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ABSTRACT 

J. nis rG3.i-i/ini6 interacuiv6 computer grapuics system 
derives from the author's dissertation1 at the Ohio State 
University (National Science Foundation Grant GJ-
204, Charles A. Csuri, project director). The system, 
called "The Graphics Symbiosis System" or "Grass" 
was first designed to help artists interactively explore 
computer art without the constant companionship of a 
programmer. Over the past three years, it has been 
expanded at the University of Illinois at Chicago Circle 
(Figure 1) and is now the image generation portion 
of a short-order full-color animated videotape produc
tion facility called "The Circle Graphics Habitat." 
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system2'3 is sufficiently powerful and flexible to be used 
in real-time performance context4 here at UICC. 

INTRODUCTION 

The hardware is a standard PDP-11/45 computer with 
a Vector General 3DR display scope. In addition, we 
have a data tablet, thirty channels of analog input 

Figure 1—The Grass user's console 

devices (dials, slide potentiometers, joysticks, etc.) and 
several channels of analog output (built by Larry 
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Primary inspiration for the structure of the lan
guage was the DECsystem-10 operating system and its 
text editor TECO, and Ron Baecker's animation system 
"GENESYS."5 About ten person-years of program
ming effort up to now has resulted in about ten thou
sand lines of code in assembler. Persons primarily 
responsible for implementing the software will be 
identified by their initials as we progress: Tom 
Chomicz (TC), Dean Daniele (DD), Tom DeFanti 
(TD), Mike Dearing (MD), Nola Donato (ND), 
Manfred Knemeyer (MK), Gerry Moersdorf (GM), 
±. o. \J j^onnen ^±w^, rtaipii wmcic (rCv̂ j «,nu JSOD 
Rocchetti (BR). Gerry Moersdorf was responsible for 
about half the code in the Ohio State implementation. 
Grass currently has six running installations. 

This paper will communicate the program structure 
of Grass. It would be good, ho first uescriue 
briefly what is expected of the system by university 
authorities and users. The system, with the Image 
Processor, is used by professors, instructors and ad
vanced students in preparing animated educational 
materials in less than geological time. Educational 
animation makes demands on a system which are 
computationally and conceptually more complex than 
standard plotting. The system has to be both easily 
learned and powerful enough for use by expert pro
grammers in animations like continental drift or a 
dynamic explanation of how television works. A 
friendly review of the Circle Graphics Habitat may be 
found in Reference 6. 

Educational animation systems are exciting to de
velop but not always as much fun to use. Educational 
animation is rarely free and loose. Fortunately, to 
continue the good feeling of pure, uncompromised cre
ation, we now have an annual event in April which, 
like a faculty recital in music, is a performance, but 
of animated 3-D images and color image processing 
along with live music (Figures 2 and 3). We believe 
that jamming on equipment like this demands more 
from the human engineering side of design than ordi
nary real-time graphics. More on the philosophy of 
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Figure 2—A still from 'Peano Boogie' by Sandin, Morton and 
DeFanti, a live performance. Colors are sky blue, raspberry 

red, lemon yellow and orange orange 

the Circle Graphics Habitat may be found in Refer
ence 2. 

For the technical discussion that follows, it is as
sumed that the reader has knowledge of interactive 
graphics to the level found in Newman and Sproull.7 

TECHNICAL DESCRIPTION OF THE 
GRASS LANGUAGE 

Grass has two essential types of primitives: com
mands and pictures. Commands are kept as ASCII 
strings terminated by carriage-returns. Pictures 
(often called "sub-pictures" in the literature) are user-
defined displayable lists of 3-D absolute vectors com
piled into binary code acceptable by the Vector General 
display direct memory access processor. On disk, both 
commands and pictures are normally kept as ASCII 

