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Abstract. This study addresses the prevalent issue of missing data in
patient-reported outcome datasets, particularly focusing on head and
neck cancer patient symptom ratings sourced from the MD Anderson
Symptom Inventory. Given that many data mining and machine learn-
ing algorithms necessitate complete datasets, the accurate imputation of
missing data as an initial step becomes crucial. In this study we propose,
for the first time, the use of collaborative filtering for imputing missing
head and neck cancer patient symptom ratings. Two configurations of
collaborative filtering, namely patient-based and symptom-based, lever-
age known ratings to infer the missing ones. Additionally, this study com-
pares the performance of collaborative filtering with alternative imputa-
tion methods such as Multiple Imputation by Chained Equations, Near-
est Neighbor Imputation, and Linear interpolation. Performance is com-
pared using Root Mean Squared Error and Mean Absolute Error metrics.
Findings demonstrate that collaborative filtering is a viable and compar-
atively superior approach for imputing missing patient symptom data.

Keywords: Head and Neck Cancer · Imputation · Collaborative
Filtering

1 Introduction

Head and neck cancer (HNC) patients often experience disease-related symptoms
and side effects during and after treatment which can affect their quality of life
and survival [16]. Researchers and physicians are therefore increasingly placing
significant attention on leveraging existing patient symptom data to personalize
care for patients and improve patient outcomes [17]. Furthermore, the exami-
nation of patient symptom data has been recognized as having the capacity to
yield fresh insights into clinical understanding to enhance diagnostic accuracy
and optimize the effective allocation of healthcare resources [15].
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The MD. Anderson Symptom Inventory (MDASI) is a validated instru-
ment to collect patient reported outcomes. The MDASI Head and Neck module
(MDASI-HN) is a 28-symptom questionnaire relevant for head and neck cancer
patients [20]. Patient responses are collected before, during, and after treatment
and similar to other longitudinal datasets that rely on patient responses or feed-
back, the MDASI-HN data often contain missing values [1,24]. This imposes
restrictions on the applicability of numerous statistical methods and machine
learning approaches in analyzing these incomplete datasets, given that these
techniques usually require complete datasets [5]. Moreover, discarding data from
patients with missing responses in order to achieve complete datasets may intro-
duce bias in parameter estimation. These patients could possess special char-
acteristics that are not representative of the broader group, thus limiting the
extent to which these analyses can be generalized [2,25]. To address this issue,
missing values are commonly imputed as an initial step.

Several techniques exist for imputation, including Multiple Imputation by
Chained Equations (MICE), K Nearest Neighbor (KNN) methods, and Linear
Interpolation (LI) [7,11,24]. Despite their effectiveness in various scenarios, these
methods may fail to capture intricate data relationships, particularly regarding
patient sensitivity which are influenced by individual tolerance levels.

Collaborative filtering, a technique successfully employed in recommendation
systems to leverage user preferences for personalized suggestions, offers a promis-
ing alternative [10]. We hence propose and evaluate the use of collaborative fil-
tering to impute missing responses in the MDASI-HN, leveraging similarities in
reported outcomes to enhance imputation accuracy.

Furthermore, we conduct experimental analyses comparing the performance
of collaborative filtering against other established methodologies. Performance
metrics used for evaluation include root mean square error and mean absolute
error.

2 Related Work

We reviewed related work in two main categories: studies on the imputation of
HNC symptom data and studies on collaborative filtering and its applications.

Imputation utilizes existing data and inherent associations to forecast specific
or range-based approximations for missing values. Over the past few years, some
studies have employed one imputation technique or the other in filling missing
values in HNC symptom data. Some of the widely used imputation techniques are
MICE, KNN and LI. MICE iteratively fills missing values in a dataset, creating
a complete set of data in each cycle, improving with each iteration until an
ultimate dataset is achieved [11,13]. Conversely, KNN leverages intrinsic patient
similarities to infer missing outcomes, while LI estimates values assuming a linear
relationship [24].

