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Abstract
In this paper we introduce TimeArcs, a novel visualization technique for representing dynamic relationships be-
tween entities in a network. Force-directed layouts provide a way to highlight related entities by positioning them
near to each other. Entities are brought closer to each other (forming clusters) by forces applied on nodes and con-
nections between nodes. In many application domains, relationships between entities are not temporally stable,
which means that cluster structures and cluster memberships also may vary across time. Our approach merges
multiple force-directed layouts at different time points into a single comprehensive visualization that provides a
big picture overview of the most significant clusters within a user-defined period of time. TimeArcs also supports a
range of interactive features, such as allowing users to drill-down in order to see details about a particular cluster.
To highlight the benefits of this technique, we demonstrate its application to various datasets, including the IMDB
co-star network, a dataset showing conflicting evidences within biomedical literature of protein interactions, and
collocated popular phrases obtained from political blogs.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Graphical user interfaces

1. Introduction

Exploring relationships between entities collocated within
an event or time period is a fundamental task for many vi-
sualization applications. Depending on the application do-
main, a relationship might occur when, for instance, two ac-
tors co-star in the same movie, two researchers co-author
the same publication, or two proteins interact within a bi-
ological pathway. In many domains, relationships are time-
dependent. For example, an actor may co-star with hundreds
of other actors during his or her career. Moreover, the rela-
tionship between any pair of actors can be quite varied: some
actors appear together only in a single movie, some work to-
gether consistently in multiple movies over a short period of
time, and some are reunited after not having worked together
for decades. The complexities associated with representing
a large number of elements with dynamic connectivity make
visualizing relationship networks challenging.

Bringing related entities close to each other allows a user
to readily detect clusters within a large network. This pro-
vides a big picture view of entities and their temporal dy-
namics. For example, when analyzing newspaper articles
grouping certain terms mentioned together in multiple news
articles could be used to indicate or highlight a political

event. Quickly identifying emerging patterns in local com-
munities is a desired feature in many application domains,
such as crime prevention where a sudden increase in phone
calls between a group of people within an hour coupled with
monetary transactions might be a sign of fraud taking place.

To address these challenges we developed TimeArcs, a
novel visualization technique that makes it easy for a user
to quickly identify patterns across time, and subsequently
to analyze both how those patterns might have formed and
how they may evolve over time. Our technique utilizes con-
straints on a force-directed layout algorithm to automatically
show patterns in text over time, as determined by a custom
topic modeling algorithm or via features intrinsic to the orig-
inal dataset. In this paper we introduce details about our
interactive visualization technique for fluctuating dynamic
networks, which: 1) presents the evolution of entities over
time, 2) highlights temporal clusters of entities, and 3) sup-
ports various interactions that allow users to drill-down on
a particular cluster or relationship of interest. Moreover, we
provide demonstrations of the effectiveness of our technique
through its application to three different real-world datasets,
including: the collocated popular terms obtained from polit-
ical blogs, the IMDB co-star network, and a dataset show-
ing conflicting evidence within the biomedical literature of
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Figure 1: Visualizing collocated popular terms obtained from Wikinews in TimeArcs. Area graphs show how frequently the terms
appear and are colored by term categorizations. Arcs highlight terms that appear together in the same articles. Interacting with
the terms or arcs facilitates user exploration of temporal patterns within the topics that include those terms.

protein interactions. Fig. 1 shows an overview of TimeArcs
applied to topics and terms extracted from Wikinews.

2. Related Work

2.1. Dynamic Network Visualization

With the increasing availability of temporal data, dynamic
graph visualization is growing as an active research field
with many applications in various domains. In a recent sur-
vey, Beck et al. [BBDW16] provide an overview of the
growing number of techniques for representing the evolu-
tion of relationships between entities in readable, scalable,
and effective diagrams. This survey presents a high-level cat-
egorization of different types of dynamic graph visualiza-
tions as animated node-link diagrams, timeline-based static
charts, or hybrids of these. While the former has been a
dominant method for dynamic visualizations, timeline-based
techniques that provide a time-to-space mapping are becom-
ing increasingly popular.

