
COMPUTER DISPLAY OF

LINEAR FRACTAL SURFACES

JOHN C. HART

B.S., Aurora University, 1987
M.S., University of Illinois at Chicago, 1989

THESIS

Submitted as partial ful�llment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering

and Computer Science
in the Graduate College of the

University of Illinois at Chicago, 1991

Chicago, Illinois

To my dear wife, Patty,

Who feels our baby's kicks.

Her contractions are not Lipschitz.

Instead they're Braxton-Hicks.

iii

ACKNOWLEDGEMENTS

First and most importantly, I would like to thank my wife, Patricia A. Hart, for her

sel
ess support toward this end. She su�ered my absence for two long summers and has

endured many lonely nights for this document. Therefore I dedicate this dissertation to her,

as compensation for the many hours we could have otherwise spent together. In the same

spirit I would like to thank the families of Joseph D. & Janice M. Hart, and Roger D. &

Joyce M. Olson, for additional support during these years.

The members of the dissertation committee were selected for their in
uence on the re-

search behind this document.

Its chairman: Thomas A. DeFanti, has supported me for the past four years with both

salary and equipment. Tom's role as advisor far exceeded the scope of computer graphics.

Daniel J. Sandin and Louis H. Kau�man introduced me to 3-D fractals. Dan has been

a constant companion in the research of fractal visualization algorithms. Lou has always

encouraged the use of visualization in mathematics, resorting to pen and ink whenever CRT

and pixels failed.

Maxine D. Brown has supported this research by communicating its results to more

people than I will ever know. The breadth of Maxine's knowledge of visualization helped

de�ne the proper scope of this research.

Robert V. Kenyon's courses on computer graphics taught me more than I wanted to know

about computer graphics. Only recently did I appreciate that.

Since he was �rst invited here in 1988, Alan Norton has been a valuable in
uence on this

research. I interned at the IBM T.J. Watson Research Center during the Summer of 1989,

during which time, Alan imparted the unpublished subtleties of fractal rendering.

I would also like to thank the sta� and students of the Electronic Visualization Labo-

ratory, for useful conversations and support, speci�cally: Craig Barnes, Sumit Das, Gordon

Lescinsky, Gary Lindhal, Randy Hudson and Irv Moy. I would also like to thank the (Art)n

iv

lab at the Illinois Institute of Technology for promoting this work through PHSColograms.

My internship at AT&T Pixel Machines during the Summer of 1990 happened at a par-

ticularly depressing episode of their history. I am grateful for Steve Bourne's support of my

internship there during such a critical time. There I enjoyed very informative conversations

with Kamran Manoocheri, Jennifer Inman, Pete Segal and John Spicer at AT&T Pixel Ma-

chines, and with Don Mitchell and guests: John Amanatides and Paul Heckbert, at AT&T

Bell Labs. I would also like to thank Frank & Lethe Lescinsky for housing me that summer.

Many other researchers in fractal geometry have been quite helpful, for which I would

like to acknowledge: Daryl Hepting, Arnaud Jacquin, Benoit Mandelbrot, Ken Musgrave,

Przemyslaw Prusinkewicz, Laurie Reuter, Dietmar Saupe, Richard Voss and Edward Vrscay.

JCH

v

PREFACE

The dissertation title \Computer Display of Linear Fractal Surfaces" is based on the

overused \Computer Display of Curved Surfaces" which is found in the titles of many early

works in computer graphics, in particular, the Ph.D. dissertations of J. Blinn and E Catmull.

It is a satirical response to the overwhelming tendency in computer graphics to assume local

smoothness of surfaces. Fractal geometry provides us with many examples of surfaces where

this assumption fails. This failure has provided the author with a large set of open problems

in computer graphics, for which this dissertation addresses and solves.

This dissertation was written using the AMS-LaTEX document processing system. Its

format meets the requirements of the University of Illinois at Chicago Graduate College

Thesis Manual. The 2-D illustrations were created with Silicon Graphics Inc. IRIS-4D

workstations, some using their product: \showcase." The 3-D illustrations were created on

an AT&T Pixel Machine 964dX.

vi

TABLE OF CONTENTS

I INTRODUCTION 1

1 OVERVIEW 3

2 FRACTALS IN COMPUTER GRAPHICS 5
2.1 From Visualization to Image Synthesis : 5
2.2 Categorizing Fractals : 6

2.2.1 Random Fractals in Computer Graphics : : : : : : : : : : : : : : : : 6
2.2.2 Deterministic Fractals in Computer Graphics : : : : : : : : : : : : : : 8
2.2.3 Linear Fractals in Computer Graphics : : : : : : : : : : : : : : : : : 8

II ANALYSIS 11

3 ITERATED FUNCTION SYSTEMS 13

3.1 Lipschitz Functions, Contractions and Similtudes : : : : : : : : : : : : : : : 14
3.1.1 The Lipschitz Property : 14
3.1.2 Contractions : 14
3.1.3 The Contraction Mapping Principle : : : : : : : : : : : : : : : : : : : 15
3.1.4 Similtudes : 16

3.2 The Hausdor� Metric : 17
3.2.1 The Distance From a Point To a Set : : : : : : : : : : : : : : : : : : 17
3.2.2 The Distance Between Two Sets: The Hausdor� Metric : : : : : : : : 17
3.2.3 The Thickening of a Set : 17
3.2.4 The Complete Metric Space of Compact Subsets : : : : : : : : : : : : 19

3.3 The Hutchinson Operator : 21
3.3.1 De�nition : 22
3.3.2 Hutchinson's Lemma : 22

3.4 De�nition of Iterated Function System : 23
3.5 The Fundamental Theorem of Iterated Function Systems : : : : : : : : : : : 24
3.6 The Open-Set Condition versus Overlapping Construction : : : : : : : : : : 27

vii

3.7 Disconnectedness : 28

3.7.1 Disjoint Images of the Attractor : 28

3.7.2 Sum of Lipschitz Constants : 29

4 RECURRENT ITERATED FUNCTION SYSTEMS 31

4.1 Graph Theory : 32

4.1.1 De�nition : 32

4.1.2 Cycles : 32
4.1.3 Strongly versus Weakly Connected Digraphs : : : : : : : : : : : : : : 33

4.1.4 Condensation : 33

4.2 Set N -tuples : 34

4.3 The Recurrent Hausdor� Metric : 35

4.4 The Recurrent Hutchinson Operator : 35
4.5 De�nition : 38

4.6 The Fundamental Theorem of Recurrent Iterated Function Systems : : : : : 40

5 WHAT IT MEANS TO BE A FRACTAL 45

5.1 De�nitions of Fractal : 45

5.2 Hausdor� Dimension : 46

5.2.1 De�nition : 47

5.2.2 Properties : 48

5.3 Box-Counting Dimension : 49

5.3.1 De�nition : 50
5.3.2 Relationship with Hausdor� Dimension : : : : : : : : : : : : : : : : : 50

5.4 Self-Similarity Dimension : 51

5.5 Density Bounds and the Decomposition Theorem : : : : : : : : : : : : : : : 53

5.6 Locally Fractal Sets : 54

5.6.1 The Carrot Leaf : 54
5.6.2 Locally Fractal : 56

5.6.3 The Devil's Staircase : 57

5.6.4 The Twindragon : 58

6 LINEAR FRACTALS 61

6.1 Linear Maps and the Jacobian Matrix : 61

6.2 A�ne Maps and Homogeneous Coordinates : : : : : : : : : : : : : : : : : : 62

6.3 Linear Fractals : 64

6.4 Dimension Computations for Linear Fractals : : : : : : : : : : : : : : : : : : 64
6.4.1 The Hausdor� Dimension of IFS Attractors : : : : : : : : : : : : : : 64

6.4.2 The Box-Counting Dimension of RIFS Attractors. : : : : : : : : : : : 66

viii

III MODELING 67

7 MODELING WITH LINEAR FRACTALS 69

7.1 Explicit versus Implicit Models : 69
7.2 The RIFS Model : 70

7.2.1 The Explicit RIFS Model : 70
7.2.2 The Implicit RIFS Model : 71

7.3 The L-System Model : 72

8 THE COLLAGE THEOREM 75

8.1 Statement and Proof : 76

8.2 Recurrent Collages : 77

9 INTERACTIVE MODELING 79

9.1 Textual Speci�cation by Map Composition : : : : : : : : : : : : : : : : : : : 80
9.2 Graphical Speci�cation by Map Composition : : : : : : : : : : : : : : : : : : 81
9.3 Graphical Speci�cation by Shape Transformation : : : : : : : : : : : : : : : 81

10 ALGORITHMIC MODELING 83

10.1 The Method of Moments : 83
10.1.1 A Parameterized Iterated Function System : : : : : : : : : : : : : : : 84
10.1.2 Matching Moments Analytically : 84
10.1.3 Matching Moments Procedurally : 85

10.2 Block Coding : 86

IV RENDERING 87

11 LINEAR FRACTALS: WHERE CLASSICAL RENDERING FAILS 89

11.1 Occlusion and the In�nitely Detailed : 89
11.1.1 The Hidden-Surface Problem : 90
11.1.2 Ray-Fractal Intersection : 91
11.1.3 Volume Rendering and Geometric Measure Theory : : : : : : : : : : 93

11.2 Shading Without Surface Normals : 94

11.2.1 Surface Normal Approximations : 94
11.2.2 Shading Module Approximations : 95

11.3 Sampling In�nite Frequencies : 96
11.3.1 The Rasterization Integral : 96
11.3.2 Integration : 97
11.3.3 Area Sampling Techniques : 98

ix

12 RAY-LINEAR FRACTAL INTERSECTION 101

12.1 De�nitions : 101
12.1.1 Heaps : 101
12.1.2 Rays : 102

12.2 Bounding Volumes and Hierarchies : 102
12.3 Ray-Hierarchy Intersection : 104
12.4 Object Instancing : 104
12.5 Ray-Instance Intersection : 105
12.6 Cyclic Hierarchies: A Model for Linear Fractals : : : : : : : : : : : : : : : : 107
12.7 Ray-Linear Fractal Intersection : 108

12.7.1 The Bounding Volume Theorem : 110
12.7.2 Analysis : 111

13 FAST RAY-LINEAR FRACTAL INTERSECTION 115

13.1 A Locally Orthogonal Approximation to Perspective : : : : : : : : : : : : : : 116
13.2 Projected Recurrent Iterated Function Systems : : : : : : : : : : : : : : : : 117
13.3 Ray Intersection via Point Inclusion : 117

14 INITIAL BOUNDING VOLUME CONSTRUCTION 119
14.1 An Iterative Method : 120
14.2 Computational Geometric Methods : 121

15 THE SIZE OF A PIXEL 123

15.1 Eye-Ray Formulation : 123
15.2 Light-Ray Formulation : 125
15.3 Re
ection/Refraction-Ray Formulations : 126

16 THE LIPSCHITZ CONSTANT OF AFFINE MAPS 129

16.1 Estimating the Lipschitz Constant : 129
16.1.1 A Lower Bound : 129
16.1.2 An Upper Bound : 130

16.2 Computing the Lipschitz Constant : 130
16.2.1 Polar Decomposition : 130
16.2.2 Computing Eigenvalues : 131

17 HIERARCHICAL SHADING 133

17.1 Formulation : 133
17.2 Di�use Illumination : 134
17.3 De�nition : 134
17.4 Weighting Methods : 135

x

17.4.1 Constant Weighting : 135
17.4.2 Low-Pass Weighting : 136
17.4.3 High-Pass Weighting : 136

17.5 Analysis : 137
17.6 Evaluation : 139

18 LOCAL COVERS 141
18.1 Covers : 141
18.2 Local Covers : 143
18.3 Evaluation : 145
18.4 Extensions and Applications : 146

V CONCLUSION 149

19 IMPLEMENTATION 151

20 EXHIBITION 153
20.1 The Five Non-Platonic Non-Solids : 153
20.2 Fractal Forest : 155

21 FURTHER RESEARCH 157

A METRIC SPACE ESSENTIALS 161

B DOCUMENTATION 165
B.1 The Extruded Sierpinski's Gasket : 165
B.2 Natural Models : 166

B.2.1 Grass : 167
B.2.2 Elm Tree : 168
B.2.3 Pine Tree : 171

B.3 The Five Non-Platonic Non-Solids : 173
B.3.1 Sierpinski's Tetrahedron : 173
B.3.2 Sierpinski's Octahedron : 174
B.3.3 Menger's Sponge : 175
B.3.4 Sierpinski's Icosahedron : 179
B.3.5 Von Koch's Snow
ake-a-hedron : 181

VITA 195

xi

xii

List of Figures

3.1 The Hausdor� metric. : 18

3.2 The thickening of a set by its Hausdor� distance from another set. : : : : : : 20

3.3 A Hutchinson operator applied to various initial sets. : : : : : : : : : : : : : 22

3.4 Sierpinski's gasket. : 25

3.5 Sierpinski's tetrahedron. : 26

3.6 The open-set property of the Cantor set and Sierpinski's gasket. : : : : : : : 28

4.1 The complete digraph of four vertices and the corresponding digraph where

the same vertex cannot be visited twice in a row. : : : : : : : : : : : : : : : 36

4.2 A recurrent Hutchinson operator applied to a square. : : : : : : : : : : : : : 37

4.3 The fractal pound sign. : 41

4.4 The 3-D fractal pound sign. : 42

5.1 The \carrot leaf" attractor and the set of its branching limit points. : : : : : 55

5.2 The Devil's staircase and the set of its increments. : : : : : : : : : : : : : : : 57

5.3 The twindragon. : 59

7.1 Turtle interpretations of four words generated by an L-system. : : : : : : : : 74

12.1 A tree topology for the bounding volume hierarchy of a low-level approxima-

tion of Sierpinski's gasket. : 103

xiii

12.2 An object-instancing topology for the bounding volume hierarchy of a low-

level approximation of Sierpinski's gasket. : : : : : : : : : : : : : : : : : : : 106

12.3 A cyclic topology for the bounding volume hierarchy of Sierpinski's gasket. : 108

12.4 Procedural bounding volumes instanced during ray-fractal intersection. : : : 109

12.5 Hierarchy of bounding volumes for Sierpinski's tetrahedron. : : : : : : : : : : 113

15.1 Pixel size geometry. : 124

15.2 Light ray pixel size geometry. : 126

17.1 Shading weight functions. : 136

17.2 Extruded Sierpinski's gaskets shaded by constant, low-pass and high-pass

shading modules. : 138

17.3 Surface normal distributions. : 139

18.1 Detail of antialiased rasterization using local covers. : : : : : : : : : : : : : : 145

20.1 The �ve non-Platonic non-solids. : 154

20.2 The fractal forest. : 156

xiv

SUMMARY

Historically, computer graphics algorithms have been optimized for locally smooth sur-

faces. These methods fail when the surface is very rough or, in particular, fractal. This

dissertation outlines the shortcomings of current computer graphics techniques for rendering

fractal shapes. It then proceeds in developing and describing new e�cient techniques for

rendering a subset of fractal surfaces called linear fractals.

The dissertation is separated into three sections. The �rst of these, Analysis, provides

a mathematical framework for linear fractals. It begins with a formal treatment of iterated

function systems, followed with a parallel discourse on recurrent iterated function systems.

The iterated function system, along with its recurrent generalization, provides a fundamental

theoretical model for linear fractals.

This part's third chapter compares and contrasts di�erent de�nitions of the adjective

\fractal." It concludes with a new de�nition, that of \locally fractal," which is justi�ed with

several examples. A discussion of linear and a�ne maps, the de�nition of linear fractal, and

a summary of methods for measuring the dimension of linear fractals concludes the Analysis

part of this dissertation.

This dissertation's second part, Modeling, describes techniques for creating linear fractals.

It begins with a comparison of implicit and explicit models, showing, algorithmically, how the

recurrent iterated function system model can be treated as both. The next chapter discusses

the collage theorem as a philosophy for modeling linear fractals. The third chapter details

three interactive methods for using the collage theorem to model linear fractals, whereas the

�nal chapter discusses current methods for automatically modeling objects as linear fractals,

determining the recurrent iterated function system computationally.

The third part | the main part | of this dissertation, Rendering, describes methods

for displaying the linear fractal described by a recurrent iterated function system. It begins

with an outline of current methods, showing their shortcomings when applied to fractals in

xv

general.

The next four chapters of this part are devoted to describing methods for determining

occlusion | solving the hidden surface problem. Ray tracing is the technique employed for

this end, and e�cient methods for �nding the intersection of a ray with a linear fractal are

developed. This includes determining the necessary level of detail by deriving the size of a

pixel in object space, and computing an initial set that optimally contains the linear fractal.

Next, a shading method is developed, designed to allow the viewer to perceive fractal

surface orientation, though not intended to be analytically correct. Finally, a chapter on

the antialiased rasterization of linear fractal silhouettes, often fractals themselves, concludes

this part of the dissertation.

A conclusion exhibiting the results of these methods, and suggesting further research

follows. Two appendices, one reviewing basic metric space theory, the other documenting

the recurrent iterated function system codes used to generate the illustrations that decorate

this dissertation, are found at the end of this dissertation.

xvi

LIST OF ABBREVIATIONS

8 For all.

; The empty set fg:

[;t;\ Union, disjoint union, intersection.

�;� Subset, (note: A � A) superset.

2-D, 3-D Two-dimensional, three-dimensional.

(a; b); [a; b] The open interval fx : a < x < bg; the closed interval fx : a � x � bg:

A;
�

A; @A The closure, interior, and boundary of A:

A nB The points in A that are not also in B:

A+ � The thickening of A by the ball of radius �:

a;A;A;A; A The point a, the set A; the N -tuple of sets A; the collection of sets

A; the space A :

Br(x) The closed ball of radius r centered at x:

C The set of nonempty compact subsets of space.

C The complex plane.

card� Number of elements in a set.

xvii

CFG Context-free grammar.

CSG Constructive solid geometry.

fBm Fractional Brownian motion.

FFT Fast-Fourier transform.

Gv; Ge Vertices and edges of digraph G:

IFS Iterated function system.

L-system Deterministic Lindenmeyer parallel context free grammar.

MT ;M�1 The transpose, and inverse, of matrix M:

MFLOPS Million
oating-point operations per second.

MIPS Million instructions per second.

P(�) The power set (collection of all subsets) of a set.

R;Rn The real numbers, n-dimensional Euclidean space with the implied

distance metric.

R(o; ~d) The ray extending from o in the direction of ~d:

RIFS Recurrent iterated function system.

Ur(x) The open ball of radius r centered at x:

xviii

vi; (vi; vj) The ith vertex and the edge from ith to jth vertex of G:

w();w A contraction, a family of contractions.

w1 � w2 The composition w1(w2()):

w�i The i-fold composition of w:

x; ~x; xi Homogeneous point, homogeneous vector, ith coordinate of point/vector x:

xix

Part I

INTRODUCTION

1

Chapter 1

OVERVIEW

This dissertation covers many topics. Its main contribution is in the rendering of linear

fractal sets, in Part IV. It also provides a detailed treatment of iterated function systems and

their recurrent extensions, and fractal geometry, in Part II. Part III, included for continuity,

describes the various methods for using the mathematical structures from Part II to model

objects, so they may be rendered by the methods in Part IV.

The speci�c goals of this dissertation are outlined as follows.

Part II develops the linear fractal model from a �rm basis in topology and geometry.

Chapter 3 introduces iterated function systems using the simplest results of set theory and

metric spaces. Chapter 4 examines the recurrent iterated function system model, exposing

subtleties. It is a parallel to Chapter 3. Chapter 5 properly de�nes \fractal," so that it

embodies properties one associates with fractal sets. Finally, Chapter 6 clari�es the de�nition

of a linear fractal.

Part III describes various techniques for modeling linear fractals, begining with an overview

in Chapter 7. Chapter 8 characterizes the collage theorem philosophy of object modeling

Chapter 9 documents interactive systems for modeling linear fractals. Finally, Chapter 10

reports recent breakthroughs in the automatic modeling of linear fractals.

3

Part IV begins by explaining the unique problems associated with rendering fractals in

Chapter 11, which are solved in the rest of the chapters. Chapters 12, 13, 14, 15 and 16

together derive an e�cient ray-linear fractal intersection method for hidden surface determi-

nation Chapter 17 simulate the shading of linear fractal surfaces, thereby portraying surface

orientation. Finally, Chapter 18 reduces aliasing from rasterization with an e�cient area

sampling method, thereby eliminating the \jaggies."

4

Chapter 2

FRACTALS IN COMPUTER

GRAPHICS

Fractals and computer graphics have historically enjoyed a symbiotic relationship, linking

two relatively distinct areas of computer graphics: visualization and image synthesis.

2.1 From Visualization to Image Synthesis

Initially, a new fractal model is formulated and computer graphics techniques are then used

to understand it better. The \visualization" of fractal structures has greatly increased their

popularity and study. B. Mandelbrot's �rst book [Mandelbrot, 1977] describes, by way

of concise visual analogy (initiator/generator pairs), the essence of fractal geometry. This

one volume caused a resurgence of interest in this forgotten area of mathematics, directly

inspiring the authorship of [Hutchinson, 1981] and [Falconer, 1985], to name a few. One

rarely �nds a paper on fractal geometry that lacks detailed computer-generated �gures.

As fractal models become better understood, through visualization, they become easier

to control. Controllable fractal models are widely used for \image synthesis," simulating

5

textures and forms that vary from the natural phenomena one encounters everyday to the

novel constructions of mathematics.

The symbiosis continues: when new fractal models are discovered, they �nd applica-

tions in computer graphics. As computer graphics becomes better equipped to render these

models, these and other fractals become easier to visualize, study and control.

2.2 Categorizing Fractals

Fractal models may be separated into two families: random and deterministic, based on their

construction. The generation of both kinds of fractals may depend on streams of random

numbers; the distinction is based on the in
uence these random numbers have on the shape.

Altering the stream of random numbers will change the shape of a random fractal but will

not a�ect the shape of a deterministic fractal.

2.2.1 Random Fractals in Computer Graphics

Random fractals are used for the simulation of natural phenomena. The basic random

fractal model is a generalization of Brownian motion called \fractional Brownian motion"

(abbreviated: fBm) [Mandelbrot & Ness, 1968].

Early researchers observed a resemblence between the graphs of fractional Brownian

motion (fBm) and mountain silhouettes [Mandelbrot, 1982b], suggesting that fBm would be

a useful tool for the image synthesis of various kinds of terrain.

Soon, R. Voss was using fBm to create images of mountains, coastlines and clouds.

Working in the frequency domain, he would construct a 1=f� frequency distribution. Then,

using a fast-Fourier transform (FFT), this noise was transformed from the frequency domain

onto a 2-D grid of altitudes, called a height �eld. These 3-D points were then polygonized,

assigned realistic colors denoting altitude, shaded and scan-converted (rasterized, removing

6

hidden surfaces) to create an image of the terrain [Voss, 1988].

Shortly thereafter, A. Fournier and D. Fussel, simultaneously with but independent of L.

Carpenter, devised a linear time algorithm of generating fractal mountains that was faster

than the FFT method [Fournier et al., 1982]. Their new method recursively subdividing each

polygon into four smaller polygons, displacing the altitude of new vertices. B. Mandelbrot

severely criticized this method for its ignorance of the statistical properties of fBm and

\creased" appearance [Mandelbrot, 1982a]. None the worse for wear, it still receives wide

use due to its simplicity and speed.