Figure 3—A still from 'Wednesday Night Spiral' by Sandin 
and DeFanti, a live performance 

strings (we always wanted to be able to read what 
was on the disk). Both commands and pictures in 
Grass are higher-level primitives, and this concept is 
essential to the design of the system. In addition, both 
may be broken down into the lowest level components 
if desired (i.e., ASCII characters and x, y and z end-
points) and both may be grouped into hierarchies 
whose elements have much the same behavior as the 
primitives themselves. The user first learns the com
mand primitives like ROTATE, MOVE and SCALE 
to manipulate graphical images. Non-programmers do 
not have to think of images as endpoints or manipulate 
instructions as individual characters. This differs con
siderably from the approach taken in typical FOR
TRAN graphics packages where the user is assumed 
to be an expert programmer. 

USE AND CONTROL OF PICTURES 

Pictures in Grass have user-assigned names and are 
displayable lists of vectors prefixed in core by a control 
block. The user indirectly communicates with the con
trol block for each picture by using commands like 
ROTATE, MOVE and SCALE rather than by setting 
bits. At interrupt level, the system updates and writes 
these control blocks out to the display's internal regis
ters which drive the hardware features of the display 
(see Reference 8 for a complete description of the 
Vector General Scope). Updating of the control blocks 
is done at programmed interrupt level six and the 
vector display is done by direct memory access over the 
UNIBUS. The maximum number of pictures concur
rently displayed is an assembly feature, presently set 
to sixty. To the user, all pictures are effectively pro
cessed in parallel. The commands that set up to use the 
hardware are: 

MOVE PIXNAME,x-DEVICE,y-DEVICE, 
z-DEVICE 

Translates picture named "PIXNAME" to current 
values of the x-, y-, and z-DEVICEs until disabled 
(that is, the command has to be issued one time 
only, but any time the DEVICEs are changed, the 
update is done automatically). A DEVICE is 
defined as either an analog input device or an 
integer variable. Example: MOVE TITLE,D2, 
D3,D4 moves the picture "TITLE" on dials 2, 3 
and 4. 

SCALE PIXNAME,DEVICE 

Scales all three dimensions of the picture on 
the DEVICE until disabled. Also available are 
SCALE/X, SCALE/Y and SCALE/Z which scale 
in individual axes. Example: SCALE/X CIR
CLE, A scales the circle horizontally on variable A. 
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SETINT PIXNAME,DEVICE 

Sets the intensity of the picture to be continuously 
variable on the DEVICE until disabled. 

SETCUT PIXNAME,DEVICE 

Sets the z-axis depth cueing and z-axis cutoff fea
ture of the scope until disabled. 

The system hardware excels at rotation. Conse
quently, the EOTATE command, a very high-level 
primitive, has many options: 

ROTATE PIX,AXIS,SPEED-DEVICE 

Gives simple rotation about the x, y or z axis 
(specified by AXIS) at a constant speed of rota
tion determined by SPEED-DEVICE. If angular 
position rather than speed is desired, ROTATE/D 
is used for this and all the following ROTATE 
commands. (By MK and DD.) Example: RO
TATE TETRA,Y,K rotates "TETRA" around the 
y-axis using variable K for the speed of rotation. 

ROTATE PIX,AXIS,SPEED-DEVICE, 
TILT-DEVICE 

This rotation uses the second DEVICE to control 
the angular position of the axis of rotation in the 
plane through the origin perpendicular to the 
AXIS specified. It is a strange rotation to describe 
on paper but it is a highly useful rotation for 
interactive use. (By MK and DD.) 

ROTATE PIX,AXIS,SPEED-DEVICE, 
TILT-DEVICE,X-DEV,Y-DEV,Z-DEV 

This rotation gives arbitrary origin rotation capa
bility. It tends to produce elliptical rotations, the 
backbone of complex animated sequences (as in 
Disney's Fantasia). Again, it is non-intuitive and 
requires feedback to use. (By MK and DD.) 
Example: ROTATE COPTER,X,DO,D1,D2,D3,D4 

ROTATE PIX,7,SPEED-DEVICE,X1-DEV, 
Y1-DEV,Z1-DEV,X2-DEV,Y2-DEV,Z2-DEV 

The "seven-dial" rotate allows the user to specify 
the endpoints of an arbitrary axis of rotation. It 
is the rotation preferred by programmers describ
ing scientific phenomena in terms of rotation. 
(ByTC.) 

