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ABSTRACT 
Sort-Last is a computer graphics technique for rendering 
extremely large data sets on clusters of computers. Sort-Last 
works by dividing the data-set into even-sized chunks for 
parallel rendering and then composing the images to form the 
final result. Since sort-last rendering requires the movement of 
large amounts of image data between cluster nodes, the 
network interconnecting the nodes becomes a major bottleneck. 
In this paper, we describe a sort-last rendering system 
implemented on a cluster of computers whose nodes are 
connected by an all-optical switch. The rendering system 
introduces the notion of the Photonic Computing Engine, a 
computing system built dynamically by using the optical switch 
to create dedicated network connections between cluster nodes. 
The sort-last volume rendering algorithm was implemented on 
the Photonic Computing Engine, and its performance is 
evaluated. Preliminary experiments show that performance is 
affected by the image composition time and average payload 
size. In an attempt to stabilize the performance of the system, 
we have designed a flow control mechanism that uses feedback 
messages to dynamically adjust the data flow rate within the 
computing engine. 

1. INTRODUCTION 
The continual drop in the cost of commodity computers has 

motivated aggressive research in the development of techniques 
for realizing and optimizing large scale computation on PC 
clusters. On a cluster, each node is connected to each other by a 
high-speed communication network whose bandwidth can 
reach anywhere between 1~10 Gbps, depending on the 
technology used. The cluster system takes the MIMD (Multiple 
Instruction stream Multiple Data stream) architecture on which 
each node can deal with its own data set on its own memory 
and execute the programs in parallel. Compared with the SIMD 
(Single Instruction stream Multiple Data stream) architecture, it 
is cost effective and utilization of computing resource is more 
efficient. 

When we consider the efficiency of a parallel algorithm over 
a cluster, we should take one major overhead into account, i.e., 
communication among processing elements. To minimize the 
communication cost, we need to (1) communicate in bulk, (2) 
minimize the size of transferred data, and (3) minimize the 
distance of data transfer. The first and second requirements are 
for minimizing the start up time and transmission time, 
respectively. The third point depends on the topology of the 
cluster system and the mapping of the parallel programs. Since 
the propagation time over the medium of the network is usually 
very small on the cluster, we can ignore the distance among the 
nodes. We need to take (1) and (2) to optimize the 
communication among the processing elements. If the 
communication payload in a system becomes larger, e.g. the 
multimedia application, it is not easy to realize (1) and (2) at 
the same time. Because if one would like to send data in bulk, 
the size of each message become large, and if the size of each 
message is small, one needs to send messages more frequently. 
Using a huge bandwidth network can greatly reduce trans- 
mission time, and thus is the most effective way to realize these 
two requirements. Therefore, constructing a cluster over a high 

bandwidth network such as an optical network is one of the 
most effective solutions to handle large data sets on clusters. 

The OptIPuter [1], a project currently at the Electronic 
Visualization Laboratory (EVL) and the University of 
California San Diego, is a computing model which uses optical 
networking as a backplane to connect clusters of computers that 
are collectively regarded as large computer peripherals. For 
example, a cluster of computers with massive RAID disks are 
thought of as a single large disk drive; and a cluster of 
computers with advanced graphics cards are thought of as a 
single giant graphics card. These peripherals are then 
interconnected with optical networks to form a wide variety of 
virtual computers that can be specifically customized to meet 
an application’s requirements. The Gigabit Ethernet switch 
which supports the optical fiber connection converts the optical 
signal into the electrical signal to realize the packet switching 
internally in the conventional way. Although the achievable 
bandwidth of the optical fiber is over 50 Tbps, the practical 
limitation of the throughput is about 1~10 Gbps through the 
Gigabit Ethernet switch. This is due to the response time of a 
photodiode. The typical photodiode converts one signal in 1 
nsec, that is, the limit of data rate is about 1 Gbps. The 
limitation of the signal sampling causes the limitation of the 
traditional optical electrical network switch. Meanwhile, the 
optical switch adopts totally different architecture for switching 
network. It uses the all-optical MEMS devices to switch the 
connection inside. The optical signal incoming via the inbound 
fiber is routed to the outbound fiber with the micro-mirrors and 
lenses in the silicon. There are no signal changes from optical 
to electrical. This technology can avoid the bottleneck of the 
optical-electrical converting signal and make utilize of the 
optical fiber’s bandwidth possible up to the upper limitation. 
The advantage of the optical switch-based cluster is that the 
bandwidth of the interconnection among cluster nodes could be 
over 1000 times larger than the traditional Gigabit Ethernet 
cluster. 

