
The digital component of the circle graphics habitat

by THOMAS A. D E F A N T I
Universit" of Illinois at Chicano Circle
Chicago, Illinois

ABSTRACT

J. nis rG3.i-i/ini6 interacuiv6 computer grapuics system
derives from the author's dissertation1 at the Ohio State
University (National Science Foundation Grant GJ-
204, Charles A. Csuri, project director). The system,
called "The Graphics Symbiosis System" or "Grass"
was first designed to help artists interactively explore
computer art without the constant companionship of a
programmer. Over the past three years, it has been
expanded at the University of Illinois at Chicago Circle
(Figure 1) and is now the image generation portion
of a short-order full-color animated videotape produc
tion facility called "The Circle Graphics Habitat."
u u m u i n c u VVIULI ±SCLIL O c l i i U i i i o n u a g c JL. X u o c b b u i) i * i e

system2'3 is sufficiently powerful and flexible to be used
in real-time performance context4 here at UICC.

INTRODUCTION

The hardware is a standard PDP-11/45 computer with
a Vector General 3DR display scope. In addition, we
have a data tablet, thirty channels of analog input

Figure 1—The Grass user's console

devices (dials, slide potentiometers, joysticks, etc.) and
several channels of analog output (built by Larry
T — l - „ \ -l-~ J- ,%,„ 4-l,„ T T> . « ~ ~
j-icorvej WJ u n v c LIIC xuieige n u t r a s u i .

Primary inspiration for the structure of the lan
guage was the DECsystem-10 operating system and its
text editor TECO, and Ron Baecker's animation system
"GENESYS."5 About ten person-years of program
ming effort up to now has resulted in about ten thou
sand lines of code in assembler. Persons primarily
responsible for implementing the software will be
identified by their initials as we progress: Tom
Chomicz (TC), Dean Daniele (DD), Tom DeFanti
(TD), Mike Dearing (MD), Nola Donato (ND),
Manfred Knemeyer (MK), Gerry Moersdorf (GM),
±. o. \J j^onnen ^±w^, rtaipii wmcic (rCv̂ j «,nu JSOD
Rocchetti (BR). Gerry Moersdorf was responsible for
about half the code in the Ohio State implementation.
Grass currently has six running installations.

This paper will communicate the program structure
of Grass. It would be good, ho first uescriue
briefly what is expected of the system by university
authorities and users. The system, with the Image
Processor, is used by professors, instructors and ad
vanced students in preparing animated educational
materials in less than geological time. Educational
animation makes demands on a system which are
computationally and conceptually more complex than
standard plotting. The system has to be both easily
learned and powerful enough for use by expert pro
grammers in animations like continental drift or a
dynamic explanation of how television works. A
friendly review of the Circle Graphics Habitat may be
found in Reference 6.

Educational animation systems are exciting to de
velop but not always as much fun to use. Educational
animation is rarely free and loose. Fortunately, to
continue the good feeling of pure, uncompromised cre
ation, we now have an annual event in April which,
like a faculty recital in music, is a performance, but
of animated 3-D images and color image processing
along with live music (Figures 2 and 3). We believe
that jamming on equipment like this demands more
from the human engineering side of design than ordi
nary real-time graphics. More on the philosophy of

195

196 National Computer Conference, 1976

Figure 2—A still from 'Peano Boogie' by Sandin, Morton and
DeFanti, a live performance. Colors are sky blue, raspberry

red, lemon yellow and orange orange

the Circle Graphics Habitat may be found in Refer
ence 2.