ROTATE/X PIX,DEVICE 
ROTATE/Y PIX,DEVICE 
ROTATE/Z PIX,DEVICE 

These rotations are compounded with any of the 
above rotate commands to produce more complex 
effects. Grouping of pictures allows further com
pounding of transformations. 

PATHMOV PIX,PATH-NAME,SPEED-DEVICE 

This command tangentially moves the PIX along 
a PATH (which is simply any picture, displayed 
or not) with the given speed. It is basically an 
extension of Baecker's p-curve.5 (By TC.) 

These commands stay in force and cause constant 
updating to the values of the DEVICEs until disabled 
by the FIX or RESET commands. None of the above 
commands actually change the vector list since all the 
functions are done by the hardware. 

Many commands do, however, change vector end-
points. The most used ones are: 

SMOOTH—does a binomial smoothing of a vector 
list (BR). 
PERSP—does perspective projection (TC). 
CLIP—clips one picture against another (like film 
matting or video keying) (TC). 
WINDOW—does normal 3-D windowing (TC). 
SHADE—shades in outline with vectors (BR). 
SOFT—carries out the hardware transformations 
on the vectors by software (DD). 

The precise syntax of these commands is contained 
in the on-line HELP file, a copy of which may be had 
on request. 

As is usual with sophisticated refresh graphics sys
tems, the pictures appear to be parallel processed. They 
are controlled in parallel by turning dials (which are 
polled at interrupt level 30 times a second) or by 
manipulating variables. The user can also get at the 
individual endpoints of pictures with the GETPOINT 
and ZAPPOINT commands, build pictures with the 
PUTPOINT command, or draw them in using the 
tablet or other digitizers. (There is also complete 
software for text appearing on the Vector General (by 
BR and TO)). 

In addition, the user can group pictures together and 
create a tree structure hierarchy of control on these 
grouped pictures. Pictures are grouped for convenient 
reference, and the groups respond to all the hardware 
transformation commands just as pictures do. Most 
often, the GROUP command is used to create multiply 
articulated structures like Professor Csuri's airplanes, 
helicopters and witches on propeller-driven broom
sticks9 as well as very complex rotations and trans
lations. Grouping may be carried on to 59 levels (the 
same assembly feature as before). Note that the user 
does not have to know about tree structures, lists and 
pointers to use any of these commands because the 
system housekeeping does all the chaining. For knowl
edgeable users, the TREE command gives a schematic 
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of the hierarchy developed. A two hour-long videotaped 
lecture describes the internal workings of the system 
algorithms.10 

Storage allocation (by TD and ND) is by a "besst-nt" 
algorithm. About 10K of 16-bit words is available to 
the user for vectors, text, command strings and disk-
resident command modules. Many Grass commands, 
especially user aids like TREE and software trans
formations like PERSP, SHADE and CLIP are not 
core-resident. Code (by GM and RO) automatically 
fetches the appropriate modules into core and executes 
them. They are automatically deleted. When done, the 
total overhead amounts to about a tenth of a second. 

Garbage collection (by TD and ND) dynamically 
tries to maintain large blocks of storage. It is called 
by the user command "DELETE" or automatically 
invoked by system housekeeping whenever appropriate. 