However, there is a serious drawback on the optical switch- 
based cluster. The switching delay takes about 1~2 seconds. If 
the switch changes connections among the cluster nodes 
frequently, the performance of the parallel computation will be 
degraded. We can expect the performance improvement of the 
parallel computation when the connection among the cluster 
nodes does not change frequently compared with the processing 
time for the assigned task on each node. Especially, the parallel 
algorithm in which the data flow is static among the nodes and 
going to the single node like a tree-structured connection, the 
switching does not happen after the initial connection 
establishment. We can hide the drawback and get the benefit of 
the optical switch-based cluster. 

In this paper, we discuss the design and implementation of 
the sort-last rendering system on the optical switch-based 
cluster. Contents of the paper are as follows; first of all, we 
explain the sort-last rendering in Section 2. Then, we discuss 
the design and implementation of our system in Section 3. In 
Section 4, we will provide the experimental results and analysis 
of the system. Finally, we propose and discuss the control 
feedback mechanism to realize the stable burst flow in the 
cluster in Section 5. 



2. SORT-LAST RENDERING 
There are three well-known parallel rendering algorithms, 

sort-first, sort-middle, and sort-last rendering. Their differences 
are characterized by the time when the primitives are 
distributed to several processors in the graphic pipeline. The 
following figure illustrates the taxonomy of the parallel 
rendering architecture. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Taxonomy of the parallel rendering architecture 
(a) sort-first, (b) sort-middle, and (c) sort-last 

 
The graphic pipeline has three stages, the application 

processing, the geometry processing, and the rasterization. At 
the geometry processing stage, each geometry unit G processes 
the geometry to be rendered. At the rasterization stage, each 
rasterizer unit R handles the pixel calculations. In the sort-first 
rendering, the "raw" primitives are distributed early to each 
processor during the geometry processing stage. Each processor 
is assigned to a part of the entire display which is divided into 
disjoint regions, and it renders the assigned primitives 
individually. 

In the sort-middle rendering, the distribution of the work is 
arbitrary and even among the geometry units. Each rasterizer 
unit is responsible for a screen space region. After the geometry 
processing, each primitive is allocated to the corresponding 
rasterizer unit that is responsible for the screen space location 
of the primitive. 

The sort-last rendering, on the other hand, defers sorting 
primitives until the end of the rendering pipeline, i.e. after 
primitives have been rasterized into pixels. Each processor is 
assigned a subset of primitives and renders them no matter 
where they locate on the screen. After rendering, processors 
communicate with each other to composite those pixels to 
generate the final entire image. In order to handle the real-time 
high quality image rendering, the high data rates over the 
internetwork among the rendering processors is required. This 
is one of the reasons why we target on the parallel computing 
system over the high bandwidth optical network. 

There are some techniques to optimize the data transfer in 
the sort-last rendering. One is the bounding rectangle method. 
It is also called SL-sparse. It minimizes the data transfer by 
only sending the pixels with actual data (active pixels). In order 
to encode the active pixels, (1) you find a smallest rectangle 
which contains all actual pixels in the rendered image, (2) take 
coordinates of upper left and lower right points, and (3) pack 
these coordinates and the image data inside the rectangle as the 
buffer to send. When the original image is sparse, the 
optimization is done efficiently. 

At the composition stage of the sort-last rendering, because 
the composition of active pixel and non-active pixel is the 
active pixel, we should only compose the overlapping region of 
two rectangles. This composition technique reduces the time to 
compose two images. 

Another optimization technique is the run-length encoding 

method. In the method, each pixel is classified into two kinds 
of pixel, active pixel and non-active pixel. Counting the 
continuously locating non-active pixels and encode the count as 
the integer into the sending buffer, the total size of pixels 
shrinks. Combining these two methods, we can optimize the 
data transfer rate in the sort-last rendering and improve its 
performance. 

