
A Sort-Last Rendering System over an Optical Backplane

Yasuhiro KIRIHATA, Jason LEIGH, Chaoyue XIONG, and Tadao MURATA
Department of Computer Science
University of Illinois at Chicago

Chicago, Illinois 60607, U.S.

ABSTRACT
Sort-Last is a computer graphics technique for rendering
extremely large data sets on clusters of computers. Sort-Last
works by dividing the data-set into even-sized chunks for
parallel rendering and then composing the images to form the
final result. Since sort-last rendering requires the movement of
large amounts of image data between cluster nodes, the
network interconnecting the nodes becomes a major bottleneck.
In this paper, we describe a sort-last rendering system
implemented on a cluster of computers whose nodes are
connected by an all-optical switch. The rendering system
introduces the notion of the Photonic Computing Engine, a
computing system built dynamically by using the optical switch
to create dedicated network connections between cluster nodes.
The sort-last volume rendering algorithm was implemented on
the Photonic Computing Engine, and its performance is
evaluated. Preliminary experiments show that performance is
affected by the image composition time and average payload
size. In an attempt to stabilize the performance of the system,
we have designed a flow control mechanism that uses feedback
messages to dynamically adjust the data flow rate within the
computing engine.

1. INTRODUCTION
The continual drop in the cost of commodity computers has

motivated aggressive research in the development of techniques
for realizing and optimizing large scale computation on PC
clusters. On a cluster, each node is connected to each other by a
high-speed communication network whose bandwidth can
reach anywhere between 1~10 Gbps, depending on the
technology used. The cluster system takes the MIMD (Multiple
Instruction stream Multiple Data stream) architecture on which
each node can deal with its own data set on its own memory
and execute the programs in parallel. Compared with the SIMD
(Single Instruction stream Multiple Data stream) architecture, it
is cost effective and utilization of computing resource is more
efficient.

When we consider the efficiency of a parallel algorithm over
a cluster, we should take one major overhead into account, i.e.,
communication among processing elements. To minimize the
communication cost, we need to (1) communicate in bulk, (2)
minimize the size of transferred data, and (3) minimize the
distance of data transfer. The first and second requirements are
for minimizing the start up time and transmission time,
respectively. The third point depends on the topology of the
cluster system and the mapping of the parallel programs. Since
the propagation time over the medium of the network is usually
very small on the cluster, we can ignore the distance among the
nodes. We need to take (1) and (2) to optimize the
communication among the processing elements. If the
communication payload in a system becomes larger, e.g. the
multimedia application, it is not easy to realize (1) and (2) at
the same time. Because if one would like to send data in bulk,
the size of each message become large, and if the size of each
message is small, one needs to send messages more frequently.
Using a huge bandwidth network can greatly reduce trans-
mission time, and thus is the most effective way to realize these
two requirements. Therefore, constructing a cluster over a high

bandwidth network such as an optical network is one of the
most effective solutions to handle large data sets on clusters.

The OptIPuter [1], a project currently at the Electronic
Visualization Laboratory (EVL) and the University of
California San Diego, is a computing model which uses optical
networking as a backplane to connect clusters of computers that
are collectively regarded as large computer peripherals. For
example, a cluster of computers with massive RAID disks are
thought of as a single large disk drive; and a cluster of
computers with advanced graphics cards are thought of as a
single giant graphics card. These peripherals are then
interconnected with optical networks to form a wide variety of
virtual computers that can be specifically customized to meet
an application’s requirements. The Gigabit Ethernet switch
which supports the optical fiber connection converts the optical
signal into the electrical signal to realize the packet switching
internally in the conventional way. Although the achievable
bandwidth of the optical fiber is over 50 Tbps, the practical
limitation of the throughput is about 1~10 Gbps through the
Gigabit Ethernet switch. This is due to the response time of a
photodiode. The typical photodiode converts one signal in 1
nsec, that is, the limit of data rate is about 1 Gbps. The
limitation of the signal sampling causes the limitation of the
traditional optical electrical network switch. Meanwhile, the
optical switch adopts totally different architecture for switching
network. It uses the all-optical MEMS devices to switch the
connection inside. The optical signal incoming via the inbound
fiber is routed to the outbound fiber with the micro-mirrors and
lenses in the silicon. There are no signal changes from optical
to electrical. This technology can avoid the bottleneck of the
optical-electrical converting signal and make utilize of the
optical fiber’s bandwidth possible up to the upper limitation.
The advantage of the optical switch-based cluster is that the
bandwidth of the interconnection among cluster nodes could be
over 1000 times larger than the traditional Gigabit Ethernet
cluster.