Relevant studies in this field include one focused on the impact of radiation-
induced toxicities on the quality of life for patients treated for HNC, which uti-
lized MICE to complete both physician-rated toxicities and patient-rated symp-
toms post-radiotherapy [11]. Another study on using a Long Short-Term Memory
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(LSTM) neural network to predict late-stage symptom severity demonstrated
the effectiveness of imputation techniques, including LI and MICE, for address-
ing missing data in MDASI-HN patient-reported outcomes [24]. Additionally, a
study on predicting clinical outcomes of radiotherapy in HNC patients employed
statistical, MICE, and KNN imputation methods, highlighting the superior per-
formance of MICE compared to the other techniques [7].

While these and other studies have employed various techniques to fill miss-
ing values, they primarily used these methods as pre-processing steps without
focusing on comprehensive evaluations of the imputation techniques.

Collaborative filtering (CF) methods are widely used in recommendation sys-
tems such as GroupLens, Amazon.com, Netflix, Google News, and Facebook and
excel in predicting user preferences based on collected ratings [19]. CF methods
have been proposed for data imputation as well. The auto-adaptive CF impu-
tation method, which leverages both item and user ratings to predict missing
values and validated using the MovieLens dataset, was shown to outperform
traditional imputation techniques [14]. Similarly, CF method based on rough-set
theory was applied for imputing missing values in microarray gene expression
data [23]. This CF based method outperformed KNN method over changing
rates of missing values.

These studies showed the viability of CF in imputing missing values in a
wide variety of fields. Nonetheless, to the best of our knowledge, CF has not
been applied for the imputation of MDASI-HN patient-reported outcomes data
before. Our objective is to demonstrate the effectiveness of collaborative filtering
compared to established methods in this context. We employ traditional CF
methods as a foundation, paving the way for future research on this topic using
MDASI-HN data.

3 Methodology

In this section, we begin by describing the data. Next, we introduce the collabora-
tive filtering technique and explain how we used it to fill missing patient-reported
outcomes.

3.1 MDASI-HN Data

The MDASI-HN 28 questionnaire items are categorized as follows: 13 core
MDASI items that rate general cancer symptoms, 9 HNC-specific items that
rate symptoms associated with HNC and 6 interference items that assess how
severely symptoms interfere with daily activities [20].

Each patient self-reports the 28 symptoms on a 0–10 scale with 0 indicating
“not present” and 10 indicating “as bad as you can imagine”. Patients are asked
to rate each item according to its worst severity during the previous 24 h [21].
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All HNC patients in the cohort underwent standard of care treatment (radio-
therapy with or without chemotherapy) with curative intent. The HNC patients
completed the MDASI-HN questionnaires at the following stages: baseline rat-
ings before the start of treatment, weekly evaluations spanning 7 weeks through-
out the treatment course, and additional assessments after the 6th week as well
as at the 6th, 12th, and 18th months after completion of treatment. The MDASI
questionnaires can be abstracted as a two-dimensional user-item matrix where
rows correspond to patients and columns correspond to symptoms.

We denote as Rp,i the rating for patient p and symptom i. We distinguish
between different time points, denoting as Rt

p,i, the rating provided by patient
p for symptom i at time point t. For patients with missing ratings, Rt

p,i = NA.
In addition to symptom data, the dataset also includes clinical information

of each patient such as biographic information (age, sex, change in height and
weight during treatment), disease specifics (site of tumor, new disease after pri-
mary and TNM stage) and treatment information (prior treatment at enrolment,
induction or concurrent chemotherapy, neck dissection and surgery status).

3.2 Collaborative Filtering (CF) for MDASI-HN

CF methods leverage the similarity between known preferences of the users
without requiring the use of other external information to predict unknown
preferences [10,22]. There are two variations of the CF techniques: the user-
based which leverages similarity between users and the item-based method which
exploits the similarity between items [22].