3. SYSTEM DESIGN AND IMPLEMENTATION 

3.1. PHOTONIC COMPUTING ENGINE 
The Photonic Computing Environment provides a high 

performance computing mechanism over the optical switch- 
based cluster system. It constructs the pipelines among the 
cluster nodes and manages the computation flow. In order to 
use the optical switch to construct the rendering cluster, the 
cluster application needs to use the Photonic Domain Controller 
(PDC) [2] to generate the pipeline connection among the 
cluster nodes. Because the current existing library for parallel 
programming such as MPICH does not support the 
manipulation of the connection inside the optical switch, it is 
necessary to implement the network application which 
generates the network pipeline among the cluster nodes over 
the optical switch. The following figure shows the architecture 
of the network application to construct the cluster over the 
optical switch. 
 
 
 
 
 
 
 
 

Fig. 2. Architecture of Photonic Computing Environment 
 

The PDC provides the interface to create the link inside the 
optical switch. The network application that uses the PDC at 
first invokes the PDC’s interface to establish the connection 
between two nodes. After generating the connection, those 
nodes can communicate each other with any protocols such as 
TCP and UDP. The connection can occupy the whole 
bandwidth allocated at the initialization time. It is disconnected 
when communicating nodes explicitly invoke the disconnect 
function on the PDC. The Photonic Computing Engine (PCE) 
handles the establishment of the connection among the cluster 
nodes and provides the functionality to synchronize messages 
to the add-in calculation module such as image rendering 
module and image composition module. 

The PCE has the two types of data transfer mechanism, 
pull-up mode and push-out mode. In the pull-up mode, the 
client sends a request to the PCE and it returns the results as the 
C/S system. In the sort-last rendering case, the viewer on the 
client send rendering request to the PCE each time when it 
needs to change the view. On the other hand, the outputs of 
calculations on the PCE are generated as much as possible and 
sent to the client in the push-out mode. The push-out mode is 
useful if the computation results are automatically generated 
like animations and movies. 

3.2. ARCHITECTURE OF THE SORT-LAST 
RENDERING SYSTEM OVER THE PCE 

The PCE is the application that provides the network 
pipeline among the nodes on the optical switch-based cluster 
and synchronization mechanism to realize the sort-last 
rendering. Fig. 3 shows the architecture of the PCE with 7 
nodes for the sort-last rendering. 

On the each node, the Photonic Computing Unit (PCU) is 
running and generates the pipeline. The client application 
accesses to the root PCU to get the computing result. In the 
sort-last volume rendering system, the PCU plays two types of 
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roles, the composition proxy and the rendering server. Each 
rendering server fetches the allocated part of volume data and 
renders the image. After rendering the image, the rendering 
server sends to the composition proxy, which is a parent node 
of it. At the composition proxy, it synchronizes the output 
images and composes them. 
 

 

 

 

 

 

 

 

 

 

Fig. 3. Architecture of the 7-node sort-last rendering cluster 

3.3. IMPLEMENTATION OF PCE 
In this section, we will describe the actual implementation of 

the PCE. PCE has basically the following functionalities, 
message transferring, message queuing, flow control, and 
module add-in. 
(1) Message transferring 

The PCE generates the cluster as a tree. When the client 
sends the request to the PCE, the root node has to propagate the 
request message to the computing nodes such as the rendering 
servers. Since switching the connection among the nodes in the 
optical switch takes much cost, the PCE does not change the 
connection pattern. The message needs to be passed along the 
tree-structured connection. Therefore, the each PCU has the 
message transferring mechanism from the parent node to the 
child nodes. 
(2) Message queuing 

On the intermediate PCU, the synchronization mechanism is 
required because the intermediate PCU might use both results 
sent from two child PCUs. Each message sent from the child 
PCUs has a sequential number and it is used to synchronize the 
output results. Since the output messages from the child PCUs 
are sent to the intermediate PCU asynchronously, it needs to 
store the messages in a queue to synchronize them. 
(3) Flow control 