However, there is a serious drawback on the optical switch-
based cluster. The switching delay takes about 1~2 seconds. If
the switch changes connections among the cluster nodes
frequently, the performance of the parallel computation will be
degraded. We can expect the performance improvement of the
parallel computation when the connection among the cluster
nodes does not change frequently compared with the processing
time for the assigned task on each node. Especially, the parallel
algorithm in which the data flow is static among the nodes and
going to the single node like a tree-structured connection, the
switching does not happen after the initial connection
establishment. We can hide the drawback and get the benefit of
the optical switch-based cluster.

In this paper, we discuss the design and implementation of
the sort-last rendering system on the optical switch-based
cluster. Contents of the paper are as follows; first of all, we
explain the sort-last rendering in Section 2. Then, we discuss
the design and implementation of our system in Section 3. In
Section 4, we will provide the experimental results and analysis
of the system. Finally, we propose and discuss the control
feedback mechanism to realize the stable burst flow in the
cluster in Section 5.

2. SORT-LAST RENDERING
There are three well-known parallel rendering algorithms,

sort-first, sort-middle, and sort-last rendering. Their differences
are characterized by the time when the primitives are
distributed to several processors in the graphic pipeline. The
following figure illustrates the taxonomy of the parallel
rendering architecture.

Fig. 1. Taxonomy of the parallel rendering architecture
(a) sort-first, (b) sort-middle, and (c) sort-last

The graphic pipeline has three stages, the application

processing, the geometry processing, and the rasterization. At
the geometry processing stage, each geometry unit G processes
the geometry to be rendered. At the rasterization stage, each
rasterizer unit R handles the pixel calculations. In the sort-first
rendering, the "raw" primitives are distributed early to each
processor during the geometry processing stage. Each processor
is assigned to a part of the entire display which is divided into
disjoint regions, and it renders the assigned primitives
individually.

In the sort-middle rendering, the distribution of the work is
arbitrary and even among the geometry units. Each rasterizer
unit is responsible for a screen space region. After the geometry
processing, each primitive is allocated to the corresponding
rasterizer unit that is responsible for the screen space location
of the primitive.

The sort-last rendering, on the other hand, defers sorting
primitives until the end of the rendering pipeline, i.e. after
primitives have been rasterized into pixels. Each processor is
assigned a subset of primitives and renders them no matter
where they locate on the screen. After rendering, processors
communicate with each other to composite those pixels to
generate the final entire image. In order to handle the real-time
high quality image rendering, the high data rates over the
internetwork among the rendering processors is required. This
is one of the reasons why we target on the parallel computing
system over the high bandwidth optical network.

There are some techniques to optimize the data transfer in
the sort-last rendering. One is the bounding rectangle method.
It is also called SL-sparse. It minimizes the data transfer by
only sending the pixels with actual data (active pixels). In order
to encode the active pixels, (1) you find a smallest rectangle
which contains all actual pixels in the rendered image, (2) take
coordinates of upper left and lower right points, and (3) pack
these coordinates and the image data inside the rectangle as the
buffer to send. When the original image is sparse, the
optimization is done efficiently.

At the composition stage of the sort-last rendering, because
the composition of active pixel and non-active pixel is the
active pixel, we should only compose the overlapping region of
two rectangles. This composition technique reduces the time to
compose two images.

Another optimization technique is the run-length encoding

method. In the method, each pixel is classified into two kinds
of pixel, active pixel and non-active pixel. Counting the
continuously locating non-active pixels and encode the count as
the integer into the sending buffer, the total size of pixels
shrinks. Combining these two methods, we can optimize the
data transfer rate in the sort-last rendering and improve its
performance.

3. SYSTEM DESIGN AND IMPLEMENTATION

3.1. PHOTONIC COMPUTING ENGINE
The Photonic Computing Environment provides a high

performance computing mechanism over the optical switch-
based cluster system. It constructs the pipelines among the
cluster nodes and manages the computation flow. In order to
use the optical switch to construct the rendering cluster, the
cluster application needs to use the Photonic Domain Controller
(PDC) [2] to generate the pipeline connection among the
cluster nodes. Because the current existing library for parallel
programming such as MPICH does not support the
manipulation of the connection inside the optical switch, it is
necessary to implement the network application which
generates the network pipeline among the cluster nodes over
the optical switch. The following figure shows the architecture
of the network application to construct the cluster over the
optical switch.