Greilich et al. [GBD09] propose a technique to visual-
ize a weighted, dynamic compound digraph by drawing a
sequence of node-link diagrams in a single view. Upward
and downward edges are separated by using colored arcs.
Horizontal alignment of nodes in the hierarchy at different
time points are kept the same to facilitate comparison of
the graphs in a sequence. This also represents a drawback
of this technique: since the horizontal alignment of nodes
is constrained by the hierarchical structure, nodes cannot be
reordered to minimize edge crossings.

Parallel edge splatting [BVB⇤11] takes a very different
approach to visualizing dynamic graphs. In this technique,

a sequence of narrow stripes are placed perpendicular to the
horizontal timeline and hierarchically-organized vertices are
arranged vertically within them. A relationship from A to
B at time t is presented as a link from A at time t to B at
time t+1. Consequently, the dynamic graph looks similar to
a parallel coordinates plot. Parallel edge splatting encoun-
ters the problem of visual clutter that occurs when drawing
many lines onto a small portion of the screen space. To im-
prove scalability on time axis, Beck et al. introduce Rapid
Serial Visual Presentation (RSVP) [BBV⇤12], a hybrid ap-
proach mixing animated and timeline-based graph diagrams.
A radial version [BBW12] of the Parallel edge splatting ap-
proach achieves shorter links than in the Cartesian counter-
part. However, curved links in the radial technique seem to
be harder to follow. Another radial approach, Radial Layered
Matrix [VBSW13], produces less visual clutter by using ra-
dially distorted pixels instead of explicit link representations.
An obvious drawback of this approach is that it is can be dif-
ficult to identify trace connections between nodes.

Based on the Gestalt principles of closure, proximity,
and similarity, van den Elzen et al. [vdEHBvW13] present
node reordering strategies to enable users to find tempo-
ral properties such as trends, periodicity, and anomalies in
a network. The paper also introduces strategies to reorder
nodes vertically, such as minimizing edge length or reduc-
ing block overlap. However, these are NP-hard optimization
problems [GJS74] and may not be appropriate in certain con-
texts.

Matrices can also be used to visualize the temporal
changes in dynamic networks [BC02,MKF⇤15,YES10]. Ad-
jacency matrices are particularly effective when visualiz-
ing dense graphs [HdF06] since they avoid edge-crossing
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problem in node-link diagrams [DMF15, GFC05, KEC06].
TimeMatrix [YES10] displays a small temporal bar chart
within each cell of the matrix to show the changes of edge
weights for the two corresponding vertices. Instead of bars,
gestaltmatrix [BN11] uses gestaltlines, intra-cell lines that
encode different metrics using the angle and length. Individ-
ual time slices can be difficult to extract from matrix rep-
resentations, but Matrix Cubes [BPF14] stacks adjacency
matrices at each time step to form a space-time cube that
can be decomposed into different 2D time slices or vertex
slices. MultiPiles [BHRD⇤15] presents the adjacency matri-
ces (snapshots) side by side, and then similar consecutive
snapshots are piled together to provide a more compressed
view of a temporal network. A common drawback of all ma-
trix representations is that paths between nodes are difficult
to identify and trace.

2.2. Storyline Visualization

Storyline visualizations are inspired originally by Randall
Munroe’s hand-drawn movie narrative charts†. Unique fea-
tures of storyline visualizations, compared to other timeline
visualization approaches, include each entity being repre-
sented as a line and that relationships between the entities
being encoded according to the relative distances between
the associated lines over time. Storyline visualizations have
applications in different domains, such as tracing changes in
family relationships in genealogical data [KCH10], under-
standing the evolution of community structures in dynamic
social networks [RTJ⇤11], and visualizing relationships be-
tween evolving topics in text streams [CLT⇤11, XWW⇤13].