J. Kajiya, and later C. Bouville, developed e�cient ray-tracing algorithms for rendering

such recursively subdivided fractal terrains by creating a bounding volume hierarchy. Kajiya

used \cheesecake" extents (extruded triangles) to bound all possible subdivisions of a triangle

[Kajiya, 1983]. Bouville achieved a tighter bound using ellipsoids [Bouville, 1985].

G. Gardner created clouds and foliage using fractally textured ellipsoids. There, random

fractal textures not only a�ected color but also opacity. Like Voss, Gardner's textures

were created by Fourier methods, though it seems Gardner was concerned more with the

appearance, and less with the statistical properties, of the texture [Gardner, 1984].

G. Miller used a context-sensitive subdivision scheme to reduce the \creasing" e�ects of

previous subdivision methods. He also devised an e�cient ray-tracing method, capitalizing

on the height-�eld nature of these terrain models [Miller, 1986].

K. Musgrave, with C. Kolb, created terrain models using more advanced basis func-

tions, such as the noise functions speci�ed in [Perlin, 1985]. Like [Miller, 1986], they also

treated terrains as a height �eld, developing a fast rendering algorithm called \grid tracing"

[Musgrave et al., 1989].

7

2.2.2 Deterministic Fractals in Computer Graphics

Early illustrations of 3-D deterministic fractals were generated at coarse resolutions, con-

veying the basic rules of construction; pictures of the �nal limit set were left to the viewer's

imagination.

One of the �rst treatments of the special problems of rendering fractals was by A. Norton

in 1982. His method of generating deterministic fractals, called \boundary tracking," was an

early implementation of volume visualization. Boundary tracking generates a �xed-resolution

voxel approximation of a fractal set. It runs in object space, precisely O(nd) space, where d

is the box-counting dimension of the object. A z-bu�er was used for hidden surface removal.

The gradient of the z-bu�er was used to simulate tangent planes along the surface, whose

normal vector was used to di�usely shade the set [Norton, 1982; Norton, 1989b].

J. Holbrook studied deterministic fractals using a brute force O(n3) computation. He also

used an O(N) point enumeration technique to create a point cloud approximation, though

they were so sparse he characterized them as \star�elds" [Holbrook, 1983; Holbrook, 1987].

The point enumeration technique was developed further by L. Kau�man and D. Sandin.

Shading and other depth cues were added to give the point cloud the perception of a 3-D

surface. Unfortunately, the point clouds had large gaps that were di�cult to �ll in with this

method [Hart, 1989; Sandin et al., 1990; Hart et al., 1990].

Later, a ray-tracing method was developed to e�ciently render deterministic fractals.

This method ran in image space and little more than image time, so close-up renderings of

fractal surfaces took only slightly longer than far-away renderings [Hart, 1989; Hart et al.,

1989].

2.2.3 Linear Fractals in Computer Graphics

Linear fractals are a subset of deterministic fractals. They have the property that their

construction rules are linear functions.

8

In 1984, A. R. Smith used formal languages to create linear fractal models he called

\graftals" [Smith, 1984]. Graftals are also known as L-systems. Later, in 1988, P. Prusinkiewicz

and others used L-systems to model many sophisticated botanical structures [Prusinkiewicz

et al., 1988; Prusinkiewicz & Hanan, 1989; Prusinkiewicz & Lindenmayer, 1990].

In 1985, iterated function systems were introduced to the computer graphics community,

by one of their inventors: S. Demko, where they were used in 2-D for texturing and shape

synthesis [Demko et al., 1985]. The other inventor: M. Barnsley followed this up with by

showing the power of iterated function systems as an image synthesis tool [Barnsley et al.,

1988]. There he alluded to their use in image compression but these methods have only

recently been revealed [Jaquin, 1991].

The iterated function systemmodel is commonly used in 2-D, sometimes as art [Lescinski,

1991]. Extensions to 3-D are mentioned in [Foley et al., 1990] but they suggest the use of

L-systems instead. The following quote, from [Demko et al., 1985], calls for the development

of graphics algorithms for 3-D iterated function systems:

[Two-dimensional linear fractals] represent the simplest application of [iterated

function systems]. For real objects, they depict only a kind of silhouette, but this

in no way represents the limits of the technique. The extension of our methods

to three-dimensional objects is the most important next step.

It wasn't until very recently, in [Hart & DeFanti, 1991], that computer graphics algorithms

were developed speci�cally for modeling and rendering 3-D iterated function systems. Such

algorithms are the subject of this dissertation.

9

10

Part II

ANALYSIS

11

Chapter 3

ITERATED FUNCTION SYSTEMS

The term \iterated function system" (abbreviated: IFS) was coined in [Barnsley & Demko,

1985] to describe a general framework of dynamics. However, most of the results about the

IFS model were presented in [Hutchinson, 1981].

None of the theorems or proofs in this chapter are based on original ideas. However, the

wording, layout and techniques used to make these theorems and their proofs coherent within

a single chapter is new. Two examples: First, the proof of Theorem 3.4 is based entirely

on the second half of the proof of the Blaschke selection theorem found in [Falconer, 1985].

Compare this short proof to the �ve part, two page proof of Theorem 2.7.1 in [Barnsley, 1988].

Second, the de�nition of \overlapping construction" from [Barnsley, 1988] only applies to

connected sets and requires a di�cult code space argument. Here, its de�nition is extended

and uses only the simple terminology of metric spaces.

The term \iterated function system" is de�ned far from the beginning of the chapter.

This placement makes it easier to explain why this de�nition may di�er from de�nitions

by other authors. Immediately following it is the proof that every IFS speci�es a unique

set, called its \attractor." This theorem is titled the \Fundamental Theorem of Iterated

Function Systems," for it is the attractors that make iterated function systems interesting.

13

3.1 Lipschitz Functions, Contractions and Similtudes

A map is a function from one space into another. Most maps in this discussion take a

metric space into itself. The category of map properties de�ned in this section describe the

relationship of the distances between two points before and after a map is applied.

3.1.1 The Lipschitz Property

A map is \Lipschitz" when the ratio of the distances of the images of two points to that

of the original two points is bounded by a constant. In other words, the images of points

under a Lipschitz map can only get so far from each other, depending on how close they

were before.

De�nition 3.1 A function w satis�es the Lipschitz condition on a metric space (X; d) if

and only if there exists a �nite non-negative s such that

d(w(x); w(y)) � sd(x; y) (1)

for all x; y 2 X:

The minimum value s such that (1) is true is called the Lipschitz constant of w and is

de�ned

Lipw = sup
x;y2X

d(w(x); w(y))

d(x; y)
: (2)

3.1.2 Contractions

Contractions are Lipschitz functions, with Lipschitz constant less than one. They bring

points closer.

De�nition 3.2 A map w from metric space (X; d) to itself is a contraction if and only if

d(w(x); w(y)) < d(x; y) (3)

14

for all x; y 2 X:

In this context the Lipschitz constant is commonly called the contractivity factor of the

map.

3.1.3 The Contraction Mapping Principle

The following result regarding contractions, the Contraction Mapping Principle, is a useful

tool for existence proofs. It is an old result, with respect to the rest of this chapter, that

can be found in any number of texts ([Kaplansky, 1977] for example). We will use it later

to prove the Fundamental Theorem of Iterated Function Systems.

Theorem 3.1 (Contraction Mapping Principle) Let (X; d) be a complete metric space

and let w : X! X be a contraction on X: Then w has a unique �xed point in X:

Proof: To show that at least one �xed point exists, pick any point x 2 Xand iterate w on

it, creating the orbit

x0 = x; (4)

x1 = w(x); (5)

x2 = w � w(x); : : : : (6)

The distances between successive points in this orbit can be characterized from (1) as

d(xi+1; xi) � sd(xi; xi�1): (7)

where s = Lipw: This gives, by induction,

d(xi+1; xi) � sid(x1; x0): (8)

Thus fxig is a Cauchy sequence and converges in a complete metric space.

15

Let x 2 Xbe the limit point of the sequence. The point x is �xed under w since

w(x) = w(lim
i!1

xi) (9)

= lim
i!1

xi+1 (10)

= x: (11)

Now, suppose there were at least two distinct �xed points x; y 2 X: Then

d(w(x); w(y)) = d(x; y): (12)

By (3), the map w cannot be a contraction. Thus, there can only be one �xed point of w: 2

The following corollary is obvious from the previous theorem. It is explicitly declared

here since it implies an important consequence of the Fundamental Theorem of Iterated

Function Systems.

Corollary 3.2 Let w;X be as in Theorem 3.1. Then all points in X converge to the same

�xed point under iteration of w:

Proof: This was shown for a speci�c x in the �rst half of the previous proof. Since this x

was arbitrarily chosen, all points in X converge to a �xed point of w for which the second

half of the proof shows there to be only one. 2

3.1.4 Similtudes

Finally, if equality holds for (1) then the map is called a similtude.

De�nition 3.3 A map w from a metric space (X; d) to itself is a similtude if and only if

there exists a �nite non-negative s such that

d(w(x); w(y)) = sd(x; y) (13)

for all x; y 2 X:

Similtudes not only change the size of a set uniformly, but rotate, re
ect and translate

as well. The image of a set under a similtude is called a similarity.

16

3.2 The Hausdor� Metric

The Hausdor� metric is a useful tool in analyzing the IFS model. It measures the distance

between two sets. For its de�nition, we will need the distance from a point to a set.

3.2.1 The Distance From a Point To a Set

The following function can be found in many metric space texts such as [Kaplansky, 1977].

It de�nes the distance from a point to a set as the distance from the point to it closest

neighbor in the set.

De�nition 3.4 The distance d(x;A) between the point x 2 X and set A � X in the metric

space (X; d) is given by

d(x;A) = inf
y2A

d(x; y): (14)

3.2.2 The Distance Between Two Sets: The Hausdor� Metric

The following distance function for pairs of sets, the Hausdor� metric, was found useful in

[Hutchinson, 1981], to prove the Fundamental Theorem of Iterated Function Systems.

De�nition 3.5 The Hausdor� metric h measures the distance between sets A;B � X as

h(A;B) = supfd(x;B); d(y;A)jx 2 A; y 2 Bg: (15)

farthest from any point in B is found. Then the point y 2 B farthest from any point in

A is found. The larger of these two maximal distances determines the Hausdor� distance

between A and B:

3.2.3 The Thickening of a Set

The Hausdor� distance metric can be di�cult to comprehend at �rst. The following de�ni-

tion and theorem make the Hausdor� distance easier to visualize.

17

A
x y

d(x,B)

d(y,A)

B

Figure 3.1: The Hausdor� metric between A and B:

We can \thicken" a set by including its surrounding points.

De�nition 3.6 The thickening of a set A by � is the set

A+ � = fx : d(x;A) � �g (16)

This is equivalent to a convolution of the set by a closed ball of radius � (as it is sometimes

de�ned).

The Hausdor� distance is given in terms of the smallest such thickening of one set that

contains the other and vice-versa [Barnsley, 1988]. In some texts, such as [Falconer, 1985],

this is how Hausdor� distance is de�ned.

Theorem 3.3 For any two subsets A;B of metric space (X; d) :

h(A;B) = inff� : A � B + �;B � A+ �g: (17)

Proof: Let

�B = sup
x2A

d(x;B): (18)

18

Then �B is the smallest value such that A � B + �B for if �B were any smaller, then some

point in A would be farther from B than �B and so, would not be in its thickened version.

Similarly, let

�A = sup
y2B

d(y;A): (19)

Then �A is likewise the smallest value such that B � A+ �A: Looking at their maximum, we

see

� = maxf�A; �Bg (20)

= maxfsup
x2A

d(x;B); sup
y2B

d(y;A)g (21)

= h(A;B): (22)

Hence the smallest value � such that both A � B+� and B � A+� is precisely the Hausdor�

distance of A and B: 2

In Figure 3.1, the Hausdor� metric was determined by d(x;B): In Figure 3.2, the set B

is thickened by h(A;B): This thickening necessarily includes A by Theorem 3.3. Notice the

di�erence in use of d(x;B) between Figures 3.1 and 3.2.

3.2.4 The Complete Metric Space of Compact Subsets

One could construct a space whose \points" are sets from some other space. Then the

Hausdor� distance could be used to make this space a metric space.

One possible space is P(Rn); the set of all subsets of Rn: However, the space (P(Rn); h)

is not a metric space, for h(
�

A; �A) = 0 for all A: Since
�

A6= �A for all but two sets in Rn; h is

not a valid metric on this space.

A subspace of P(Rn) is C; the collection of non-empty compact subsets of Rn: Now (C; h)
is a valid metric space since h meets the requirements for a metric on C: Furthermore, we

have the following classic result.

19

A

x d(x,B)

B

B+ε

Figure 3.2: Set B; thickened by the minimal value � = d(x;B) = h(A;B); so that B + �

contains A:

Theorem 3.4 The metric space (C; h); where C is the collection of all non-empty compact

sets of Rn and h is the Hausdor� metric, is complete.

This short proof is based on the second half of the proof of the Blaschke selection theorem

in [Falconer, 1985].

Proof: Let fKig be a Cauchy sequence of compact sets Ki 2 C: That is, given an � > 0

there exists an N such that for any i; j > N;

h(Ki;Kj) < �: (23)

20

Let

K =
1\
j=1

1[
i=j

Ki (24)

which, like the Ki, is non-empty and, since it is the intersection of a decreasing sequence of

compact sets, is compact. Given an � > 0 we have by (23) that there exists a j such that

1[
i=j

Ki � Kj + � (25)

and thus

K � Kj + � (26)

and we are halfway there. Let x 2 Kj; which, by (23), implies x 2 Ki+� for all i � j: Hence,

if k � j we have

x 2

1[
i=k

Ki

!
+ �: (27)

For each k there exists at least one point

yk 2
1[
i=k

Ki (28)

such that jyk � xj � �: This forms a sequence fykg of points from a compact space, with a

subsequence necessarily converging to a point y; with jy � xj � �:

y 2
1\
k=1

1[
i=k

Ki = K (29)

thus x 2 K + � and so

Kj � K + �; (30)

which, with (26) and Lemma 3.3, means that fKig ! K in the Hausdor� metric. 2

3.3 The Hutchinson Operator

The Hutchinson operation applies a �nite collection of maps to a set. The result is the union

of the images of the original set under the maps in the collection.

21

3.3.1 De�nition

De�nition 3.7 The Hutchinson operator of a �nite set of maps fwigNi=1 on a set A is written

w(A) and is de�ned

w(A) =
[

i=1:::N

wi(A): (31)

Suppose we have a collection of three similtudes of the form

wi(x) =
x+ ai
2

; (i = 1; 2; 3) (32)

which scales sets by one-half, then translates the set by ai=2: The images of various sets

under the Hutchinson operator of this collection are shown in Figure 3.3.

w w

w w

Figure 3.3: A Hutchinson operator applied to various initial sets.

3.3.2 Hutchinson's Lemma

The Hutchinson operator will be a convenient shorthand device for later proofs. It is also a

contraction on the metric space of non-empty compact subsets.

22

Theorem 3.5 (Hutchinson's Lemma) Let w be a �nite collection of contractions w :

Rn ! Rn with Lipschitz constants Lipw < 1 Then the Hutchinson operator w : C ! C is a

contraction on the metric space (C; h):

Proof: First, w is continuous; it takes compact sets to compact sets. Second, for any

A;B 2 C;

h(w(A);w(B)) = h

0
@ [
i=1:::N

wi(A);
[

j=1:::N

wj(B)

1
A (33)

� sup
i=1:::N

h(wi(A); wi(B)) (34)

� sh(A;B) (35)

where

s = max
i=1:::N

Lipwi (36)

is the maximum Lipschitz constant of the contractions of w. Since s 2 [0; 1); w is a contrac-

tion on (C; h): 2
This proof is also valid for countable collections of maps, so long as the Lipschitz constants

of its maps are bounded well away from one. In other words, this requires a limit contractivity

� < 1 where

sup
i=1:::1

Lipwi � � (37)

3.4 De�nition of Iterated Function System

De�nitions of IFS vary. The most general descriptions list the metric space, a �nite set of

maps and a corresponding set of probabilities. For the sake of simplicity and clarity, the

following abridged version will su�ce for our purposes.

De�nition 3.8 An iterated function system is a �nite collection w = fwigNi=1 of contrac-

tions wi : Rn! Rn:

23

This dissertation focuses on the geometry described by an IFS. To this end, the probabil-

ities often associated with an IFS, which a�ect the distribution of points enumerated by the

dynamical system an IFS describes, do not alter the resulting shape these points describe.

Hence, the probabilities will not be used in the context of this dissertation.

Some authors do not require the maps of an IFS to be contractive. In the terms of these

authors, the IFS de�ned in De�nition 3.8 would be called \hyperbolic" [Barnsley & Demko,

1985]. We will be concentrating on linear maps (Chapter 6). If any map is not contractive

in an IFS of linear maps, then the unique attractor of the IFS, as de�ned in the next section,

will be the entire metric space | an undesirable result indeed.

3.5 The Fundamental Theorem of Iterated Function

Systems

As mentioned in the previous section, an IFS describes a unique set: its attractor. The

attractor is invariant under the Hutchinson operator of the IFS and is very often fractal.

The following theorem, fundamental to the study of iterated function systems, asserts that,

for any IFS, such a set always exists. It �rst appeared in [Hutchinson, 1981]. Its proof is

relatively trivial given the earlier theorems of this chapter.

Theorem 3.6 (Fundamental Theorem of Iterated Function Systems) For any IFS

w = fwigNi=1 there exists a unique non-empty compact set A 2 Rn; the invariant attractor of

the IFS, such that

A = w(A): (38)

Proof: The Hutchinson operator, w; is a contraction (Theorem 3.5) on the complete metric

space (C; h) (Theorem 3.4). Hencew has a unique invariant �xed point A 2 C (Theorem 3.1).

2

24

The unique �xed point of the Hutchinson operator of (32) is called \Sierpinski's gasket"

[Mandelbrot, 1982b]. This attractor is shown in in Figure 3.4.

w

Figure 3.4: Sierpinski's gasket.

The 3-D version of this attractor is called \Sierpinski's tetrahedron" and is shown in

Figure 3.5, rendered using the techniques from Part IV.

The following corollary explains the name \attractor," and can be found in [Hutchinson,

1981]. The unique form of its proof is due to the author.

Corollary 3.7 Let w be an IFS with attractor A; and let B be any bounded non-empty set

in Rn: Then

lim
i!1

w�i(B) = A: (39)

Proof: Since B is bounded, there exists a compact set B+ � B: Since B is non-empty,

there exists a compact set B� � B: By Corollary 3.2 and Theorem 3.6, we get the following

loop implying equality,

A � lim
i!1

w�i(B�) � lim
i!1

w�i(B) � lim
i!1

w�i(B+) � A:2 (40)

25

Figure 3.5: Sierpinski's tetrahedron.

26

3.6 The Open-Set Condition versus Overlapping Con-

struction

One property of an IFS, de�ned in [Hutchinson, 1981], is the open-set property. It determines

the uniqueness of the points in the attractor.

De�nition 3.9 An IFS w = fwigNi=1 meets the open-set condition if and only if there exists

an open set U 2 Rn such that

(a) w(U) � U and

(b) wi(U) \ wj(U) = ; when i 6= j:

Iterated function systems with this property are often easier to analyze. Topological

properties are simpler to compute on such attractors. Furthermore, many rendering methods

are most e�cient on attractors of iterated function systems with the open-set property.

An open-set IFS does not necessarily produce a disconnected attractor, such as the

Cantor set in Figure 3.6 (left, black). In [Barnsley, 1988], IFS attractors that meet the

open-set condition but are still connected are called \just-touching." Sierpinski's gasket is

shown in Figure 3.6 to be open-set. It is an example of a just-touching attractor.

The overlapping construction of an attractor is the converse of the open set property. In

[Barnsley, 1988], overlapping construction was de�ned only for connected attractors. This

new de�nition extends the overlapping property to disconnected attractors, such as the

overlapping Cantor set from [Falconer, 1987].

De�nition 3.10 The attractor A 2 Rn of an IFSw = fwigNi=1 is of overlapping construction
if and only if w does not satisfy the open-set property.

27

U
w(U)
A

Figure 3.6: The Cantor set (left, black) and Sierpinski's gasket (middle, black) surrounded

by open sets (light gray) which contain their images under the Hutchinson operator (dark

gray). A legend appears on the right.

3.7 Disconnectedness

The following two theorems on disconnected attractors, and their proofs, are found in

[Hutchinson, 1981]. They are good examples of pre-visualization | the ability to see certain

topological properties of an attractor by inspection of its IFS.

3.7.1 Disjoint Images of the Attractor

Often one can determine if the attractor of an IFS is connected by a quick inspection of

its contractions. If the contractions map the attractor into distinct components, then the

attractor is disconnected.

Theorem 3.8 Let w = fwigNi=1 be an IFS with attractor A � Rn such that

A =
NG
i=1

wi(A): (41)

28

Then A is totally disconnected.

Proof: Let x; y be any two distinct points in A: By (41), x and y are either in the same

component x; y 2 wi(A) or in di�erent components x 2 wi(A); y 2 wj(A); i 6= j: The �rst case

shows x and y to be in disconnected components so we concentrate on repeated occurences

of the second case under iteration. Let d = jx� yj: Furthermore, suppose x and y are both

members of the same component wik � � � � �wi2 �wi1(A): But the diameter of this component

is

diamwik � � � � � wi2 � wi1(A) � sik � � � si2si1 (42)

which can be made arbitrarily small. Eventually this diameter will be less than jx � yj;
excluding one of them from the connected component. Thus, x and y do not belong to the

same connected component. Since x and y are arbitrary members of A; the set is totally

disconnected. 2

3.7.2 Sum of Lipschitz Constants

Furthermore, disconnected attractors arise when the contractivity factors of an IFS sum to

less than one.

Theorem 3.9 Let w = fwigNi=1 be an IFS with attractor A such that

NX
i=1

si < 1 (43)

where si is the contractivity factor of wi: Then A is totally disconnected.

Proof: From (43), we see that the sum of the diameters of the components is less than the

diameter of the sum of components. Symbolically,

diam(A) > diam(A)
NX
i=1

si =
NX
i=1

diam(wi(A)): (44)

29

Let

diamn(A) =
NX

i1=1

NX
i2=1

� � �
NX

in=1

diam(wi1 � wi2 � � � � � win(A)) (45)

� diam(A)
NX

i1=1

NX
i2=1

� � �
NX

in=1

si1si2 : : : sin (46)

= diam(A)

NX
i=1

si

!n

(47)

be the sum of the diameters of the components of the attractor. Equation (47) can get

arbitrarily small given a su�ciently large n: Let x; y be two distinct points in A: Let n be

large enough that diamn(A) < jx� yj: Then all of the components of the attractor, laid end

to end, would still not be enough to connect point x to point y: Since this is true for all

x; y 2 A; A is totally disconnected. 2

30

Chapter 4

RECURRENT ITERATED

FUNCTION SYSTEMS

The recurrent iterated function system (abbreviated: RIFS) model is an enhancement of

the IFS model. Like the IFS model, a RIFS contains a �nite set of contractions, but also

restricts the composition of these maps. This enhancement greatly increases the power of

this model, allowing more sets to be created using fewer maps.

