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Figure 1: Visualizing 2048 nodes in a regular adjacency matrix (left) and in a MultiLayerMatrix of two layers: The middle
panel shows the first layer, and the right panel shows an example of the second layer, which is shown when users select a cluster
in the first layer. Green indicates similar characters while red highlights dissimilarity.

Abstract
Adjacency matrices can be a useful way to visualize dense networks. However, they do not scale well as the
network size increases due to limited screen space, especially when the number of rows and columns exceeds
the pixel height and width of the screen. We introduce a new scalable technique, MultiLayerMatrix, to visualize
very large matrices by breaking them into multiple layers. In our technique, the top layer shows the relationships
between different groups of clustered data while each sub-layer shows the relationships between nodes in each
group as needed. This process can be applied iteratively to create multiple sub-layers for very large datasets. We
illustrate the usefulness of MultiLayerMatrix by applying it to a network representing similarity measures between
2,048 characters in the Asteraceae taxonomy, a rich dataset that describes characteristics of species of flowering
plants. We also discuss the scalability of our technique by investigating its effectiveness on a large synthetic dataset
with 20,000 columns by 20,000 rows.

1. Introduction

Taxon-character matrices are one of the primary tools that
biologists use to classify organisms and to study evolu-
tion. Although traditionally created by hand, newer software
tools [OK11, RCH∗14] make it possible to create matrices
much larger than a manual workflow could support. For ex-
ample, O’Leary et al. [OBF∗13] make use of a matrix with
86 rows and 4,541 columns and Dececchi et al. [DBLM15]
use a matrix with 1,051 rows and 639 columns. The size of
these matrices demands novel visualization techniques that

are scalable and intuitive to support the curation, manage-
ment, and exploration of large taxon-character matrices and
their derivatives (e.g. character-character matrices).

An obvious way to visualize character-by-character sim-
ilarity is by using an adjacency matrix where the color in
each cell encodes the similarity of each pair of characters.
An example of this approach is depicted in the left panel of
Figure 1. However, this approach does not scale well due to
the size constraints of a typical computer screen (i.e., there
are not enough pixels to represent thousands of characters on
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each side of a matrix). To mitigate this scalability issue, we
can provide a high-level abstraction [Zei97] of the original
matrix. Rather than drawing every single cell, we can instead
apply a smoothing function on the matrix to ease perceptual
recognition [LAE∗12]. By so doing, we hide certain fine-
grained details of the original matrix at higher levels while
still enabling a user to interactive view these details on de-
mand.

In this paper we introduce MultiLayerMatrix, a new tech-
nique for visualizing large matrices with thousands of items.
Our technique “breaks” the original matrix into multiple lay-
ers by using the leader algorithm [Har75]. The top layer
shows the similarity between clusters represented by the
leaders. The additional layers shows similarity between
characters in each cluster and sub-cluster. Our technique
aims to achieve the following goals related to the analysis
of taxonomies:

• Pattern discovery and hypothesis generation: An effec-
tive visualization should be able to support the discovery
of interesting patterns in existing data which could lead
to the generation of novel hypotheses. For example, tax-
onomists, ecologists, and phylogeneticists would like to
identify unusual distribution patterns of characters across
taxa such as when taxa share the same characters but are
located far apart in a phylogenetic tree.

• Curation and management of existing taxon-by-
character data: Analysts who regularly interact with tax-
onomies and ontologies have a common need to perform
curation and editing tasks for existing datasets, such as
merging sets of characters and removing characters that
are unnecessary or redundant.

These high-level design goals are supported through en-
abling the specific tasks described in Section 3.

2. Related Work

In general, node-link diagrams and most varieties of adja-
cency matrices, such as NodeTrix [HFM07], Compressed
Adjacency Matrices [DWvW12], BioFabric [Lon12], Ge-
neaQuilts [BDF∗10], and DAGView [KT13], are not suit-
able for visualizing very dense networks where the degree
of nodes is consistently high. To mitigate difficulties in rep-
resenting dense networks, ZAME [EDG∗08] visualizes large
graphs by aggregating information. Aggregates are arranged
into a pyramid hierarchy that allows for on-demand paging
to GPU programs to support smooth multiscale browsing. In
particular, every level of detail has half the number of nodes
as the level below it. Consequently, each cell in a higher level
is the summary of four cells at the level below it. Similarly,
Net-Ray [KLKF14] projects a large matrix onto a smaller
one, where an element of the small matrix is set to the num-
ber of non-zero elements in the corresponding submatrix of
the big matrix. However, this leads to another challenge: the
small matrix is almost full in most cases. Net-Ray handles

this problem by reordering nodes in the matrix before pro-
jecting and by scaling the x and y axes and the numerical
value of each submatrix.