For the technical discussion that follows, it is as
sumed that the reader has knowledge of interactive
graphics to the level found in Newman and Sproull.7

TECHNICAL DESCRIPTION OF THE
GRASS LANGUAGE

Grass has two essential types of primitives: com
mands and pictures. Commands are kept as ASCII
strings terminated by carriage-returns. Pictures
(often called "sub-pictures" in the literature) are user-
defined displayable lists of 3-D absolute vectors com
piled into binary code acceptable by the Vector General
display direct memory access processor. On disk, both
commands and pictures are normally kept as ASCII

Figure 3—A still from 'Wednesday Night Spiral' by Sandin
and DeFanti, a live performance

strings (we always wanted to be able to read what
was on the disk). Both commands and pictures in
Grass are higher-level primitives, and this concept is
essential to the design of the system. In addition, both
may be broken down into the lowest level components
if desired (i.e., ASCII characters and x, y and z end-
points) and both may be grouped into hierarchies
whose elements have much the same behavior as the
primitives themselves. The user first learns the com
mand primitives like ROTATE, MOVE and SCALE
to manipulate graphical images. Non-programmers do
not have to think of images as endpoints or manipulate
instructions as individual characters. This differs con
siderably from the approach taken in typical FOR
TRAN graphics packages where the user is assumed
to be an expert programmer.

USE AND CONTROL OF PICTURES

Pictures in Grass have user-assigned names and are
displayable lists of vectors prefixed in core by a control
block. The user indirectly communicates with the con
trol block for each picture by using commands like
ROTATE, MOVE and SCALE rather than by setting
bits. At interrupt level, the system updates and writes
these control blocks out to the display's internal regis
ters which drive the hardware features of the display
(see Reference 8 for a complete description of the
Vector General Scope). Updating of the control blocks
is done at programmed interrupt level six and the
vector display is done by direct memory access over the
UNIBUS. The maximum number of pictures concur
rently displayed is an assembly feature, presently set
to sixty. To the user, all pictures are effectively pro
cessed in parallel. The commands that set up to use the
hardware are:

MOVE PIXNAME,x-DEVICE,y-DEVICE,
z-DEVICE

Translates picture named "PIXNAME" to current
values of the x-, y-, and z-DEVICEs until disabled
(that is, the command has to be issued one time
only, but any time the DEVICEs are changed, the
update is done automatically). A DEVICE is
defined as either an analog input device or an
integer variable. Example: MOVE TITLE,D2,
D3,D4 moves the picture "TITLE" on dials 2, 3
and 4.

SCALE PIXNAME,DEVICE

Scales all three dimensions of the picture on
the DEVICE until disabled. Also available are
SCALE/X, SCALE/Y and SCALE/Z which scale
in individual axes. Example: SCALE/X CIR
CLE, A scales the circle horizontally on variable A.

Digital Component of Circle Graphics Habitat

SETINT PIXNAME,DEVICE

Sets the intensity of the picture to be continuously
variable on the DEVICE until disabled.

SETCUT PIXNAME,DEVICE

Sets the z-axis depth cueing and z-axis cutoff fea
ture of the scope until disabled.

The system hardware excels at rotation. Conse
quently, the EOTATE command, a very high-level
primitive, has many options:

ROTATE PIX,AXIS,SPEED-DEVICE

Gives simple rotation about the x, y or z axis
(specified by AXIS) at a constant speed of rota
tion determined by SPEED-DEVICE. If angular
position rather than speed is desired, ROTATE/D
is used for this and all the following ROTATE
commands. (By MK and DD.) Example: RO
TATE TETRA,Y,K rotates "TETRA" around the
y-axis using variable K for the speed of rotation.

ROTATE PIX,AXIS,SPEED-DEVICE,
TILT-DEVICE

This rotation uses the second DEVICE to control
the angular position of the axis of rotation in the
plane through the origin perpendicular to the
AXIS specified. It is a strange rotation to describe
on paper but it is a highly useful rotation for
interactive use. (By MK and DD.)

ROTATE PIX,AXIS,SPEED-DEVICE,
TILT-DEVICE,X-DEV,Y-DEV,Z-DEV

This rotation gives arbitrary origin rotation capa
bility. It tends to produce elliptical rotations, the
backbone of complex animated sequences (as in
Disney's Fantasia). Again, it is non-intuitive and
requires feedback to use. (By MK and DD.)
Example: ROTATE COPTER,X,DO,D1,D2,D3,D4

ROTATE PIX,7,SPEED-DEVICE,X1-DEV,
Y1-DEV,Z1-DEV,X2-DEV,Y2-DEV,Z2-DEV

The "seven-dial" rotate allows the user to specify
the endpoints of an arbitrary axis of rotation. It
is the rotation preferred by programmers describ
ing scientific phenomena in terms of rotation.
(ByTC.)