Recurrent sets were �rst discussed in [Dekking, 1982] where an L-system model was

described (see Chapter 7). The �rst thorough treatment of the RIFS model for their gen-

eration appears in [Barnsley et al., 1989]. Several others have concurrently investigated

this model under the adjective \recurrent" [Cabrelli et al., 1991] and its aliases \Markov"

[Womack, 1989], \controlled" [Prusinkiewicz & Lindenmayer, 1990], \language restricted"

[Prusinkiewicz & Hammel, 1991] and \hierarchical" [Peitgen et al., 1991]. The subtle distinc-

tions between each of these models is described in this chapter shortly after we de�ne RIFS.

Nonetheless, these models describe the very same kind of restriction on map composition,

which will be denoted using graph theory.

31

4.1 Graph Theory

The RIFS model requires a speci�cation of allowable map compositions. A relation digraph1

whose nodes correspond to maps and directed edges correspond to allowable compositions

su�ces and appears to be the most general description for restrictions of two map compo-

sitions. As such, we proceed with the de�nition of a digraph, di�ering slightly from [Deo,

1972].

4.1.1 De�nition

Graphs are described here as an ordered pair of sets. The �rst is the set of vertices, the

second, the set of edges. Edges are denoted as ordered pairs of vertices.

De�nition 4.1 A digraph G is a set of N vertices Gv = fvigNi=1 and a set of edges Ge which

are ordered pairs (vi; vj); 1 � i; j � N where (vi; vj) 2 Ge implies G contains a directed edge

from vi to vj:

Since Ge is a set, the same edge cannot appear twice in G: Thus the cardinality of Ge is

at most the cardinality of Gv squared.

The number of edges into a vertex is called the \in-degree" of the vertex. Similarly, the

number of edges out of a vertex is called the \out-degree" of the vertex.

4.1.2 Cycles

The following de�nition will help to de�ne several properties of digraphs.

De�nition 4.2 A directed (undirected) path of vertices vi1; vi2; : : : ; vik connects vertex vi1

to vik if and only if for each pair of neighboring vertices vij ; vij+1 the edge (vij ; vij+1) 2 Ge

(or the edge (vij+1; vij) 2 Ge):

1A digraph is a directed graph.

32

A cycle of edges is simply a path from a vertex to itself.

De�nition 4.3 DigraphG contains a (directed, undirected) cycle if and only if there exists a

vertex vi 2 Gv such that there exists a (directed, undirected) path of vertices in Gv connecting

vertex vi to itself.

The ambiguous term cycle will imply directed cycle in this and following chapters. A

cycle may be as simple as the edge (vi; vi): An \acyclic" digraph contains no cycles.

4.1.3 Strongly versus Weakly Connected Digraphs

We will need the following de�nitions for digraph connectedness, which agrees with [Deo,

1972].

De�nition 4.4 A digraph G is (strongly, weakly)-connected if and only if every pair of

vertices vi; vj 2 Gv is connected by a (directed, undirected) path of vertices.

We follow the convention, implied from this de�nition, that strongly-connected implies

weakly-connected, which di�ers from [Deo, 1972]. Hence, a weakly-connected digraph may

or may not be strongly-connected too.

If digraph G is weakly connected, then the cardinality of Ge is at least one less than

the cardinality of Gv: If G is strongly connected, then the cardinality of Ge is at least the

cardinality of Gv:

A strongly-connected digraph necessarily contains a cycle. A strictly weakly-connected

digraph necessarily contains no cycle.

4.1.4 Condensation

Condensation \collapses" digraphs into simpler representative digraphs [Deo, 1972].

33

De�nition 4.5 Let G = (Gv; Ge) be a digraph. Then the condensation of G is a digraph

where each vertex corresponds to a unique maximal strongly-connected subgraph of G and

each edge represents a set of edges from one maximal strongly-connected component of G to

another.

As noted in [Deo, 1972], the condensation of any strongly-connected digraph is a digraph

containing a single vertex and no edges. Also, the condensation of a digraph contains no

circuit.

4.2 Set N-tuples

The recurrent versions of the standard IFS analysis tools operate on N -tuples of sets. These

will be denoted in bold as

A = (A1; A2; : : : ; AN): (1)

A set N -tuple A of n-dimensional sets Ai belongs to the n � N dimensional space (Rn)N :

Moreover, functions on these sets in this space are denoted with a superscripted N (i.e.

w ! wN).

One can think of (Rn)N as N copies of Rn overlayed on top of each other. A set A � R2

is better understood by drawing each of its N parts Ai on a separate clear sheet. Then the

set A can be visualized in the space (R2)N by overlaying all N transparent sheets [Barnsley

et al., 1989].

The subset relation in (Rn)N is de�ned as the logical \and" of the subset relation of its

components.

De�nition 4.6 Let A = (A1; A2; : : : ; AN) and B = (B1; B2; : : : ; BN): Then A � B if and

only if Ai � Bi for all i = 1 : : : N:

Notice that if A � B then [iAi � [iBi:

34

4.3 The Recurrent Hausdor� Metric

The extension of the Hausdor� distance metric, as originally de�ned in [Barnsley et al., 1989],

combines the individual Hausdor� distances of the component sets using the chessboard

metric.

De�nition 4.7 The recurrent Hausdor� metric hN measures the distance between two sub-

sets A = (A1; A2; : : : ; AN) and B = (B1; B2; : : : ; BN) of (Rn)N as

hN(A;B) = max
i=1:::N

h(Ai; Bi): (2)

As in the last chapter, we will construct a metric space of compact sets using the Hausdor�

metric as a distance metric. Here, a set A � (Rn)N is compact if and only if every one of

its parts Ai is compact in Rn:

4.4 The Recurrent Hutchinson Operator

The recurrent Hutchinson operator, as �rst developed in [Barnsley et al., 1989] is a general-

ization of the standard Hutchinson operator. It creates a new N -tuple as the selective union

of images of sets from the original N -tuple.

De�nition 4.8 Let (fwigNi=1; G) be an RIFS. Then the recurrent Hutchinson operator wN :

(Rn)N ! (Rn)N is de�ned

wN (A) = (w1(A);w2(A); : : : ;wN (A)) (3)

where A = (A1; A2; : : : ; AN) 2 (Rn)N and

wj((A)) =
[

fi:(vi;vj)2Geg

wj(Ai): (4)

35

For example, consider the following four maps

wi(x) =
x+ (�1;�1)

2
(5)

where i = 1 : : : 4; taking all combinations of (�1;�1): Each of these maps takes the closed

square [�1; 1]� [�1; 1] to one of its quadrants.

1 2

3 4

1 2

3 4

Figure 4.1: The complete digraph of four vertices and the corresponding digraph where the

same vertex cannot be visited twice in a row.

Impose a restriction on the composition of these four maps, using the digraph in Figure 4.1

(right). In the latter case, the same map cannot be used twice in a row. The recurrent

Hutchinson operation takes each one of four images of the square, reduces it by one-half,

and places in the four quadrants of the original square less the image of the quadrant they

are replacing. Figure 4.2 shows this generation sequence.

In Figure 4.2, the initial set is a square. One iteration of wN produces the same square

when the digraph in Figure 4.1 (left) is used, but produces only the shaded regions when

the digraph in Figure 4.1 (right) is used. The empty boxes in Figure 4.2 denote the sections

of the images under each of the maps that would appear under the standard Hutchinson

operator, but do not appear under the recurrent Hutchinson operator.

As before, the recurrent Hutchinson operator is a contraction. However, this proof will

need the following result. Its proof uses thickenings, but is otherwise based on the version

36

w
N

w
N

w
N

Figure 4.2: A recurrent Hutchinson operator applied to a square.

that appears in [Barnsley et al., 1989].

Lemma 4.1 For collections A = fAigNi=1;B = fBigNi=1; where Ai; Bi are subsets of metric

space (X; d);

h(
[

i=1:::N

Ai;
[

j=1:::N

Bj) � sup
i=1:::N

h(Ai; Bi): (6)

Proof: Let

� = h(
[

i=1:::N

Ai;
[

j=1:::N

Bi): (7)

Then [
i=1:::N

Ai �
[

j=1:::N

Bj + �; (8)

For each 1 � i � N we have

Ai �
[

j=1:::N

Bj + � (9)

and speci�cally

Ai � Bi + �Bi
(10)

where �Bi
is minimal. Still, �Bi

� �: Likewise, for each i there is a corresponding �Ai
� �: For

each i the maximum thickening radius matches or exceeds the original thickening radius

maxf�Ai
; �Bi

g � � (11)

37

as does its maximum over i: The proof is complete once the reader realizes that the left-

hand side of (11) is the Hausdor� distance between Ai and Bi and the right-hand side is the

Hausdor� distance between the union of Ai and the union of Bi: 2

This argument is also valid for the maximumHausdor� distance over countable collections

of sets.

We may now state and prove a recurrent version of Hutchinson's Lemma.

Theorem 4.2 Let wN be the recurrent Hutchinson operator of RIFS (fwigNi=1; G): Then wN

is a contraction on the metric space (CN ; hN):

Proof: Let A = (A1; A2; : : : ; AN);B = (B1; B2; : : : ; BN) 2 (Rn)N : Consider the following

chain of inequalities

hN (wN (A);wN (B)) = max
j=1:::N

h(wj(A);wj(B)) (12)

� max
i;j=1:::N

h(wj(Ai); wj(Bi)) (13)

� max
i;j=1:::N

sj h(Ai; Bi) (14)

� s max
i=1:::N

h(Ai; Bi) (15)

= shN (A;B) (16)

where

s = max
i=1:::N

Lipwi: (17)

Since s < 1;wN is a contraction on (CN ; hN): 2

4.5 De�nition

As before, we have postponed de�nition the de�nition of RIFS so the reader will better

understand its di�erences with other's de�nitions.

38

De�nition 4.9 A recurrent iterated function system is a �nite set of contractions fwigNi=1
from Rn into itself, along with an N-vertex weakly-connected digraph G = (Gv; Ge) containing

some directed cycle from every vertex vi 2 Gv back to itself.

The digraph G is used to restrict map compositions. The iteration sequence wj � wi is

allowed if and only if a directed edge from vertex vi to vertex vj exists in G:

In order for the Chaos Game (Chapter 9) to work on an RIFS, it must be strongly

connected. The rendering techniques developed in later chapters will work on any weakly-

connected RIFS.

It is the connectedness of the digraph that di�erentiates the many di�erent names for

this IFS enhancement. In [Barnsley et al., 1989], the term \recurrent," as applied to a row-

stochastic matrix that described the digraph, implied the digraph was strongly connected,

though they are careful to mention that (w; G) is a RIFS \whether or not [the row-stochastic

matrix of G] is technically recurrent [i.e. G is strongly connected]." In [Womack, 1989], a

RIFS was termed a \Markov iterated function system." A Markov IFS also used a strongly-

connected digraph, also described by a row-stochastic matrix.

In [Reuter, 1987], a sun
ower IFS attractor was distrubuted into a �eld of sun
owers

using a second IFS. In [Peitgen et al., 1991], this kind of RIFS is known as a \hierarchical

iterated function system" which seems to imply a RIFS with a strictly weakly-connected

digraph controlling map compositions. Hierarchical attractors have one IFS attractor at one

level, then switch to another IFS at lower levels of detail.

In [Prusinkiewicz & Lindenmayer, 1990], a RIFS was called a \controlled iterated func-

tion system." Such an IFS was enhanced by a weakly-connected \control" graph. In

[Prusinkiewicz & Hammel, 1991], a RIFS was described as a \language-restricted iterated

function system." Here, the weakly-connected digraph G was described by a �nite-state

automaton where all nodes were \terminal."

39

4.6 The Fundamental Theorem of Recurrent Iterated

Function Systems

As before, we consider it of fundamental importance that a unique set be associated with an

RIFS. The following theorem and proof are based on [Barnsley et al., 1989].

Theorem 4.3 For any RIFS (fwigNi=1; G) there exists a unique N-tuple A 2 (Rn)N of non-

empty compact sets such that

A = wN(A): (18)

Proof: As in the proof of Theorem 3.6, since (CN ; hN) is complete (the �nite product of

complete spaces: Theorem 76 of [Kaplansky, 1977]) and wN is a contraction on (CN ; hN); the
Contraction Mapping Principle implies that wN posesses a unique �xed point in (CN ; hN):
2

The attractor of a RIFS is not an N -tuple, for we want to deal in an n-dimensional space,

not an n�N -dimensional space. Thus, we have, from [Barnsley et al., 1989], the attractor

of a RIFS.

De�nition 4.10 Let A = (A1;A2; : : : ;AN) be a set such that it is invariant under the

recurrent Hutchinson operator of a RIFS (w; G);

wN (A) = A: (19)

Then the attractor A of the RIFS is given by

A =
[

i=1:::N

Ai: (20)

The attractor of the IFS de�ned by the maps (5) and the digraph in Figure 4.1 (left) has

the closed square [�1; 1]� [�1; 1] for an attractor. Imposing a restriction on the IFS of this

40

Figure 4.3: The fractal pound sign.

simple attractor can create a much more interesting set. Using Figure 4.1 (right) creates a

RIFS whose attractor is shown in Figure 4.3.

The focus of this dissertation is on the rendering of such attractors in 3-D. The fractal

pound sign can be extended into 3-D as an RIFS whose maps take the cube: [�1; 1] �
[�1; 1] � [�1; 1] into its eight octants, and whose digraph does not allow the same map to

be applied twice in a row. The resulting attractor in 3-D is shown in Figure 4.4.

Finally, we have the useful result that any initial set N -tuple will iterate to the attractor

of an RIFS.

Corollary 4.4 Let (w; G) and A be as in the previous theorem and let B be an N-tuple of

non-empty bounded sets. Then

lim
n!1

(wN)�n(B) = A: (21)

41

Figure 4.4: The 3-D fractal pound sign.

42

Proof: Since each component of B is bounded, there exists a compact set B+ � Bi for all

Bi 2 B: Let
B+ = (B+

; B
+; : : : ; B+): (22)

Since each component of B is non-empty, there exists a compact set B�
i � Bi for all Bi 2 B:

Let

B� = (B�
1 ; B

�
2 ; : : : ; B

�
N): (23)

Then, by Corollary 3.2 and Theorem 4.3,

A � lim
i!1

(wN)�i(B�) � lim
i!1

(wN)�i(B) � lim
i!1

(wN)�i(B+) � A: (24)

As in the last chapter, they are all equal. 2

43

44

Chapter 5

WHAT IT MEANS TO BE A

FRACTAL

One of the most controversial areas of computer graphics in recent years is fractal geometry,

characterized here as the study of forms of excessive dimension. Its progenitor, B. Mandel-

brot, coined the word \fractal" publicly in 1975 to describe the recurring patterns across

scale he had observed in natural phenomena.

5.1 De�nitions of Fractal

One of the controversies of fractal geometry is the de�nition of fractal itself. The original

de�nition compares a sets real Hausdor� dimension with it integral topological dimension

[Mandelbrot, 1982b].

De�nition 5.1 (The Original De�nition) A set A is fractal if its Hausdor� dimension

is strictly greater than its topological dimension.

Formally, this is an implication, not a de�nition, since the \only if" part is not included.

It shows su�ciency, not necessity, for a set to be fractal. There are many sets that fall in the

45

so-called \gray area" of fractal geometry that fail to meet the requirements of this de�nition

but are still recognized as fractal.

Currently, it is generally accepted that the \fractal" property needs no strict de�nition.

The term \fractal" now simply refers to some kind of symmetry across scale.

One fundamental property of fractals is that they have detail at all magni�cations. When

this detail repeats, either exactly or statistically, the object posesses a symmetry across scale

and is understood to be fractal. When this detail is asymetric across scale, then the object

is probably better classi�ed as a \multifractal" [Falconer, 1990].

Regardless of any controversies in the de�nition of fractal, it is still quite important to

keep the Hausdor� dimension in mind when studying fractal sets, as shown most explicitly

by the recent writings of K. Falconer, which inspired many of the chapters of this part of

the dissertation.

Falconer's �rst book on the subject [Falconer, 1985], the so called \last book of Besi-

covich," the word \fractal" only appears in the preface, though the majority of the book is

devoted to a thorough study of the topological properties of fractals. The main lesson of

this book and its later rewriting [Falconer, 1990] is the importance of Hausdor� measure and

dimension regardless of the current state of fractal geometry.

Except for the �nal section, this chapter is simply selections from [Falconer, 1985] and

[Falconer, 1990]. The �nal section, Section 5.6, examines some counterexamples in fractal

geometry: sets accepted as fractal but with equal Hausdor� and topological dimensions. The

contradictions that arise from these counterexamples are settled with the proposal of a new

de�nition of fractal | a new view of \what it means to be a fractal."

5.2 Hausdor� Dimension

The Hausdor� dimension is a generalization of the topological dimension from integers to

real numbers. It is based on the Hausdor� measure, which is itself, a generalization of the

46

integral-dimensioned Lebesgue measure.

5.2.1 De�nition

The �rst step is the de�nition of a �-cover, which is a collection of sets that separate a set

into �- or smaller-sized sections.

De�nition 5.2 A collection U of sets U � Rn is a �-cover of A � Rn if and only if

A � [
U2U

U; (1)

(U is a cover) and

0 < diam(U) � �;8U 2 U (2)

(the diameter of every element of U is smaller than �).

The reader may recall the term \cover" from the de�nition of a compact set as one for

which a �nite open cover exists (De�nition A.7). �-covers alter this concept by allowing

in�nite covering sets, but of constrained size. Notice that any bounded set has a �nite

�-cover for any � > 0: Thus �-covers are used to show geometric, not topological, properties.

An \outer measure" is a positive real function on sets that is null on empty sets, smaller

on subsets than on the whole. Furthermore, the outer measure of a union of sets is less than

or equal to the sum of the outer measures of the individual sets. The Hausdor� measure is

an outer measure.

De�nition 5.3 The d-dimensional Hausdor� measure Hd(A) of set A is

Hd(A) = lim
�!0

inf
1X
i=1

diam(Ui)
d (3)

where fUig is a countable delta-cover of A:

47

The Hausdor� measure is similar to the Lebesgue measure (which is the basis of the

integral) in that it is the sum of the sizes (to the dth power) of in�nitesmal sets that,

together, cover the set A:When d = 1; the Hausdor� measure is proportional to the length,

d = 2 to area and d = 3 to volume. Hence, the Hausdor� measure is an extension of

length, area and volume to real dimensions. In fact, some formulations of Hausdor� measure

include a constant multiple so the n-dimensional Hausdor� measure equals the n-dimensional

Lebesgue measure Ld (i.e. length, area, volume) for non-negative integers n:

Now, the length of a ball is in�nite and the volume of a line segment is zero. Likewise, the

d-dimensional Hausdor� measure of an e-dimensional solid will be in�nite if d < e and zero

if d > e: When d = e the Hausdor� measure may be zero, positive or in�nite. This critical

value d = e of the Hausdor� measure on A is called the Hausdor�(-Besicovich) dimension

of A:

De�nition 5.4 The Hausdor� dimension of set A is

dimA = supfd : Hd(A) =1g: (4)

Notice that also

dimA = inffd : Hd(A) = 0g: (5)

5.2.2 Properties

The Hausdor� dimension posesses several properties that are useful in its estimation. The

�rst is that the dimension remains invariant under scaling.

Theorem 5.1 Let A � R
n and s > 0: Then

Hd(sA) = sdHd(A) (6)

where sA is the pointwise scaling of A by s:

48

Proof: Let U be a �-cover of A: Then

Hd
s�(sA) � X

Ui�U

diam(sUi)
d (7)

= sd
X
Ui�U

diam(Ui)
d (8)

� sdHd
�(A) (9)

which, when taken to the limit as � ! 0; gives us

Hd(sA) � sdHd(A): (10)

As so elegantly put in [Falconer, 1990], the other side is found simply by scaling sA by a

factor of 1=s: 2

Another property is that the dimension of the union is the maximum of the dimensions.

In fact, this is true for the union of countably many sets.

Theorem 5.2 Let A be a countable collection of sets Ai � Rn: Then

dim
[

Ai2A

Ai = sup
Ai2A

dimAi: (11)

Proof: Let

A =
[

Ai2A

: (12)

First, since Ai � A for all i; then Hd(Ai) � Hd(A) for all dimensions d: Thus dimAi � dimA

for all i: Second, let d > dimAi for all i: Then Hd(Ai) = 0 for all i; so Hd(A) = 0: Hence

dimA � supAi2AAi: 2

5.3 Box-Counting Dimension

When one sees the term \fractal dimension," more often than not, it is a reference to the

box-counting dimension. The box-counting dimension is used in physics and other sciences

because it can be easily computed on any kind of data.

49

5.3.1 De�nition

The box-counting dimension is similar to the Hausdor� dimension in that it is found by

covering a set with tiny \boxes" | actually any shape will do.

De�nition 5.5 The box-counting dimension dimB of a set A is given by

dimBA = lim
�!0

log cardU
log 1

�

(13)

where U is the �-cover of A of minimal cardinality.

One can compute the box-counting dimension of any set by using grids of various resolu-

tions. Plotting the number of grid points the set intersects versus the resolution of the grid

on a log-log grid will produce a line. If this line is straight then the box-counting dimension

is the slope of this line [Mandelbrot, 1982b].

5.3.2 Relationship with Hausdor� Dimension

The box counting dimension of a set is always greater than or equal to the Hausdor� dimen-

sion of the set. They agree on well behaved sets.

Theorem 5.3 Let A � R
n: Then dimB A � dimA:

Proof: From the de�nitions of Hausdor� measure and box counting dimension we get the

following inequality

inf
1X
i=1

diamd(Ui) � jVj�d (14)

for Ui is an element of �-cover U and the in�mum is over all such �-covers, and V is a �-cover

of minimal cardinality. The �'s are the same, only the conditions of the covers have changed.

The exponent d on both sides is the Hausdor� dimension of A:

Taking the limit as � ! 0 gives us the Hausdor� measure on the left hand side of (14).

Theorem 5.1 insures that, by scaling, we can make the Hausdor� measure of a set arbitrarily

50

large without a�ecting its dimension. So, without loss of generality and for the sake of

convenience, assume the Hausdor� measure of A is greater than one.

Taking the log of both sides then gives us

log jVj+ d log � > 0; (15)

which means
log jVj
� log �

� d; (16)

which can be easily rewritten into the desired result. 2

One not-so-well-behaved set that demonstrates the problems of the box-counting dimen-

sion if shown in the following example (from [Falconer, 1990]).

Example 5.1 The countable set A = f1; 1
2 ;

1
3; : : : ; 0g has box-counting dimension 1

2 :

Proof: Let U be a �-cover of A: Then a di�erent set from U is needed to cover each of the

i� 1 points: 1; 12 ; : : : ;
1

i�1 of A; where

� =
1

i
� 1

i+ 1
=

1

i(i+ 1)
: (17)

Thus, the minimum number of sets of diameter � needed to cover A is i and we have

log jU�j
log 1

�

=
log i

log i(i+ 1)
(18)

for minimal �-cover U�: Taking the limit as i ! 1 causes � ! 0 (17), and (18) converges

to 1
2: 2

Clearly, countable sets have null Hausdor� dimension. Ordinarily, the box-counting di-

mension is otherwise quite useful.