In the push-out mode, the rendering server sends output 
image to the composition proxy. If the output message rate of 
the rendering server is better than that of the other rendering 
servers or ability of message processing at the composition 
proxy, the queue could overflow for the message burst. 
Therefore, the flow control mechanism is required in the 
composition proxy. In order to control the flow, we use the 
socket buffer and TCP flow control mechanism. If the socket 
buffer is full, the sender process is blocked on a TCP 
connection. Thus, if the length of the queue becomes maximum, 
the composition proxy blocks the receiving process until a 
queue element is consumed by another process. The blocking 
of the receiving process on the proxy is propagated to the child 
node and stop sending data. 
(4) Module add-in 

Besides the message routing mechanism, the PCE provides 
the computation add-in mechanism, that is, you can replace the 
composition and rendering part of implementation to other one 
like the add-in module. You can easily change the computation 
algorithm on the PCE by overwriting the computation part of 
composition nodes and rendering nodes. For example, the 
proxy provides the callback function that is invoked when all 
output data from child nodes reach at the proxy. One can 
overwrite the callback function that handles the output buffers 

to implement other composition algorithms. Also, the rendering 
server provides the display function as the callback function. If 
one would like to implement the other rendering algorithms, 
one can modify the display function to realize it. 

We explain the implementation of the rendering server, 
composition proxy, and client viewer. The rendering server 
renders the part of the volume data with the 3D texture 
mapping method. After rendering the assigned part of volume 
data, it fetches the image data from the frame buffer. The 
fetched image is cut into the smallest rectangle which includes 
the active part of the image, encoded by the Run Length 
Encoding algorithm, and sent to the composition proxy. 

The composition proxy receives the encoded images from 
the child nodes such as the rendering server and other 
composition proxy. The encoded images are decoded and 
checked whether the two image rectangles have overlapping 
part or not. If so, overlapping part of two image rectangles are 
fetched and composed. Then, the composed part is embedded 
into the image rectangle which includes two image rectangles 
inside. Fig. 4 shows the composition algorithm. Composing the 
overlapping part of the rectangles, we can omit the other 
redundant composition such as the composition with the blank 
part of pixels. After finishing the composition, it packs the data 
as the message with appropriate header and sends the packed 
message to the parent node. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Composition of the overlapping part of two rectangles 
 

The client viewer also has a queue to store the image data 
sent from the composition proxy. It fetches the encoded image 
and pushes it into the queue. The display routine of the client 
viewer popes the image data from the queue, decoding data, 
embedding it into the original size of blank rectangle, and maps 
it onto the square polygon. It also has an interface to change the 
argument of the volume image. When you drag the mouse over 
the display window, the bounding box rotating on the window 
and send the request message to the composition proxy when 
you release the mouse button. We can switch pull-up mode or 
burst image mode with the client viewer. 

Setting the configuration file, one can specify the tree 
structure of the cluster. In the configuration file, the 
information of the network connection can be described by the 
port numbers and network addresses of parent node, child 
nodes and message transfer service on each node. Each node 
has the ID specified by the command line argument at the 
beginning of the execution. In the configuration file, the set of 
parameters for each node is separated and identified with the 
node ID. Each node reads its configuration part from the 
configuration file according to its ID. 

Since the cluster in EVL consists of the nodes on which 
Linux is running and Linux cannot recognize more than 2 
optical NICs, the proxy cannot have 3 NICs to construct the 
data processing pipeline currently. Therefore, the current 
implementation does not have the function to construct the 
connections over the optical switch with PDC. However, once 
the pipeline is constructed with PDC, the communication 
overhead in terms of the PDC does not happen during the 
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Fig. 5. Total delay and spent time of each processing in the 7-node volume rendering cluster system. (a) Processing times 
for protein.raw, (b) processing times for hydrogen.raw, and (c) processing times for foot.raw 

 
computation of image rendering. Additionally, bandwidth of an 
optical NIC and a regular Gigabit NIC are similar to each other 
(both have around 1 Gbps). We can simulate and evaluate the 
performance of PCE somehow in the current implementation. 

