Enhancing Core Drilling Workflows through Advanced Visualization Technology

Yu-Chung Chen1, Jason Leigh1, Andrew Johnson1, Luc Renambot1, Emi Ito2, Paul Morin2, Sean Higgins3, Frank Rack4, Richard Levy4, Josh Reed4
1Electronic Visualization Laboratory, University of Illinois at Chicago
2Lamont-Doherty Earth Observatory, Columbia University
3Limological Research Center, University of Minnesota
4Antarctica geological Drilling, University of Nebraska, Lincoln

Abstract

We present the design and development of Corelyzer, an initial visual core description tool with collaboration and annotation features. Corelyzer belongs to the larger CoreWall suite of tools used to process, visualize and manage high-resolution core images gathered during core drilling expeditions. We have been observing scientists using Corelyzer over several drilling expeditions to better understand how to integrate it into core drilling workflows.

Corelyzer is the initial visual core description tool that allows scientists to interact with and scale huge data visualizations on a desktop workstation connected to one or more monitors in order to collaborate more effectively. The user interface and data source connections were developed using Java, and the efficient rendering component was developed using OpenGL.

Corelyzer Interface

Scalability

1. Data scalability
Corelyzer contains a level-of-detail (LOD) texture paging graphics system that allows scientists to load and interact smoothly with thousands of meters of geological cores. (One kilometer of core data produces roughly 30GB of raw image.)

2. Visualization capability
Corelyzer supports hardware setups that range from a single laptop screen to six LCD panels driven by a single desktop workstation. The tool manages the mapping of different high-resolution images to their proper physical scales. The main user interface supports the major data visualization tasks in core drilling, including the ability to integrate high-resolution core imagery, numerical core logging data, lithology diagrams, smear slides, thin sections and user-generated foam or structural annotations.

1. Software extensibility
The Corelyzer source code has been released under an open source license and stores working sessions in a plain XML file format, so that anyone can make modifications to fit his or her needs. For example, with a simple exporter module, the Drilling Information System (DIS) can export core data along with core imagery to the Corelyzer session file format and all data will be loaded into Corelyzer seamlessly.

The developers also provide a plug-in framework to allow third party developers to extend its functionalities and capabilities. For example, Josh Reed, IT manager of the Antarctica geological drilling project, developed PSICAT lithology diagram support. Moreover, for standardized core (meta)data distribution, a "core feed" plug-in was designed to allow users to subscribe to core-data description feeds defined in the standard Syndication format. Users can browse available feeds and subscribe to interesting core data just like "Podcasts". The feed provides the metadata required to download and interpret actual imagery and numerical core log data sets.

Deployment

2006:
• A Corelyzer prototype workstation was installed at the University of Minnesota’s National Lacustrine Core Repository. Scientists began using Corelyzer for initial visual description of lake cores.
• Two six-panel Corelyzer workstations were installed at Columbia University’s Lamont-Doherty Earth Observatory. Using the full suite of Corelyzer tools, scientists conducted side-by-side comparisons of legacy high-resolution core imagery.

2007:
• Two Corelyzer workstations at the ANDRILL geological drilling project at McMurdo Station in Antarctica. One was used during daily initial core description sessions to allow scientists to "drill down" into the high-resolution images of the cores for more accurate and detailed observations. The second was set up in a public discussion area to augment progress reports and core tours. All involved personnel were encouraged to install Corelyzer on their laptops so that they could easily access the related data.
• ANDRILL adds four additional Corelyzer workstations based on positive feedback from the scientists working in the 2006 season. One is dedicated to providing immediate on-site visualization of data to aid the drillers in making drilling decisions.

Corelyzer Interface

Corelyzer is a part of the CoreWall project and is being developed by the University of Illinois at Chicago’s Electronic Visualization Laboratory. Funding provided by the National Science Foundation to the University of Illinois at Chicago, award OCE-0621117.

CoreWall
www.corewall.org

Electronic Visualization Laboratory, University of Illinois at Chicago
www.evl.uic.edu

LacCore: U.S. National Lacustrine Core Repository at the University of Minnesota
www.laccore.org

ANDRILL: Antarctic Drilling Program
www.andrill.org

PSICAT: Paleontological Stratigraphic Interval Construction and Analysis Tool
www.psicat.org

Drilling Information System, International Continental Scientific Drilling Program
www.icsdp-online.org

Acknowledgements

The development of the CoreWall Suite is being carried out in broad collaboration with JIC-Alliance, ANDRILL, LacCore and DISCOCC and the database projects JARUS, CYRONIC, PDB, SedDB, and USGS/ONR supported by NSF.

Corelyzer was used in the ANDRILL Southern McMurdo Sound Expeditions in 2007.

References

CoreWall
www.corewall.org

Electronic Visualization Laboratory, University of Illinois at Chicago
www.evl.uic.edu

LacCore: U.S. National Lacustrine Core Repository at the University of Minnesota
www.laccore.org

ANDRILL: Antarctic Drilling Program
www.andrill.org

PSICAT: Paleontological Stratigraphic Interval Construction
www.psicat.org

Drilling Information System, International Continental Scientific Drilling Program
www.icsdp-online.org

ANDRILL Drill Site Deployment

Acknowledgements

The development of the CoreWall Suite is being carried out in broad collaboration with JIC-Alliance, ANDRILL, LacCore and DISCOCC and the database projects JARUS, CYRONIC, PDB, SedDB, and USGS/ONR supported by NSF.

Corelyzer is a part of the CoreWall project and is being developed by the University of Illinois at Chicago’s Electronic Visualization Laboratory. Funding provided by the National Science Foundation to the University of Illinois at Chicago, award OCE-0621117.