Tanahashi and Ma [TM12] propose a set of design con-
siderations for generating storyline visualizations: reducing
line crossings, maximizing the straightness and continuity
of the lines, minimizing the wiggle distances to obtain a
compact layout, and minimizing the empty space that may
cause an unbalanced layout. A visualization based on these
design principles can automatically generate a storyline lay-
out, albeit taking considerable time to compute. The Sto-
ryFlow [LWW⇤13] approach improves the speed of gener-
ating the storyline layout by using an efficient hybrid opti-
mization approach. Furthermore, it embeds a contextual in-
formation hierarchy into the layout using closed contours
surrounding the events in the background.

The TextFlow visualization [CLT⇤11] enables the analysis
of various evolution patterns that may emerge when exam-
ining multiple topics. Specificially, it focuses on the merg-
ing and splitting of relationships between evolving topics.
Xu et al. [XWW⇤13] employed stacked graphs to display
the time-varying “competitiveness” of topics on social me-
dia with a storyline style visualization. EvoRiver [SWL⇤14]
uses the same composite visual design, but separates threads

†

https://xkcd.com/657/

of the topics into those which have a more negative or more
positive sentiment. When there is a change in the “coope-
tition power” (from negative to positive or vice versa) the
topic will switch to a different thread. Users can also select
a time point and see relationships between different topics
indicated by connected arcs, similar to the technique intro-
duced in this paper.

In storyline visualizations, each entity in the visualization
is represented as a line. This constraint makes storyline visu-
alizations unsuitable for many application domains. While,
for example, characters in a movie can only appear once in
each scene at every time point (which is suitable for story-
line visualizations), researchers often collaborate with dif-
ferent people to publish multiple papers in a year, or an ac-
tor may film with different crews concurrently (which is not
suitable for storyline visualizations). As we show below, our
TimeArcs technique can highlight multiple relationships con-
currently.

3. Design Decisions for the TimeArcs Visualization

TimeArcs is a timeline-based technique that facilitates the
identification and exploration of temporal communities of
network vertices and provides an overview of network dy-
namics over a given period of time. Given a set of entities
and their relationships over time, TimeArcs was designed
with the following visualization goals (each of which was
synthesized from the references provided immediately fol-
lowing each goal):

G1. Display the evolution of entities as they change over
time [BW08, FAHL11, DGWC10, XWW⇤13].

G2. Highlight related entities by positioning them close to
each other [CLT⇤11, TM12]. This allows users to quickly
identify temporal communities.

G3. Reduce line/arc crossings that may lead to occlusion
and visual clutter [TM12, DMAF15, LWW⇤13]. Addition-
ally, we also want to increase the legibility of text (i.e. entity
labels) by minimizing the occlusion between texts and links.

Ahn et al. [APS14] identify a task taxonomy for network
evolution analysis across three dimensions: entity, prop-
erty, and temporal feature. TimeArcs specifically supports
node/link level (G1) and group level (G2) entity analy-
sis. Regarding the property dimension, TimeArcs supports
both structural properties (edge connectedness is used to or-
ganize entities as described in G2) and domain attributes
(nodes/links are colored based on their categorizations). On
the third dimension, TimeArcs focuses on the temporal fea-
tures of individual events. More specifically, our work aims
to make it easy to discover at what point in time an entity,
relationship, or group activity appears or disappears.

To satisfy the design criteria introduced above, we made
the following design decisions:

D1. The time axis is aligned horizontally from left to right.
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This design is widely used when visualizing time series
data [HHWN02, Wat05, BW08].

D2. Each entity is represented as a straight line. Previous re-
search has indicated that minimizing the crossings between
entity representations is the most important metric to reduce
visual clutter [LWW⇤13,Pur97]. It is easier to trace a straight
line (to visualize the temporal relationships associated to an
entity) than to trace a curve [MD12]. Moreover, a Cloud-
Lines style visualization [KBK11, LYK⇤12] can be overlaid
to highlight the evolution of entities over time (design goal
G1).

