color and shape patterns support pre-
attentive similarity detection [MM18], even for images on the spiral
periphery, which may be less legible. Zooming, filtering, and visual
summaries help navigate the data effectively. However, the Gallery
view’s design, supported by our AL strategy, attempts to show pri-
oritized elements to identify regions of interest with images of low
and high confidence. Thus, this view does not attempt to scale to
avoid a cognitive overload. Similarly, our dataset view relies on ag-
gregated data but is limited in the number of classes shown at each
node in the taxonomy.

Although we initially developed BI-LAVA to label biomedical
images, it can generalize to other image classification problems in a
semi-supervised setting by updating the input classification taxon-
omy, which can also be non hierarchical, as long as labeling sam-
ples are provided for those taxonomies. BI-LAVA’s methodology

could also be adapted to non-image classification problems using
a suitable visual representation of the data items to replace the im-
age thumbnails. Future work directions include further generaliz-
ability to other domains by enabling visual editing of taxonomies,
supporting parametrization of the dimensionality reduction algo-
rithms [CMK20], and providing a visual summary of the changes
in model performance across iterations.

7. Conclusion

In this work, we described the design and evaluation of BI-LAVA, a
novel and timely labeling system initially developed for the hierar-
chical labeling of image modalities in biocuration. BI-LAVA inte-
grates a visual analytics interface and an ML strategy for deep im-
age classifiers to help non-experts understand a biomedical dataset,
correct data quality issues, label samples, and reason about model
behavior. In addition, BI-LAVA uses multiple classifiers to support
a hierarchical taxonomy that deals with incomplete ground-truth
labels. We described the characteristics of these biomedical images
and identified the requirements based on a long-term collabora-
tion with biocurators and text-mining researchers in the biocura-
tion domain. Furthermore, we introduced custom views that sup-
port the understanding and labeling of unfamiliar datasets and ex-
ploring neighborhoods of thumbnails leveraging spatial constraints.
Finally, our evaluation with machine learning practitioners and col-
laborators proves the usefulness of BI-LAVA, with a particular in-
terest in the familiarization of non-experts with an image dataset.
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