5.4 Self-Similarity Dimension

The self-similarity dimension of a set is usually derived from its construction.

51

De�nition 5.6 If A is the attractor of an IFS satisfying the open set condition and with

Lipschitz constants si; i = 1 : : : N; then its self-similarity dimension dimS A is given by the

solution d of

1 =
NX
i=1

sdi : (19)

Notice that if all similarities share the same Lipschitz constant s then the self-similarity

dimension is simply

dimS =
logN

log 1
s

: (20)

Furthermore, ifA is the attractor of an IFS of similtudes satisfying the open set condition,

then the self-similarity dimension agrees with the Hausdor� dimension. Additionally, the

Hausdor� measure of A is positive and bounded.

Theorem 5.4 Let A be the attractor of an IFS of similtudes fwigNi=1 satisfying the open set

condition. Then

0 < Hd(A) <1; (21)

where d = dimS A: Speci�cally

dimA = dimS A: (22)

Proof: Let si = Lipwi for each similtude of the IFS and let d > 0 be such that

NX
i=1

sdi = 1: (23)

By repeated use of Theorem 3.6 we get

A =
[

1�i1;i2;:::;ik�N

wi1 � wi2 � � � � � wik(A): (24)

Each of the k-fold compositions wi1 �wi2�� � ��wik has Lipschitz constant at most si1si2 � � � sik :
Thus

X
ik=1:::N

� � � X
i1=1:::N

diam(wi1 � � � � � wik(A))
d � diam(A)d

X
ik=1:::N

� � � X
i1=1:::N

(si1 : : : sik)
d (25)

52

= diam(A)d

0
@ X
i1=1:::N

sdi1

1
A � � �

0
@ X
ik=1:::N

sdik

1
A(26)

= diam(A)d: (27)

Let � > 0: Then k can be made su�ciently large so diam(A) � maxi=1:::N ski � �: Then

Hd
�(A) � diam(A)d which implies Hd(A) � diam(A)d as �! 0:

The other half of the proof, Hd(A) > 0; is signi�cantly more involved, and is beyond the

scope of this chapter. It can be found in Section 8.3 of [Falconer, 1985]. 2

5.5 Density Bounds and the Decomposition Theorem

This reiteration of [Falconer, 1985] concludes with a brief mention of density bounds.

De�nition 5.7 The density of a d-dimensional set A � Rn at a point x 2 A is given by the

upper and lower bounds

D
d
(A;x) = limr!0

Hd(A \Br(x))

(2r)s
; (28)

Dd(A;x) = limr!0

Hd(A \Br(x))

(2r)s
: (29)

Set points where D
d
= Dd = 1 are called regular; the other points are called irregular.

A regular set is one that is regular at almost all (with respect to Hd) points. Otherwise it

is an irregular set. Manifolds are regular sets whereas fractals are irregular sets. However,

there are some irregular sets that may not be considered fractal.

This is due to the de�nition of irregular as that which is not regular. This author believes

that many of the problems with the de�nition of fractal can be solved by not de�ning fractal

as that which is not Euclidean but by de�ning fractals more strictly and allowing sets to be

both non-Euclidean and non-fractal.

The Decomposition Theorem, from [Falconer, 1985], states that a set's regular (Eu-

clidean) parts and irregular (fractal) parts can be treated separately.

53

Theorem 5.5 Let A be a subset of Rn such that dimA = d: Then the set of regular points

in A form a regular set and the set of irregular points in A form an irregular set.

Proof: : : : is beyond the scope of this chapter. See Chapter 2 of [Falconer, 1985]. 2

5.6 Locally Fractal Sets

We conclude this chapter with some personal views justi�ed with examples. Mandelbrot's

original de�nition was a good one, but it fails on certain sets, and requires adjustment.

Fractal are \sets with detail at every level of magni�cation," though not all such sets are

fractal; as mentioned at the beginning of this chapter, some are better classi�ed as multi-

fractal, others are completely unstructured. We will attempt to form this statement into a

new de�nition of fractal.

5.6.1 The Carrot Leaf

Let us start with the carrot leaf. It is a tree-like attractor: a stem with smaller carrot leaves

extending from it. It is shown here in Figure 5.1.

Consider the straight line segments comprising its stem and, in fact, every visible branch

of the carrot leaf. Magnifying any of these branches will not produce any more detail beyond

some �nite factor. Intuitively, this object does not seem fractal. In this case, intuition is

supported by a mathematical argument.

Example 5.2 Let A be the carrot leaf attractor. Then dimA = 1: In particular, the carrot

leaf is not fractal under the old de�nition.

Proof: Let B0 be the trunk of the carrot leaf and let B1 and B2 be the main branches, and

so on. Let B be the countable union of all such branches Bi. Since the branches are line

54

Figure 5.1: The \carrot leaf" attractor (left) and the set of its branching limit points (right).

segments,

dimB = sup
i

dimBi = 1: (30)

Let C be the limit points of branching structure B as illustrated in Figure 12.1. The set C

is totally disconnected (visually con�rmed by Theorem 3.8 and Figure 12.1) implying

dimC < 1: (31)

Since the carrot leaf consists of the (disjoint) union of its branching structure and its limit

points

A = B t C (32)

we have

dimA = maxfdimB;dimCg = 1 (33)

55

and the carrot leaf is not necessarily fractal under De�nition 5.1. 2

What we have done in this proof is separate the fractal part of the carrot leaf from

the Euclidean part. One could say the carrot leaf is fractal only at its branch tips. In

[Mandelbrot, 1982b], the branches were called a residue and such shapes whose fractal part's

dimension is inferior to its topological part's were termed \subfractals."

This argument does not redeemDe�nition 5.1, for if the branches were lengthened so they

intersected other branches, the resulting \fractal part" would be connected, with Hausdor�

dimension greater than one, subsuming the Euclidean part and passing the original de�nition

of fractal.

5.6.2 Locally Fractal

Clearly De�nition 5.1 is the problem. The following de�nition of a fractal property called

\locally fractal" is a step toward the proper de�nition of the property of fractal.

De�nition 5.8 A set A � R
n is locally fractal at point x if and only if

D
d
(A;x) 6= Dd(A;x): (34)

Set A is locally fractal if and only if it is locally fractal at all of its points.

This would be the de�nition of irregular except for one important point. A set is irregular

if at least one point is irregular whereas a set is locally fractal only if all of its points are

irregular. \Locally fractal" is more exclusive than \irregular."

For the following chapters, fractals are hereby de�ned as sets that are locally fractal.

This re
ects its author's view of \what it means to be a fractal." It does not necessarily

agree with de�nitions by other authors.

56

5.6.3 The Devil's Staircase

De�ne an accumulation function A() as

A(x;B) =
card([0; x] \B)

cardB
; (35)

where B is any set inR:Here cardinality is used in the loose sense, as the quotient of in�nities

is not well de�ned. In this case we are more concerned with the percentage of points in B

less than or equal to x:

One could graph the accumulation function A versus x for the Cantor set C: Let D � R2

be the graph of A(x;C): The set D is called the Devil's staircase [Mandelbrot, 1982b] and

is shown in Figure 5.2.

Figure 5.2: The Devil's staircase (left) and the set of its increments (right).

As reported in [Mandelbrot, 1982b], the Devil's staircase is recti�able. In fact, its of

length two. It is level at each of the countably many plateaus, corresponding to the gaps in

57

the Cantor set. The points where the graph changes levels are called its increments, which

correspond one-to-one with the uncountable points of the Cantor set.

As before, this set is not necessarily fractal by De�nition 5.1. The argument is essentially

the same as the proof of Example 5.2.

Example 5.3 Let A � R2 be the devil's staircase. Then dimA = 1

Proof: The horizontal intervals Hi in A correspond to the gaps of the Cantor set. Let

H =
[
i

Hi: (36)

In A there are countably many such Hi so

dimH = sup
i

dimHi = 1 (37)

The remaining parts of A are a \skewed" Cantor set C whose dimension remains less than

one (as shown in Figure 5.2). Hence we have

A = H t C; (38)

giving

dimA = maxfdimH;dimCg = 1 (39)

and the devils staircase is not necessarily fractal under De�nition 5.1. 2

5.6.4 The Twindragon

The twindragon is a fractal shape that purportedly arose from a study of recursion [Mandel-

brot, 1982b]. It is the \just-touching" union of smaller similarities, as shown in Figure 5.3.

The twindragon is interesting because it can tile the plane, with a fractal border separating

the tiles.

The twindragon is also not necessarily fractal under De�nition 5.1. There is a subtle

di�erence in this argument.

58

Figure 5.3: The twindragon.

Example 5.4 Let A � R2 be the twindragon. Then dimA = 2:

Proof: The interior
�
A of the twindragon is open and non-empty. Its border @A is closed

and in A: Thus,

A =
�

A t@A: (40)

The interior
�

A is open and bounded so contains and is contained in a ball with positive

�nite 2-dimensional Hausdor� measure. Thus, dim
�

A= 2:

The dimension of @A cannot exceed the dimension of the plane it is embedded in, so

dim@A � 2: Hence,

dimA = maxfdim �

A;dim@Ag = 2 (41)

and the twindragon is not necessarily fractal under De�nition 5.1. 2

59

In fact, any set with non-empty interior is likewise not necessarily fractal under De�ni-

tion 5.1. However, if it is locally fractal at its boundary points, then separating its boundary

from its interior will produce a properly fractal set.

60

Chapter 6

LINEAR FRACTALS

Linear fractals are the product of RIFS's of a�ne maps. Such maps are used extensively in

the area of computer graphics. This chapter begins by introducing linear and a�ne maps,

and homogeneous coordinates, most of which can be found in [Foley et al., 1990]1. The

next sections de�ne linear fractals and show how they form naturally from cyclic object

instancing, which is original work. Finally, this chapter concludes with a summary of recent

work on the dimension of linear fractals.

6.1 Linear Maps and the Jacobian Matrix

Linear maps cause many of the shape deformations that begin with the letter "s" (scaling,

stretching, squashing, skewing, shearing and spinning). The following de�nition is similar to

those in many texts (such as [Foley et al., 1990]).

De�nition 6.1 A map T : Rn! Rn is linear if and only if

T (sx+ y) = sT (x) + T (y) (1)

1As in [Foley et al., 1990], column vectors (which are popular in linear algebra) are now used, instead of

row vectors, which are used here and in earlier texts.

61

where x; y 2 Rn; s 2 R and sx = (sx1; sx2; : : : ; sxn):

De�nition 6.1 has de�ned the two major properties of linear functions at once. The �rst

is w(sx) = sw(x); the second, w(x+ y) = w(x) + w(y):

Linear algebra indicates the use of matrices to specify transformations. Let M be an

n � n matrix of real constants. Then xM is a linear transformation of point x 2 Rn: The

Jacobian matrix of any n-dimensional map w(x) = (w1(x); w2(x); : : : ; wn(x)) is the matrix

J(w) de�ned as

Ji;j =
@wi

@xj
: (2)

The linear transformation matrix M is the Jacobian of the linear transformation T (), as

shown in [Barr, 1984].

6.2 A�ne Maps and Homogeneous Coordinates

Translation is not a linear function. Let y be a translation vector. Then, for s 2 R in general,

(sx) + y 6= s(x+ y): (3)

An a�ne map is a linear transformation followed by a translation.

De�nition 6.2 A map w : Rn! Rn is a�ne if and only if

w(x) � T (x) + y (4)

where T () is a linear map and the translation parameter y 2 Rn is independent of the function

variable x 2 Rn:

The Jacobian matrix of an a�ne function is the same as for its linear part. Thus, the

Jacobian matrix does not su�ciently describe an a�ne function. Matrices may still be used

to uniquely describe a�ne functions, but we �rst must use homogeneous coordinates.

62

De�nition 6.3 The homogeneous coordinate system of Rn is the space Rn+1 along with the

equivalence relation

(!x1; !x2; : : : ; !xn; !) � ($x1;$x2; : : : ;$xn;$) (5)

for all !;$ 2 R n f0g:

A point p = (p1; p2; p3) is represented homogeneously as

p = (p1=!; p2=!; p3=!; !) (6)

= (p1; p2; p3; 1): (7)

As the homogeneous coordinate ! ! 0 the other coordinates approach in�nity. A homoge-

neous values with null ! coordinate is a \point at in�nity." These in�nity points still have

direction, so we will use them to denote vectors. A vector v = (v1; v2; v3) is represented

homogeneously as

~v = (v1; v2; v3; 0): (8)

Hence, points and vectors are distinct in the homogeneous coordinate system.

Addition and subtraction of vectors acts like it should. Any number of vectors may be

added to a point to create a new point; addition of two points is not de�ned. Points may be

subtracted to create a vector, but only after they have been normalized such that their last

coordinate (!) agrees.

Homogeneously, one can specify an a�ne map T+~y by a simple extension to the Jacobian

of its linear part. Let M be an (n+ 1)� (n+ 1) matrix constructed

M =

2
64 J(T) 0

~y 1

3
75 (9)

where 0 is the column vector (0; 0; 0)T : Then the following is true

T (x) + ~y = xM: (10)

63

6.3 Linear Fractals

Fractal sets created from RIFS's of contractive a�ne transformations are called linear frac-

tals.

De�nition 6.4 A set A � Rn is linear fractal if and only if it is (locally) fractal and it is

the attractor of a RIFS of a�ne contractions.

This de�nition depends greatly on one's personal de�nition of \fractal." Here local fractal

is used though others may de�ne fractals di�erently.

6.4 Dimension Computations for Linear Fractals

The Hausdor� dimension of an attractor of an IFS of similtudes with the open set property is

simply its self-similarity dimension. When the similtudes of an IFS on R overlap, [Falconer,

1987] shows that the Hausdor� dimension still equals the self-similarity dimension almost

all the time. For a general IFS of a�ne transformations on Rn; computing the Hausdor�

dimension of its attractor is quite complicated.

6.4.1 The Hausdor� Dimension of IFS Attractors

Let B = Br=1(0) � Rn be the n-dimensional unit ball at the origin. Then its image

under a non-singular linear transformation T (B) is an n-dimensional (hyper-)ellipsoid with

n principle axes. The length along each principle axis from the origin to the ellipsoid's

surface de�nes each singular value of T: Notice the maximum singular value is equal to the

Lipschitz constant of the linear map. Thus, the singular values of a non-singular contraction

all lie within the open interval (0; 1):

64

De�nition 6.5 Let T : Rn! Rn be a linear contraction. Denote its chain of singular values

as

0 < s1 � s2 � � � � � sn < 1: (11)

Then for any dimension 0 � d � n de�ne the singular value function as

�d(T) = s1s2 � � � sdde�1s1+d�ddedde (12)

and for d > n as

�d(T) = (s1s2 � � � sn) d
n : (13)

The singular value function can then be used to de�ne a dimension based on the a�ne

maps of an IFS.

De�nition 6.6 Let fTi + yigNi=1 be an IFS of n-dimensional a�ne transformations. Then

the following dimension is de�ned

d(T1; : : : ; TN) = inffd : X
i=1:::N

�d(Ti) <1g: (14)

For lack of a name, we will term this value the Falconer dimension.

Furthermore, the following theorem shows that this dimension d(T1; : : : ; TN) is almost

always equal to the Hausdor� dimension of the attractor of the IFS when d(T1; : : : ; TN) is

less than n; the dimension of the embedding space. Otherwise the attractor's dimension is

clamped at n:

Theorem 6.1 Let A be the attractor of an IFS fTi + yigNi=1 of n-dimensional a�ne trans-

formations such that LipTi <
1
3 : Then for almost all yi 2 Rn (with respect to the (n �N)-

dimensional Lebesgue measure)

dimA = minfn; d(T1; : : : ; TN)g: (15)

65

Proof: : : : is found in [Falconer, 1988]. 2

Furthermore, when the attractor of an IFS meets the criterion of the preceding theorem,

then the following theorem states that computing the Hausdor� dimension of the attractor

is a simple as computing its box-counting dimension.

Theorem 6.2 Let A be the attractor of an IFS fTi + yigNi=1 of n-dimensional a�ne trans-

formations such that

dimA = minfn; d(T1; : : : ; TN)g: (16)

Then

dimBA = dimA: (17)

Proof: : : : is found in [Falconer, 1988]. 2

6.4.2 The Box-Counting Dimension of RIFS Attractors.

Very little work has been done on the Hausdor� dimension of an RIFS attractor. One

recent result, from [Barnsley et al., 1989], is a formula for the box-counting dimension of a

RIFS attractor. However, since this result is not clearly related to the Hausdor� dimension,

and much di�erent nomenclature is used in their theorem and proof, we refer the reader to

[Barnsley et al., 1989] for further information on this result.

66

Part III

MODELING

67

Chapter 7

MODELING WITH LINEAR

FRACTALS

Often models capitalize on redundancies to make object speci�cation simpler. Polygons are

used because they concisely describe a compact planar set of points. All of the points in

a polygon can be derived from a list of the polygon's vertices so polygons are commonly

speci�ed this way. Cyclical textures, such as a checkerboard, are redundant across space and

so require only the modeling of a single section along with a description of how to copy it to

make the rest of the pattern.

Fractals too have redundancies, though not across space but across scale. A checkerboard,

extended in�nitely, will cycle forever as one traverses its surface. A linear fractal will likewise

cycle forever, as one zooms into its surface.

7.1 Explicit versus Implicit Models

Explicit models have enjoyed a long-standing popularity in computer graphics. Describing an

object by enumerating points on its surface is a very natural way of modeling and lends itself

69

easily to interactive speci�cation. Explicit models are also very
exible, directly allowing

local and global alterations.

Implicit models have gained popularity in recent years. Speci�cation of very detailed

shapes is often easier when done implicitly, by describing them as loci. Such models do not

require the modeler to manipulate each local part of the model. Instead they require the

speci�cation of some condition for the points to meet.

One may model the unit circle at the origin using one of two methods. The explicit

function

f(�) = (cos �; sin �); (1)

models the circle as the image of the interval [0; 2�) whereas the implicit function

f(x; y) = x2 + y2 � 1 (2)

models the circle as a zeroset. In the �rst example, the circle is described parametrically

whereas in the second, it is described as a locus. The explicit model (1) has the advantage

of point enumeration | it is easy to draw a picture of the circle by plotting the image of

a �nite subset of input points. The implicit model (2) has the advantage of testing | it is

easy to check if a particular point is inside, on or outside the circle.

7.2 The RIFS Model

The RIFS model is both an explicit and an implicit model. Both algorithms have drawbacks:

the explicit method does not work on all RIFS models whereas the implicit RIFS model

requires augmentation to the RIFS digraph.

7.2.1 The Explicit RIFS Model

Treated explicitly, the RIFS models an attractor using the Chaos Game [Barnsley et al.,

1988]. The Chaos Game is based on a theorem that states that the �xed points of randomly

70

chosen maps are dense in the attractor (Theorem 3.1.3(i) in [Hutchinson, 1981]). The Chaos

Games enumerates points; the RIFS here is treated as an explicit model.

Algorithm 7.1 (Chaos Game) Let (w; G) be an RIFS with a strongly-connected digraph

G: Then the attractor of the RIFS is approximated by

1. Let x be any initial point and let vi be any vertex in Gv:
2. Initialize k = 1 and do the following forever : : :
2.1. Pick, at random, an integer j 2 1 : : : N such that (vi; vj) 2 Ge:
2.2. Let x = wj(x):
2.3. If k > 43 then plot x:
2.4. Let i = j and increment k:
2. End \do."

The Chaos Game generates a point cloud. This point cloud may appear more dense

in places and sparser in others. This can be remedied by setting the probabilities that an

n-dimensional map is randomly chosen based on the Lipschitz constant of that map taken

to the nth power [Barnsley et al., 1988].

As rigorously shown in [Barnsley et al., 1989], the Chaos Game does not work on a RIFS

with a weakly-connected digraph. This is because a point can get trapped in a section of

the digraph, never reaching some of the vertices in the digraph, thereby leaving much of the

RIFS attractor unplotted.

7.2.2 The Implicit RIFS Model

The RIFS model may also be treated as an implicit model, though this requires the construc-

tion of a set B that contains the RIFS attractor. If the attractor of an RIFS is unknown,

then a method described in Chapter 14 automatically generates a bounding set.

A new digraph G0; created by adding a single vertex v0 to G; simpli�es the implicit gener-

ation algorithm. Let C be the condensation of G: Then, for every vertex of C (corresponding

to a strongly connected component of G) with in-degree of zero, add an edge to G0
e from v0 to

71

every vertex in the strongly-connected component of G0 corresponding to the zero in-degree

vertex in C: The result is a \start vertex" v0:

Algorithm 7.2 Let (w; G0) be an RIFS with attractor A � Rn and let B0 � Rn be any

non-empty set of �nite diameter that contains A: Let B be an empty stack of tuples of the

type (B; i) where B � Rn and i is an integer from 1 to N:

1. Let i = 0:
2. If x 2 B0 then push B0 onto B:
3. While B is not empty : : :
3.1. Pop B; let (B; i) be the popped tuple.
3.2. For each fj : (vi; vj) 2 G0

eg : : :
3.2.1. Let Bj = wj(B):
3.2.2. If x 2 Bj then push (Bj; j) onto stack B:
3.2. End \For."
3. End \While."

If the preceding algorithm �nishes, then x 62 A:

The implicit algorithm shows point exclusion is decidable but point inclusion is likely

undecidable, a result similar to [Penrose, 1989].

7.3 The L-System Model

Grammar-based models have always been a popular choice for modeling linear fractals

[Smith, 1984; Prusinkiewicz et al., 1988]. An L-system1 is a deterministic parallel context-free

grammar. Parallel means the production rules are not applied right-to-left nor left-to-right

but in parallel | all at once.

An L-system consists of an initial string and a set of production rules of the form

A! B (3)

1Speci�cally, a D0L-system.

72

where A is a single uppercase character and B is a string of one or more uppercase and/or

lowercase characters. An uppercase character denotes a production rule whereas a lowercase

character denotes a character in the �nal word this L-system is describing. In this context,

most \words" will be in�nitely long. The set of all words an L-system describes is called its

language.

For example, the L-system described by a starting symbol A and production rules

A ! BcAcB (4)

B ! AdBdA (5)

produces in�nitely long words characterized as the limit of the sequence

A;BcAcB;AdBdAcBcAcBcAdBdA;

BcAcBdAdBdAdBcAcBcAdBdAcBcAcBcAdBdAcBcAcBdAdBdAdBcAcB; : : :
(6)

This sequence seems organized, though this terse representation hides its true meaning.

Turtle geometry [Abelson & diSessa, 1982] is used to visualize the words in an L-system's

language. In this context, a turtle is a small robot holding a pen. This turtle can perform

several operations with the pen. We will restrict the turtle to the three operations. Let

c and d cause the turtle to draw a �xed length straight line segment and then cause the

turtle to turn 60� to the left and right, respectively. Then four elements in the sequence (6)

corresponds to the graphs in Figure 7.1. Now the limit word is obvious | it is Sierpinski's

gasket.