ROTATE/X PIX,DEVICE
ROTATE/Y PIX,DEVICE
ROTATE/Z PIX,DEVICE

These rotations are compounded with any of the
above rotate commands to produce more complex
effects. Grouping of pictures allows further com
pounding of transformations.

PATHMOV PIX,PATH-NAME,SPEED-DEVICE

This command tangentially moves the PIX along
a PATH (which is simply any picture, displayed
or not) with the given speed. It is basically an
extension of Baecker's p-curve.5 (By TC.)

These commands stay in force and cause constant
updating to the values of the DEVICEs until disabled
by the FIX or RESET commands. None of the above
commands actually change the vector list since all the
functions are done by the hardware.

Many commands do, however, change vector end-
points. The most used ones are:

SMOOTH—does a binomial smoothing of a vector
list (BR).
PERSP—does perspective projection (TC).
CLIP—clips one picture against another (like film
matting or video keying) (TC).
WINDOW—does normal 3-D windowing (TC).
SHADE—shades in outline with vectors (BR).
SOFT—carries out the hardware transformations
on the vectors by software (DD).

The precise syntax of these commands is contained
in the on-line HELP file, a copy of which may be had
on request.

As is usual with sophisticated refresh graphics sys
tems, the pictures appear to be parallel processed. They
are controlled in parallel by turning dials (which are
polled at interrupt level 30 times a second) or by
manipulating variables. The user can also get at the
individual endpoints of pictures with the GETPOINT
and ZAPPOINT commands, build pictures with the
PUTPOINT command, or draw them in using the
tablet or other digitizers. (There is also complete
software for text appearing on the Vector General (by
BR and TO)).

In addition, the user can group pictures together and
create a tree structure hierarchy of control on these
grouped pictures. Pictures are grouped for convenient
reference, and the groups respond to all the hardware
transformation commands just as pictures do. Most
often, the GROUP command is used to create multiply
articulated structures like Professor Csuri's airplanes,
helicopters and witches on propeller-driven broom
sticks9 as well as very complex rotations and trans
lations. Grouping may be carried on to 59 levels (the
same assembly feature as before). Note that the user
does not have to know about tree structures, lists and
pointers to use any of these commands because the
system housekeeping does all the chaining. For knowl
edgeable users, the TREE command gives a schematic

198 National Computer Conference, 1976

of the hierarchy developed. A two hour-long videotaped
lecture describes the internal workings of the system
algorithms.10

Storage allocation (by TD and ND) is by a "besst-nt"
algorithm. About 10K of 16-bit words is available to
the user for vectors, text, command strings and disk-
resident command modules. Many Grass commands,
especially user aids like TREE and software trans
formations like PERSP, SHADE and CLIP are not
core-resident. Code (by GM and RO) automatically
fetches the appropriate modules into core and executes
them. They are automatically deleted. When done, the
total overhead amounts to about a tenth of a second.

Garbage collection (by TD and ND) dynamically
tries to maintain large blocks of storage. It is called
by the user command "DELETE" or automatically
invoked by system housekeeping whenever appropriate.

As an example, a videotape11 to illustrate that 3-D
rotations are not commutative (Figures 4, 5 and 6)
was done using the following code:

Figure 5—The same butterfly rotated ninety degrees around the
x-axis and then ninety degrees around the y-axis

GETDSK BFLY1
COPY BFLY1,BFLY2
ROTATE/D BFLY1,X,D1
ROTATE/Y BFLY1,D2

SETINT BFLY1,D3

ROTATE/D BFLY2,D5
ROTATE/X BFLY2,D6

SETINT BFLY2,D7

GETDSK 3DAXES
GROUP 3DAXES,
BFLY1,SAM

ROTATE/D SAM,X,S1,S2

(get butterfly from disk)
(make a copy)
(rotate on x axis)
(then compound with

y rotation)
(control intensity on

dial 3)
(rotate on y axis)
(then compound with

x rotation)
(control intensity on

dial 7)
(get the axes up)
(group and call the

group "SAM" BFLY2
gets in for free)