D3. Arcs are used to connect related entities. The forces ap-
plied on the arcs bring connected entities closer together on
the vertical axis (design goal G2). Force-directed layouts are
very useful in highlighting cluster structure without requir-
ing the use of additional clustering algorithms. Furthermore,
by bringing connected entities together we reduce the cross-
ings between arcs of different temporal clusters (design goal
G3).

Overall, TimeArcs can be considered a hybrid visualization
that arranges CloudLines vertically in order to highlight the
evolution of entities over time. The CloudLines are pulled
closer together if these entities are connected at some time
points using a force directed layout. Finally, arc diagrams are
used to connect related entities at each time point.

Additional optimization strategies augment our design
choices and generate visual output that is both more aesthet-
ically pleasing and more legible. In TimeArcs, entities that
appear closer together vertically are considered to be more
related than entities at a distance from each other. The relat-
edness between entities is defined by: (1) the total number
of connections at different time points, such as those that
are between terms mentioned together multiple times; and
(2) the weight (and strength) of the connections at particu-
lar points, such as those that are between terms mentioned
together many times on a particular day (consequently con-
nected by thicker and stronger arcs). We apply these factors
onto the force-directed layouts to maximize the neighbor-
hood of more related entities.

Since each entity in TimeArcs is represented as a straight
line, an entity label can appear anywhere along this line. For
example, an entity label can appear where the entity is fre-
quently mentioned or where the entity is highly connected.
After selecting the intended location for an entity label, we
check if there are any self-occlusions between texts and arcs
of the same entity. If there are, we continue moving the label
to the left until we find a position without self-occlusions.
Notice that this strategy removes any self-occlusions of in-
dividual entities but does not guarantee the removal of all
occlusions in the graph. To guarantee the removal of all oc-
clusions, we can move all of the text labels to the left of the
layout. An entity label can be drawn repeatedly at different
points along the time axis in order to reduce tracing time.

4. Computing the TimeArcs Visualization

In this section we describe the primary components of the
TimeArcs visualization (also depicted in Fig. 2). These in-
clude the main components for computing the visual ele-
ments that represent the temporal evolution and relationships
of ranked entities as well as the interactive elements that fa-
cilitate different ways of filtering by time or search terms:

• Computing the evolution of entities: This step counts
the frequency of occurrences of entities at each time point
across the entire temporal range and subsequently ranks
them (Section 4.1).

• Computing the relationship of ranked entities: This
step determines the relationship between entities. Two en-
tities are considered to be related if they are collocated
within the same contexts (Section 4.2).

• Selecting highly connected entities: This step identifies
important entities among the highly ranked entities in the
network (i.e., nodes that have high degree of centrality)
and highlghts them in the visualization. (Section 4.3).

• Filtering entities: This step facilitates user-driven filter-
ing to interactively explore details of the data. TimeArcs
supports multiple ways to filter entities, such as filtering
by time or by a search term. Entity ranking and entity re-
lationships are recomputed based on filtering conditions
(Section 4.4).

Figure 2: A schematic showing the main components of
TimeArcs: computing the evolution of input entities, com-
puting the relationships of ranked entities, selecting highly
connected entities, and filtering entities.

4.1. Computing the Evolution of Entities

Input entities are available from input files, such as names
of authors in publications or actors in movies. However, in
other cases we need to preprocess the data in order to gen-
erate these entities, which could represent frequent terms or
phrases extracted from text documents, blogs, or news ar-
ticles. In such cases, we perform named-entity recognition
on the text documents, which allows us to identify names
of people, places, and organizations first and calculate their
frequencies and co-occurrence afterwards.