A main difference between ZAME, Net-Ray, and our tech-
nique, MultiLayerMatrix is the way in which aggregations
are computed and represented. ZAME simply groups two
neighboring nodes into one element in subsequent abstrac-
tion levels. Net-Ray projects large matrices into a predefined
resolution and each cell in the target matrix is given a color
based on the average value, which can present a false im-
pression about the data in the original matrix. MultiLayer-
Matrix uses the leader algorithm to cluster similar nodes.
In particular, two nodes are considered to be similar if they
have similar connections to other nodes. For example, in so-
cial networks, two people are considered to be similar if they
have similar sets of friends. Nodes in a cluster can thus be
drawn from different spatial locations and cluster sizes can
vary. This algorithm has been successfully used in cluster-
ing similar scatterplots [DW14b], images [DW14a], and pro-
teins with similar biochemical interactions [DMF15].

Existing work that takes advantage of the hierarchical
structure to collapse or expand groups for large adjacency
matrix visualization is described in a recent state-of-the art
report by Vehlow et al. [VBW15]. In contrast, MultiLayer-
Matrix collapses the characters (nodes) based on the data
available directly within the raw adjacency matrix, that is,
without requiring a specified hierarchical structure. Inspired
by previous work [AvH04,AK02,DFLF15,PF15,vH03], our
technique also enables the interactive navigation of the ma-
trix layout, as discussed below.

3. Overview of Visualization Tasks

Taxonomists, ecologists, and phylogeneticists regularly need
interact with biological taxonomies in order to make sense
of data for a range of scientific tasks. They have a common
need to cluster related characters and to manage and to edit
taxonomic data. To this end, an effective visualization tool
should enable a user to:

• T1: Automatically cluster related characters and provide
a high level overview of the large character-by-character
table.

• T2: Merge sets of characters that are determined by the
analyst to be identical for the current analysis.

• T3: Separate a selected set of characters from a group that
is determined by the analyst to be irrelevant. Moreover,
the analyst should be able to remove characters that are
unnecessary or redundant.

The input data in a typical taxonomic analysis contains
both a character-by-character similarity table and a taxon-
by-character table, and it is often interesting (albeit challeng-
ing) to link both tables in order to visualize interesting pat-
terns. This could lead to the generation of novel hypotheses.

c© The Eurographics Association 2016.



T.N. Dang et al. / MultiLayerMatrix: Visualizing Large Taxonomic Datasets

Visualization tasks related to pattern discovery and hypoth-
esis generation include:

• T4: Locating potentially important characters as well as
missing or redundant characters.

• T5: Identifying characters that define or relate to particu-
lar sets of taxa within the input taxonomy.

• T6: Exploring distributions of characters in the taxonomy.

4. The MultiLayerMatrix Visualization Technique

4.1. Input Data

The input data (provided by the taxonomists on our team)
contains two tables. The first table is a 2,048 by 2,048 char-
acter similarity table. Each cell in this table receives a value
in the range of 0 to 1. A value of 1 means two correspond-
ing characters are identical, and is encoded using the color
green in our visualization. A value of 0 indicates that corre-
sponding characters are dissimilar and is encoded in red. In
some cases we do not know the similarity measurement be-
tween two characters; in this case the associated cell in the
MultiLayerMatrix is left empty.

The second table provided in the input data is a 978 by
2,048 taxon-by-character table. Each row in this table is a
taxon, which contains taxonomic information (i.e. family,
tribe, genus, and species), authority information (i.e. authors
and publication date), and character values. This table is
very sparse since many characters are unique to a particu-
lar taxon or group and because many characters are not fully
described. A visual analytics platform should allow analysts
to not only perform curation and management on individual
tables but also to link the two tables to highlight interesting
distribution patterns.

4.2. Computing the MultiLayerMatrix Visualization

MultiLayerMatrix breaks the input character-by-character
matrix into multiple levels using the leader algo-
rithm [Har75]. Given a set of characters and a threshold
r, the radius around a cluster’s center, the leader algo-
rithm quickly generates a number of clusters and a set of
leader characters (T1). Each leader represents a cluster of
characters.

The assignment of characters to clusters is similar to the
k-means algorithm. However, the computational complexity
of the leader algorithm is roughly linear (and considerably
more efficient than that of k-means). Another difference is
that we do not need to specify how many clusters that we
are looking for (as is required in k-means). Instead, we want
to limit the number of clusters from

√
n to 2

√
n where n is

the number of characters. For example, given data with 2048
characters, we expect from 50 to 100 leader characters, and
most clusters have fewer than 100 characters. For a larger
dataset of 1,000,000 characters, we expect 1,000 clusters,
each of which will contain roughly 1,000 characters. For the

same data, if we want to obtain a 3-layer matrix, the leader
algorithm is computed twice, once for the first layer and sec-
ond time for second layer. In this case, we should expect 100
clusters in the top layer, approximately 100 sub-clusters for
each cluster in the second layer, and around 100 characters
in each sub-cluster in the third layer. The middle panel of
Figure 1 shows a similarity matrix of the 76 clusters of the
left panel. When a user mouses over the cluster name, its de-
tails (the second layer matrix of 51 characters) are displayed,
as depicted in the right panel of Figure 1.