(rotate the whole thing)

Now, by turning dials 1 and 2 enough to get ninety
degree rotations about the x then y axis, the first but
terfly takes one position. Turning dials 5 and 6 enough
to get similar rotations about y then x axes, the second
butterfly goes to a different position. It is quite easily
seen that the two are not equivalent. That is, 3-D
rotations are not commutative. (Rotating the group
"SAM" allows the third dimension to be seen more
clearly. The intensity controls allow independent fad
ing of the two butterflies for clarity.) Given the exis
tence of the butterfly and the axes on disk, the entire
videotaped sequence took less time to produce (about
fifteen minutes—some of which was dedicated to aes
thetic judgment and color choice) than to describe.

Figure 4—The butterfly in its original position

Figure 6—The same butterfly at half intensity contrasted with
another butterfly rotated ninety degrees around the y-axis and

then ninety degrees around the x-axis

Digital Component of Circle Graphics Habitat 199

USE AND CONTROL OF COMMANDS

The foremost design criterion of the command lan
guage in Grass has always been habitability, a term
adopted12 which means the quality of a system that
makes it easy to learn and use. In many ways, the lin
guistics of graphics languages are quite unnatural for
describing animation and many people do much better
by waving their hands. On the other hand, the power
of linguistic structures is undeniable, especially when
modeling scientific data.

Programming on someone else's system is always
frustrating. What really matters is whether you get
anything done while being frustrated. We have tried
to design a system to help users at all levels to get
things done.

The basic tenets of habitability are usually obvious—
mnemonic command names, predictible syntax, good
error messages, high feedback—but they are rarely
implemented in full because the detail work in coding
is immense. The leisure time for attention to such de
tail is hard to come by, especially if the users are
overwhelmingly power-conscious and impatient pro
grammers. In a short-order videotape laboratory
where users are by and large professionals donating
their time to improve the quality of their classes, non-
alienation is the item of highest priority. General fun
and productivity seem to follow. Again, more of this
philosophy is found in Reference 2.

A command in Grass is a string of characters ter
minated by a carriage return (CRLF) or a semi-colon
in the case of multiple commands on a line. In order
for the system to process a command in any context,
originating from anywhere, the string of characters
is simply passed to the line processor (LINEP) which
interprets the string, dispatching to the proper com
mand module. There are two general formats:

COMMANDNAME ARG1,ARG2,ARG3,.. .
(for most commands)

Example: SCALE WIDGET,D0
VARIABLE = EXPRESSION

(for FORTRAN-style commands)
Examples:

A=A + 10
K = K - D 0 / 2 (note use of dial 0)
FA=ATN(FP)+SQR(FQ*(FD-FE))

If the command is not core-resident, it is fetched from
the disk (all disk-resident commands are written in
position-independent code), executed and deleted.

Commands are typed in line by line on the video
terminal (VT05). Since many of the commands set up
processes at interrupt level, the system may be used
exclusively on a line-by-line basis as with a text editor.
The previous rotation example was done this way, as
was a twenty-minute film with witches chasing butter
flies and airplanes flying around the globe, at a time
(1972) when the language had only line-by-line capa

bilities. Almost all programs written in the language
start as a few commands typed in and tested one line
at a time.

The next step in command processing is to take
commands stored in a file so they in essence become
like the roll of a player piano, or the paper tape for a
milling machine. Many text editors allow this type of
command usage. This grouping of commands is often
called a "macro."

Macros in Grass are simply groups of commands—a
concept easily grasped by all our users. In compiled
languages, macros are called "subroutines," but this
terminology was not chosen because Grass macros
are often not subordinate to anything conceptually.
Macros do not require preambles, declaration state
ments, end statements or other formalities associated
with subroutines.