Let’s consider an example using the user-based CF approach for book recom-
mendations. The users provide book ratings to indicate their book preferences
(e.g. likes and dislikes). Given the current preferences of a user p and the pref-
erences of all other users, we are seeking to predict whether user p would like
book i. The first step is to identify users that have rated book i and select the
top k users ranked by the similarity of their preferences to the preferences of p.
The average rating from the k users is used to predict the rating user p would
give to book i. For the item-based approach, all the existing ratings for book i
are compared against the ratings for all other books user p has rated and the
top k most similar ones are used to predict the rating for book i for user p.

We adapt the user-based and item-based CF approaches to derive the CF
Patient-based and CF Symptom-based methods to predict missing symptom
ratings as explained below.

CF Patient-Based (CF-PAT) approach predicts missing ratings using known
ratings from other patients who are most similar to the given patient. The pro-
cedure to impute a missing rating for symptom i at time-point t by patient p
represented as Rt

p,i using CF-PAT imputation is as follows:
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– Find all patients Q who have known ratings for symptom i at time-point t.
– Determine the similarity, sim(p, q), between patient p and each q ∈ Q using

their common known ratings.
– Select the top k of these q, i.e. q[1], ...., q[k] patients that are most similar

to p.
– Calculate the missing rating as the average of the ratings of symptom i at

time-point t by k weighted by their similarity measure as shown in Eq. 1:

Rt
p,i =

∑
k R

t
q[k],i ∗ Sim(p, q[k])

∑
k Sim(p, q[k])

(1)

where Sim(p, q) is a patient similarity derived using a similarity metric (see
Table 1) over the common ratings between patients p and q.

CF Symptom-Based (CF-SYM) on the other hand predicts missing ratings
using known ratings from other selected symptoms or time-points rated by the
same patient. This selection is guided by the inter-symptom relationships iden-
tified across all patients. The process to impute missing rating for symptom i at
time-point t by patient p denoted as Rt

p,i is derived as follows:

– Find all symptoms J where ratings for patient p are known.
– Using a similarity metric, determine the similarity measure between symptom
i and all j ∈ J symptoms using their common known ratings among all
patients.

– Select the top k of j, i.e. j[1], ...., j[k] that are most similar to i using their
similarity measures.

– Impute the missing rating as the average ratings of the k symptoms rated by
p weighted their similarity measure to symptom i as shown in Eq. 2:

Rt
p,i =

∑
k R

∗
p,j[k] ∗ Sim(i, j[k])

∑
k Sim(i, j[k])

(2)

where Sim(i, j) is a symptom similarity derived using a similarity metric (see
Table 1) over the common ratings between symptoms i and j. The notation
R∗

p,j is used to indicate that each symptom time point is considered inde-
pendently when computing the similarity between symptoms and the most
similar time points are used for rating imputation.

In both the CF-PAT and CF-SYM configurations, the top 5 most similar
neighboring patients or symptoms are selected (i.e. k = 5). The process described
above is repeated until all missing ratings are filled.
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Table 1. CF Similarity Metrics. For Patient-based similarity, N represents the
count of shared ratings between patients p and q. The symbols R̂p and R̂q used in PCC
denote the average ratings of the shared ratings between patients p and q, respectively.
For Symptom-based similarity, N signifies the number of patients who have rated both
symptoms i and j, and R̂i and R̂j represent the averages of the common ratings between
symptoms i and j, respectively.