Larger character sets are usually used, with such advanced turtle actions as pushing and

popping the current state of the turtle [Smith, 1984]. In [Prusinkiewicz & Lindenmayer,

1990], more sophisticated 3-D turtle operations are de�ned, some with optional parameters.

Of particular interest is Chapter 8 of [Prusinkiewicz & Lindenmayer, 1990], which shows

how any L-system can be reduced to a RIFS. In most applications, L-system models are

evolved to �xed levels, where they terminate with Euclidean primitives. For these two rea-

73

Figure 7.1: Turtle interpretations of four words generated by an L-system.

sons, this dissertation concentrates speci�cally on the RIFS model of linear fractals, without

any loss of generality.

74

Chapter 8

THE COLLAGE THEOREM

The collage theorem [Barnsley et al., 1986] states that if one can approximate a shape by

e�ciently covering it with a �nite number of smaller transformed self-replicas, then the

attractor of the IFS de�ned by these transformations provides an even closer approximation

of the original shape.

The collage theorem is more than just a theoretical result on recurrent iterated function

systems, it is a philosophy for modeling. When given a shape to model, the modeler ponders

the object and examines its components, looking for similarities. For each component the

modeler must recall, from a library of distortions, di�erent ways the object can be deformed

into it. If none perform satisfactorily, then either the object must be subdivided di�erently

or the component itself must be subdivided into smaller pieces.

A little experience with the collage theorem helps one to see shapes in an entirely new

way: a square is four smaller squares sharing a corner; a tree is a trunk with smaller trees

extending from it.

The collage theorem's main drawback is the need of intuition to �nd the best collage.

This has impeded algorithmic solutions to the inverse problem using the collage theorem.

Some solutions have ventured into the �eld of arti�cial intelligence, an area many geometric

75

modelers seem unfamiliar with.

8.1 Statement and Proof

The collage theorem is stated here similar to its original statement in [Barnsley et al., 1986].

It is actually just a simple corollary to Theorem 3.5, but its mere statement creates a powerful

tool in the control of fractal shapes.

Theorem 8.1 (The Collage Theorem) Let B 2 Rn and let w = fwigNi=1 be an IFS with

attractor A and contractivity factor s: Then

h(A;B) � h(B;w(B))

1� s
: (1)

Proof: Consider the following chain of bounds

h(B;w�n(B)) �
nX
i=1

h(w�(i�1)(B);w�i(B)) (2)

�
nX
i=1

si�1h(B;w(B)) (3)

� 1� sn

1� s
h(B;w(B)): (4)

We have the right-hand side of (2) by the triangle inequality on the Hausdor� metric; (2)

implies (3) by Theorem 3.5; (3) implies (4) by some simple but tricky algebra. Taking the

limit of both sides as n!1 gives

h(A;B) � h(B;w(B))

1� s
: (5)

since w�n(B)! A (Corollary 3.7) and sn ! 0 as n!1 (since s < 1). 2

The Hausdor� distance is used to measure the error between the target set and the

attractor. As this value goes to zero, the IFS attractor converges to the target set.

The quality of the IFS approximation depends on the contractivity of its maps. An IFS

does such a good job at removing the error of the collage because the error in the global

approximation is reduced in its smaller component approximations.

76

8.2 Recurrent Collages

The recurrent collage theorem, and its proof, appear originally in [Barnsley et al., 1989].

Once the correct tools are in place, its statement and proof are simple extensions of the

ordinary collage theorem.

Theorem 8.2 (The Recurrent Collage Theorem) LetB 2 (Rn)N and let (w = fwigNi=1; G)
be a RIFS of with attractor A and contractivity factor s: Then

hN (A;B) � hN (B;wN(B))

1 � s
: (6)

Proof:

hN (B; (wN)�n(B)) �
nX
i=1

(h(wN)�(i�1)(B); (wN)�i(B)) (7)

�
nX
i=1

si�1hN(B;wN (B)) (8)

� 1 � sn

1 � s
hN (B;wN(B)): (9)

Taking the limit as n!1 gives

hN (A;B) � h(B;wN(B))

1 � s
(10)

in the same manner as in the previous proof. 2

Though it is more powerful, it is also signi�cantly more di�cult to model with the

recurrent collage theorem. One must not only be able to describe a set out of smaller copies,

one must be able to describe a set using portions of smaller copies.

Hierarchical methods seem more intuitive. One may model a tree with an RIFS by using

one IFS to generate the main branching structure, another for the leaves, and a third for

the bark. These three IFS models may then be incorporated hierarchically into a single

weakly-connected RIFS model. The multifractal observations of many natural phenomena

[Shroeder, 1991] seem to imply the hierarchically-constructed RIFS models will be a useful

tool in modeling nature.

77

78

Chapter 9

INTERACTIVE MODELING

As mentioned in the last chapter, modeling with the Collage Theorem is usually an interactive

process. This chapter discusses three di�erent methods implemented by the author to model

a linear fractal by interactively specifying the a�ne maps of an iterated function system.

The �rst method was to compose the IFS by a textual modeling language developed by

the author. Here the results were realistically rendered (by an algorithm described later) so

the interactive response time was lengthy, typically �ve minutes.

The other methods composed the a�ne maps of an IFS interactively in real time. One

method was to specify the parameters of a particular a�ne transformation interactively with

a mouse. The other was to apply free-form linear deformations to an object to specify an

a�ne transformation.

An informal study was performed on these latter two methods as an exercise in computer-

human interaction. Its results were not conclusive enough to warrant any one technique over

the other. They were useful, however, in �ne-tuning these systems.

79

9.1 Textual Speci�cation by Map Composition

One direct method for describing an a�ne map is to specify its components, such as scaling

in a direction, rotation about an axis and translation to a new location. An e�cient exact

way to get this information is to make the user type in the commands directly. As expected,

this technique leaves a lot to intuition.

As found in many modeling languages, a current homogeneous a�ne transformation ma-

trix was maintained in constructing each map of the IFS. The current matrix was initialized

to the unit 4� 4 matrix, corresponding to a null a�ne transformation.

The following forms of a�ne transformations were allowed:

� Scale: x; y; z: Component scaling, independently for each axis.

� Rotate: axis; �: Rotation by � degrees about an axis according to the left-handed

coordinate system.

� Translate: x; y; z: Translation along a vector.

� Matrix: m1;1; : : : ;m1;3;m2;1; : : : ;m4;3:A catch-all, handling skews, shears or any other

strange a�ne transformation.

This method was used in a slow interactive visualization loop where the a�ne maps were

composed in a modeling �le and a small picture of the resulting attractor was rendered in

a few minutes. Most of the actual modeling performed in this manner was done in the

user's head or taken from a book on the user's shelf. The most successful application of this

method was to �ne tune the IFS model, checking its �nal results after each change of the

IFS parameters.

80

9.2 Graphical Speci�cation by Map Composition

To speed up the interactive visualization loop, one can display a sample of the map visually

as a \before and after" set. A tetrahedron was used to show the results of an a�ne map1.

An ambiguity arises when the tetrahedron is positioned such that one of its \after"

vertices is closer to another \before" vertex than the original \before" vertex. This is �xed

by one of two solutions. One solution is to connect before and after vertices by a specially

indicated line. The other is to indicate each of the four vertices of a tetrahedron uniquely,

say by assigning them four distinct hues.

To aid in interactivity, each canonical transformation can be entered through a continuous

input device, such as a mouse. Then the resulting transformation can be displayed in real

time while the user adjusts it to meet some criterion.

The attractor of the IFS was displayed immediately after each complete transformation

adjustment. The attractor was generated using the Chaos Game (Algorithm 7.1) and dis-

played in real time as a point cloud. This point cloud could rotate if desired to aid in

perceiving it in 3-D.

9.3 Graphical Speci�cation by Shape Transformation

Alternatively, one may specify an a�ne map in Rn by specifying two sets of n + 1 points

X = fx1; x2; : : : ; xn+1g and Y = fy1; y2; : : : ; yn+1g: In 3-D;X and Y are tetrahedra.

Using the mouse, the modeler grabs a vertex of a tetrahedron, moves it parallel to the

image plane in the viewing window the mouse is currently in, and places the vertex in

its new location. Then the vertices of the two tetrahedra are used to evaluate the a�ne

transformation from the master tetrahedron to the instance tetrahedron.

1This technique is similar to much of the software currently available to design 2-D iterated function

systems. The author is unaware of any such previously written software for 3-D iterated function systems.

81

This a�ne transformation matrixM is found by solving the linear system

xiM = yi (1)

for all xi 2 X and yi 2 Y: This produces three systems of four linear equations with four

unknowns which can be solved symbolically by any number of current math packages. The

resulting equations are then used, in real time, to dynamically generate the a�ne transfor-

mation as the tetrahedra are modi�ed.

82

Chapter 10

ALGORITHMIC MODELING

Even the simplest kinds of shape transformations require several parameters to be fully

described. Hence, the parameter space of iterated function systems is quite large, since

every parameter of every transformation adds a new dimension to this space. Searching this

parameter space exhaustively is much too time consuming to be useful.

Instead, more e�cient methods have been developed to �nd the parameters of a linear

fractal model that speci�es a desired set. The rest of this chapter will concentrate on using

the Method of Moments, a popular parameter solving method.

The methods described hereafter originated in [Barnsley & Demko, 1985] but have been

explored much more vigorously in [Vrscay & Roehrig, 1989; Vrscay, 1991].

10.1 The Method of Moments

The Method of Moments requires a large number of moments to accurately determine the

proper parameters. The power moments of a set o�er a countably large number of moments

for which to solve.

83

De�nition 10.1 Let A � Rn: Then the power moments gi1;i2;:::;in of A are de�ned as

gi1;i2;:::;in =
Z
A
xi11 x

i2
2 � � �xinn dA: (1)

The moment g0;0;:::;0 =
R
A dA = 1 for all A:

Given two sets A and B; with moments g; h; it is not too di�cult to see that if gi1;i2;:::;in =

hi1;i2;:::;in for all sequences i1; i2; : : : ; in then A = B: If a large number of moments match

between two sets, then they are likely similar, though there is no guarantee of this.

The Method of Moments estimates parameters of a model by computing the moment of

the model's result explicitly, deriving the equations for the moments of the model's results

in terms of its parameters, and then inverting these equations to solve for the parameters in

terms of moments.

10.1.1 A Parameterized Iterated Function System

The rest of this chapter will deal with an IFS parameterized as

wi(x) = six+ ai (2)

where si; ai and x are points in either R or C :

The moments of such an IFS1 are produced recursively by the recurrence equation

gm =

Pm
j=1

�
m

j

�
gm�j

1
N

PN
i=1 s

m�j
i aji

1� 1
N

PN
i=1 s

m
i

: (3)

10.1.2 Matching Moments Analytically

Section 3.3 of [Barnsley & Demko, 1985] solves for the complex IFS parameters si; ai for the

twindragon. Their method is analytic, and they assume a priori that the IFS contains two

maps, s1 = s2; and a1 = �a2:
1Assuming a uniform measure.

84

As prescribed by the Method of Moments, the moments of the twindragon are computed

explicitly by summing xn over the number of pixels the twindragon covers.

The moment g0 = 1; by de�nition. The odd moments g1; g3; : : : vanish since the twin-

dragon is symmetric about the origin. Thus, one needs two moments, say g2 and g4; to solve

for the two parameters s1 and a1:

They obtain analytically, from (3), the solution s � 0:064 � 0:594i: Though it di�ers

slightly from the actual parameter s = i=2; the approximated attractor barely resembles the

original (compare Figures 11 and 12 in [Barnsley & Demko, 1985]). Better approximations

can be made by explicitly computing the moments on a �ner grid.

10.1.3 Matching Moments Procedurally

The previous example matchedmoments analytically by computing inverse equations. When

the number of parameters increases, by allowing a larger number of contractions of a more

general type, the moment equations increase in degree, requiring root-�nding methods to

solve for the parameters.

Let (R2)N be the parameter space of tuples

p = ((s1; a1); : : : ; (sN ; aN)): (4)

The norm (magnitude) jpj of a tuple p 2 (R2)N is given by

jpj =
MX
i=1

gi(p�Gi) (5)

where M is the number of moments considered and the Gi are the explicitly measured

moments of the target set. As M ! 1 the norm of the parameters that create the target

set will necessarily vanish. Furthermore, the norm is smooth with respect to the parameters.

Speci�cally, its gradient may be computed in closed form.

Thus [Vrscay & Roehrig, 1989] proposes a gradient search for parameters of zero norm.

The unfortunate drawback to gradient searches, and other local searches, are that they get

85

stuck at local minima. Improvements such as simulated annealing and genetic algorithms

appear to be better suited for such searches, the latter shown to be quite e�ective for the

inverse problem [Cabrelli et al., 1991].

10.2 Block Coding

No review of automatic IFS generation would be complete without mention of its applications

to image compression. Perhaps the most successful implementation of such an algorithm is

[Jaquin, 1991]. This method, a fractal block-coding scheme, does not operate on sets of

points in R2: Instead, it operates on blocks of images. As such, the methods described in

this dissertation are unrelated to this method. Those interested in this application of iterated

function systems should read [Jaquin, 1991].

86

Part IV

RENDERING

87

Chapter 11

LINEAR FRACTALS: WHERE

CLASSICAL RENDERING FAILS

Fractals are di�cult shapes to render; their in�nite detail hampers occlusion computation,

lacks surface normals and aliases at all sampling resolutions. This chapter outlines current

rendering techniques and demonstrates their shortcomings regarding linear fractals. The fol-

lowing chapters contain the main contributions of this dissertation: overcoming the problems

of rendering linear fractals.

11.1 Occlusion and the In�nitely Detailed

Occlusion is, by far, the most powerful 3-D cue and is the basis of most modern rendering

methods. Occlusion computations for fractals are exceptionally di�cult due to the extreme

detail of their surfaces. The di�culty of determining fractal occlusion is perhaps the main

reason so many have limited themselves to 2-D for investigating fractal sets.

89

11.1.1 The Hidden-Surface Problem

The hidden-surface problem (determining occlusion) is a classic problem whose solution is

fundamental in 3-D computer graphics. A large number of solutions to this problem are

summarized in [Sutherland et al., 1974], where they were categorized as object-space or

image-space1 algorithms.

Object-space methods determine hidden surfaces to machine resolution whereas image-

space methods determine hidden surfaces to screen resolution. The in�nite detail of a fractal

surface will likely contain an extreme number of occlusions, suggesting the use of image-space

algorithms [Hart, 1989].

Two image-space methods for removing hidden surfaces are z-bu�ering and ray casting.

The z-bu�er method has been used in other fractal rendering algorithms and is described

here for completeness. The hidden surface method used in the fractal rendering algorithms

described herein will be ray casting.

Z-bu�ering

One uses a z-bu�er to eliminate hidden surfaces by plotting every primitive of a scene. Each

pixel maintains a minimum distance (z-value). When a primitive projects onto the pixel,

the distance from the eye to the point on the primitive that maps to the pixel is measured.

If and only if this distance is less than the minimum, then the minimum is updated and the

pixel receives the primitive's color [Catmull, 1975].

A z-bu�er method solved the hidden-surface problem for fractals in [Norton, 1982; Nor-

ton, 1989b]. Although the z-bu�er method is image-space, it is object-time | it requires a

complete pass through all of the primitives in an object database.

As the resolution increases, such as in a close-up, the computation time increases dra-

1a third \list-priority" category was used for algorithms with elements of both image- and object-space

algorithms.

90

matically. This was experienced in the creation of [Norton & Melton, 1988], where it was

overcome by improving the resolution locally, a priori | only in the areas they knew would

be closely inspected.

Ray Casting

Rays in ray casting originate at the eye point and pass through the centers of pixels on the

image plane. For each pixel's ray, the object that intersects that ray closest to its origin is

the object visible through that pixel [Appel, 1968].

Ray casting is an image-space algorithm since the number of rays is proportional to

the image resolution. Ray casting is also an image-time algorithm in that its computation

time depends more on image resolution than on object database size. Hence, when rendering

close-ups of fractal sets, the amount of computation time should not increase as dramatically

as it would using object-time methods.

Ray tracing extends ray casting by casting secondary rays at the point of intersection

[Whitted, 1980]. Rays cast from the intersection point to the light source determine the

shadows cast upon the intersection point. Rays cast o� the object as a ricochet of the

original ray determine the image a shiny surface re
ects. Rays cast through the object

simulate transparency, and when their direction is properly adjusted, they exhibit refraction

e�ects. In short, ray tracing provides a simple model for illumination.

11.1.2 Ray-Fractal Intersection

Ray tracing depends greatly on the ability to e�ciently compute the intersection of a ray with

an object. The e�ciency of a ray-object intersection computation depends largely on the

internal representation of the object. Linear fractals may be represented by many standard

computer graphics models. One, in particular, permits an e�cient ray intersection.

91

Linear Fractals as CSG Models

Commonly, the �rst intersection of a ray with an object is determined from a �nite set of

ray-object intersections. For example, when evaluating the intersection of a ray with a CSG

constructed object2, one computes the intersection of the ray with every primitive in the

construction, then merges these intersections together via a Roth diagram [Roth, 1982].

When the object is fractal, one must �nd the �rst of a continuum of discrete intersections

with the object. When formulated this way, ray intersection is intractable.

Linear Fractals as Implicit Surfaces

Another method for determining ray intersection is the use of iterative methods which con-

verge on the ray-object intersection closest to the ray origin. Such methods have been de-

veloped and successfully used, in general, to ray trace general arbitrary implicit and explicit

surfaces [Kajiya, 1982; Hanrahan, 1983; Toth, 1985; Kalra & Barr, 1989].

These techniques rely on root �nding methods, such as Newton's method, which rely on

the derivative of the function that de�nes the object. When this function de�nes a fractal

surface, its derivative is no longer de�ned and these methods fail.

If the implicit function underestimates the distance from any point to the object, then one

can create a sequence that converges to the �rst ray-object intersection [Hart et al., 1989].

Such a distance function was devised for linear fractals in [Hepting et al., 1990; Hepting,

1991]. Thus, linear fractals may be rendered using this distance estimate, though not in

optimal time.

Linear Fractals as Recursive Hierarchies

A more e�cient method for ray intersection is developed in Chapter 12. There, linear fractals

are de�ned as the natural result of a cyclic object hierarchy. A few minor enhancements

2An object constructed using union, intersection and complement operations on other objects

92

augment the standard ray-hierarchy intersection method, creating an e�cient ray-fractal

intersection algorithm.

11.1.3 Volume Rendering and Geometric Measure Theory

Iterative methods produce approximate solutions, since one cannot wait forever for an in�nite

series to converge. This error is mandatory if certain sets are to be rendered at all, as pointed

out in the next example.

A paper on rendering fur [Kajiya & Kay, 1989] introduced the delicate relationship be-

tween volume rendering3 and geometric measure theory:

: : : consider the rendering of a single plane surface via a volume density. Assume

the surface is stored into a volume density so that it bisects the cube. The optical

depth of the surface is so high that it simulates an opaque surface. : : : For the

transparency calculation, even though the optical depth parameter is set very

high, the line integral of the density in the exponent will be vanishingly small.

This is because the surface is in�nitely thin, the the line integral will pierce the

surface at only a single point. This yields an integral of 0. A similar problem

occurs in the brightness calculation. : : : Thus the transparency and brightness

for this surface will both be zero | an invisible surface!

One expects such a problem when measuring a 2-D set with a 3-D measure. This problem

arises with any set of dimension less than three.

One solution to this problem is to thicken the set4, making it measurable in 3-D. If A is

3It is important to understand the context of the following quote which describes a shortcoming of

modeling an object as an array of volume densities. Volume rendering is de�nitely not limited to this

paradigm as [Kajiya & Kay, 1989] quite clearly demonstrates.
4As noted by D. Sandin, proper treatment of the wave properties of light makes such immeasurable

objects visible. The wavelengths of light thicken the rays of light, which is a viable alternative to thickening

the set.

93

a set to be rendered, then render the set A+ �:

The next step is to determine the magnitude of �: If � is too large then the rendering

may incorrectly portray the topological properties of the set; it may appear heavier or more

connected than it really is. Conversely, if � is too small then the rendering might appear

dust-like, again incorrectly portraying connectedness. In Chapter 15, we determine the best

� for properly portraying topological properties at a given resolution.

11.2 Shading Without Surface Normals

Recalling calculus, the derivative of a function f : R! R is de�ned

f 0(x) = lim
h!0

f(x+ h)� f(x)

h
: (1)

Functions that produce fractal curves lack a derivative because a limiting sequence of slopes

does not converge. Rather, this sequence becomes periodic as h decreases since fractals

are symmetric across scale. The tangent of a fractal surface is similarly unde�ned, though

several approximations have been devised.

11.2.1 Surface Normal Approximations

In [Norton, 1982], local tangent planes of points on the surface of a fractal were approximated

by the gradient of the z-bu�er. Though its results were quite e�ective, as seen in the

illustrations in [Norton, 1982; Norton, 1989b] and the animations [Norton & Melton, 1988;

Norton, 1989a], this method is inappropriate for ray tracing, which requires no z-bu�er.

If the surface is generated to a �xed resolution, at which point it is approximated by

primitives, then the surface normal of the primitive used to approximate the surface may

be used. This method was used by the fractal terrain papers [Kajiya, 1983; Bouville, 1985].

When the fractals are constructed to high levels of detail, this method will likely cause

aliasing.

94

In [Hart et al., 1989], the gradient of a distance estimate function provided a decent

approximate surface normal. Such distance estimates exist for linear fractals [Hepting et al.,

1990; Hepting, 1991] but are relatively expensive to compute.

11.2.2 Shading Module Approximations

A shading module is a procedure, rather than parameters, associated with an object that

computes the shading of its surfaces [Cook et al., 1984]. Shading modules are more powerful

and
exible than simple shading parameters, and are used to allow novel surface shading

e�ects in a standard rendering package.

The extra power and
exibility of shading modules is quite useful when rendering highly

detailed objects. A single surface normal inadequately represents the orientation of a highly

detailed surface. Instead, shading modules better portray tiny details.

Both [Kajiya & Kay, 1989] and [Thompson, 1991] identify and o�er solutions to the

problem of rendering highly detailed objects. Both solutions approximate complex intricate

geometries with a single primitive.

Texels

In [Kajiya & Kay, 1989], highly detailed objects are modeled volumetrically. The standard

volume model was enhanced by replacing the simplistic density model [Kajiya, 1983] with

a sophisticated shading module at each voxel. Such improved voxels are called \texels."

This shading module approximates some highly detailed sub-voxel geometry, the rendering

of which is precomputed and now represented by the voxel.

Amalgams

In [Thompson, 1991], shading modules are associated with bounding volumes. Such im-

proved bounding volumes are called \amalgams." These shading modules approximate their

95

contents by precomputing the re
ected light of their sub-geometries in various discrete di-

rections.

Hierarchical Shading

Chapter 17 shades linear fractal surfaces by partially illuminating its bounding volume hier-

archy. It is not intended to produce an accurate depiction of the shading of a fractal surface.

Instead, this kind of shading aids in the perception of surface orientation while inhibiting

aliases.