To give the player piano roll in Grass a variable fast-
rewind and fast-forward, control is transferred with
the SKIP command. Its argument (e.g., SKIP 3)
specifies how many CRLF's to pass over forwards or
backwards. The argument may also be a label, in
which case the transfer is to that label local to the
current macro. Transfer to other macros is with the
DO command whose argument (e.g., DO SETUP) is
a macro. If this macro is not core-resident, it is auto
matically fetched from disk and then interpreted. The
CALL command is similar except that it uses the sys
tem area of the disk and tries to find a compiled version
of the macro (see below for details on the compiler).
As will be seen later, the syntactic form of the macro
call with parameters is very close to the form of com
mands so that system macros can appear to be system
commands to the user.

Conditional branching and command execution is
done with the IF command whose syntax is simple:

IF VARIABLE = EXPRESSION,ANY COMMAND
Examples:

IF A=B,SKIP - 5
IF DO GT 0, IF A LT -100, DO FIXUP

In any case, control returns to the statement follow
ing the DO when the indicated macro is finished.

Macros may be generated in several ways. The sys
tem editor can be used to enter and change ASCII files
on the disk or in core. Macros may also be created by
typing a name followed by a colon as in the following
example:

SETUP:<GETDSK GLOBE
SCALE GLOBE,D0
ROTATE GLOBE,X,TX,TY

(using the tablet x and y)
GETDSK TITLE
MOVE TITLE,D6,D7,D8>

To execute this macro, one types "DO SETUP" or
simply "SETUP" (providing it is not a system name).
Often, immediate execution is desirable. The "un-

200 National Computer Conference, 1976

named" macro, entered thus:

<ANY COMMANDS

. . • >
is automatically executed upon typing the final angle
bracket. In addition, when this type of macro finishes,
it is automatically deleted. Only named macros may
be stored on the disk.

The system uses a VT05 video terminal at 2400 baud
for user communication. This choice was originally
made (by MK) to keep the Vector General screen free
for images to be recorded by a camera. One version
of Grass uses a keyboard interfaced through the Vector
General and space at the bottom of the screen for the
same purpose. At any rate, the system can afford to
be fairly wordy with messages without much delay.

Being strings, macros can generate other macros
using the string variables ($A through $Z in Grass)
and the string manipulation primitives given by con
catenation and the SEARCH command (MD and TD).
This feature, exploited only by fairly experienced
users, allows very plastic fabrication of executable
statements in Grass. String variables are executed by
putting them alone on a line after construction:

$A='GETDSK GLOBE
SCALE GLOBE,D0'
$A

Passing parameters is usually clumsy in program
ming languages. Indeed, we have only recently imple
mented a habitable way of passing parameters between
macros (by RO). Like everything else in the system,
macros are used interactively. Rather than burden
users (who often cannot yet write macros) with hav
ing to know which parameters to supply, macros are
usually written to ask questions:

SETUP :< PROMPT "WHICH PICTURE DO YOU
WANT"

INPUT $A (system types a "?" and waits
user then types in a name)

GETDSK $A;SCALE $A,D0 (a multi-command
line)

ROTATE $A,Y,D1>

Effectively, any picture on the disk may be gotten,
scaled and rotated with this macro. Similarly, one can
input numeric values (e.g. INPUT FA) as numbers
or expressions. The PROMPT command is the general
typed output command, and may be used to print
strings or numbers and combinations thereof:

PROMPT "THE SQUARE ROOT OF 1000 IS ",
SQR(1000)

However, once the user is familiar with the macro,
he may type "DO SETUP,GLOBE" or simply, "SET

UP GLOBE" which looks like a Grass command.
Either construction may be imbedded in another macro
without any reprogramming of the original macro—
an important feature since many users cannot decipher
complex macros written by others. Note that the
PROMPTs are automatically suppressed as long as
enough arguments are supplied. If the user leaves off
an argument, the system will wake up the PROMPTs
and start asking the questions again. Of course, over
rides are available to force INPUTs or PROMPTS if
desired. Arguments may also be passed in global vari
ables.