Fig. 2. Architecture of Photonic Computing Environment

The PDC provides the interface to create the link inside the
optical switch. The network application that uses the PDC at
first invokes the PDC’s interface to establish the connection
between two nodes. After generating the connection, those
nodes can communicate each other with any protocols such as
TCP and UDP. The connection can occupy the whole
bandwidth allocated at the initialization time. It is disconnected
when communicating nodes explicitly invoke the disconnect
function on the PDC. The Photonic Computing Engine (PCE)
handles the establishment of the connection among the cluster
nodes and provides the functionality to synchronize messages
to the add-in calculation module such as image rendering
module and image composition module.

The PCE has the two types of data transfer mechanism,
pull-up mode and push-out mode. In the pull-up mode, the
client sends a request to the PCE and it returns the results as the
C/S system. In the sort-last rendering case, the viewer on the
client send rendering request to the PCE each time when it
needs to change the view. On the other hand, the outputs of
calculations on the PCE are generated as much as possible and
sent to the client in the push-out mode. The push-out mode is
useful if the computation results are automatically generated
like animations and movies.

3.2. ARCHITECTURE OF THE SORT-LAST
RENDERING SYSTEM OVER THE PCE

The PCE is the application that provides the network
pipeline among the nodes on the optical switch-based cluster
and synchronization mechanism to realize the sort-last
rendering. Fig. 3 shows the architecture of the PCE with 7
nodes for the sort-last rendering.

On the each node, the Photonic Computing Unit (PCU) is
running and generates the pipeline. The client application
accesses to the root PCU to get the computing result. In the
sort-last volume rendering system, the PCU plays two types of

��������������������

G G G

R R R

��������������������

G G G

R R R
��������������������

G G G

R R R

(a) (b) (c)

Application

Display

Application Application

Display Display

Photonic Domain Controller

Photonic Computing Engine

Application (Sort-last rendering)

Optical Network

roles, the composition proxy and the rendering server. Each
rendering server fetches the allocated part of volume data and
renders the image. After rendering the image, the rendering
server sends to the composition proxy, which is a parent node
of it. At the composition proxy, it synchronizes the output
images and composes them.

Fig. 3. Architecture of the 7-node sort-last rendering cluster

3.3. IMPLEMENTATION OF PCE
In this section, we will describe the actual implementation of

the PCE. PCE has basically the following functionalities,
message transferring, message queuing, flow control, and
module add-in.
(1) Message transferring

The PCE generates the cluster as a tree. When the client
sends the request to the PCE, the root node has to propagate the
request message to the computing nodes such as the rendering
servers. Since switching the connection among the nodes in the
optical switch takes much cost, the PCE does not change the
connection pattern. The message needs to be passed along the
tree-structured connection. Therefore, the each PCU has the
message transferring mechanism from the parent node to the
child nodes.
(2) Message queuing

On the intermediate PCU, the synchronization mechanism is
required because the intermediate PCU might use both results
sent from two child PCUs. Each message sent from the child
PCUs has a sequential number and it is used to synchronize the
output results. Since the output messages from the child PCUs
are sent to the intermediate PCU asynchronously, it needs to
store the messages in a queue to synchronize them.
(3) Flow control

In the push-out mode, the rendering server sends output
image to the composition proxy. If the output message rate of
the rendering server is better than that of the other rendering
servers or ability of message processing at the composition
proxy, the queue could overflow for the message burst.
Therefore, the flow control mechanism is required in the
composition proxy. In order to control the flow, we use the
socket buffer and TCP flow control mechanism. If the socket
buffer is full, the sender process is blocked on a TCP
connection. Thus, if the length of the queue becomes maximum,
the composition proxy blocks the receiving process until a
queue element is consumed by another process. The blocking
of the receiving process on the proxy is propagated to the child
node and stop sending data.
(4) Module add-in

Besides the message routing mechanism, the PCE provides
the computation add-in mechanism, that is, you can replace the
composition and rendering part of implementation to other one
like the add-in module. You can easily change the computation
algorithm on the PCE by overwriting the computation part of
composition nodes and rendering nodes. For example, the
proxy provides the callback function that is invoked when all
output data from child nodes reach at the proxy. One can
overwrite the callback function that handles the output buffers

to implement other composition algorithms. Also, the rendering
server provides the display function as the callback function. If
one would like to implement the other rendering algorithms,
one can modify the display function to realize it.