4. EXPERIMENTAL RESULTS 
In order to evaluate the PCE, we implemented the sort-last 

volume rendering system over the PCE and took some 
experiments. The volume rendering is a method to visualize the 
volume data which is sampled by CT (Computer Tomography) 
or MRI (Magnetic Resonance Imaging) scanner. The sampled 
data has the scalar value for each point in the 3 dimensional 
spatial data. Several methods are proposed to visualize the 
volume data. The representative methods are ray casting, 
splatting, shear-warp and hardware-assisted 3D texture 
mapping. We implemented the 3D texture mapping method to 
render the volume in the system 

We used the cluster that has 16 nodes, 1 master and 15 slaves. 
Each node has dual Xeons 1.8 GHz and 1.5 GB memory. The 
graphics card is PNY Quadro FX3000 and the Gigabit Ethernet 
card is equipped on each node. All nodes are connected to the 
Gigabit Ethernet Switch to construct a cluster. In the 
experiment, we constructed the 7-node sort-last rendering 
system on the cluster and rendered the three sample volume 
data, protein.raw, hydrogen.raw and foot.raw, which have sizes 
of 64x64x64, 128x128x128, and 256x256x256 respectively. 

We took several trials for image resolutions 128x128, 
256x256 and 512x512, and measured time intervals on the 
client viewer, the composition proxy, and the rendering server. 
The measured time intervals are the total delay, queuing time, 
blending time, bounding rectangle calculation time and so on. 

The graphs in Fig. 5 show the total delay and spent time for 
each process in the system. Total delay means how long it takes 
from the start of sending request message to final image 
displaying on the client viewer. Image embedding time is the 
time to embed the partial rectangle image into the original size 
of blank image to generate final one. Blending time is the 
composition processing time for two received images. 
Synchronization time is the time to take for synchronizing the 
received data, that is, the time interval from the arrival of the 
first image to the arrival of the final image. It is actually the 
time the data spent in the queue until it is popped out. Finally, 
queuing time is the time to push and pop the data in the queue 
respectively. Queue data is stored in the shared memory. 
Attaching, detaching, reading and writing data to the shared 
memory is the main processes of the queue handling. 

As can be seen in these graphs, the total delay increases as 
the resolution size increases. The number of polygons did not 
affect the performance explicitly, since the performance of the 
rendering server is so much better compared with the 
processing performance inside the proxies. 

From these results, we can see that the blending time 

increases as the size of the resolution becomes larger. The 
reason is like this. If the resolution is larger, the overlapping 
part of the two rectangles on the composition process becomes 
larger. The blending calculation spends more time as the size of 
the overlapping part of the two rectangles increases. 

Other time intervals such as synchronization, queue push and 
queue pop do not change explicitly in this experiment. 
However, the synchronization time can increase if the 
transferred data size is getting larger, since it includes the data 
receiving time. Thus, we can say that the transmission time 
affects the synchronization time and total performance of the 
frame rate on the client viewer significantly. 

Fig. 6 shows the frame rate on the client viewer when the 
system pushes out the output image as fast as possible or keeps 
the sending rate in a certain speed, such as 10 FPS, 15 FPS, and 
20 FPS. In order to keep the sending rate, the rendering server 
takes sleep for appropriate time in the redraw routine. 

If the rendering server sends the data as much as possible, 
the actual frame rate is not good, because the data flow in the 
cluster is not smooth. When the message-sending rate at the 
rendering servers is too high, the queues in the composition 
proxies can be full easily and frequently because once one 
rendering server’s performance get worse, the other one send 
messages during the time and the many messages which cannot 
be synchronized arrive at the composition proxy. Controlling 
the output of the rendering server, the data flow inside the 
cluster get smooth and the frame rate is improved as you can 
see in the other sending rate cases. What is the optimal 
message-sending rate on the rendering servers is the significant 
problem in order to maximize the performance of the system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Frame rate in push-out mode 
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Finally, we can expect some rendering performance 
improvement if the number of polygons to be rendered is huge 
and the rendering speed on each rendering server is close to the 
optimal one in the push-out mode. In this case, the frame rate 
on the single machine is lower than that of each rendering 
server in our sort-last volume rendering system because the 
frame processing ability in the composition proxy depends on 
not the number of polygons to visualize the volume data but the 
spatial distribution of active pixels and resolution. 

5. DATA FLOW CONTROL MECHANISM IN PCE 
  In this section, we discuss the flow control mechanism for 
the push-out mode. The objective of this mechanism is to 
adaptively determine the optimal push-out rate for the 
rendering system to ensure maximum animation frame rate. 
The following figure shows the data flow model of the 7-node 
cluster, where nij is the number of messages generated by a 
rendering process j, and noj is the number of messages handled 
by a composition process j. 
 