Patient-based Symptom-based

Euclidean
similarity

CF-PAT-EUC CF-SYM-EUC

Sim(p, q) = 1 −
√
√
√
√

N∑

i=1

(Rp,i − Rq,i)2 Sim(i, j) = 1 −
√
√
√
√

N∑

p=1

(Rp,i − Rp,j)2

Cosine
similarity

CF-PAT-COS CF-SYM-COS

Sim(p, q) =

∑N
i=1 Rp,i · Rq,i

√
∑N

i=1(Rp,i)2 · (Rq,i)2
Sim(i, j) =

∑N
p=1 Rp,i · Rp,j

√
∑N

p=1(Rp,i)2 · (Rp,j)2

Pearson
correlation
coefficient

CF-PAT-PCC CF-SYM-PCC

Sim(p, q) =

∑N
i=1(Rp,i − R̂p) · (Rq,i − R̂q)

√
∑N

i=1(Rp,i − R̂p)2 · (Rq,i − R̂q)2
Sim(i, j) =

∑N
p=1(Rp,i − R̂i) · (Rp,j − R̂j)

√
∑N

p=1(Rp,i − R̂i)2 · (Rp,j − R̂j)2

Similarity Metrics: We experimented with three commonly used similar-
ity metrics in both the CF-PAT and CF-SYM techniques [9]. These similar-
ity metrics were Euclidean similarity (EUC), the vector-based Cosine similar-
ity (COS) and the correlation-based Pearson Correlation Coefficient similarity
(PCC) [9,22].

EUC is a linear metric and has gained widespread applicability due to its
simplicity and effectiveness, particularly in the analysis of non-sparse numerical
data [9]. Meanwhile, COS approach treats sets of ratings as vectors, calculating
the cosine angle between them. This method carries the advantage of naturally
providing a normalized distance measure. PCC also measures the linear rela-
tionship between two sets of ratings, expressed as the ratio of their covariance
to the standard deviation [9,22].

Each of these similarity measures contributed uniquely to the analyses, cater-
ing to different aspects of similarity evaluation in the dataset. Table 1 provides
the different equations used to determine the various measures of similarity using
EUC, COS or PCC in the CF-PAT or CF-SYM configurations.

Note that to ensure consistency, all similarity values were normalized to range
from 0, signifying no similarity, to 1, representing the highest degree of similarity.

4 Evaluation

To assess the performance of the imputation techniques, in addition to the orig-
inal missing values, we randomly masked some known values to serve as our
ground truth data per symptom. We assumed that patients provided at least
one rating for each symptom throughout the monitoring period and hence dur-
ing the masking process, we ensured that every patient retained at least one
known rating for each symptom.
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We evaluated both the patient-based (CF-PAT) and symptom-based (CF-
SYM) versions of the collaborative filtering (CF) methods, employing the three
distinct similarity measures: Euclidean distance (EUC), Cosine similarity (COS),
and Pearson correlation coefficient (PCC). Furthermore, we explored more adap-
tations of CF-PAT, considering the different treatment stages (baseline, during
treatment, and post-treatment) independently, which we termed Per Treatment
Stage (PTS).

Also, a prerequisite for calculating the similarity was to have an arbitrary
minimum of 10 common ratings between patients or symptoms to ensure relia-
bility of the measurements.

We compared the performance of the nine CF-based methods against three
established methods: MICE, KNN imputation, and LI.

We applied the MICE technique with two different configurations: MICE with
clinical data (MICE-w-Clinical) and MICE with only ratings (MICE-Ratings).
The KNN method computed similarity between patients using Euclidean simi-
larity over the available clinical data. Additionally, the LI method filled missing
values for each patient and symptom independently, leveraging known patient
ratings for a given symptom at various time points.

4.1 Evaluation Metrics:

As is commonly used in evaluating machine learning models, we assessed impu-
tation performance using root mean squared error (RMSE) and mean absolute
error (MAE) measurements [8].

MAE is a linear error measurement, implying that all individual deviations
are assigned equal importance in determining the overall result making it a
more natural measure of average error. On the other hand, RMSE calculates the
average magnitude of squared errors and consequently assigns relatively higher
weight to larger errors making it comparatively more sensitivity [8].