Fig. 3 illustrates two typical examples of entity evolution
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visualizations: stacked graphs and small multiples. The data
for these graphs were retrieved from political blogs in the
10-year period from 2005 to 2015. The top 50 terms that ap-
peared in these blogs are highlighted by category: green for
person, red for location, blue for organization, and yellow
for miscellaneous. Primary benefits of using a stacked graph
include its compactness and its ability to provide a compre-
hensive overview. Small multiples make it easier to trace and
compare the evolutions of different terms over time (design
goal G1).

Figure 3: Popular techniques to visualize entity evolutions:
(a) stacked graph and (b) small multiples. Here, entities are
terms extracted from political blogs and color-coded by cat-
egory: green for person, red for location, blue for organi-
zation, and yellow for miscellaneous data. The two above
graphs are implemented in D3.js.

In addition to showing the frequency data of entities over
time, we propose the use of time series features to discover
terms associated with events within the time series, such as
sharp increases or drops [SJA⇤06, DW13], the sudden in-
crease followed by a sudden drop [BAP⇤05], and serial pe-
riodicities [CK98]. In particular, we define a sudden atten-
tion measure for entities, referring to a sharp increase in fre-
quency.

Let F1,F2, . . . ,Fn be the frequency of an entity at n dif-
ferent time points. Instead of ranking an entity based on its
raw time series (F1,F2, . . . ,Fn), we derive the sudden atten-
tion series (A1,A2, . . . ,An): At =

(Ft+1)
(Ft�1+1) . For example, the

frequency of the term “Obama” at time t�1 is 99 (or Ft�1 =
99) and at time t is 199 (Ft = 199). Then the attention of term
“Obama” at time t is Ai =

(Ft+1)
(Ft�1+1) =

200
100 = 2. As another

example, the frequency of the term “Ebola” at time t � 1 is

0 (or Ft�1 = 0) and at time t is 10 (Ft = 10). Then the atten-
tion of term “Ebola” at time t is Ai =

(Ft+1)
(Ft�1+1) =

11
1 = 11.

Therefore at time t, the term “Ebola” is considered much
more significant than the term “Obama” even though the fre-
quency of “Ebola” at time t is relatively small compared to
that of “Obama.” This measure aims to detect entities which
suddenly draw a lot of attention (and are usually connected
with a particular event in the time series) rather than entities
which are more consistently popular.

4.2. Computing the Relationships between Entities

This step computes the relationships between pairs of enti-
ties. In applications where the set of entities is large, such
as the number of actors in IMDB database or the number
of terms/phrases extracted from political blogs (our algo-
rithm extracted 418,641 terms from 90,811 blogs spanning
10 years), computing relationships between all pairs is com-
putationally expensive. We therefore rank the input entities
based on their frequency or sudden attention score and only
compute the relationships between highly ranked entities,
for example, only the 1,000 top-ranked entities.

The relationships between entities are defined differ-
ently in various applications. In researcher collaboration net-
works, two researchers are related if they are co-authors of
the same papers; while in a “money trail” inspection, two
people are related if they communicate by phone or email or
if they transfer money. The strength of a relationship is com-
puted based on the number of collocations of two entities at
a particular time point and is encoded in our visualization by
the thickness of the link connecting the two entities.

4.3. Selecting Highly Connected Entities

Among highly ranked entities, we further identify and select
the most highly connected entities. In other words, we want
to include nodes with a high degree of centrality in the net-
work. In social networks, nodes with a high degree of cen-
trality represent the most influential people. Fig. 4 shows an
example of most influential authors in the IEEE VIS confer-
ences over the last five years. In particular, each graph is a
snapshot of collaboration between these researchers in one
year. We keep the nodes in the same positions and fade out
unconnected nodes to help the viewer see the differences be-
tween these five snapshots. However, when the number of
nodes and/or the number of snapshots increase, visualizing
the dynamics of the network becomes difficult.