As an example, a videotape11 to illustrate that 3-D 
rotations are not commutative (Figures 4, 5 and 6) 
was done using the following code: 

Figure 5—The same butterfly rotated ninety degrees around the 
x-axis and then ninety degrees around the y-axis 

GETDSK BFLY1 
COPY BFLY1,BFLY2 
ROTATE/D BFLY1,X,D1 
ROTATE/Y BFLY1,D2 

SETINT BFLY1,D3 

ROTATE/D BFLY2,D5 
ROTATE/X BFLY2,D6 

SETINT BFLY2,D7 

GETDSK 3DAXES 
GROUP 3DAXES, 
BFLY1,SAM 

ROTATE/D SAM,X,S1,S2 

(get butterfly from disk) 
(make a copy) 
(rotate on x axis) 
(then compound with 

y rotation) 
(control intensity on 

dial 3) 
(rotate on y axis) 
(then compound with 

x rotation) 
(control intensity on 

dial 7) 
(get the axes up) 
(group and call the 

group "SAM" BFLY2 
gets in for free) 

(rotate the whole thing) 

Now, by turning dials 1 and 2 enough to get ninety 
degree rotations about the x then y axis, the first but
terfly takes one position. Turning dials 5 and 6 enough 
to get similar rotations about y then x axes, the second 
butterfly goes to a different position. It is quite easily 
seen that the two are not equivalent. That is, 3-D 
rotations are not commutative. (Rotating the group 
"SAM" allows the third dimension to be seen more 
clearly. The intensity controls allow independent fad
ing of the two butterflies for clarity.) Given the exis
tence of the butterfly and the axes on disk, the entire 
videotaped sequence took less time to produce (about 
fifteen minutes—some of which was dedicated to aes
thetic judgment and color choice) than to describe. 

Figure 4—The butterfly in its original position 

Figure 6—The same butterfly at half intensity contrasted with 
another butterfly rotated ninety degrees around the y-axis and 

then ninety degrees around the x-axis 



Digital Component of Circle Graphics Habitat 199 

USE AND CONTROL OF COMMANDS 

The foremost design criterion of the command lan
guage in Grass has always been habitability, a term 
adopted12 which means the quality of a system that 
makes it easy to learn and use. In many ways, the lin
guistics of graphics languages are quite unnatural for 
describing animation and many people do much better 
by waving their hands. On the other hand, the power 
of linguistic structures is undeniable, especially when 
modeling scientific data. 

Programming on someone else's system is always 
frustrating. What really matters is whether you get 
anything done while being frustrated. We have tried 
to design a system to help users at all levels to get 
things done. 

The basic tenets of habitability are usually obvious— 
mnemonic command names, predictible syntax, good 
error messages, high feedback—but they are rarely 
implemented in full because the detail work in coding 
is immense. The leisure time for attention to such de
tail is hard to come by, especially if the users are 
overwhelmingly power-conscious and impatient pro
grammers. In a short-order videotape laboratory 
where users are by and large professionals donating 
their time to improve the quality of their classes, non-
alienation is the item of highest priority. General fun 
and productivity seem to follow. Again, more of this 
philosophy is found in Reference 2. 

A command in Grass is a string of characters ter
minated by a carriage return (CRLF) or a semi-colon 
in the case of multiple commands on a line. In order 
for the system to process a command in any context, 
originating from anywhere, the string of characters 
is simply passed to the line processor (LINEP) which 
interprets the string, dispatching to the proper com
mand module. There are two general formats: 

COMMANDNAME ARG1,ARG2,ARG3,.. . 
(for most commands) 

Example: SCALE WIDGET,D0 
VARIABLE = EXPRESSION 

(for FORTRAN-style commands) 
Examples: 

A=A + 10 
K = K - D 0 / 2 (note use of dial 0) 
FA=ATN(FP)+SQR(FQ*(FD-FE)) 

If the command is not core-resident, it is fetched from 
the disk (all disk-resident commands are written in 
position-independent code), executed and deleted. 

Commands are typed in line by line on the video 
terminal (VT05). Since many of the commands set up 
processes at interrupt level, the system may be used 
exclusively on a line-by-line basis as with a text editor. 
The previous rotation example was done this way, as 
was a twenty-minute film with witches chasing butter
flies and airplanes flying around the globe, at a time 
(1972) when the language had only line-by-line capa

bilities. Almost all programs written in the language 
start as a few commands typed in and tested one line 
at a time. 