We explain the implementation of the rendering server,
composition proxy, and client viewer. The rendering server
renders the part of the volume data with the 3D texture
mapping method. After rendering the assigned part of volume
data, it fetches the image data from the frame buffer. The
fetched image is cut into the smallest rectangle which includes
the active part of the image, encoded by the Run Length
Encoding algorithm, and sent to the composition proxy.

The composition proxy receives the encoded images from
the child nodes such as the rendering server and other
composition proxy. The encoded images are decoded and
checked whether the two image rectangles have overlapping
part or not. If so, overlapping part of two image rectangles are
fetched and composed. Then, the composed part is embedded
into the image rectangle which includes two image rectangles
inside. Fig. 4 shows the composition algorithm. Composing the
overlapping part of the rectangles, we can omit the other
redundant composition such as the composition with the blank
part of pixels. After finishing the composition, it packs the data
as the message with appropriate header and sends the packed
message to the parent node.

Fig. 4. Composition of the overlapping part of two rectangles

The client viewer also has a queue to store the image data
sent from the composition proxy. It fetches the encoded image
and pushes it into the queue. The display routine of the client
viewer popes the image data from the queue, decoding data,
embedding it into the original size of blank rectangle, and maps
it onto the square polygon. It also has an interface to change the
argument of the volume image. When you drag the mouse over
the display window, the bounding box rotating on the window
and send the request message to the composition proxy when
you release the mouse button. We can switch pull-up mode or
burst image mode with the client viewer.

Setting the configuration file, one can specify the tree
structure of the cluster. In the configuration file, the
information of the network connection can be described by the
port numbers and network addresses of parent node, child
nodes and message transfer service on each node. Each node
has the ID specified by the command line argument at the
beginning of the execution. In the configuration file, the set of
parameters for each node is separated and identified with the
node ID. Each node reads its configuration part from the
configuration file according to its ID.

Since the cluster in EVL consists of the nodes on which
Linux is running and Linux cannot recognize more than 2
optical NICs, the proxy cannot have 3 NICs to construct the
data processing pipeline currently. Therefore, the current
implementation does not have the function to construct the
connections over the optical switch with PDC. However, once
the pipeline is constructed with PDC, the communication
overhead in terms of the PDC does not happen during the

Composition
Proxy

Rendering Server

Rendering Server

Rendering Server

Rendering Server

Composition
Proxy

Composition
Proxy

rectangle 1

rectangle 2

Overlapping part

rectangle 1

rectangle 2

Composed part

Compose
overlapping

parts and embed Composed
rectangle

Fig. 5. Total delay and spent time of each processing in the 7-node volume rendering cluster system. (a) Processing times
for protein.raw, (b) processing times for hydrogen.raw, and (c) processing times for foot.raw

computation of image rendering. Additionally, bandwidth of an
optical NIC and a regular Gigabit NIC are similar to each other
(both have around 1 Gbps). We can simulate and evaluate the
performance of PCE somehow in the current implementation.

4. EXPERIMENTAL RESULTS
In order to evaluate the PCE, we implemented the sort-last

volume rendering system over the PCE and took some
experiments. The volume rendering is a method to visualize the
volume data which is sampled by CT (Computer Tomography)
or MRI (Magnetic Resonance Imaging) scanner. The sampled
data has the scalar value for each point in the 3 dimensional
spatial data. Several methods are proposed to visualize the
volume data. The representative methods are ray casting,
splatting, shear-warp and hardware-assisted 3D texture
mapping. We implemented the 3D texture mapping method to
render the volume in the system

We used the cluster that has 16 nodes, 1 master and 15 slaves.
Each node has dual Xeons 1.8 GHz and 1.5 GB memory. The
graphics card is PNY Quadro FX3000 and the Gigabit Ethernet
card is equipped on each node. All nodes are connected to the
Gigabit Ethernet Switch to construct a cluster. In the
experiment, we constructed the 7-node sort-last rendering
system on the cluster and rendered the three sample volume
data, protein.raw, hydrogen.raw and foot.raw, which have sizes
of 64x64x64, 128x128x128, and 256x256x256 respectively.