Variables in Grass have fixed names and are either
local to macros (LA-LZ, fixed; EA-EZ, floating) or
global (A-Z, VA-VZ, WA-WZ, fixed; FA-FZ, floating;
$A-$Z, string; and AA-AZ, fixed and floating arrays).
Analog inputs are global (D0-D9, dials; S0-S9, slide
potentiometers; JX,JY,JZ and KX,KY,KZ, joysticks;
P0-P3, more dials). Digital inputs include the tablet
(TX,TY,TZ or pen-press) and function switches (FS0-
FS15). Analog outputs are global too (OA-OH).
Variables are prenamed in Grass because otherwise
the interpretive overhead for arithmetic would really
be immense. Prenaming also eliminates the need for
declarations of variables (except for array dimen
sions).

The external inputs are polled every y30 second by
the system. Currently under construction is a flexible
input box with variety of connectors and amplifiers to
aid in prototyping new input devices such as your body
or musical instrument to produce a set of Grass vari
ables. Having so many analog input devices, by the
way, may seem confusing to the reader, but these
physical extensions to the system can be intuitive and
therefore easy to use.

Macros work despite the parsing overhead because
the primitives of the language are generally rather
high level and parsing is only a fraction of the code
executed in doing the command. The higher the level
of the primitives, the more practical the interpreter
becomes. Note also that often one does not care how
long something takes to parse as long as it is done in
say, less than yG0 second.

However, for low level primitives like addition or
expression evaluation, the interpreter may execute a
thousand instructions to add one to a variable. This is
a major reason compilers are still preferred for arith
metic calculations. As soon as we started doing scien
tific animations as well as computer art, a fast arith
metic capability became essential. Thus, The Habitable
Compiler was written (by RO). It takes assignment
statements and some commands (notably GETPOINT,
ZAPPOINT and PUTPOINT) and compiles them into
PDP-11 machine code which executes very quickly.
Whatever the compiler does not understand, that is
most commands, it keeps as ASCII strings which are
passed to the resident interpreter during execution.
Thus the compiler retains the benefit of the interpreter

Digital Component of Circle Graphics Habitat 201

and yet gains the speed of compiled code where essen
tial. One usually debugs the macro first and then, if
speed is a problem, compiles it. The compiler is disk-
resident and rarely takes more than a second to load in
and do its job. Compiled macros may be stored on the
disk (in binary) and recalled at any time. In addition,
macros that contain only arithmetic code are re-entrant
so they can be set up to execute at interrupt level with
the VIP (Very Important Program) command. VIPed

perfectly in synch with the display refresh or when a
higher priority task is useful. Few higher-level lan
guages allow users to schedule subroutines at different
priority levels.

To give a quick idea of the compactness of Grass
macros, Donald Warren Collins wrote an architectural
preview system12 first on the IBM S/360 in FORTRAN
taking some 132K 32-bit words, then in PDP-11 RSTS-
11 BASIC taking 28K 16-bit words with multiple
overlaying. Finally, he rewrote it in Grass, thus mak
ing it interactive. The Grass version took about 2K
16-bit words of storage, not including the 13K inter
preter, of course.

DRIVING MACROS

Most of the contribution this system has made to
habitability in graphics is noticed when actually exe
cuting and debugging macros. The constant real-time
user control combined with the analog input devices
makes this system usable as a performing instrument.
Some of this control comes from parallel processing of
pictures and, if the user desires, macros as well.

Animation often involves several more-or-less inde
pendent things happening simultaneously. Grass can
be asked to set up a ring structure of macros so they
can be executed in parallel. With two macros, the
commands are interleaved. More than two macros
requires grabbing lines from each one, one at a time,
round-robin fashion. In addition, unless specifically
requested otherwise, a macro in this ring structure
automatically starts over again when finished. All this
housekeeping is initiated by the DOLOOP command
(byTD):

DOLOOP MACNAM1;MACNAM2,_

where the MACNAMs may be macros or compiled
macros. The unnamed macro is retained for conve
nience in setting up background jobs:

DOLOOP <A = A+D0/100
B = A*2>

and so on. The system continuously listens to the VT05
keyboard for a line to be typed interactively and slips
it in, executing it with no noticeable delay in most
cases. Provisions for one macro waiting for another

to complete and selective removal from the ring also
exist.