The next step in command processing is to take 
commands stored in a file so they in essence become 
like the roll of a player piano, or the paper tape for a 
milling machine. Many text editors allow this type of 
command usage. This grouping of commands is often 
called a "macro." 

Macros in Grass are simply groups of commands—a 
concept easily grasped by all our users. In compiled 
languages, macros are called "subroutines," but this 
terminology was not chosen because Grass macros 
are often not subordinate to anything conceptually. 
Macros do not require preambles, declaration state
ments, end statements or other formalities associated 
with subroutines. 

To give the player piano roll in Grass a variable fast-
rewind and fast-forward, control is transferred with 
the SKIP command. Its argument (e.g., SKIP 3) 
specifies how many CRLF's to pass over forwards or 
backwards. The argument may also be a label, in 
which case the transfer is to that label local to the 
current macro. Transfer to other macros is with the 
DO command whose argument (e.g., DO SETUP) is 
a macro. If this macro is not core-resident, it is auto
matically fetched from disk and then interpreted. The 
CALL command is similar except that it uses the sys
tem area of the disk and tries to find a compiled version 
of the macro (see below for details on the compiler). 
As will be seen later, the syntactic form of the macro 
call with parameters is very close to the form of com
mands so that system macros can appear to be system 
commands to the user. 

Conditional branching and command execution is 
done with the IF command whose syntax is simple: 

IF VARIABLE = EXPRESSION,ANY COMMAND 
Examples: 

IF A=B,SKIP - 5 
IF DO GT 0, IF A LT -100, DO FIXUP 

In any case, control returns to the statement follow
ing the DO when the indicated macro is finished. 

Macros may be generated in several ways. The sys
tem editor can be used to enter and change ASCII files 
on the disk or in core. Macros may also be created by 
typing a name followed by a colon as in the following 
example: 

SETUP:<GETDSK GLOBE 
SCALE GLOBE,D0 
ROTATE GLOBE,X,TX,TY 

(using the tablet x and y) 
GETDSK TITLE 
MOVE TITLE,D6,D7,D8> 

To execute this macro, one types "DO SETUP" or 
simply "SETUP" (providing it is not a system name). 
Often, immediate execution is desirable. The "un-
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named" macro, entered thus: 

<ANY COMMANDS 

. . • > 
is automatically executed upon typing the final angle 
bracket. In addition, when this type of macro finishes, 
it is automatically deleted. Only named macros may 
be stored on the disk. 

The system uses a VT05 video terminal at 2400 baud 
for user communication. This choice was originally 
made (by MK) to keep the Vector General screen free 
for images to be recorded by a camera. One version 
of Grass uses a keyboard interfaced through the Vector 
General and space at the bottom of the screen for the 
same purpose. At any rate, the system can afford to 
be fairly wordy with messages without much delay. 

Being strings, macros can generate other macros 
using the string variables ($A through $Z in Grass) 
and the string manipulation primitives given by con
catenation and the SEARCH command (MD and TD). 
This feature, exploited only by fairly experienced 
users, allows very plastic fabrication of executable 
statements in Grass. String variables are executed by 
putting them alone on a line after construction: 

$A='GETDSK GLOBE 
SCALE GLOBE,D0' 
$A 

Passing parameters is usually clumsy in program
ming languages. Indeed, we have only recently imple
mented a habitable way of passing parameters between 
macros (by RO). Like everything else in the system, 
macros are used interactively. Rather than burden 
users (who often cannot yet write macros) with hav
ing to know which parameters to supply, macros are 
usually written to ask questions: 

SETUP :< PROMPT "WHICH PICTURE DO YOU 
WANT" 

INPUT $A (system types a "?" and waits 
user then types in a name) 

GETDSK $A;SCALE $A,D0 (a multi-command 
line) 