11.3 Sampling In�nite Frequencies

The silhouette of a fractal surface is often a fractal itself [Falconer, 1985]. When rendering

such a surface, one must remove both aliases from shading artifacts as well as those from

rasterization. Hierarchical shading (Chapter 17) inhibits shading aliases. Rasterization

aliases, on the other hand, must be reduced by other means.

11.3.1 The Rasterization Integral

We adapt a rasterization integral from [Norton et al., 1982] for use in the ray-tracing

paradigm. The rasterization integral over arbitrarily shaped pixel P; assuming a uniform

measure, is Z
P
I(R(p))dp (2)

where R(p) is a ray extending from the eye through point p 2 P in the image plane and

I(R(p)) is the resulting intensity found by tracing ray R(p): Rasterization is just a speci�c

form of integration.

96

11.3.2 Integration

When one reconstructs a signal from information gathered by sampling a frequency too

infrequently, the result is a completely di�erent signal than the original. This problem is

called \aliasing." Aliasing due to improper rasterization appears as staircasing and moir�es

in still images, and as crawling and twinkling in animations. It results when the integral (2)

is not approximated adequately.

Point Sampling Techniques

One method of integration is the Rectangular Rule, where samples of the function are taken

at �xed intervals within the domain of integration. A box is created for each sample of width

equal to the distance to the next sample and height equal to the function value at the sample

point in the domain. The integral is approximated by the sum of the areas of these boxes.

Adaptive sampling is a method where neighboring samples that produce drastically di�er-

ing function values are re�ned by taking additional samples between them [Whitted, 1980].

Stochastic sampling | a \Monte Carlo" method of integration | approximates the

integral using randomly placed samples. This kind of sampling is just as prone to alias as

over sampling. The advantage of stochastic sampling is the aliases are less perceptible to the

human eye. Displacing samples from an initial grid in random directions is called \jittering,"

and causes aliases to appear as noise [Cook, 1986]. Constraining random samples to be at

least some minimum distance from each other produces a Poisson-disk distribution, which

mimics the organization of receptors in mammalian retinas, and improves on the perception

of aliases as unstructured noise [Mitchell, 1987].

By the Sampling Theorem, the number of samples required to accurately measure a signal

must be at least twice the highest frequency of the signal (the Nyquist limit) [Shannon, 1949].

When integral (2) is approximated using the Rectangular Rule, the number of samples should

be at least twice the highest frequency of the function.

97

The in�nite detail of linear fractals insures that the Nyquist limit cannot be reached by

�nitely many point samples. Hence, all of the above point sampling techniques are prone to

alias on fractal images.

As more samples are taken, aliases are pushed into higher frequencies, where they can be

eliminated by a low pass �lter [Mitchell, 1987]. The main drawback to such over-sampling

schemes in ray tracing is the high cost of multiple ray intersection computations.

11.3.3 Area Sampling Techniques

Area samples are e�cient, requiring one sample per pixel. This one sample, however, will

be more di�cult to compute than a simple point sample. Taking area samples defeats the

Nyquist limit problem for linear fractals since an area sample represents a continuum of

point samples.

In [Catmull, 1978], the integral (2) was solved analytically by measuring the area of the

projection of polygons onto the portion of the image plane bounded by a pixel. In [Heckbert

& Hanrahan, 1984], this method was used to create a hybrid ray-tracing/scan-conversion

algorithm called beam tracing. This method capitalizes on projection properties of polygons

and is not well suited for rasterizing linear fractals.

One can approximate an area sample on the image plane by intersecting a cone with the

object database instead of a ray. By thickening the ray into a cone that passes through a

majority of the pixel area, the cone's intersections with objects will better approximate their

projections onto the image plane [Amanatides, 1984].

The amount of the cone's visibility that an object obscures determines the percentage

that object contributes to its pixel's illumination. The main drawback of \cone tracing" is

the high computational expense of intersecting a cone with an object database. This high

computational expense limits cone tracing to simple geometric primitives, preventing it from

being an e�ective antialiasing mechanism for rasterizing linear fractals.

98

An alternative to thickening the ray is thickening the objects. The method of \covers"

thickens the object instead of the ray [Thomas et al., 1989]. It is described in detail in

Chapter 18. Like cone tracing, the covers method also limited to simple geometric primitives.

However, Chapter 18 derives a new method for the antialiased rasterization of linear fractals,

a variation on the covers idea called \local covers."

99

100

Chapter 12

RAY-LINEAR FRACTAL

INTERSECTION

As mentioned in the last chapter, ray tracing algorithms depend greatly on the accuracy

and e�ciency of ray intersection computations. In this chapter, an e�cient ray-linear fractal

intersection method is developed that approximates the intersection point to an accuracy

su�cient for rasterization.

12.1 De�nitions

We begin by de�ning some basic tools of ray tracing.

12.1.1 Heaps

First, a heap is a tree organized such that each node's index is smaller than the indices of

its children. Hence, the node with minimal index is found at the top of the heap.

De�nition 12.1 A weakly-connected digraph H of weighted vertices is a heap if and only if

it contains no undirected cycles (it is a tree) and any edge from a vertex v1 to a vertex v2

101

implies w(v1) > w(v2):

A heap is used to e�ciently �nd the closest intersection (with respect to the ray origin)

of a ray with a continually updated set of objects.

12.1.2 Rays

A ray is one-half of a line. It is anchored at an origin and extends in�nitely in a single

direction.

De�nition 12.2 A ray R(o; ~d) with homogeneous origin o and direction ~d is de�ned

R(o; ~d) = fo+ t~d;8t � 0g: (1)

Rays are parameterized by the value t: A ray intersection point may be recorded by the

parameter t where the intersection happens. When the direction component ~d is of unit

length, t is the distance along the ray. The parameter of the �rst ray intersection is given

by the following de�nition.

De�nition 12.3 The �rst ray intersection distance t0 of ray R(o; ~d) with set B is de�ned

t0(R(o; ~d); B) = infft : o+ t~d 2 B; t > 0g: (2)

The function t0() is always positive. This is so secondary rays (used for shadowing,

re
ection and refraction) do not immediately intersect the surface they are cast from.

12.2 Bounding Volumes and Hierarchies

This chapter builds upon the methods of [Rubin &Whitted, 1980]. These methods e�ciently

compute the intersection of a ray with a database of objects by a divide-and-conquer method.

102

The object database is partitioned, using simple geometric primitives, called \bounding

volumes," to delineate spatially distinct regions.

Spheres are common bounding volumes; their intersection with rays are readily com-

putable. Oriented bounding boxes easily bound sets given their coordinate extremes, with

the added bene�t of e�cient ray-intersection computations. Some bounding volumes contain

smaller bounding volumes, creating a hierarchy.

Such bounding volume hierarchies can be speci�ed by digraphs. Each vertex in the

digraph corresponds to an element in the hierarchy whereas a directed edge, say from vertex

v1 to v2; implies that v2 is directly beneath v1 in the hierarchy. Let the vertices denote

bounding volumes and edges denote a containment relation.

A low-level approximation to Sierpinski's gasket can be represented by the tree and

resulting image shown in Figure 12.1.

Figure 12.1: A tree topology (left) for the bounding volume hierarchy of a low-level approx-

imation of Sierpinski's gasket (right).

Each vertex in Fig. 12.1 (left) represents the absolute position, orientation and size of a

bounding volume or a primitive. The edges organize these elements into a hierarchy.

103

12.3 Ray-Hierarchy Intersection

Here ray intersection parses the bounding volume tree in depth �rst order, considering closer

intersections before farther ones.

Algorithm 12.3 Let B be a set of bounding volume hierarchies and primitives. Let R(o;b)

be a ray and H be an empty heap. Then the �rst intersection with R(o; ~d) and a primitive

in B is computed by the following steps:

1. For each bounding volume or primitive B 2 B : : :
1.1. If R(o; ~d) intersects B then add (t0(R(o; ~d); B); B) to heap H:
1. End \For."
2. While heap H is not empty : : :
2.1. Remove the minimal tuple (t0; B) from the top of heap H:
2.2. If B is a primitive then return t0:
2.3. Otherwise for each object Bi beneath B in the hierarchy : : :

2.3.1. If R(o; ~d) intersects Bi then

add (t0(R(o; ~d); Bi); Bi) to heap H:
2.3. End \For."
2. End \While."

Well organized trees contain fewer bounding volumes than primitives. Ordinarily, the

number of ray intersection computations nominally exceeds the logarithm of the number of

primitives, though in the extreme case, it can be as much as twice the number of primitives.

12.4 Object Instancing

An instance is an a�nely distorted copy of an object. Instancing saves space since only one

\master" object database need be stored, with a 4� 4 matrix representing each instance of

it. Furthermore, by building instances of instances, large \�elds" of similar objects may be

created where the actual number of instances is only a logarithm of the number of objects

appearing in the scene.

104

Object instancing was �rst described in [Sutherland, 1963] where it was used with hier-

archical display lists.

Object instancing was �rst adapted for ray tracing in [Rubin & Whitted, 1980] as a

method of reducing the size of object databases. Their technique allowed the city of Pitts-

burgh (38,000 primitives) to be rendered e�ciently using little memory by storing only 600

actual primitives.

Procedurally generated parallelepipeds were used as bounding volumes in [Kay & Kajiya,

1986]. They exhibited a forest of trees (over 110,000 primitives) surrounding a cement pond.

In [Snyder & Barr, 1987], oriented boxes bounded objects. The authors traded space for

time by using a 3-D grids structure to reduce ray intersection computations. Using these

techniques they rendered a carpet (125,000 primitives), a forest (2 billion primitives) and

the still unsurpassed \�eld of grass" (over 400 billion primitives).

Object instancing removes redundant vertices from the hierarchy by allowing bounding

volumes and primitives to have more than one parent. The resulting hierarchy is no longer

a tree; it is an acyclic digraph. Figure 12.2 shows the approximation of Sierpinski's gasket

speci�ed by the positioning, orientation and size of only seven bounding volumes and one

primitive. Here, only the top vertex speci�es a bounding volume in absolute coordinates,

the other vertices each specify only a bounding volume's or primitive's relative change in

placement and shape with respect to its parent in the hierarchy.

12.5 Ray-Instance Intersection

Each instance of a master object is produced by applying an a�ne transformation to each

of its points. This can be quite tedious and memory consumptive. Each of the vertices of

an instanced polyhedron must be computed from the master polyhedron, and stored for ray

intersection. An sphere instanced as an ellipsoid requires a costly ray-quadric intersection

computation.

105

Figure 12.2: An object-instancing topology (left) for the bounding volume hierarchy of a

low-level approximation of Sierpinski's gasket (right).

It is more e�cient to apply the inverse a�ne transformation to the ray. The a�ne

image of a ray consists of one point and one direction. Let M be an a�ne transformation

matrix that takes master object B0 to B1: Then the intersection t0(R(o; ~d); B1) is found by

intersecting the ray

R(o1; ~d1) = R(oM�1; ~dM�1) (3)

with the master object B0: Note the direction component ~d1 is probably not a unit vector.

Nevertheless,

o+ t0(R(o; ~d); B1)~d =M(o1 + t0(R(o1; ~d1); B)~d1) (4)

where B1 = fxM : x 2 Bg: In particular,

t0(R(o1; ~d1); B) = t0(R(o; ~d);MB): (5)

Thus the t0 values one gets from algebraic ray intersection are comparable, regardless of the

instancing transformations.

106

12.6 Cyclic Hierarchies: A Model for Linear Fractals

Of particular interest in [Rubin & Whitted, 1980] was their treatment of bi-parametric

surfaces. Using convex hull and subdivision properties, they were able to procedurally create

a hierarchy of bounding boxes during ray intersection. At a �xed terminal level of the

hierarchy, these bounding boxes were treated as \point" primitives.

Object instancing of fractal objects was suggested in [Fournier et al., 1982] though it

was �rst used in [Kajiya, 1983]. There procedural \cheesecake extents" (extruded triangles)

hierarchically bounded a fractal mountain. A later improvement used bounding ellipsoids

[Bouville, 1985]. One ray-traced fractal mountain mesh containing 262,144 primitives was

shown in [Kajiya, 1983].

Most recently, object instancing was used in an animation of a multitude of robots

cycling along a plane-�lling curve [Amanatides & Mitchell, 1989]. Also, D. Hepting and

D. Mitchell have modeled linear fractal shapes using tiny spheres but their ray-tracing pro-

grams (C. Kolb's \rayshade" and D. Mitchell's \FX"), though optimal for many other shapes,

limited the renderable resolution of these linear fractal models.

The main restriction to object instancing is that the hierarchy cannot contain a loop.

If a loop occurs, then some rays will intersect bounding volumes forever, never reaching a

primitive.

Notice that the graph in Fig. 12.3 has no primitives. The primitives for Sierpinski's gasket

are points, the limit of the bounding volume hierarchy as it converges to an uncountably

in�nite set of bounding volumes of zero diameter. Hence, the primitives of a cyclic digraph

are the bounding volumes themselves.

107

Figure 12.3: A cyclic topology (left) for the bounding volume hierarchy of Sierpinski's gasket

(right).

12.7 Ray-Linear Fractal Intersection

We can use the ray-instance algorithm to intersect a ray with a linear fractal. The only

necessary alteration is the bounding volume hierarchy must be terminated at some �nite

level, resulting in tractable ray intersection.

Algorithm 12.4 Let each element of B consist of an RIFS (w; G); a bounding volume B

such that B contains the attractor of the RIFS. Let R(o;b) be a ray and H be an empty

heap. Then the �rst intersection with R(o; ~d) and an attractor from B is approximated by

the following steps:

1. For each RIFS (w; G) : : :

1.1. Let o1 = oM�1 and ~d1 = ~dM�1:

1.2. If R(o1; ~d1) intersects B then

add (t0(R(o1; ~d1); B); B;M�1) to heap H:
1. End \For."
2. While heap H is not empty : : :
2.1. Remove the minimal triple (t0; B;M�1) from the top of heap H:
2.2. If B is a primitive then return t0:
2.3. Or if diam(M(B)) � p(t0) then return t0:

108

2.4. Otherwise for each valid a�ne contraction wi 2 w : : :
2.4.1. Let Wi be the homogeneous transform matrix representing

the a�ne contraction wi:
2.4.2. Let M�1

i =M�1W�1
i

2.4.3. Let oi = oM�1
i and ~di = ~dM�1

i :

2.4.4. If R(oi; ~di) intersects B then

add (t0(R(o; ~d); B); B;M
�1
i) to heap H:

2.4. End \For."
2. End \While."

Figure 12.4: Procedural bounding volumes instanced during ray-fractal intersection.

In Figure 12.4 one ray and many instanced bounding volumes are shown. In reality, there

is only one bounding volume and many instanced rays.

The algorithm �nishes when a primitive | a su�ciently small bounding volume | is

intersected. Always subdividing the closest intersecting bounding volume guarantees that

the �rst intersection found is the closest to the ray origin.

109

12.7.1 The Bounding Volume Theorem

Algorithm 12.4 depends greatly on the bounding volume hierarchy created by the RIFS. The

Bounding Volume Theorem asserts the validity and e�ectiveness of this hierarchy.

Theorem 12.1 (Bounding Volume Theorem) Let (w; G) be an RIFS with invariant set

A = (A1; A2; : : : ; AN) = wN (A) (6)

and let B � A be a bounding set N-tuple of A: Let

B� = (B1�; B2�; : : : ; BN�) = wN (B) (7)

denote the image of B under the recurrent Hutchinson operator. Then A � B� and

hN (A;B�) � shN (A;B): (8)

Proof: The premise A � B implies

wN (A) � wN (B) = B� (9)

by simple set theory. Invariance of A under wN gives us A � B � :
In the following chain,

hN (A;B�) = hN(wN (A);wN (B)) (10)

� shN(A;B) (11)

(12)

we have equality (10) by invariance of A and de�nition of B � : From this, the recurrent

version of Hutchinson's lemma (Theorem 4.2) implies (11), where

s = max
i=1:::N

Lipwi: (13)

2

110

When creating a bounding volume hierarchy, simple sets, rather than set N -tuples, are

used. The initial bounding volume corresponds to the initial vertex of the RIFS digraph (as

speci�ed in Chapter 7). Then, in the heap, each bounding volume must also contain the

index of the most recently applied map from the RIFS. This information is used to �nd a

\valid" map from the RIFS (as required in step 2.4 in Algorithm 12.4). As such, set N -tuples

are incorporated into the standard instancing paradigm.

Figure 12.5 shows the bounding volume hierarchy for Sierpinski's tetrahedron. Only the

top bounding volume is speci�ed, the rest are generated automatically from the IFS and are

valid and e�cient by the bounding volume theorem.

12.7.2 Analysis

For the RIFS model, the diameter of the bounding volumes at each level n of the hierarchy

is given by the left-hand side, and bounded from above by the right-hand side, of

diamwin � win�1 � � � � � wi1(B0) � sndiamB0: (14)

Thus the hierarchy traversal depth n is lower-bounded by

logs
p(t)

diamB0
� n; (15)

which is a variation on results derived in [Reuter, 1987; Hepting, 1991] for rendering 2-D

linear fractals.

The bounding volume hierarchy produced by the RIFS is more e�cient when neighboring

bounding volumes in the hierarchy do not intersect often. Ideally, the RIFS should have the

open-set property with the initial bounding volume set to the closure of open set.

Some attractors require overlapping constructions to be modeled e�ciently. Other con-

structions may have the open-set property but with a complex open set, such as the twin-

dragon, which posesses the open-set property with the open set equal to its interior. In

general, it is better to use the simplest, smallest initial bounding volume available.

111

The most e�cient bounding volumes are the canonical primitives such as the unit ball

centered at the origin, or a likewise de�ned cone, cylinder, box. For such initial bounding

volumes, sometimes the attractor must be a�nely deformed and translated to the origin to

snuggly �t inside the canonical primitive. Such attractors may be thought of as canonical

attractors, which may then be transformed back into their intended form by an instancing

operation.

112

Figure 12.5: Hierarchy of bounding volumes for Sierpinski's tetrahedron.

113

114

Chapter 13

FAST RAY-LINEAR FRACTAL

INTERSECTION

Suppose an RIFS (w; G) meets the following conditions:

(a) Every map wi 2 w is an a�ne map of the form

wi(x) = x

2
666666664

�1 0 0 0

0 �2 0 0

0 0 �3 0

a1 a2 a3 1

3
777777775

(1)

and

(b) the RIFS satis�es the open-set condition.

This chapter shows that �nding the �rst ray intersection with the 3-D attractor of such a

RIFS is equivalent to deciding if a point is in the attractor of a 2-D version of the RIFS.

115

13.1 A Locally Orthogonal Approximation to Per-

spective

For each pixel in the image plane, let R(o;d) be a ray originating at the eyepoint extending

through the center of the pixel. Mapping the results of each ray trace onto the resulting

pixel comprises a perspective projection into the image plane.

Given each ray R(o;d); construct the following homogeneous 4�4 transformation matrix:

M =

2
666666664

1 0 0 0

0 1 0 0

0 0 1 0

�o1 �o2 �o3 1

3
777777775

2
666666664

d3 0 d1 0

0 1 0 0

�d1 0 d3 0

0 0 0 1

3
777777775

2
666666664

1 0 0 0

0
q
d2
1 + d2

3 d2 0

0 �d2

q
d2
1 + d2

3 0

0 0 0 1

3
777777775

(2)

which transforms R(o;d) to the z-axis by translating the ray's origin to the space's origin,

rotates the ray into the y-z plane, and �nally rotates the ray into the z-axis [Foley et al.,

1990].

The orthogonal projection � : R3! R
2 is de�ned by the transformation matrix

� =

2
666666664

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

3
777777775

(3)

which zeros the third coordinate of any vector its applied to. The application

xM�;8x 2 R(o; ~d) (4)

maps the entire ray into the homogeneous 3-D origin:

R(o;d)
M�7�! (0; 0; 0; 1): (5)

Thus the 3-D ray is projected to a single point, the origin, in 2-D. As far as the ray is

concerned, this orthogonal projection is equivalent to a perspective projection.

116

13.2 Projected Recurrent Iterated Function Systems

Consider an RIFS (w; G) consisting of maps composed only of translations and uniform

scales. Let A � R
3 be its attractor and let �R(A) 2 R2 be its orthogonal projection onto a

plane perpendicular to ray R:

Furthermore, let Wi be the homogeneous 4�4 transformation matrix equivalent of a�ne

RIFS contraction wi: Then one can construct a new 2-D RIFS consisting of maps denoted

by the transformation matrices

�(Wi) =M�1WiM� (6)

which takes each point, maps it back to the original space, applies map w to it, maps it back

to the orthogonal space, and then zeros out its third coordinate. Since Wi is of the form

sx + a; where s 2 R and a 2 R3; losing the third coordinate does not a�ect the resulting

projected attractor.

Let A� be the attractor of this IFS. Then �(A) = A�; the orthogonal projection of the

attractor is the attractor of the orthogonal projection of the RIFS.

13.3 Ray Intersection via Point Inclusion

Let U be an open set satisfying the open set property of the 3-D RIFS and let U� be its

orthogonal projection. If the attractor is connected then A 6� U; though for all attractors

A � U: Therefore, let B� = U� be the bounding volume of A�:

Furthermore, sort the RIFS maps such that i � j implies that d(o; wi(B)) � d(o; wj(B)):

The ray R(o;d) projects to a point r 2 R2: Thus ray intersection problem is reduced to

point inclusion. If r 2 A� then ray R(o;d) intersects attractor A:

One can determine point inclusion by applying the maps of �(w) to B�: If one of the

mappings excludes r; then it is culled. Otherwise, the mappings are continually applied in

117

a depth-�rst manner, with priority on sorted order, until a mapping's contractivity factor is

such that it reduces B� to pixel scale, or point r is culled from all such composed mappings.

The ordering of the RIFS maps insures that bounding volumes occluding other bounding

volumes will be searched �rst. The open-set condition insures that no point from a further

bounding volume will occlude points from a nearer one. Hence, the �rst located hit will be

the hit closest to the ray origin.

118

Chapter 14

INITIAL BOUNDING VOLUME

CONSTRUCTION

Both ray-fractal intersection algorithms require an initial bounding volume B that contains

the attractor of the RIFS. When one models an object as a linear fractal using the Collage

Theorem, the bounding volume of the original object often su�ces as the bounding volume

of the linear fractal. When exploring the parameter space of linear fractals, one often has no

a priori knowledge the shape or scale of the resulting attractor; one is required to bound an

unknown object. In short, visualization of a linear fractal, in general, requires the algorithmic

construction of an initial bounding volume.

The following discussions focus on the IFS model. Since the attractor of an RIFS (w; G)

is embedded in the attractor of the IFS w; the bounding volume of the attractor of the IFS

also bounds the attractor of the RIFS, though perhaps not to the desired precision.

119

14.1 An Iterative Method

Let A be the attractor of an IFS w: One can infer from Corollary 3.7 that if a bounding

volume B has the property

B � w(B) (1)

then B � A:

Given any initial set B0; repeated application of the Hutchinson operator will produce (by

Corollary 3.7) the attractor. But the attractor is not a desirable bounding volume. Instead

we have the following algorithm.