As might be imagined, there is some overhead asso
ciated with the DOLOOP feature, but compiling the
macros usually helps make the overhead quite unnotice-
able. The need for and desirability of a parallel execu
tion structure in graphics is more fully developed in
Reference 3. Alan Kay's SMALLTALK language for
children also implements this type of parallelism for
£i-uiniensionai grapnics.13

Two major conceptual simplifications of using
macros result from parallel execution. First, the user
can develop small animation sequences separately and
then combine them later with little or no reprogram-
ming. Without the parallelism, a total rewrite of the
macros would be required. Second, the user may wish
to incorporate macros written by others in his anima
tion sequence, macros whose logic he may not under
stand. Again, without the DOLOOP structure, this
would be very difficult.

Grass also has well-developed "panic-button" control
structures (by TD) to abort or temporarily interrupt
macros. First, CONTROL-C (holding the control key
while typing a "C") stops any macro or compiled
macro, kills the DOLOOP structure, stops any output,
cleans up any scratch files like unnamed macros and
sets the user back to command input level. It is the
most common way to exit a macro in an infinite loop.

CONTROL-W temporarily stops printout until
pressed again (2400 baud is too fast to read) and
CONTROL-0 cancels any output.

The real crowd-pleaser in the system, though, is
CONTROL-S. It suspends execution of any macro or
compiled macro, even if DOLOOPED. The user is put
in command level and he can type commands to check
variables, or anything else. The macro continues when
the user types "RESUME." Since performance
graphics, especially the jamming variety, requires con
stant real-time debugging with two hundred people
looking over your shoulder, CONTROL-S comes in very
handy. The combination of background DOLOOPED
macros and CONTROL-S give the user the impression
he is always in control.

ERROR MESSAGES AND DEBUGGING
IN GRASS

Grass has about one hundred fifty error messages,
only one of which is truly cryptic ("Undiagnosable
syntax error"). When an error occurs, the whole
command is printed out on the VT05 with a little arrow
under the part that caused the error, followed by the
error message. The user is then put into the same
mode that CONTROL-S initiates, at which time he can
correct the mistake and RESUME or type CONTROL-
C to abort. Along with the feedback on the screen,
these error messages and interactive fixups account for
about ninety percent of the user debugging activity.

202 National Computer Conference, 1976

The harder-to-find logic errors are usually tracked
down by the LIST command (by GM), the TRACE
command (by TO) or sometimes the DOLOOP code.
LIST simply prints each line of a macro as it executes.
TRACE, adopted from SNOBOL, takes variable names
as arguments and then prints out the value of the
variables every time the variables are changed along
with the location of the change. As a last resort, a
macro to sense an elusive logic error may be parallel
processed with the defective macro to discover the
problem. For instance, assume variable A is never
supposed to get to zero but it is anyway. "DOLOOP
< I F A EQ 0,LIST>" will turn on the LIST feature
as soon as A goes to zero. Obviously, more exotic bug
traps can be constructed.

Error conditions may also be trapped and further
processed by the macro writer. The ONERROR com
mand sets up an asynchronous error recovery proce
dure for use when an error happens:

ONERROR VARIABLE,ANY GRASS
STATEMENT

When the error occurs, the error number is put in the
variable indicated for use by the error recovery routine
and the Grass statement following the comma is exe
cuted in place of the line in error. Since errors can be
as benign as not finding a file on the disk, system
macros are written with ONERROR frequently to help
the novice user. As might be imagined, considerable
detail work was done to assure PDP-11 stack integrity
when commands in error are replaced by ONERROR
code. Note that the Grass statement in the ONERROR
command can be a macro call like "DO FIXUP."