We took several trials for image resolutions 128x128,
256x256 and 512x512, and measured time intervals on the
client viewer, the composition proxy, and the rendering server.
The measured time intervals are the total delay, queuing time,
blending time, bounding rectangle calculation time and so on.

The graphs in Fig. 5 show the total delay and spent time for
each process in the system. Total delay means how long it takes
from the start of sending request message to final image
displaying on the client viewer. Image embedding time is the
time to embed the partial rectangle image into the original size
of blank image to generate final one. Blending time is the
composition processing time for two received images.
Synchronization time is the time to take for synchronizing the
received data, that is, the time interval from the arrival of the
first image to the arrival of the final image. It is actually the
time the data spent in the queue until it is popped out. Finally,
queuing time is the time to push and pop the data in the queue
respectively. Queue data is stored in the shared memory.
Attaching, detaching, reading and writing data to the shared
memory is the main processes of the queue handling.

As can be seen in these graphs, the total delay increases as
the resolution size increases. The number of polygons did not
affect the performance explicitly, since the performance of the
rendering server is so much better compared with the
processing performance inside the proxies.

From these results, we can see that the blending time

increases as the size of the resolution becomes larger. The
reason is like this. If the resolution is larger, the overlapping
part of the two rectangles on the composition process becomes
larger. The blending calculation spends more time as the size of
the overlapping part of the two rectangles increases.

Other time intervals such as synchronization, queue push and
queue pop do not change explicitly in this experiment.
However, the synchronization time can increase if the
transferred data size is getting larger, since it includes the data
receiving time. Thus, we can say that the transmission time
affects the synchronization time and total performance of the
frame rate on the client viewer significantly.

Fig. 6 shows the frame rate on the client viewer when the
system pushes out the output image as fast as possible or keeps
the sending rate in a certain speed, such as 10 FPS, 15 FPS, and
20 FPS. In order to keep the sending rate, the rendering server
takes sleep for appropriate time in the redraw routine.

If the rendering server sends the data as much as possible,
the actual frame rate is not good, because the data flow in the
cluster is not smooth. When the message-sending rate at the
rendering servers is too high, the queues in the composition
proxies can be full easily and frequently because once one
rendering server’s performance get worse, the other one send
messages during the time and the many messages which cannot
be synchronized arrive at the composition proxy. Controlling
the output of the rendering server, the data flow inside the
cluster get smooth and the frame rate is improved as you can
see in the other sending rate cases. What is the optimal
message-sending rate on the rendering servers is the significant
problem in order to maximize the performance of the system.

Fig. 6. Frame rate in push-out mode

Processing time for hydrogen.raw

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T
ot

al
 d

el
ay

Q
ue

ui
ng

Im
ag

e
em

be
dd

in
g

B
le

nd
in

g

S
yn

ch
ro

ni
za

tio
n

sp
en

t t
im

e
(s

ec
)

128x128
256x256
512x512

Processing time for foot.raw

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T
ot

al
 d

el
ay

Q
ue

ui
ng

Im
ag

e
em

be
dd

in
g

B
le

nd
in

g

S
yn

ch
ro

ni
za

tio
n

sp
en

t t
im

e
(s

ec
)

128x128
256x256
512x512

Processing time for protein.raw

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T
ot

al
 d

el
ay

Q
ue

ui
ng

Im
ag

e
em

be
dd

in
g

B
le

nd
in

g

S
yn

ch
ro

ni
za

tio
n

sp
en

t t
im

e
(s

ec
)

128x128
256x256
512x512

0

2

4

6

8

10

12

14

16

P
ro

te
in

.ra
w

H
yd

ro
ge

n.
ra

w

Fo
ot

.ra
w

P
ro

te
in

.ra
w

H
yd

ro
ge

n.
ra

w

Fo
ot

.ra
w

P
ro

te
in

.ra
w

H
yd

ro
ge

n.
ra

w

Fo
ot

.ra
w

P
ro

te
in

.ra
w

H
yd

ro
ge

n.
ra

w

Fo
ot

.ra
w

10FPS 15FPS 20FPS As fast as possible

FP
S

128x128

256x256

512x512

Finally, we can expect some rendering performance
improvement if the number of polygons to be rendered is huge
and the rendering speed on each rendering server is close to the
optimal one in the push-out mode. In this case, the frame rate
on the single machine is lower than that of each rendering
server in our sort-last volume rendering system because the
frame processing ability in the composition proxy depends on
not the number of polygons to visualize the volume data but the
spatial distribution of active pixels and resolution.