ROTATE $A,Y,D1> 

Effectively, any picture on the disk may be gotten, 
scaled and rotated with this macro. Similarly, one can 
input numeric values (e.g. INPUT FA) as numbers 
or expressions. The PROMPT command is the general 
typed output command, and may be used to print 
strings or numbers and combinations thereof: 

PROMPT "THE SQUARE ROOT OF 1000 IS ", 
SQR(1000) 

However, once the user is familiar with the macro, 
he may type "DO SETUP,GLOBE" or simply, "SET

UP GLOBE" which looks like a Grass command. 
Either construction may be imbedded in another macro 
without any reprogramming of the original macro— 
an important feature since many users cannot decipher 
complex macros written by others. Note that the 
PROMPTs are automatically suppressed as long as 
enough arguments are supplied. If the user leaves off 
an argument, the system will wake up the PROMPTs 
and start asking the questions again. Of course, over
rides are available to force INPUTs or PROMPTS if 
desired. Arguments may also be passed in global vari
ables. 

Variables in Grass have fixed names and are either 
local to macros (LA-LZ, fixed; EA-EZ, floating) or 
global (A-Z, VA-VZ, WA-WZ, fixed; FA-FZ, floating; 
$A-$Z, string; and AA-AZ, fixed and floating arrays). 
Analog inputs are global (D0-D9, dials; S0-S9, slide 
potentiometers; JX,JY,JZ and KX,KY,KZ, joysticks; 
P0-P3, more dials). Digital inputs include the tablet 
(TX,TY,TZ or pen-press) and function switches (FS0-
FS15). Analog outputs are global too (OA-OH). 
Variables are prenamed in Grass because otherwise 
the interpretive overhead for arithmetic would really 
be immense. Prenaming also eliminates the need for 
declarations of variables (except for array dimen
sions). 

The external inputs are polled every y30 second by 
the system. Currently under construction is a flexible 
input box with variety of connectors and amplifiers to 
aid in prototyping new input devices such as your body 
or musical instrument to produce a set of Grass vari
ables. Having so many analog input devices, by the 
way, may seem confusing to the reader, but these 
physical extensions to the system can be intuitive and 
therefore easy to use. 

Macros work despite the parsing overhead because 
the primitives of the language are generally rather 
high level and parsing is only a fraction of the code 
executed in doing the command. The higher the level 
of the primitives, the more practical the interpreter 
becomes. Note also that often one does not care how 
long something takes to parse as long as it is done in 
say, less than yG0 second. 

However, for low level primitives like addition or 
expression evaluation, the interpreter may execute a 
thousand instructions to add one to a variable. This is 
a major reason compilers are still preferred for arith
metic calculations. As soon as we started doing scien
tific animations as well as computer art, a fast arith
metic capability became essential. Thus, The Habitable 
Compiler was written (by RO). It takes assignment 
statements and some commands (notably GETPOINT, 
ZAPPOINT and PUTPOINT) and compiles them into 
PDP-11 machine code which executes very quickly. 
Whatever the compiler does not understand, that is 
most commands, it keeps as ASCII strings which are 
passed to the resident interpreter during execution. 
Thus the compiler retains the benefit of the interpreter 
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and yet gains the speed of compiled code where essen
tial. One usually debugs the macro first and then, if 
speed is a problem, compiles it. The compiler is disk-
resident and rarely takes more than a second to load in 
and do its job. Compiled macros may be stored on the 
disk (in binary) and recalled at any time. In addition, 
macros that contain only arithmetic code are re-entrant 
so they can be set up to execute at interrupt level with 
the VIP (Very Important Program) command. VIPed 

perfectly in synch with the display refresh or when a 
higher priority task is useful. Few higher-level lan
guages allow users to schedule subroutines at different 
priority levels. 