 
 
 
 
 
 
 
 

Fig. 7. The data flow model of the 7-node cluster 
 

A composition process assembles two messages together 
each of which comes from a different queue, and creates one 
message. The whole system is composed of six small 
equivalent sub-systems as shown in Fig. 8, where ni is the 
number of input message, and no is the number of output 
message. 
 
 
 

Fig. 8. The sub-system 
 

A system achieves the maximum-speed response with a 
predictable operation if the system operates at a state close to 
stability boundary. A queue pair refers to two queues feeding 
the same composition process. If two queues in a queue pair are 
stable, i.e., always have some messages to feed a composition 
process and at the same time no queue has an overwhelming 
number of messages than another, the system can achieve the 
maximum message-sending rate. In other words, the system can 
achieve the maximum rate by maintaining a non-zero and small 
queue in a steady state, and draining queues when the sources 
do not have messages to send. Therefore, in order to achieve 
the maximum rate, we should maintain a small number of 
messages in every queue. This is the problem of making the 
sub-system be stable.  
  A queue does not change the number of messages, but it 
imposes delay to message flow. Thus a queue can be modeled 
as a delay part, so is a composition process.  
  Let l=l(t) to express the length of a queue, then we have: 
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  Since queue length is greater than zero in a stable state, 
therefore, we have,  
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  Therefore, the fluid-flow model for the open-loop 
sub-system can be modeled as shown in Fig. 9, where τ is the 
delay of the subsystem, Ri and Ro is the Laplase transform of 
the message-sending rate and message-output rate respectively.  
 
 
 
 
 
 
 
 
 

Fig. 9. Open-loop sub-system 
 
  From Fig. 9, we have the following equations: 
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  From equations (1) and (2), we know the open-loop transfer 
function of the system is: 
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  τ is small, so the system can be considered as a linear system 
within a small range of time. Thus the system can be analyzed 
by the stability criterion of a linear system, which says that a 
system is stable if all roots of its characteristic equation lie to 
the left of imaginary axis in the s-plane.  
  The characteristic equation of this system has only one root, 
s = 0, which means that the system is boundary stable. However, 
usually a boundary-stable-system is not stable in operation. To 
make this system stable, one option is to add a negative 
feedback to the system, as shown in Fig. 10, where λ is a 
feedback gain. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. Closed loop subsystem 
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From Fig. 10, we know,  
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Thus, the closed-loop transfer function is: 
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The system has a pole at −λ, therefore, the system is stable 
provided λ > 0.  

We can apply this control mechanism to the 7-node cluster as 
follows. When the composition proxy receives the message, it 
returns the feedback λL to the child node where L is the current 
queue length. Then, the child node controls the message- 
sending rate to ri – λL. If the child node is the rendering server, 
it can add some time interval in the display loop to control the 
sending rate. If the child node is the composition proxy, it adds 
some time interval in the composition routine to control the 
message-sending rate to realize the feedback control. 

6. CONCLUSIONS 
We designed the sort-last rendering cluster system with 

optical switch over the optical fiber network and implemented 
the system to evaluate its performance. We found it from the 
experiments that the performance of the sort-last parallel 
rendering system is mainly affected by the image blending time 
and synchronization time. Synchronization time increases when 
transmission time grows or the loads on rendering servers are 
not balanced. While the frame processing ability of the 
composition proxy is related to the resolution and the density of 
the active pixel, it is relatively independent on the number of 
polygons rendered on the rendering server. Thus we can expect 
an improvement of the frame rate in the push-out mode if the 
rendered image on the rendering server consists of lots of 
polygons and make a burden to render on a single machine. 

When rendering servers generate images as much as possible 
and the message-sending rate exceed the processing capability 
on the composition proxy, the frame rate on the client viewer 
gets worse. To realize the optimal data flow inside the cluster, 
we propose the flow control mechanism which calculates the 
optimal message-sending rate from the current queue length 
and feedback to the child nodes to set the message-sending rate. 
Evaluating the efficacy of the adaptive flow mechanism is the 
future work, as well as testing in a fully realized optical 
network. 
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