5. DATA FLOW CONTROL MECHANISM IN PCE
 In this section, we discuss the flow control mechanism for
the push-out mode. The objective of this mechanism is to
adaptively determine the optimal push-out rate for the
rendering system to ensure maximum animation frame rate.
The following figure shows the data flow model of the 7-node
cluster, where nij is the number of messages generated by a
rendering process j, and noj is the number of messages handled
by a composition process j.

Fig. 7. The data flow model of the 7-node cluster

A composition process assembles two messages together
each of which comes from a different queue, and creates one
message. The whole system is composed of six small
equivalent sub-systems as shown in Fig. 8, where ni is the
number of input message, and no is the number of output
message.

Fig. 8. The sub-system

A system achieves the maximum-speed response with a
predictable operation if the system operates at a state close to
stability boundary. A queue pair refers to two queues feeding
the same composition process. If two queues in a queue pair are
stable, i.e., always have some messages to feed a composition
process and at the same time no queue has an overwhelming
number of messages than another, the system can achieve the
maximum message-sending rate. In other words, the system can
achieve the maximum rate by maintaining a non-zero and small
queue in a steady state, and draining queues when the sources
do not have messages to send. Therefore, in order to achieve
the maximum rate, we should maintain a small number of
messages in every queue. This is the problem of making the
sub-system be stable.
 A queue does not change the number of messages, but it
imposes delay to message flow. Thus a queue can be modeled
as a delay part, so is a composition process.
 Let l=l(t) to express the length of a queue, then we have:

otherwise

rrorlifrr

dt
dl oioi >>

�
�
� −

=
0

0

 Since queue length is greater than zero in a stable state,
therefore, we have,

 whose corresponding Laplace transform is

s
sRsR

sL oi)()(
)(

−=

 The message-sending rate is the derivative of the number of
messages generated by a rendering process and output rate is
the derivative of the number of messages processed by a
composition process, i.e.,

)()(tn
dt
d

tr oo = ,)()(tn
dt
d

tr ii =

 Laplace transform for a derivative is

)0()()(±−=��
�

��

	 fssFtf
dt
d

L

 Since ro(0) = 0 and ri(0)=0, we have Laplace transforms for
ro(t) and ri(t) as:

)()()(ssNtn
dt
d

LsR ooo =��
�

��

	=

)()()(ssNtn
dt
d

LsR iii =��
�

��

	=

 Therefore, the fluid-flow model for the open-loop
sub-system can be modeled as shown in Fig. 9, where τ is the
delay of the subsystem, Ri and Ro is the Laplase transform of
the message-sending rate and message-output rate respectively.

Fig. 9. Open-loop sub-system

 From Fig. 9, we have the following equations:

s
i

is
i

s
oo esR

s
sR

sesNsessNsR τττ −−− ====)(
)(

)()()(

 From equations (1) and (2), we know the open-loop transfer
function of the system is:

s
e

sR
sL s

i

τ−−= 1
)(
)(

 τ is small, so the system can be considered as a linear system
within a small range of time. Thus the system can be analyzed
by the stability criterion of a linear system, which says that a
system is stable if all roots of its characteristic equation lie to
the left of imaginary axis in the s-plane.
 The characteristic equation of this system has only one root,
s = 0, which means that the system is boundary stable. However,
usually a boundary-stable-system is not stable in operation. To
make this system stable, one option is to add a negative
feedback to the system, as shown in Fig. 10, where λ is a
feedback gain.

Fig. 10. Closed loop subsystem

 −=
t

oi duururtl
0

))()(()(

Ni(s) No(s)

Ri(s) Ro(s)

s s

1/s 1/s

L(s)

+ −

se τ−

Ni(s) No(s)

Ri(s)

Ro(s)

s s

1/s 1/s

L

+ −
λ

+ −

se τ−

)(sRi′

(2)
Queue

ni no

Compose

Compose

Queue

Render

Render

Render

Render
Compose

ni1

ni2

ni3

ni4

no2

no3

no1 Queue

Queue

Queue

Queue

Queue

(1)

From Fig. 10, we know,

s
io

ii

oi

eRsR

sLsRsR
s

sRsR
sL

τ

λ
−=

−=′

−′
=

)(

)()()(

)()(
)(

Thus, the closed-loop transfer function is:

λ

τ

+
−=

−

s
e

sR
sL s

i

1
)(
)(

The system has a pole at −λ, therefore, the system is stable
provided λ > 0.