RMSE and MAE over T imputation points are derived as shown in Eqs. 3
and 4 respectively:

RMSE =

√
√
√
√ 1

T

T∑

t=1

(Pt − At)2 (3)

MAE =
1
T

T∑

t=1

‖Pt − At‖ (4)

where P and A are the sets of imputed and actual/ground truth data respec-
tively. Smaller values of RMSE/MAE indicate a better performance.
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5 Experimental Results

5.1 Experimental Setup

To inject missing values in the data, random masking was performed to remove
an average of 2%-3% of the original values. All missing values were then imputed,
and using the ground truth from the masked values, the imputation methods
were evaluated using RMSE and MAE.

We repeated the experiments five times, each time randomly generating
masked versions of the dataset and reported the average evaluation metric scores
for each method.

We performed all the analyses using python 3.11 version. Python scikit learn,
numpy and pandas were used for data pre-processing and implementation of the
imputation techniques. The experiments were conducted on a MacBook Pro.

Fig. 1. RMSE of CF-SYM-PCC imputation over changing number of selected neighbors
(k).

Fig. 2. Comparison of the imputation techniques. Over the masked or ground
truth dataset, CF-SYM-PCC was the best imputation method using either (a) RMSE
or (b) MAE values.

5.2 Data Statistics

The data for the analyses encompassed a cohort of 821 patients, and Table 2
provides a breakdown of the distribution and frequency of missing symptom
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ratings among these patients, stratified based on their clinical data. To ensure
consistency and eliminate discrepancies arising from diverse measurement scales
all categorical clinical records were transformed into binary representations using
one-hot encoding, while numerical values were normalized to a range of 0 to 1
before use in the analyses [18].

Table 2. Cohort Distribution and Missing Symptom Rate Stratified By Clinical Data.

Features Categories Distribution of
Patients (%)

Rate of Missing
Ratings (%)

Biographical Data

Age <60 years 47.25 20.50

≥ 60 years 52.75 23.00

Sex Female 11.32 5.27

Male 88.68 38.10

Height change during treatment Increase 2.10 0.81

Decrease 1.06 0.59

No change 96.84 42.45

Weight change during treatment Increase 4.50 1.94

Decrease 32.28 11.95

No change 63.22 29.94

Disease Data

Site of Tumor Base of tongue 44.62 18.06

Tonsil 44.00 19.44

Others 4.37 46.41

Not specified 7.01 2.75

New disease after primary Yes 5.11 1.06

No 94.89 15.39

T-stage t0 7.08 2.56

t1 29.33 11.50

t2 37.42 15.55

t3 13.65 5.84

t4 11.88 5.63

tx 0.64 0.26

N-stage n0 12.77 6.51

n1 34.77 14.31

n2,a,b,c 49.94 40.43

n3,a 2.15 50.95

nx 0.37 0.06

M-stage 1 5.04 2.11

2 94.96 32.79

(continued)
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Table 2. (continued)

Features Categories Distribution of
Patients (%)

Rate of Missing
Ratings (%)

Treatment Data

Status at Enrollment Previously Treated 5.16 2.20

Previously Untreated 94.84 41.28

Induction Chemotherapy Yes 23.42 9.36

No 76.58 26.78

Concurrent Chemotherapy Yes 59.21 23.65

No 40.79 17.90

Neck Dissection Yes 75.27 9.46

No 24.73 24.18

Surgery at Primary Site Yes 80.22 8.28

No 19.78 25.15

The rate of missing symptoms originally in the data and average rate over
five random masks according to the treatment stages are as follows: baseline
(original: 19.66%, after masking: 21.71%), during treatment (original: 50.57%,
after masking: 53.05%) and post-treatment (original: 42.89%, after masking:
45.38%).