Algorithm 14.5 Let w be an IFS with attractor A: Let B0 be any ball Br0(x0); r0 > 0; x0 2
Rn and let Bi = Bri(xi) be a sequence of balls of minimal radius ri such that

Bri(xi) � w(Bri�1(xi�1)) (2)

with xi 2 Rn dependent on ri: In other words, each Bi is a ball whose diameter equals the

diameter of the image of Bi�1 under the Hutchinson operator. When centered properly, Bi

contains w(Bi�1:

The sequence fBig converges to the limit

B = lim
i!1

Bri(xi); (3)

and, furthermore, A � B:

It seems one should be able to state this algorithm as a theorem and prove it. Unfor-

tunately, the tools required for proof are very geometric in nature and beyond the scope of

this dissertation1.

1and the abilities of its author.

120

14.2 Computational Geometric Methods

The problem of �nding a minimum bounding disk for a 2-D set is called the \Minimum

Enclosing Circle Problem" [Preparata & Shamos, 1985]. Computation geometry concentrates

on �nite sets; the amount of time their solution takes to compute a set's smallest enclosing

circle is a strictly increasing function of the number of points in the set. Unfortunately,

fractals have uncountablely many points.

This hurdle is overcome by approximating the attractor with a �nite set. One such

set consists of the �xed points of �nitely-many �nite-length map compositions [Dubuc &

Elqortobi, 1990]. First, let A� be the set of �xed points of �nite map compositions (of

minimal length) that take A to a set of diameter no larger than �:

De�nition 14.1 Let w = fwigNi=1 be an IFS. A point x 2 A� if and only if there exists a

sequence i1; i2; : : : ; ik such that

x = wi1;i2;:::;ik(x) (4)

and

diam(wi1;i2;:::;ik�1;ik(A)) � � < diam(wi1;i2;:::;ik�1(A)) (5)

Second, we restate the following theorem from [Dubuc & Elqortobi, 1990].

Theorem 14.1 Let A be the attractor of IFS w = fwig: Then

h(A;A�) � �: (6)

Thus, for the purpose of �nding an optimal bounding ball, we approximate the uncount-

able set A with the �nite set A�:

Now, given a �nite set, any number of methods may be used to �nd a bounding ball.

Two algorithms (O(N logN) and optimal O(N)) are given in [Preparata & Shamos, 1985]

for the 2-D case. Both rely on Voronoi diagrams, whose complexity increases exponentially

121

with dimension. Rather than develop the sophisticated tools of computational geometry in

3-D, we instead choose an approximation which su�ces for this purpose.

The approximation, from [Ritter, 1990], runs in O(N) time and claims to approximate

the minimum bounding ball within 5%.

Algorithm 14.6 Let A� be the �nite set approximation of attractor A; consisting of N points

in R
n: Then an approximate minimum bounding ball Br(o) can be found by the following

steps.

1. For each coordinate i = 1 : : : n de�ne the two points x+(i) and x
�
(i) as

x+(i) = maxx2A� xi and x
�
(i) = minx2A� xi:

2. Let (x+; x�) be the pair (x+(i); x
�
(i)) of largest distance jx+(i) � x�(i)j:

3. Let o = x++x�

2 and r = jx+�x�j
2 :

4. For x 2 A� : : :
4.1. If jx� oj > r then : : :

4.1.1. Let � = r+jx�oj
2 :

4.1.2. Let o = o + �(x�o)
rjx�oj

:

4.1.3. Let r = �:
4.1. End \If."
4. End \For."

122

Chapter 15

THE SIZE OF A PIXEL

The ray-fractal intersection algorithm needs to know the size of a pixel to determine if a

bounding volume is to be treated as a primitive or not. Perspective distortion dictates that

the diameter of an object's projection is proportional to its distance from the viewpoint.

Hence, the size of a pixel is a linear function of the distance from the viewpoint to the

ray-object intersection.

The idea of measuring the size of a pixel has appeared in numerous papers, though it

wasn't until [Barr, 1986] that it was derived rigorously. We continue in that tradition with

original results: bounding the [Barr, 1986] approximation and deriving similar results for

shadows and planar re
ections.

15.1 Eye-Ray Formulation

The horizontal extent of a pixel projected a distance t from the ray origin was originally

approximated in [Barr, 1986] as

p(t) � 2 sin �

2

Nh

t; (1)

123

where � is the �eld-of-view and Nh is the horizontal resolution. The frame bu�er is assumed

one unit from the ray origin.

Eq. (1) is actually the maximum horizontal extent of any pixel from the middle scan-line.

The horizontal size of a pixel from any scan line is bounded by

2 tan �

2

Nh

�
1

cos2 �
2

+
tan2 �

2

A2

� 1

2

t � p(t) � 2 tan �

2

Nh

t (2)

(illustrated in Fig. 15.1), where A is the aspect ratio (A = Nh

Nv
if the pixels are square.)

Ro

�

1
Nh

Nv

max p(t)

min p(t)

Figure 15.1: Pixel size geometry.

The exact size of a pixel at each pixel coordinate can be determined but, except for large

viewing screens or head mounted displays where the �eld-of-view is large, it is usually much

better to keep the size of a pixel constant for �xed t:

124

15.2 Light-Ray Formulation

If shadow rays are cast from the light source to the surfaces, then the size of a pixel can

be used as a \closeness criterion" to determine if light rays reach the intersection point on

the surface [Barr, 1986]. If the shadow rays are cast from the surface to the light source,

then the ray's origin Ro can be translated by p in the ray's direction Rd to avoid immediate

self-intersection.

The eye-ray formulation of pixel size does not apply to light rays. Two cases, where the

resolutions of a fractal's shadow and the shadowed surface di�er, illustrate this point.

(1) A distant light source illuminates a linear fractal, shadowing a closely inspected

surface. Light rays cast from the light source to the surface will produce shadows of lower

resolution than the surface while light rays cast from the surface to the light source will

produce shadows of higher resolution than the surface.

(2) A light source illuminates a nearby linear fractal, shadowing a distant surface in-

spected from a viewpoint farther than the light|fractal distance but closer than the fractal|

surface distance. Rays cast from the light source to the surface will produce a shadow of

higher resolution than the surface. Conversely, rays cast from the surface to the light source

create a shadow of lower resolution than the surface.

The light-ray pixel size is derived by setting the size of a pixel to zero at the light source

and to the eye-ray pixel size at the surface. Let te be the distance from the eye to the surface

and tl be the distance from the surface to the light. If the rays are cast from the light source

to the surface then the size of a pixel pl(t) at distance t from the light source, as shown in

Fig. 15.2, is given by

pl(t) =
p(te)

tl
t: (3)

If the rays are cast from the surface to the light source, then the size of a pixel at distance

t from the surface is

pl(t) =
p(te)

tl
(tl � t): (4)

125

te

tl

p(te)
pl(tl)

Figure 15.2: Light ray pixel size geometry.

15.3 Re
ection/Refraction-Ray Formulations

Planar re
ection causes a new ray to be generated. Thus, the formula for the size of a pixel

from this new ray origin almost always di�ers from the previous formula.

The re
ected size of a pixel is computed using a new viewpoint E1 found by re
ecting

the original viewpoint, denoted as E0, across the plane P = (a; b; c; d)T . Let N = (a; b; c)T

be the unit normal vector of plane P and let x = Ro+ tRd be the point that ray R intersects

plane P: The new viewpoint is then

E1 = E0 � 2jN � (E0 � x)jN: (5)

Then the re
ected size of a pixel is given by

pr(t) =
p(te)

jRo � E1j (t+ jRo �E1j); (6)

126

where Ro is the origin of the re
ection ray and p(te) is the size of a pixel at the previous

ray-plane intersection point Ro.

Re
ection and refraction from curved surfaces can change the size of a pixel dramatically.

A ray tracing microscope, constructed out of refractive solids, is alluded to in [Barr, 1986].

Even though this magnifying glass would increase the sampling resolution of the magni�ed

object, the size of a pixel would not be dramatically decreased and the sub-pixel primitives

would be magni�ed and become visible.

127

128

Chapter 16

THE LIPSCHITZ CONSTANT OF

AFFINE MAPS

16.1 Estimating the Lipschitz Constant

Since the diameter of a bounding volume is tested against the diameter of a pixel, in most

cases, an estimate of the bounding volume's diameter su�ces. These estimates are much

easier and faster to compute than the actual value for the Lipschitz constant of an a�ne

map.

16.1.1 A Lower Bound

The lower bound of the Lipschitz constant of the composition of a�ne maps (whose Lipschitz

constants are know a priori)1 is the product of the Lipschitz constants of the individual maps

Lipw1 � w2 � � �wk �
kY
i=1

Lipwi: (1)

1Often a�ne transformations are constructed from parameterized canonical a�ne transformations whose

Lipschitz constants are trivially derived.

129

If the wi are similtudes, then the inequality in (1) can be replaced with equality. For gen-

eral a�ne maps wi, this method provides only an upper bound, one which can be miserable

in some extreme cases, as shown explicitly in [Hepting et al., 1990].

16.1.2 An Upper Bound

Let W be the 4 � 4 homogeneous transformation matrix representation of an a�ne map

w : R3! R3: Then its determinant is the change in volume of the set

detW =
vol(w(B))

vol(B)
(2)

where B � R
3: Since volume of a set is proportional to the cube of its diameter, with this

proportion maximal when the set is a ball, we have the lower bound

Lipw � 3
p
detW: (3)

As before, if the wi are similtudes, then the inequality in (3) can be replaced with equality.

In general, this method provides only a lower bound.

16.2 Computing the Lipschitz Constant

The most accurate method for determining the Lipschitz constant of a homogeneous a�ne

transformation matrix M is by using a polar decomposition.

16.2.1 Polar Decomposition

Let T be the linear part (the upper-left 3 � 3 submatrix) of M: Then T; being real, square

and invertible, can be decomposed into two component parts

T = QS (4)

130

where Q is orthogonal and S is a symmetric positive de�nite matrix [Strang, 1988]. Com-

ponent Q orients, S scales. We are concerned with S:

The component S is found from the derivation

T TT = (QS)TQS (5)

= STQTQS (6)

= SQ�1QS (7)

= S2: (8)

The Lipschitz constant of w is found as the largest eigenvalue of S:

16.2.2 Computing Eigenvalues

The matrix T TT is symmetric and so is S2: The eigenvalues �1; �2; �3 of S2 are real and

can be found algorithmically using Jacobi transformations [Press et al., 1988]. The resulting

Lipschitz constant of w is thus found as

Lipw = max
i=1;2;3

q
�i: (9)

131

132

Chapter 17

HIERARCHICAL SHADING

As mentioned in Chapter 11, surface normals are unde�ned on fractals. In order to visually

perceive a 3-D object, one depends heavily on shading cues to represent surface orientation.

This chapter proposes a shading approximation for fractal surfaces based on their hierarchical

representations.

17.1 Formulation

Consider a natural linear fractal: cauli
ower. The surface of a cauli
ower is made of an

extremely large number of small buds. Shading a surface containing such tiny buds will

likely exceed the Nyquist limit and will be prone to aliasing [Shannon, 1949].

Hierarchical shading is based on the idea that the cauli
ower surface re
ects light di�usely

as a sphere since the small buds loosely approximate the surface of a sphere. The cauli
ower

re
ects light more like several medium-sized spheres since the buds more closely approximate

them. The illumination of many smaller spheres even more accurately represents the light

re
ected by these buds.

133

17.2 Di�use Illumination

Until the re
ectance properties of fractal surfaces are better understood, they should be

rendered di�usely. Specular re
ections produce highlights, which are a useful cue to the per-

ception of surface orientation. Unfortunately, highlights also give the perception of smooth

surfaces, which fractals necessarily do not have.

Using Lambert's law, the illumination color c(x) of a surface point x is computed as

c(x) = kacacx + kd
LX
i=1

(~n �~li)cicx (1)

where ka and kd are the respective percentages of ambient and di�use contributions, ca; cx

and ci are the respective colors of the ambient light, the surface and the light sources, ~n is

the surface normal at point x and ~li is a unit vector in the direction of the ith light source

from point x:

The light vector~li is uniform across the surface for a \directional" light source. The light

vector varies across the surface for a \point" light source and is constructed for each point

x on the surface as

~li =
oi � x

joi � xj (2)

where oi is the location of the point light source.

17.3 De�nition

Hierarchical shading is created as the weighted sum of the shading of the bounding volumes

containing a surface. Suppose ray R(o; ~d) intersects the surface at point x: Let Bi be a

descending sequence of bounding volumes that converge to point x: Then the hierarchical

shading of surface point x is computed as the weighted sum

ch(x) =

P1
i=1w(diam(Bi))c(yi)P1

i=1w(diam(Bi))
(3)

134

where w : R! R is a weighting function, yi is the point ray R(o; ~d) intersects bounding

volume Bi and c(yi) is the illumination at point yi as de�ned by (1).

One shortcut in the computation of (3) is to compute a \total" normal as the weighted

sum the surface normals. Hierarchical shading may then be approximated by di�usely illu-

minating point x by this total normal. This approximation is accurate for directional light

sources (where the light vector is uniform across the surface) but errors proportionate to

the diameter of the bounding volumes for point light sources (where the light vector varies

across the surface).

17.4 Weighting Methods

The choice of weighting function directly a�ects the appearance of the hierarchical shading.

Three linear weighting functions are o�ered here, though other functions, perhaps non-linear,

may be required to provide a desired e�ect.

17.4.1 Constant Weighting

The constant weighting function sums the shading of all encountered bounding volumes

uniformly so that the shading of the initial bounding volume contributes as much as the

shading from a terminal bounding volume. The constant weighting function is de�ned simply

as

w(x) = 1: (4)

A graph of this weighting function for an RIFS with contractivity factor s is shown in

Figure 17.1a.

Though the shading of all bounding volumes is weighted uniformly, the constant weighting

is not uniform across scale; the shading is biased toward the smaller bounding volumes.

135

17.4.2 Low-Pass Weighting

The low-pass weighting function removes the scale bias of constant weighting by weighting

the shading of smaller bounding volumes less than the shading of larger bounding volumes.

It is de�ned as

w(x) = x (5)

and its graph is shown in Figure 17.1b.

17.4.3 High-Pass Weighting

The high-pass weighting function dampens the surface normals of larger bounding volumes

and emphasizes the surface normals of the smaller bounding volumes. It is de�ned as

w(x) = diam(B0)� x (6)

where B0 is the initial bounding volume. Its graph is illustrated in Figure 17.1c.

W
e
i
g
h
t

Constant

(a)

diam(B)

1ss20

Low-Pass

(b)

diam(B)

1ss20

High-Pass

(c)

diam(B)

1ss20

Figure 17.1: Shading weight functions for (4), (5) and (6), respectively.

136

17.5 Analysis

Hierarchical shading can be compared to standard Lambertian shading by modeling a Eu-

clidean surface with an RIFS. One such model is an extruded Sierpinski's gasket. This

hybrid shape looks like the standard planar Sierpinski's gasket when viewed down the axis

of extrusion, but when viewed perpendicular to this axis, it reveals a planar surface.

Three extruded Sierpinski's gaskets appear in Figure 17.2 corresponding to the weights

from (4), (5) and (6), respectively.

The high-pass weighting produces moir�e patterns which are almost completely suppressed

by the constant weighting. The low-pass weighting does not reveal much detail, particularly

from the fractal side of the middle extruded Sierpinski's gasket.

The analysis consists of comparing the hierarchical shading from each of the three types

of weighting functions on the planar surface of the extruded Sierpinski's gasket with the

normal of a similarly oriented plane. Let ~nc be the surface normal approximated by the

high-pass weighting function (4), let ~nl be the surface normal approximated by the low-

pass weighting function (5), and ~nh be the surface normal approximated by the high-pass

weighting function (6). Furthermore, let ~np be the normal of a similarly oriented plane.

The discrepancies between the hierarchically de�ned surface normals and the analytically

de�ned surface normals for 10; 000 samples were measured by their dot product and plotted

in Figure 17.3.

The constant and high-pass weighting functions produced very narrow distributions about

the central value whereas the distribution of the low-pass weighting function is broader. Each

distribution had mode one; the most common hierarchically approximated surface normal

for this surface is the analytically de�ned surface normal. The standard deviations of the

three distributions about this one central value were :036; :084 and :031; respectively.

137

Figure 17.2: Extruded Sierpinski's gaskets shaded by constant (left), low-pass (middle), and

high-pass (right) shading modules.

138

of
points

1=2
Nc �Np

11=2
Nl �Np

11=2
Nh �Np

1

Figure 17.3: Distribution of surface normals for Eqs. (4), (5) and (6).

17.6 Evaluation

Since the bounding volumes a ray intersects vary depending on the direction the ray is

coming from, the hierarchical shading of the same surface may appear di�erent when viewed

from di�erent angles. In the experience of creating several animations, this artifact has never

blatantly presented itself, though subtle changes are sometimes noticed.

Hierarchical shading is by no means an analytically correct method for shading fractal

surfaces. The actual surface normal of a fractal is likely multivalued: a distribution of surface

normals that must be integrated for proper shading computations. Nonetheless, hierarchical

shading does a good job of cueing the orientations of fractal surfaces. It proper use is for

visualization and was not intended to produce analytically correct renderings.

139

140

Chapter 18

LOCAL COVERS

Aliasing is a current problem in computer graphics for which many solutions have been

o�ered. It is no less a problem in the rendering of fractal sets. Indeed, the detail these sets

o�er is much more than most antialiasing algorithms expect.

This chapter extends the area sampling methods of [Thomas et al., 1989] into the author's

original work regarding the rendering of linear fractals, though the results apply to any

number of other fractal and non-fractal models.

18.1 Covers

A cover is a set of two bounding volumes that are a pixel's width larger and smaller than

the set [Thomas et al., 1989].

De�nition 18.1 A cover of a set A � Rn and ray R(o; ~d) is the pair (B+; B�) 2 (Rn)2

de�ned

B+ = A+ p(t0) (1)

B� = A n (@A+ p(t0)) (2)

where t0 = t0(R(o; ~d); A):

141

Rays are tested against the outer cover B+; then the set A and then the inner cover B�:

If the ray intersects the outer cover but not the inner cover then a sillhouette edge passes

through the pixel in the image plane. When this happens, the pixel should receive some

portion of illumination from the surface, the remainder coming from the further exploits of

the ray.

In [Thomas et al., 1989], the minimum distance from the ray to the surface

d = inffjx� yj : x 2 R; y 2 Bg (3)

is used to interpolate the illumination as

k(d) =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

0 if d > p(t0) and R(o; ~d) misses A;

0 if d > p(t0) and R(o; ~d) misses A;

p(t)�d
2p(t0)

if d � p(t) and R(o; ~d) misses A;

p(t)+d
2p(t0)

if d � p(t) and R(o; ~d) hits A;

1 if d > p(t0) and R(o; ~d) hits A

(4)

which is a piecewise linear ramp function.

Shadow sillhouettes on the surface are similarly blended, creating smoother, slightly

softer shadows on surfaces. However, these shadows may still be aliased on the image plane

depending on the orientation of the shadow surface. Here, [Thomas et al., 1989] suggests

projecting the distance between the shadow ray and the shadowing surface onto the shadowed

surface (approximated by a tangent plane). Then project this distance onto the image plane

to �nd the proper blending proportion.

Re
ected and refracted sillhouettes are treats in the same way, though simulating the re-

ecting/refracting surface with a tangent plane is not accurate for surfaces of high curvature.

In this case, the authors of [Thomas et al., 1989] suggest other forms of antialiasing.

A transfer function is used to blend the color of a surface with its background. Several

transfer functions are available from the area of volume rendering [Kajiya, 1983], etc.; the

142

simplest, used here, are the linear approximations used for image compositing [Porter &

Du�, 1984].

If c and � are the current encountered ray color and opacity and cA and �A are the

color and opacity of shape A, then the linear transfer functions are, for source to surface ray

traversal,

c = c+ (1� �)�AcA; (5)

� = �+ (1 � �)�A; (6)

and, for surface to source ray traversal (sometimes used for light rays),

c = (1 � �A)c+ �AcAm (7)

� = � + (1� �)�A: (8)

One main drawback of covers has not received a fair treatment in the literature (including

[Hart & DeFanti, 1991]): each intersecting cover requires rays to be cast to each light source

for illumination. This can be quite tedious for rays that graze many surfaces. Fortunately,

this happens infrequently.

The most major drawback of covers is their limitation to simple geometries. Section 7 of

[Thomas et al., 1989] constructs covers for spheres, ellipsoids, planes, splines, CSG objects

and polyhedra. Nonetheless, highly detailed geometries, created from such techniques as

micropolygons or displacement maps, are very di�cult to cover e�ciently. Fractal surfaces

are exceptionally problematic for such object methods. The next section solves this problem

by covering a highly detailed object by concentrating on the sections near the ray.

18.2 Local Covers

A local cover covers a single primitive; their union over the object forms a cover as described

above. If the primitives are organized hierarchically using bounding volumes, then the a

143

bounding volume from the hierarchical ancestry of a primitive can be used as its local cover.

De�nition 18.2 A bounding volume B in an hierarchy of bounding volumes B is a local

cover of a point on a surface if and only if

(a) B intersects R;

(b) The diameter of B falls within preset bounds �min and �max; and

(c) none of B0s children in the hierarchy intersect R:

The values �min and �max denote the bandwidth of the local covers. They are most

e�ective when set proportional to the size of a pixel p(t): The bandwidth is used to avoid

computing the minimum distance between the ray and the surface.

The upper limit of the bandwidth, �max; is the scale at which bounding volumes take on

non-zero opacity. It resembles the value r from [Thomas et al., 1989]. We suggest setting it

to 2p(t), twice the size of a pixel.

The lower limit, �min; is the scale at which bounding volumes are completely opaque;

no further subdivision is performed. Intersecting such a bounding volume is reminiscent of

intersecting the inner cover from [Thomas et al., 1989] at a distance greater than r from the

surface. Section 5 of [Barr, 1986] suggests setting �min to 1
20p(t), which appears good.

As before, a simple piecewise linear function of diameter produces the desired opacity

values for local covers,

�B =

8>>>>><
>>>>>:

1 if diam(B) < �min;

1� diam(B)��min
�max��min

if �min � diam(B) < �max;

0 otherwise.

(9)

144

18.3 Evaluation

An example of the results of antialiased rasterization using local covers can be seen in

Figure 18.1. This �gure is an enlargement of a 32 by 32 pixel area from Figure 20.1. Notice

the blending into the background of the hard diagonal edge.

Figure 18.1: Detail of antialiased rasterization using local covers.

The animation [Hart, 1991] was plagued with aliases in its depiction of grass, due to

several reasons. The �rst was that there was not enough memory available in the Pixel

Machine to �nd the correct Lipschitz constant computation. Instead, the determinant was

used and the grass transformations, which squashed and stretched the entire �eld of grass

into each blade, were far from similtudes.

The second reason was that the �eld-of-grass-to-a-single-blade transformation had a small

Lipschitz constant (with even smaller determinant). This meant that few, if any, bounding

145

volumes fell within the local cover bandwidth. Thus, proper blending proportions were rarely

found, resulting in an all-or-nothing rasterization.

Finally, the special technique for shadow silhouettes developed in [Thomas et al., 1989]

used a tangent plane surface approximation, and so is not applicable to fractal surfaces.

Hence, extremely rough surfaces (with Hausdor� dimension approaching 3), such as grass,

will likely produced heavily aliased shadow silhouettes.