MultiLayerMatrix supports lensing over the matrix to in-
teractively distort the matrix in order to see more detail
around the current mouse position. Figure 2 shows an ex-
ample of interactively lensing. The thumbnails underneath
cluster names show a summary of the similarity matrices
available in the next level. In the lensing area, we can also
see that a few names are grayed out. These are distinct char-
acters where similar characters could not be found based on
a threshold set by the user (via an interactive slider). In brief,
the leader algorithm not only groups similar characters into
the same clusters but also helps to highlight outlier charac-
ters that do not fit into any clusters (T4).

Figure 2: Visualizing character by character table in the the
Asteraceae dataset in the first layer of MultiLayerMatrix.

4.3. Curation and Management of Character Clusters

Important visualization tasks supported in MultiLayerMatrix
include merging sets of identical characters (T2) and split-
ting apart characters from a group that are determined to be
irrelevant (T3), which can help to improve the data qual-
ity of the matrix. Leaders are recomputed when merging or
splitting clusters of characters. The leader character is the
one which has minimum distance (or most similar) to other
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characters in the cluster. The supplementary video shows ex-
amples of these cluster curations in action. (The video is also
available via our project repository at https://github.
com/CreativeCodingLab/MultiLayerMatrix).

4.4. Pattern Discovery and Hypothesis Generation

Given a taxonomy with associated characters, analysts
would like to zoom into or highlight the branches with cer-
tain characters. This feature is interesting to educators and
can be used in museums or classrooms as a teaching tool.
MultiLayerMatrix allows users to select a particular branch
in the taxonomy and display related characters (T5). The
related characters are defined as the characters taht contain
some data in the taxon-by-character table within the selected
branch, such as a tribe, a genus, or a species. Figure 3 uses
the Asteraceae family data. This family contains 10 tribes
(in the first column), 137 genera (in the second column),
and 537 species (in the third column). The links in this tax-
onomy are color-encoded by tribe. Ten colors (for the ten
tribes) were selected from ColorBrewer [HB03]. The thick-
ness of the links are relative to the number of taxa belonging
to these branches. Genera (second column) and species (last
column) are ordered based on the tribes that they belong to.

Figure 3: Visualizing the Asteraceae family which contains
10 tribes (color-encoded), 137 genera, and 537 species: Se-
lecting the Californica species in the last column.

Figure 3 shows an example where a particular species,
Californica, is selected. As depicted, the Californica species
belongs to 4 different genera (Artemisia, Malacothrix,
Rafinesquia, and Trixis) which come from 3 different
tribes (Anthemideae, Cichorieae, and Mutisieae). Taxo-
nomic names in biology can be complex. At some ranks (for
example, family) one word name is sufficient. However, at

sub-ranks, such as tribe or species (sub-species, variety etc.),
a binomial naming system is used. For example, a species
name has two parts: its genus and its specific epithet (that is,
its common name). It is not unusual for a specific epithet to
be shared by many genera. The naming system’s complexity
is reflected by the crossing edges between the second and
the last column of Figure 3(a). Related characters of the se-
lected species in Figure 3(b) can be displayed (in the form
of a smaller similarity matrix) on demand.

T6 requires exploring the distributions of characters
within the input taxonomy. In particular, analysts would like
to view character distribution patterns across taxa in order
to identify unusual patterns, such as taxa sharing the same
characters that are located far apart in a tree. Analysts can
choose a group of characters by selecting characters from a
cluster or by using the rectangular selection mode to high-
light particular characters of interest.

Our technique effectively scales to synthetic datasets with
over 20,000 elements. This is ten times larger than the num-
ber of characters in the example Asteraceae data, so the ad-
jacency matrix size is 100 times larger. This 20,000 x 20,000
matrix requires nearly all of the memory of our testing com-
puter, a 2.5 GHz Intel Core i7 with 16 GB RAM. The total
running time of the leader algorithm on this synthetic dataset
is close to 16 seconds on average, generating 50 clusters in
the first layer (where each cluster contains roughly 400 ele-
ments).

5. Conclusion

In this paper, we presented a novel technique for visualiz-
ing and interacting with large matrices by breaking them
into multiple layers using the leader algorithm described in
Section 4.2. The leader algorithm is roughly linear, making
it more scalable than other techniques when working with
large networks. We presented this technique using an exam-
ple dataset which contains a 2,048 x 2,048 character similar-
ity table and a 978 x 2,048 taxon-by-character table. We also
ran tests on a 20,000 x 20,000 synthetic character dataset.
Future work will explore optimizing our technique (which
is completely parallelizable) for even larger datasets. The
number of characters can be divided evenly to make use of
the available processes and each process will then generate
a set of clusters (and leaders) by running the leader algo-
rithm. The results of all processes can then be combined by
running the leader algorithm on all leaders (instead of char-
acters) provided by each machine, significantly reducing the
running time.
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