Using TimeArcs, we combine the five force-directed lay-
outs into one. Besides the forces applied on links to pull con-
nected entities together, we add two more kinds of forces
into the layout: (1) Pull vertices representing the same en-
tity at different time points to the same horizontal line, thus
maintaining the mental association a user would create be-
tween line and entity (design choice D2); (2) Pull and align

c� 2016 The Author(s)
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Figure 4: Visualizing the IEEE VIS publication co-authorship network of the top 50 researchers between 2010 and 2014.

vertices onto the middle vertical line to resolve any inconsis-
tency between different clusters at multiple time steps. Fi-
nally, vertices are pinned to their corresponding horizontal
coordinate on the time axis (to ensure design choice D1).
Fig. 5 shows TimeArcs applied to the same data as seen in
Fig. 4.

Figure 5: The TimeArcs visualization applied to the IEEE
VIS publication co-authorship network of the top 50 re-
searchers from 2010 to 2014 (i.e., the same data in Fig. 4).

4.4. Filtering Entities

TimeArcs additionally supports multiple ways to filter data,
including: (1) filtering connections by strength, (2) filtering
by a time interval, and (3) focusing on a specified entity. As
depicted in the TimeArcs schema (Fig. 2), once users apply
a filtering condition both the ranking of entities and the en-
tity relationships need to be recomputed. For example, when
users input a new search term using a dataset of news items,
term frequencies and their co-occurrences are recomputed
based on the articles containing that search term. When users
search for the collaborations of researchers within a different
range of years (using the co-authorship network), the degree

of centrality of the vertices in the network may change com-
pletely and thus need to be recomputed.

Fig. 6 shows an example of the collaboration networks of
“Munzner, T.” from 1995 to 2014. In this visualization, we
have ordered entities by the time when they are first con-
nected to the search entities (along with other constraints in
TimeArcs layout). This ensures that arcs appearing first have
a smaller distance to the focused entity (“Munzner, T.” in this
case) than the ones appearing after to avoid crossings (design
goal G3). Thicker arcs connect researchers having multiple
publications with “Munzner, T.” in a single year. Notice that
“Tory, M.” (in the highlighted box) had multiple publications
with “Munzner, T.” in 2003, 2007, 2010, and 2013.

Figure 6: Visualizing collaboration networks for “Munzner,
T.” over the past 20 years (green for the InfoVis conference,
red for VAST, and blue for SciVis).

5. Applications

To demonstrate the usefulness and effectiveness of the
TimeArcs visualization, we describe its application to three
different datasets: one containing blog postings about po-
litical events, the IMDB co-star database, and a biomedical
database providing evidences in the literature of protein in-
teractions.

5.1. Exploring Topics and Events in Political Blogs

We collected 90,811 political blog posts over a ten-year pe-
riod from 2005 to 2015 from seven different sources, includ-
ing AMERICAblog, Huffington Post, and ProPublica. We

c� 2016 The Author(s)
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then ran text analyses on these blogs and generated terms
that were classified into four different categories. These
terms were then input into TimeArcs. We first computed the
sudden attention measure (see Section 4.1) for each term
and then computed the relationships between the top 1,000
terms. We filtered relationships of strength at least 15 (i.e.,
terms that were mentioned together in at least 15 blogs in
one month). Finally, the top 100 terms with a high degree of
centrality were plotted in the layout depicted in Fig. 7. This
layout provides an overview of major political events in the
past 10 years in one display.

Figure 7: Overview of political events in the past 10 years
using TimeArcs. The top 100 terms were selected based
on their sudden attention and degree centrality. Terms are
color-coded by category: green for person, red for location,
blue for organization, yellow for miscellaneous category.