Fig. 3. RMSE comparison between CF-SYM-PCC and LI methods per
symptom. The best (smaller) RMSE for each symptom is represented by a thicker
bar.
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5.3 CF Techniques Comparison

Table 3 shows the RMSE and MAE results for the evaluation of the nine vari-
ations of CF techniques, sorted by MAE from best to worse. In general, the
CF-SYM techniques outperformed the CF-PAT methods. This superior perfor-
mance of CF-SYM can be attributed to several factors. Firstly, the association
between symptoms tends to be more established than that between patients as
symptoms often exhibit clearer patterns of co-occurrence [6,26]. This is further
supported by research which indicates that symptom-based models can very
effectively capture underlying disease and treatment responses [4]. Additionally,
each symptom at a given time point has more ratings from individual patients
compared to the number of ratings provided by each patient for the fewer num-
ber of symptoms. Consequently, CF-SYM leverages a larger number of ratings
for determining similarity relative to CF-PAT, resulting in a more reliable and
robust selection of high-quality neighbors or collaborators and hence better accu-
racy of the CF-SYM imputations.

In terms of the similarity metrics, PCC emerged as the optimal for CF-SYM.
As compared to the other metrics, PCC in determining similarity normalizes all
ratings by subtracting the mean of common ratings between each pair of symp-
toms. This mean normalization scales all ratings used in computing the PCC
similarity uniformly therefore making the levels of ratings comparable regard-
less of the actual numeric values. Mean scaling therefore reduces the variations
between ratings and ensures similar patterns in symptom ratings are identified
for imputation. As a result, PCC is more effective at identifying nuanced corre-
lations that might be overlooked by EUC and COS, leading to more precise and
reliable similarity assessments in CF-SYM.

Overall, the best CF method for missing value imputation was CF-SYM-
PCC under both RMSE and MAE metrics. Therefore, for the rest of this section,
we focus on the performance of CF-SYM-PCC and its comparison with other
methods.

Table 3. CF Techniques Comparison Results

CF Techniques RMSE MAE

CF-SYM-PCC 1.447 0.898

CF-SYM-EUC 1.738 0.998

CF-SYM-COS 1.739 1.023

CF-PAT-EUC-PTS 1.737 1.048

CF-PAT-EUC 1.843 1.107

CF-PAT-PCC 1.797 1.127

CF-PAT-PCC-PTS 1.813 1.171

CF-PAT-COS-PTS 1.842 1.239

CF-PAT-COS 1.842 1.239
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5.4 Effect of k on CF-SYM-PCC Imputation

Figure 1 illustrates the effect of varying the number of selected neighbors, repre-
sented by k, on the performance of the CF-SYM-PCC technique. Notably, the
optimal performance is seen for k being 4 or 5 (RMSE: 1.447), while the least
desirable performance was observed at k = 1 (RMSE: 1.767). The pattern follows
the observed behavior of KNN approaches in other works. When k values are
exceedingly small, collaboration effectiveness may be constrained. Conversely,
larger k values beyond a certain threshold can potentially distort the original
data variations and dilute the influence of genuine collaborators [3].

Therefore, for the rest of our experiments, we use k = 5 as it provided the
optimal selection of correlated symptoms for imputing a missing symptom for
this data.

Fig. 4. Box plots of the randomly selected known ratings that were masked
for evaluation per symptom. Original represents the pre-substituted ratings while
the CF-SYM-PCC and LI represent the predicted or imputed values using the respec-
tive techniques.

5.5 Comparing CF-SYM-PCC Against Other Methods

Figure 2 shows the RMSE and MAE comparison between the proposed method
(CF-SYM-PCC) and other popular imputation techniques. The results are
ordered by descending RMSE and MAE values on the vertical axis, so the best
performing method is shown at the bottom.

As can be seen, the CF-SYM-PCC technique was the best performing method
with the lowest error rates in both RMSE and MAE metrics (RMSE: 1.447,
MAE: 0.898). These results support that leveraging symptom-based collabora-
tive filtering with the Pearson correlation coefficient as the similarity measure is
an effective method for PRO data imputation.
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The simple Linear Interpolation (LI) method shows the second best com-
parative performance (RMSE: 1.734, MAE: 1.029) and it is only out-performed
by the CF-SYM-PCC method. The good performance of the LI method can be
attributed to the fact that symptom ratings are temporally correlated.