To give a quick idea of the compactness of Grass 
macros, Donald Warren Collins wrote an architectural 
preview system12 first on the IBM S/360 in FORTRAN 
taking some 132K 32-bit words, then in PDP-11 RSTS-
11 BASIC taking 28K 16-bit words with multiple 
overlaying. Finally, he rewrote it in Grass, thus mak
ing it interactive. The Grass version took about 2K 
16-bit words of storage, not including the 13K inter
preter, of course. 

DRIVING MACROS 

Most of the contribution this system has made to 
habitability in graphics is noticed when actually exe
cuting and debugging macros. The constant real-time 
user control combined with the analog input devices 
makes this system usable as a performing instrument. 
Some of this control comes from parallel processing of 
pictures and, if the user desires, macros as well. 

Animation often involves several more-or-less inde
pendent things happening simultaneously. Grass can 
be asked to set up a ring structure of macros so they 
can be executed in parallel. With two macros, the 
commands are interleaved. More than two macros 
requires grabbing lines from each one, one at a time, 
round-robin fashion. In addition, unless specifically 
requested otherwise, a macro in this ring structure 
automatically starts over again when finished. All this 
housekeeping is initiated by the DOLOOP command 
(byTD): 

DOLOOP MACNAM1;MACNAM2,_ 

where the MACNAMs may be macros or compiled 
macros. The unnamed macro is retained for conve
nience in setting up background jobs: 

DOLOOP <A = A+D0/100 
B = A*2> 

and so on. The system continuously listens to the VT05 
keyboard for a line to be typed interactively and slips 
it in, executing it with no noticeable delay in most 
cases. Provisions for one macro waiting for another 

to complete and selective removal from the ring also 
exist. 

As might be imagined, there is some overhead asso
ciated with the DOLOOP feature, but compiling the 
macros usually helps make the overhead quite unnotice-
able. The need for and desirability of a parallel execu
tion structure in graphics is more fully developed in 
Reference 3. Alan Kay's SMALLTALK language for 
children also implements this type of parallelism for 
£i-uiniensionai grapnics.13 

Two major conceptual simplifications of using 
macros result from parallel execution. First, the user 
can develop small animation sequences separately and 
then combine them later with little or no reprogram-
ming. Without the parallelism, a total rewrite of the 
macros would be required. Second, the user may wish 
to incorporate macros written by others in his anima
tion sequence, macros whose logic he may not under
stand. Again, without the DOLOOP structure, this 
would be very difficult. 

Grass also has well-developed "panic-button" control 
structures (by TD) to abort or temporarily interrupt 
macros. First, CONTROL-C (holding the control key 
while typing a "C") stops any macro or compiled 
macro, kills the DOLOOP structure, stops any output, 
cleans up any scratch files like unnamed macros and 
sets the user back to command input level. It is the 
most common way to exit a macro in an infinite loop. 

CONTROL-W temporarily stops printout until 
pressed again (2400 baud is too fast to read) and 
CONTROL-0 cancels any output. 

The real crowd-pleaser in the system, though, is 
CONTROL-S. It suspends execution of any macro or 
compiled macro, even if DOLOOPED. The user is put 
in command level and he can type commands to check 
variables, or anything else. The macro continues when 
the user types "RESUME." Since performance 
graphics, especially the jamming variety, requires con
stant real-time debugging with two hundred people 
looking over your shoulder, CONTROL-S comes in very 
handy. The combination of background DOLOOPED 
macros and CONTROL-S give the user the impression 
he is always in control. 