In Fig. 7, notably, the name “Petraeus” appears at two
different time points (Box A and Box B). In Box A, the
term “Petraeus” is connected with “Baghdad” when he (Pe-
traeus) was the Commanding General in the Iraq War dur-
ing the troop surge of 2007. Box B highlights his involve-
ment in 2012 Benghazi attack. We can also easily see the re-
peated pattern of two entities in box C. The term “Edward
Snowden” and “NSA” suddenly became highly correlated
when he (Snowden) was the principal source of disclosures
about top-secret National Security Agency programs in June
2013 [GBM13]. The relation fades out within a year. View-
ers can read related blogs by mousing over a term or rela-
tionship.

5.2. Finding Patterns in the IMDB Co-Star Network

The data is available on IMDB website‡. We went through
9,963 movies rated 8 (out of 10) stars or higher from 1980
to 2014 across three genres: comedy, action, and drama.
In total, our dataset contained 66,182 actors. Fig. 8 shows
TimeArcs for the top 200 actors. In particular, the arcs con-
nect co-actors in the same movies. In this use case, we color
the arcs by movie genres: green for comedy, red for action,
blue for drama. TimeArcs helps viewers to quickly identify
temporal communities of actors. Each horizontal line rep-
resents one actor and connects his or her first through last
appearances in highly rated movies. This helps to highlight
actors with long careers and many good movies, such as, for
example, the voice actor Michael Bell (at the red arrow in
Fig 8). The horizontal lines can be replaced by CloudLines-
style graphs on demand. By brushing any actors’ name, we
can immediately visualize his or her co-star network to see
how it changes over time.

Continuously repeated cliques of actors (as in the high-
lighted boxes A, B, and C of Fig. 8) usually indicate that
they have appeared together in multiple seasons of a televi-
sion series. For example, Box B shows “The Chaser Elec-
tion Specials”, an Australian comedy TV series which ap-
peared in 2001, 2004, 2007, and 2010. Box A highlights
Marin Mandir’s movies, such as “Police, Follow that Car”
(2001) and “Facebook dvojnik” (2012). Marin Mandir also
acts in his own movies. Box C contains “ReBoot”, an action-
adventure television series that originally aired from 1994 to
2001.

Though by default we initially limit our visualization to
the top 200 actors, we can easily add more entities into
the visualization, similar to the way items are added into
a spreadsheet. This avoids text occlusion that can occur in
standard force-directed layouts. Simple mouse scrolling can
help users to navigate through the list easily, an advantage of
laying entities vertically.

5.3. Evidence in Biological Pathway Literature

In this case study, we explore evidences from the biomedical
literature describing protein interactions, retrieved from the
Pathway Commons database§. The data contains the publi-
cation information (such as publication year, author, and tex-
tual evidence) of interactions between pairs of proteins, as
well as their specific interaction types. Fig. 9 shows new dis-
coveries in protein interaction networks from 2002 to 2013.
An arc connects two proteins at the times when the interac-
tion was jointly described in a publication together. The col-
ors encode interaction types: green for adds_modi f ication,
red for removes_modi f ication, blue for translocation, and

‡

http://www.imdb.com/interfaces

§

http://www.pathwaycommons.org/
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Figure 8: Visualizing the IMDB co-star network of the top
200 actors from highly rated movies from 1980 to 2014. Arcs
connect co-stars and are colored green for comedy, red for
action, and blue for drama. Boxes A, B, and C highlight ac-
tors who appear together in multiple seasons of a series.

orange for binds. A thicker black arc indicates multiple in-
teractions between two proteins that were discussed jointly
in the same year. The horizontal lines connect multiple oc-
currences of the same proteins across different publications
in different years. Clusters in the visualization tend to con-

tain proteins which have similar functionality or that are of-
ten found together in a biochemical process.

Figure 9: Visualizing the publication of new discoveries in
protein interaction networks from 2002 to 2013. The colors
encode different types of biochemical interactions.

When there are multiple arcs connecting two proteins,
it falls into one of the two circumstances. If they have the
same color, these arcs indicate that there are supporting ev-
idences in different publications which confirm the interac-
tion between two elements. On the other hand, if they have
the different colors, the more recent appearance provides ei-
ther more detailed knowledge about the interaction or shows
a conflict between different articles regarding the way in
which these proteins interact.