Both MICE and KNN imputation had the worst performance with the high-
est errors (MICE-w-Clinical [RMSE: 2.513, MAE:1.67]), (MICE-Ratings [RMSE:
2.505, MAE: 1.659]), and KNN Imputation (RMSE: 2.123, MAE:1.425). This
indicates that clinical features are not very effective in predicting symptom rat-
ings for these patients. There are local correlations between symptoms (e.g.
symptom clusters) that using clinical features are not exploited.

The homogeneous nature of the cohort, which received similar treatment
regimens for HNC and hence experienced similar symptoms, likely explains the
success of the CF method and the relatively limited performance of the clinical
data-based methods such as MICE-w-Clinical and KNN. The performance of the
techniques may possibly vary under diverse scenarios involving heterogeneous
cohorts.

Furthermore, given that symptom ratings often exhibit linearity, it is not sur-
prising that LI and CF-SYM-PCC, which rely heavily on a patient’s own ratings,
demonstrated relatively superior performance compared to other methodologies.

In the next section, we proceed to compare the performance of the top two
methods: LI and CF-SYM-PCC on a per symptom basis.

5.6 Comparing CF-SYM-PCC and LI Techniques Per Symptom

Figure 3 shows the RMSE for the CF-SYM-PCC and LI methods. Each column
represents a symptom with two bars. The thicker bar corresponds to the best
performing method for that symptom while the thin bar is the RMSE of the
other method included for comparison. As can be seen, CF-SYM-PCC had bet-
ter performance across all the symptoms except for memory, choke and voice.
Taste had the highest RMSE (CF-SYM-PCC: 1.909, LI: 2.209) overall, while sad-
ness had the lowest RMSE (CF-SYM-PCC: 0.960, LI: 1.072). Table 4 reports,
in addition to the overall RMSE for each symptom and both methods, the per
treatment stage RMSE for baseline, during treatment, and after treatment.

Figure 4 demonstrates the spread of both the originally masked and corre-
sponding imputed data, predicted by the CF-SYM-PCC and LI methods. The
predictions by both techniques were within the interval of symptom rating val-
ues. Also, while both techniques introduced small mean shifts, the distribution
of the imputed data is within acceptable ranges from the ground truth, as evi-
denced by the figure.
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Table 4. RMSE per symptom over treatment stages.