We can apply this control mechanism to the 7-node cluster as
follows. When the composition proxy receives the message, it
returns the feedback λL to the child node where L is the current
queue length. Then, the child node controls the message-
sending rate to ri – λL. If the child node is the rendering server,
it can add some time interval in the display loop to control the
sending rate. If the child node is the composition proxy, it adds
some time interval in the composition routine to control the
message-sending rate to realize the feedback control.

6. CONCLUSIONS
We designed the sort-last rendering cluster system with

optical switch over the optical fiber network and implemented
the system to evaluate its performance. We found it from the
experiments that the performance of the sort-last parallel
rendering system is mainly affected by the image blending time
and synchronization time. Synchronization time increases when
transmission time grows or the loads on rendering servers are
not balanced. While the frame processing ability of the
composition proxy is related to the resolution and the density of
the active pixel, it is relatively independent on the number of
polygons rendered on the rendering server. Thus we can expect
an improvement of the frame rate in the push-out mode if the
rendered image on the rendering server consists of lots of
polygons and make a burden to render on a single machine.

When rendering servers generate images as much as possible
and the message-sending rate exceed the processing capability
on the composition proxy, the frame rate on the client viewer
gets worse. To realize the optimal data flow inside the cluster,
we propose the flow control mechanism which calculates the
optimal message-sending rate from the current queue length
and feedback to the child nodes to set the message-sending rate.
Evaluating the efficacy of the adaptive flow mechanism is the
future work, as well as testing in a fully realized optical
network.

7. ACKNOWLEDGEMENTS
The visualization and advanced networking research,

collaborations, and outreach programs at the EVL at the
University of Illinois at Chicago are made possible by major
funding from the National Science Foundation (NSF), awards
EIA-9802090, EIA-0115809, ANI-9980480, ANI-0229642,
ANI-9730202, ANI-0123399, ANI-0129527 and EAR-0218918,
as well as the NSF Information Technology Research (ITR)
cooperative agreement (ANI-0225642) to the University of
California San Diego (UCSD) for "The OptIPuter" and the NSF
Partnerships for Advanced Computational Infrastructure (PACI)
cooperative agreement (ACI-9619019) to the National
Computational Science Alliance.

8. REFERENCES
[1] Jason Leigh, et al., "An Experimental OptIPuter Archi-

tecture for Data-Intensive Collaborative Visualization", 3rd
Workshop on Advanced Collaborative Environments (in
conjunction with the High Performance Distributed
Computing Conference), Seattle, WA, 06/22/2003 – 06/22/
2003

[2] Eric He, et al., "QUANTA: A Toolkit for High Performance
Data Delivery over Photonic Networks", Future
Generation Computer Systems 1005, 1-15 01/01/2003 –
01/01/2003

[3] Steven Molnar, Michael Cox, David Ellsworth, Henry
Fuchs, "A Sorting Classification of Parallel Rendering",
IEEE Computer Graphics and Applications, 14(4):
23-32 (1994)

[4] Don-Lin Yang, Jen-Chih Yu, Yeh-Ching Chung, "Effecient
Compositing Methods for the Sort-Last-Sparse Parallel
Volume Rendering System on Distributed Memory Multi-
computers", The Journal of Supercomputing, 18(2):
201-220 (2001)

[5] Michael Meißner, Jian Huang, Dirk Bartz, Klaus Mueller,
Roger Crawfis, "A Practical Evaluation of Popular Volume
Rendering Algorithms", Volviz 2000: 81-90 (2000)

[6] http://www.gris.uni-tuebingen.de/~bartz/
[7] Brian Cabral, et al., "Accelerated Volume Rendering and

Tomographic Reconstruction using texture mapping
hardware", ACM SIGGRAPH (Oct. 1994)

[8] D.C. Dorf and R.H. Bishop, Modern Control Systems,
Addison-Wesley, 1998.