ERROR MESSAGES AND DEBUGGING 
IN GRASS 

Grass has about one hundred fifty error messages, 
only one of which is truly cryptic ("Undiagnosable 
syntax error"). When an error occurs, the whole 
command is printed out on the VT05 with a little arrow 
under the part that caused the error, followed by the 
error message. The user is then put into the same 
mode that CONTROL-S initiates, at which time he can 
correct the mistake and RESUME or type CONTROL-
C to abort. Along with the feedback on the screen, 
these error messages and interactive fixups account for 
about ninety percent of the user debugging activity. 
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The harder-to-find logic errors are usually tracked 
down by the LIST command (by GM), the TRACE 
command (by TO) or sometimes the DOLOOP code. 
LIST simply prints each line of a macro as it executes. 
TRACE, adopted from SNOBOL, takes variable names 
as arguments and then prints out the value of the 
variables every time the variables are changed along 
with the location of the change. As a last resort, a 
macro to sense an elusive logic error may be parallel 
processed with the defective macro to discover the 
problem. For instance, assume variable A is never 
supposed to get to zero but it is anyway. "DOLOOP 
< I F A EQ 0,LIST>" will turn on the LIST feature 
as soon as A goes to zero. Obviously, more exotic bug 
traps can be constructed. 

Error conditions may also be trapped and further 
processed by the macro writer. The ONERROR com
mand sets up an asynchronous error recovery proce
dure for use when an error happens: 

ONERROR VARIABLE,ANY GRASS 
STATEMENT 

When the error occurs, the error number is put in the 
variable indicated for use by the error recovery routine 
and the Grass statement following the comma is exe
cuted in place of the line in error. Since errors can be 
as benign as not finding a file on the disk, system 
macros are written with ONERROR frequently to help 
the novice user. As might be imagined, considerable 
detail work was done to assure PDP-11 stack integrity 
when commands in error are replaced by ONERROR 
code. Note that the Grass statement in the ONERROR 
command can be a macro call like "DO FIXUP." 

The expert user can take advantage of the asynchro
nous nature of the ONERROR command to speed up 
loops. For example, in the following program which 
zeros the z-value of each vector, the end-of-picture 
condition (K= — 1) must be tested: 

ZEROZ:< PROMPT "NAME OF PIX FOR Z-AXIS 
ZEROING" 

INPUT $L 
N = 0 
N = N + 1 
GETPOINT $L,N,X,Y,Z,K (set the nth point in 

variables x,y,z and k) 
IF K NE -1,ZAPPOINT $L,N,X,Y,0,K; SKIP - 2 

(if K= — 1, it is the end of picture) 
PROMPT "DONE ZEROING" > 

Now, if "ONERROR A,SKIP 2" is placed somewhere 
before the last four lines of this macro, the test for 
K = - l may be eliminated because the GETPOINT 
index (N here) will go out of bounds and generate an 
error. "SKIP 2" will be executed in place of the line 
in error and the control will pass to the last PROMPT. 

Such tricks can even work with compiled macros, a 
housekeeping feat of some proportion. 

In summary, Grass provides many ways of control
ling, debugging and interacting with pictures and 
macros. Since so much of the control can be parallel, 
the user occasionally feels like he is conducting rather 
than watching a plotter. Music has always been a 
performing art and artists now have the tools to per
form visual scores. The task now is achieving the 
control subtlety in performance graphics that we know 
and love in music. 

CURRENT LIMITATIONS OF GRASS 

Grass as a system has for some time been pushing 
against walls created by equipment speed, memory 
limitations and the nature of the refresh display. Cur
rently, the PDP-11/45 we use has only 28K of usable 
memory, of which 3K is used by the disk operating 
system. The user is left with 10K of space to use. 
Given the software overhead, the maximum number 
of parallel full-screen vectors that can be displayed 
flicker-free is about a thousand, although they can all 
be rotating, moving and scaling. We have to operate 
in a flicker-free environment because our television-
based system is not sophisticated enough to operate in 
anything but real-time. 

Adding speed to the PDP-11/45 is fairly simple with 
an add-on cache memory, but not cheap. Adding to the 
memory requires memory management, and a consid
erable amount of reprogramming. And CRT's that are 
faster by an order of magnitude are still a gleam in the 
designer's eye. 

A major limitation to the habitability of Grass is 
that not all users have linguistic skills—or type well. 
Non-linguistic approaches to subset problems like con
structing complex 3-D pictures are possible using light-
pen or tablet menus. We now have several small grants 
to investigate performance-time control structures for 
computer graphics. 
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