Symptoms Overall Baseline During Treatment Post Treatment

CF-
SYM-
PCC

LI CF-
SYM-
PCC

LI CF-
SYM-
PCC

LI CF-
SYM-
PCC

LI

Pain 1.463 1.988 1.594 2.38 1.450 2.186 1.444 1.399

Fatigue 1.542 1.861 1.966 3.235 1.446 1.691 1.604 1.767

Nausea 1.534 1.817 1.106 3.037 1.82 2.043 0.735 0.905

Sleep 1.772 2.033 1.558 2.554 1.821 1.821 1.728 2.259

Distress 1.231 1.303 1.969 1.791 1.127 1.300 1.153 1.122

SOB 1.084 1.261 1.581 2.372 0.823 0.808 1.365 1.607

Memory 1.162 1.034 1.394 0.745 1.111 0.938 1.195 1.257

Appetite 1.681 2.154 1.398 2.576 1.705 2.116 1.706 2.100

Drowsy 1.282 1.766 1.363 2.299 1.437 1.752 0.893 1.612

Drymouth 1.682 1.881 1.414 2.930 1.64 1.661 1.837 1.869

Sad 0.96 1.072 1.301 2.019 0.883 0.903 0.985 0.907

Vomit 1.382 1.425 0.707 1.087 1.549 1.672 1.184 0.938

Numb 1.182 1.208 0.845 0.787 0.862 0.859 1.559 1.618

Mucus 1.56 2.214 0.816 1.751 1.430 1.887 1.818 2.681

Swallow 1.701 1.943 2.356 2.145 1.676 1.980 1.530 1.820

Choke 1.44 1.253 1.026 0.229 1.570 1.404 1.294 1.128

Voice 1.533 1.368 1.309 1.488 1.692 1.398 1.237 1.290

Skin 1.651 2.010 1.072 0.837 1.900 2.020 1.191 2.193

Constipation 1.695 1.827 1.399 2.331 1.751 1.835 1.679 1.661

Taste 1.909 2.209 1.118 3.102 1.957 2.220 1.946 1.923

Mucositis 1.545 1.897 1.472 0.782 1.492 1.938 1.643 1.983

Teeth 1.453 1.718 1.103 1.504 1.560 1.837 1.350 1.566

General activity 1.116 1.701 1.078 1.626 1.277 1.864 0.630 1.288

Mood 1.226 1.882 1.432 2.000 1.185 1.928 1.254 1.744

Work 1.426 1.814 1.155 1.125 1.697 1.956 0.833 1.665

Relations 1.114 1.381 0.938 2.28 1.305 1.250 0.761 1.266

Walking 1.435 1.665 1.323 0.707 1.553 1.693 1.21 1.743

Enjoy 1.4 1.957 1.704 3.338 1.433 1.885 1.244 1.606

5.7 PCC Correlation Symptom Clusters

Figures 5 is a heat map showing the normalized Pearson correlation coefficients
and clustering patterns among symptoms in the CF-PCC-SYM post-imputed
dataset. The inter-symptom correlations shown in these figures are computed by
averaging the correlations across corresponding time-points for each symptom
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pair. These correlation values represent the strength of the relationship between
each pair of symptoms. The dendrograms were generated using agglomerative
hierarchical clustering and the inter symptom correlation as distance. Initially,
each symptom is placed into its own cluster and the highest correlated symp-
toms are merged first. These clusters are subsequently expanded by averaging
the distance between members and other candidate symptoms. The clustering
proceeds until all symptoms are in the same cluster.

As can be seen in the figure, there are some strong clusters. These clusters are
also evident in the pre-imputed data. These clusters are intuitive and have been
identified by prior studies [6,12,15,21,26]. For example, all interference symp-
toms {general activity, walking, work, relations, mood, and enjoy} are clustered
together along {distress and sad}. The {appetite, sleep, fatigue, drowsy} is an intu-
itive cluster, as well as {nausea, vomit} which was strengthened after imputation.
The {dry mouth and taste} cluster has also been reported previously together with
the {taste, choke, voice, mucus, swallow, pain, and mucositis} cluster [12,26].

These results show that the CF-SYM-PCC imputed MDASI-HN dataset pre-
serves certain well-established inter-symptom associations or clusters.

Fig. 5. Average Pearson Correlation Coefficient between every pair of symp-
toms (after CF imputation). The boxes around the diagonals indicate symptom
clusters identified using agglomerative hierarchical clustering. These are consistent with
prior literature in symptom cluster analysis and clinically relevant.
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6 Conclusion

Collaborative filtering is an effective approach used in recommendation systems
to leverage user preferences and recommend items that the user is likely to buy
or consume. In this work, we have demonstrated that collaborative filtering can
be applied to patient reported outcome data to provide a new and competitive
approach for imputing patient data. In our experiments using HNC MDASI-HN
data, the best performing configuration of the CF technique was the one denoted
as CF-SYM-PCC which use item-based CF and the Pearson Correlation Coeffi-
cient for symptom similarity. This CF technique had the best overall (smallest)
RMSE and MAE values among all the imputation methods considered, including
MICE, KNN imputation, and linear interpolation. Linear interpolation was the
second best performing method, and when compared on a per symptom basis,
CF-SYM-PCC outperformed Linear Interpolation for 25 out of the 28 symp-
toms. We partly attribute the excellent performance of the CF method to the
homogeneous nature of the cohort, which are all oropharyngeal cancer patients
that received similar treatment regimens and hence expected to experience sim-
ilar symptoms. Evaluating the performance of the CF techniques under diverse
scenarios involving heterogeneous cohorts is left as subject for future work.
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