Figure 10: TimeArcs visualization for interactions around
PCAF protein. (1), (2), and (3) in the figure are supporting
evidences in literature of “PCAF binds MAML”.

In Fig. 10, TimeArcs visualizes interactions between
PCAF protein complex and other biomolecules. In partic-
ular, above the PCAF timeline we can see there is new evi-
dence from 2013 that supports the interaction “PCAF binds
p300 and KAT3A”, which was first discovered in 2011. Sim-
ilarly under PCAF timeline, there are three evidences sup-
porting “PCAF binds MAML” in 2008, 2011, and 2013. On
the other hand, in Fig. 11 TimeArcs depicts interactions be-
tween the OPSD protein and the K+ protein. Here we can see
that the 2003 and 2012 publications are in conflict. Contra-
dictorily, OPSD and K+ appear to both positively and nega-
tively regulate each other.

c� 2016 The Author(s)
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Figure 11: TimeArcs visualization for interactions around
OPSD protein. (1) and (2) are conflicting evidences of OPSD
and K+ interaction in 2003 and 2012 publications.

6. Implementation and Scalability

TimeArcs is implemented in D3.js. The application, source
code, and sample data are provided via our GitHub
project repository, located at https://github.com/
CreativeCodingLab/TimeArcs.

The most computationally expensive algorithm in our ap-
plication involves determining the relationship (connectiv-
ity) between entities. In the data preprocessing step, we store
relations between entities in a hash map; therefore, the com-
plexity of computing all relations between n selected entities
is O(n2). TimeArcs can render thousands of entities in the
browser without dipping below interactive rates. Please re-
view the supplementary video (also available on the project’s
GitHub repository) for an example showing TimeArcs ap-
plied to a dataset with thousands of entities.

Since TimeArcs utilizes force-directed layouts as primary
way to group related entities and minimize arc crossings, it
thus shares some common features with it. (1) Gravity of
the layout and repellents between vertices ensure that im-
portant vertices (having a high-degree of centrality) end up
at the vertical center of the TimeArcs layout, while vertices
with a low-degree centrality end up toward the top or bot-
tom of the TimeArcs visualization. For example in Fig. 7, the
term “Sarah Palin” is located in the center of both layouts
while “Boston marathon” and “Dzhokhar Tsarnaev” are iso-
lated and move away from the both centers. (2) TimeArcs is
more suitable for sparser and fluctuating dynamic networks
(which have temporal clusters changing over time). For
denser graphs, force-directed layouts become “hairballs”.
In these cases, users can use sliders to interactively filter
out the weaker relationships between entities. To show all
relationships between entities in dense dynamic networks,
matrix representations (such as Matrix Cubes [BPF14] or
MultiPiles [BHRD⇤15]) are probably more appropriate.

7. Conclusion

This paper presented TimeArcs, a novel visualization tech-
nique that facilitates the identification of temporal patterns
of activity between collocated entities. The dynamics of
these interconnected elements can be interactively investi-
gated through simple mouse and keyboard interactions. A
main contribution of the paper is our novel use of force-
directed layouts to automatically create temporal clusters

that are constrained to horizontal regions across the display.
We demonstrated TimeArcs on a diverse range of datasets,
indicating its general usefulness across multiple domains.
The technique is appropriate for data that has been explic-
itly preprocessed to identify relevant topics or categories, as
well as for exploring a dataset in terms of particular facets
inherent in the data itself. Here, our technique is presented
primarily as a tool for the exploration of complex dynam-
ics within temporal datasets. Future work will conduct user
studies to provide empirical evidence on the effectiveness of
the technique compared to earlier timeline-based techniques
such as Massive Sequence Views [vdEHBvW13] and inves-
tigate how TimeArcs can be integrated in visual analytics ap-
plication to aid in predictive textual analyses.
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