The expert user can take advantage of the asynchro
nous nature of the ONERROR command to speed up
loops. For example, in the following program which
zeros the z-value of each vector, the end-of-picture
condition (K= — 1) must be tested:

ZEROZ:< PROMPT "NAME OF PIX FOR Z-AXIS
ZEROING"

INPUT $L
N = 0
N = N + 1
GETPOINT $L,N,X,Y,Z,K (set the nth point in

variables x,y,z and k)
IF K NE -1,ZAPPOINT $L,N,X,Y,0,K; SKIP - 2

(if K= — 1, it is the end of picture)
PROMPT "DONE ZEROING" >

Now, if "ONERROR A,SKIP 2" is placed somewhere
before the last four lines of this macro, the test for
K = - l may be eliminated because the GETPOINT
index (N here) will go out of bounds and generate an
error. "SKIP 2" will be executed in place of the line
in error and the control will pass to the last PROMPT.

Such tricks can even work with compiled macros, a
housekeeping feat of some proportion.

In summary, Grass provides many ways of control
ling, debugging and interacting with pictures and
macros. Since so much of the control can be parallel,
the user occasionally feels like he is conducting rather
than watching a plotter. Music has always been a
performing art and artists now have the tools to per
form visual scores. The task now is achieving the
control subtlety in performance graphics that we know
and love in music.

CURRENT LIMITATIONS OF GRASS

Grass as a system has for some time been pushing
against walls created by equipment speed, memory
limitations and the nature of the refresh display. Cur
rently, the PDP-11/45 we use has only 28K of usable
memory, of which 3K is used by the disk operating
system. The user is left with 10K of space to use.
Given the software overhead, the maximum number
of parallel full-screen vectors that can be displayed
flicker-free is about a thousand, although they can all
be rotating, moving and scaling. We have to operate
in a flicker-free environment because our television-
based system is not sophisticated enough to operate in
anything but real-time.

Adding speed to the PDP-11/45 is fairly simple with
an add-on cache memory, but not cheap. Adding to the
memory requires memory management, and a consid
erable amount of reprogramming. And CRT's that are
faster by an order of magnitude are still a gleam in the
designer's eye.

A major limitation to the habitability of Grass is
that not all users have linguistic skills—or type well.
Non-linguistic approaches to subset problems like con
structing complex 3-D pictures are possible using light-
pen or tablet menus. We now have several small grants
to investigate performance-time control structures for
computer graphics.

REFERENCES

1. DeFanti, T. A., Dissertation, The Ohio State University,
1973.

2. DeFanti, T. A., D. J. Sandin and T. H. Nelson, "Computer
Graphics as a Way of Life," Computers & Graphics, Vol. 1,
No. 1, May 1975.

3. DeFanti, T. A., "Toward Loopless Interactive Graphics
Programming," Proceedings of the Conference on Com
puter Graphics, Pattern Recognition and Data Structures,
May 14-16,1975 (IEEE Catalog #75CH0981-1C).

4. DeFanti, T. A., D. J. Sandin, et al., Interactive Electronics
Visualization Event, Videotape, 90 mins., OIRD University
of Illinois at Chicago Circle, 1975.

5. Baecker, R. M., Dissertation, M.I.T., 1969.
6. Nelson, T. H., Computer Lib/Dream Machines, 1974.

Digital Component of Circle Graphics Habitat 203

7. Newman, W. M. and R. F. Sproull, Principles of Interactive
Computer Graphics, McGraw-Hill, 1973.

8. Vector General Inc., Graphics Display System Reference
Manual, 1975.

9. Csuri, C, et al., Real-Time Film Animation, The Ohio
State UniversitTr Research Center February 1973.

10. DeFanti, T. A., Grass Internal Logic, Videotape, 120 min.,
OIRD The University of Illinois at Chicago Circle, 1974.

11. Donate, N. and T. A. DeFanti, 2-D and 3-D Transforma
tions, Videotape, 25 min., OIRD The University of Illinois
at Chicago Circle, 1975.

12. Collins, D. W., "A Computer Graphics System for Modular
Building Elevation Design," Proceedings of the Second

fc/f̂ ĉ u>& \JK/IOJ vi cJi^oo Oiv yjOmfsMAuer \jrt u,pfltCS U/iZu, ±iu,ei uuoww

Techniques—SIGGRAPH '75, July 1975.
13. Personal communication.