Covers are an approximation. Local covers approximate covers. Both are based on the

assumption that the proportion of the pixel �lled with a shape's projection is related to the

distance from the ray to the surface. It is easy to construct convoluted counter-examples

where this assumption is not true. Furthermore, fractal surfaces often test approximation

techniques harshly.

Local covers, like [Thomas et al., 1989] covers, do not produce area samples as accurately

as supersampling techniques. They are, however, quite e�cient, requiring only one eye ray

per pixel.

18.4 Extensions and Applications

The bounding volume hierarchy itself may be visualized by setting �max = 1 and using

a constant fractional opacity value. This makes all of the bounding volumes uniformly

translucent. An example of this appears in Fig. 12.5.

The algorithms in [Kajiya, 1983; Bouville, 1985] are examples of stochastic instancing,

where the instances of each bounding volume are randomly perturbed. The same kind of

bounding volume hierarchy is used for these random fractals as is used for linear fractals.

Hence, the smaller \cheesecake extents" and \bounding ellipsoids" may be used as local

covers for antialiasing these fractal terrain models.

In [Nishita et al., 1990] (a recent improvement to an algorithm in [Rubin & Whitted,

1980]), rational bezier surfaces are subdivided, creating a hierarchy of bounding volumes

146

extending down to the point level. Ironically, the same algorithm that antialiases fractal

surfaces can antialias smooth surfaces as well.

In [Hart et al., 1989], quaternion Julia sets were rendered using a distance estimate to

compute the radius of so-called \unbounding volumes." When rays graze the surface, the

diameter of these unbounding volumes reduces as the bounding volumes in the linear fractal

case. Hence, the diameter of the unbounding volume can be used as the diameter of a

bounding volume in the opacity computation. Local covers may be simulated for quaternion

Julia sets.

When any complicated database is viewed from a distance, it is phenomenologically

fractal | that is, interesting at all visible levels of detail. Thus, the bounding volume

hierarchy may be pruned at a higher level than the primitive level to save computation time.

This technique is given a thorough treatment in [Thompson, 1991].

147

148

Part V

CONCLUSION

149

Chapter 19

IMPLEMENTATION

These algorithms and methods were developed on an AT&T Pixel Machine 964dX [Potmesil

& Ho�ert, 1989]. The Pixel Machine is a parallel MIMD image computer consisting of

64 AT&T DSP32 digital signal processors. The frame bu�er is distributed among the 64

processors such that every eighth pixel in the horizontal and vertical directions are connected

to the same processor, but to no other processor. Serial communication is available along a

toroidal topology between processors but was not used in this implementation.

The AT&T DSP32 digital signal processor is a single precision pipelined processor with a

peak performance of 10 MFLOPS and 5 MIPS. The MFLOPS rating is twice the MIPS rating

since a single instruction can perform a multiplication and an add. Often, the compilers for

such processors do not take full advantage of their capabilities. Hence, much of the code for

these processors was written at a low level, often with assembler directives in the \C" code.

The Pixel Machine's memory architecture, under the DEVtools operating system, con-

tains 36kB of available programming space, limiting the size of programs signi�cantly. Lower

speed data space is also available, in three large chunks which are commonly used for the

frame bu�er, the texture space and the z-bu�er.

In the implementation of the previously described algorithms, the 36kB programs space

151

constraint was overcome by the following. The heap, containing the transformation matrices,

top level bounding volume pointers, and color and shading information, was kept in the z-

bu�er memory, with a maximum of 256 entries. The shape database, containing the iterated

function systems and object databases were stored in the back frame bu�er. The texture

memory was left available for 2-D texture maps.

A program on the host, a Sun 4, interpreted modeling �les and passe the derived raw

data to the Pixel Machine for rendering. Upon completion, the rendered image could be

saved in a �le for later redisplay.

152

Chapter 20

EXHIBITION

Two examples, showing the range of linear fractals, from visualization to image synthesis,

from the geometric to the natural, from inside to the outdoors, are described and exhibited.

Color versions may be found in [Hart & DeFanti, 1991]. The iterated function system codes

used to produce these images may be found in Appendix B.

20.1 The Five Non-Platonic Non-Solids

The �ve non-Platonic non-solids are a satire of the �ve Platonic solids: the tetrahedron,

octahedron, hexahedron, icosahedron and dodecahedron. The �ve non-Platonic non-solids

are: Sierpinski's tetrahedron, octahedron and icosahedron, Menger's sponge and von Koch's

snow
ake-a-hedron. These shapes are non-Platonic for their fractal, non-Euclidean, geome-

tries. They are non-solids since each one has in�nite surface area and/or zero mass.

Sierpinski's tetrahedron and octahedron, and Menger's sponge have the open-set prop-

erty. Sierpinski's icosahedron and von Koch's snow
ake-a-hedron do not have the open-set

property but do exhibit this property on their faces. Sierpinski's gasket may be found in the

woodgrain
oor.

153

Figure 20.1: The �ve non-Platonic non-solids.

154

20.2 Fractal Forest

The fractal forest demonstrates the power of linear fractals in modeling nature. In this scene,

every leaf, pine needle, piece of bark and blade of grass is accounted for in the linear fractal

model and those visible are rendered.

The elm trees are composed of a trunk with four smaller elm trees extending from it.

The trunk itself consists of three small stretched upright elm trees and three small stretched

inverted elm trees. The bark is actually the stretched image of the foliage.

The pine trees consist of six base branches and one \rest of the pine tree" section. The

pine tree is cone-shaped, as are its branches. Real pine branches are thin at the base and

become larger at their ends. These pine trees were modeled with IFS models; an RIFS model

would do a better job.

Finally, as mentioned at the end of Chapter 18, the �eld of grass is tiled using a twin-

dragon shape. The blades themselves are actually themselves �elds of grass, though com-

pressed and stretched to form individual blades.

155

Figure 20.2: The fractal forest.

156

Chapter 21

FURTHER RESEARCH

This dissertation is by no means a complete solution to the problems of rendering fractals.

The following areas are in much need of attention.

This dissertation concentrates on linear fractals. As detailed in the introduction, many

other kinds of fractals exist. Only a handful of methods have been developed for render-

ing or otherwise visualizing fractal sets in 3-D. Other fractal sets whose research would

beni�t from e�cient rendering methods are the many strange attractors from physics, the

cubic connectedness locus [Milnor, 1991] and the family of deterministic fractal sets in the

quaternions [Norton, 1989b], to name a few.

The section on modeling surveys methods for automatically modeling objects as linear

fractals. This speci�c area has vast implications in the area of data compression and is still

much in its infancy.

The problem of �nding an optimal initial bounding volume remains largely unsolved,

though does not appear to be signi�cantly di�cult.

The shading of fractal surfaces has yet to receive a thorough, rigorous treatment. Fractal

surfaces lack tangent planes | surface normals | though it can be shown that a distribution

of surface normals more accurately portrays the re
ectance properties of fractal surfaces.

157

Furthermore, it is likely that extruded fractal surfaces, such as those found on quaternion

Julia sets and some strange attractors, re
ect light anisotropically. Until more research is

done, Lambert's di�use re
ection model is recommended when rendering fractal surfaces.

Finally, the problem of aliasing is particularly problematic with fractal sets. The use of

local covers e�ciently inhibits aliases. Nonetheless, the self-similarity of fractal sets should

be exploited to better compute the rasterization integral, eliminating aliases with a more

accurate approximation.

158

APPENDICES

159

Appendix A

METRIC SPACE ESSENTIALS

This appendix derives the basics of metric spaces used in the dissertation, for the bene�t

of those readers not fortunate enough to have taken the course. It is based largely on

[Kaplansky, 1977].

De�nition A.1 A metric space is an ordered pair (X; d) where X is a set (space) and d :

X
2! R is a real function (metric) satisfying

d(x; x) = 0;8x 2 X; (1)

d(x; y) > 0;8x; y 2 X; x 6= y; (2)

d(x; y) = d(y; x);8x; y 2 X; (3)

d(x; z) � d(x; y) + d(y; z);8x; y; z 2 X: (4)

The Euclidean metric on space Rn is de�ned as the root of the sum of squares, namely

d(x; y) =

NX
i=1

(xi � yi)
2

!1

2

: (5)

We will almost always use the Euclidean metric.

The only other metric used here is the chessboard metric, de�ned

d(x; y) = max
i=1:::N

xi � yi: (6)

161

The di�erence between the two metrics can be observed by drawing curves of equal

distance about a point. In R2 the Euclidean metric yields a circle, the chessboard metric, a

square. Such a curve and the regions it bounds is called a \ball."

De�nition A.2 The ball Br(x) of radius r about a point x in metric space (X; d) is de�ned

Br(x) = fy : d(x; y) � rg: (7)

Let Ur(x) be de�ned similarly to (7) but with the strict inequality

Ur(x) = fy : d(x; y) < rg: (8)

Then Ur is an \open" set and is used to de�ne all open sets of a metric space.

De�nition A.3 A set U of metric space (X; d) is open if and only if for each point x 2 U

there exists a positive r such that

Ur(x) � U: (9)

Theorem A.1 Let U be any collection of open sets of metric space (X; d): Then

V =
[
U2U

U (10)

is open.

Proof: Let x be any point in V: Then x 2 U for some open set U 2 U : Since U is open,

there exists a positive r such that Ur(x) � U; and since U � V;Ur(x) � V: 2

Theorem A.2 Let U be any �nite collection of open sets of metric space (X; d): Then

V =
\

Ui2U

U (11)

is open.

162

Proof: Let x be any point in V: Then x 2 Ui for all Ui 2 U : Since each Ui is open, there

exists a corresponding positive ri such that Uri(x) � Ui: Let

r = min
i=1:::cardU

ri: (12)

Then Ur(x) 2 V: 2

De�nition A.4 Let x1; x2; : : : be a sequence of points in metric space (X; d): The sequence

converges to a limit point x 2 X if and only if, for any � > 0 there exists an N large enough

that for all i > N;

d(xi; x) < �: (13)

De�nition A.5 A set A of metric space (X; d) is closed if and only if any sequence x1; x2; : : :

of points xi 2 A that converges to a point x 2 X; implies that x 2 A:

Theorem A.3 Let A be a subset of Xand let U =XnA: Then A is closed if and only if U

is open.

Proof: Let U be open and let x1; x2; : : : be any sequence in A converging to a point x 2 X: If

x 2 U then Ur(x) � U for some positive r: But given an r implies an N such that d(xi; x) < r

for some i > N; implying xi 2 U ! Thus, x 2 A and A is closed.

Let A be closed and let x be a point in U such that Sr(x) 6� U for any positive r: Then

let

ri =
1

i
(14)

de�ne a decreasing sequence of radii. For each ri let xi be any point in A \ Uri(x): Then xi

converges to x: But for each i; xi 2 A which is closed, implying x 2 A: Thus, every x 2 U is

surrounded by an open ball in U and U is open. 2

Corollary A.4 Let A be any �nite collection of closed sets of metric space (X; d): Then

B =
[

Ai2A

Ai (15)

is closed.

163

Corollary A.5 Let A be any collection of closed sets of metric space (X; d): Then

B =
\
A2A

A (16)

is closed.

De�nition A.6 Let (X; d) be a metric space and let x1; x2; : : : be a sequence in X such that

for any � > 0 there exists an N > 0 such that

d(xi; xj) < � (17)

for all i; j > N: Then (X; d) is a complete metric space if and only if all such previously

described sequences in X converge to a point in X:

De�nition A.7 Let A be a subset of metric space (X; d): Then A is compact if and only if

given any collection of open sets U such that

A � [
U2U

U (18)

there exists a �nite sub-collection V � U such that

A � [
U2V

U: (19)

164

Appendix B

DOCUMENTATION

This appendix documents the codes used to describe iterated function systems that modeled

the objects illustrated in this dissertation. The codes are part of a parameter �le interface

to a rendering system developed on the AT&T Pixel Machine 964dX using a Sun 4 host.

The \newmap" speci�cation initializes a new transformation matrix to the unit matrix. The

other commands simply post-multiply the implied transformation matrix to the current one.

B.1 The Extruded Sierpinski's Gasket

Any 2-D IFS may be extruded into 3-D by duplicating its transformations. The original set

of transformations is scaled by one-half in the z-axis and then translated by one-half in the

positive z direction. The duplicate set of transformations are likewise scaled in the z-axis

but a translated in the negative z direction.

ifs esg {

newmap

scale: 0.5,0.5,0.5

translate: 0,0,-0.5

165

newmap

scale: 0.5,0.5,0.5

translate: 0.5,0,-0.5

newmap

scale: 0.5,0.5,0.5

translate: 0,0.5,-0.5

newmap

scale: 0.5,0.5,0.5

translate: 0,0,0.5

newmap

scale: 0.5,0.5,0.5

translate: 0.5,0,0.5

newmap

scale: 0.5,0.5,0.5

translate: 0,0.5,0.5

}

B.2 Natural Models

The natural models are examples of the power of linear fractals for simulating natural objects.

166

B.2.1 Grass

The grass model uses a twindragon curve to e�ciently �ll space. The blades of grass are

images of a single central blade which is itself a small squashed version of the whole.

The value of 0.96 was determined visually to produce a full lawn. A lesser amount

produces a sparse, spikey lawn, whereas an amount closer to one produces a lawn that

appears too solid.

The grass IFS is speci�ed so that it will �t snugly inside a sphere of radius three. The

grass should be \mowed" with a �nal contraction in the y-axis.

ifs grass {

newmap

scale: 0.707,0.96,0.707

rotate: y,45

translate: -1,0,0

newmap

scale: 0.707,0.96,0.707

rotate: y,45

translate: 1,0,0

newmap

scale: 0.25,0.01,0.01

rotate: z,90

translate: 0,0.707,0

}

object grass {

167

sphere: (0,0,0) 3

color: 0,0.7,0.2,1

ifs: grass

scale: 4,0.1,4

}

B.2.2 Elm Tree

The elm tree is a trunk with four smaller elm trees sticking out of it. The trunk consists

of three upright stretched elm trees and three inverted stretched elm trees | the foliage

becomes the bark.

The use of color here is quite delicate. A lot of \branch" transformations must be applied

to create a green color whereas any \trunk" transformation will immediately cause a large

amount of brown to be added.

ifs elm {

newmap

rotate: y,90

scale: 0.6,0.6,0.6

rotate: x,40

translate: 0,1,0

color: 0,1,0,0.05

newmap

rotate: y,75

scale: 0.55,0.55,0.55

rotate: x,-50

translate: 0,0.9,0

168

color: 0,0.9,0.2,0.05

newmap

rotate: y,105

scale: 0.5,0.5,0.5

rotate: z,60

translate: 0,0.95,0

color: 0.2,0.9,0,0.05

newmap

rotate: y,95

scale: 0.45,0.45,0.45

rotate: z,-35

translate: 0,0.8,0

color: 0.4,0.8,0.4,0.05

newmap

rotate: y,35

scale: 0.055,0.25,0.055

translate: 0,0.2,0

color: 0.4,0.3,0.1,1

newmap

rotate: y,175

scale: 0.055,0.25,0.055

translate: 0,0.35,0

color: 0.4,0.3,0.1,1

169

newmap

rotate: y,50

scale: 0.0525,0.25,0.0525

translate: 0,0.5,0

color: 0.4,0.3,0.1,1

newmap

rotate: y,255

scale: 0.08,-0.25,0.08

translate: 0,0.4,0

color: 0.4,0.3,0.1,1

newmap

rotate: y,145

scale: 0.065,-0.25,0.065

translate: 0,0.55,0

color: 0.4,0.3,0.1,1

newmap

rotate: y,305

scale: 0.0575,-0.25,0.0575

translate: 0,0.7,0

color: 0.4,0.3,0.1,1

newmap

rotate: y,210

170

scale: 0.05,-0.25,0.05

translate: 0,0.85,0

color: 0.4,0.3,0.1,1

}

B.2.3 Pine Tree

The pine tree is much like a 3-D version of the spleenwort fern. It consists of six perturbed

base-branch transformations and one \rest of the tree" transformation. Like the grass, it

is designed to �t into a canonical cone, and should be transformed to better simulate the

proportions of a pine tree.

ifs pine {

newmap

scale: 0.2,0.7,0.2

rotate: z,96

translate: 0,0.1,0

color: 0,0.6,0,0.1

newmap

scale: 0.2,0.7,0.2

rotate: z,90

rotate: y,63

translate: 0,0.1,0

color: 0,0.6,0,0.1

newmap

scale: 0.2,0.7,0.2

171

rotate: z,93

rotate: y,104

translate: 0,0.1,0

color: 0,0.6,0,0.1

newmap

scale: 0.2,0.7,0.2

rotate: z,97

rotate: y,167

translate: 0,0.1,0

color: 0,0.6,0,0.1

newmap

scale: 0.2,0.7,0.2

rotate: z,95

rotate: y,253

translate: 0,0.1,0

color: 0,0.6,0,0.1

newmap

scale: 0.2,0.7,0.2

rotate: z,100

rotate: y,311

translate: 0,0.1,0

color: 0,0.6,0,0.1

newmap

172

rotate: y,31

scale: 0.82,0.84,0.82

translate: 0,0.15,0

color: 0,0.6,0.6,0.2

}

object pine {

cone

color: 1,0,0,0

ifs: pine

scale: 1.5,2,1.5

translate: 1,0.1,0

}

B.3 The Five Non-Platonic Non-Solids

The �ve non-Platonic non-Solids are fractal versions of the �ve Platonic solids. They are

simple examples of 3-D iterated function systems, consisting of maps whose �xed points are

found at the shapes' vertices.

B.3.1 Sierpinski's Tetrahedron

Sierpinski's tetrahedron is a natural extension of Sierpinki's gasket. It is called a \skewed

web" in [Mandelbrot, 1982b]. This object has been commonly used to test the e�ectiveness

of rendering algorithms.

ifs tetra {

newmap

173

scale: 0.5,0.5,0.5

translate: 0,0.5,0

newmap

scale: 0.5,0.5,0.5

translate: 0,-0.166,-0.472

newmap

scale: 0.5,0.5,0.5

translate: 0.409,-0.166,0.236

newmap

scale: 0.5,0.5,0.5

translate: -0.409,-0.166,0.236

}

B.3.2 Sierpinski's Octahedron

Unlike Sierpinski's tetrahedron, Sierpinski's octohedron is complete opaque at all viewing

angles.

ifs octo {

newmap

scale: 0.5,0.5,0.5

translate: -0.5,0,0

newmap

scale: 0.5,0.5,0.5

174

translate: 0.5,0,0

newmap

scale: 0.5,0.5,0.5

translate: 0,0,-0.5

newmap

scale: 0.5,0.5,0.5

translate: 0,0,0.5

newmap

scale: 0.5,0.5,0.5

translate: 0,0.5,0

newmap

scale: 0.5,0.5,0.5

translate: 0,-0.5,0

}

B.3.3 Menger's Sponge

Perhaps a better analog to the hexahedron would be an IFS consisting of eight maps that

take the cube to each of its octants. Unfortunately its attractor is not fractal. Hence,

Menger's sponge is used as a fractal equivalent to the hexahedron.

ifs menger {

newmap

scale: 0.333,0.333,0.333

175

translate: 0.385,0.385,0.385

newmap

scale: 0.333,0.333,0.333

translate: -0.385,0.385,0.385

newmap

scale: 0.333,0.333,0.333

translate: 0.385,-0.385,0.385

newmap

scale: 0.333,0.333,0.333

translate: -0.385,-0.385,0.385

newmap

scale: 0.333,0.333,0.333

translate: 0.385,0.385,-0.385

newmap

scale: 0.333,0.333,0.333

translate: -0.385,0.385,-0.385

newmap

scale: 0.333,0.333,0.333

translate: 0.385,-0.385,-0.385

newmap

176

scale: 0.333,0.333,0.333

translate: -0.385,-0.385,-0.385

newmap

scale: 0.333,0.333,0.333

translate: 0.385,0,0.385

newmap

scale: 0.333,0.333,0.333

translate: -0.385,0,0.385

newmap

scale: 0.333,0.333,0.333

translate: 0.385,0,-0.385

newmap

scale: 0.333,0.333,0.333

translate: -0.385,0,-0.385

newmap

scale: 0.333,0.333,0.333

translate: 0,0.385,0.385

newmap

scale: 0.333,0.333,0.333

translate: 0,-0.385,0.385

177

newmap

scale: 0.333,0.333,0.333

translate: 0,0.385,-0.385

newmap

scale: 0.333,0.333,0.333

translate: 0,-0.385,-0.385

newmap

scale: 0.333,0.333,0.333

translate: 0.385,0.385,0

newmap

scale: 0.333,0.333,0.333

translate: -0.385,0.385,0

newmap

scale: 0.333,0.333,0.333

translate: 0.385,-0.385,0

newmap

scale: 0.333,0.333,0.333

translate: -0.385,-0.385,0

}

178

B.3.4 Sierpinski's Icosahedron

Sierpinski's icosahedron has small Sierpinski's gaskets on its faces.

ifs icos {

newmap

scale: 0.5,0.5,0.5

translate: 0,0.926,0.263

newmap

scale: 0.5,0.5,0.5

translate: 0,0.926,-0.263

newmap

scale: 0.5,0.5,0.5

translate: 0,0.075,0.263

newmap

scale: 0.5,0.5,0.5

translate: 0,0.075,-0.263

newmap

scale: 0.5,0.5,0.5

translate: 0.263,0.5,0.425

newmap

scale: 0.5,0.5,0.5

translate: 0.263,0.5,-0.425

179

newmap

scale: 0.5,0.5,0.5

translate: -0.263,0.5,0.425

newmap

scale: 0.5,0.5,0.5

translate: -0.263,0.5,-0.425

newmap

scale: 0.5,0.5,0.5

translate: 0.425,0.763,0

newmap

scale: 0.5,0.5,0.5

translate: -0.425,0.763,0

newmap

scale: 0.5,0.5,0.5

translate: 0.425,0.237,0

newmap

scale: 0.5,0.5,0.5

translate: -0.425,0.237,0

}

180

B.3.5 Von Koch's Snow
ake-a-hedron

Von Koch's snow
ake-a-hedron is the fractal analog of the dodecahedron. Its pro�le is similar

to the von Koch snow
ake curve, hence the name. In [Hart, 1991], a geometric one-to-one

correspondence was shown between its twenty maps and the twenty maps of Menger's sponge.

ifs dodec {

newmap

scale: 0.382,0.382,0.382

translate: -0.577,0.618,-0.221

newmap

scale: 0.382,0.382,0.382

translate: 0.577,0.618,-0.221

newmap

scale: 0.382,0.382,0.382

translate: 0.577,0.618,0.221

newmap

scale: 0.382,0.382,0.382

translate: -0.577,0.618,0.221

newmap

scale: 0.382,0.382,0.382

translate: -0.357,0.975,-0.357

newmap

181

scale: 0.382,0.382,0.382

translate: 0,0.839,-0.577

newmap

scale: 0.382,0.382,0.382

translate: 0.357,0.975,-0.357

newmap

scale: 0.382,0.382,0.382

translate: 0.221,1.195,0

newmap

scale: 0.382,0.382,0.382

translate: 0.357,0.975,0.357

newmap

scale: 0.382,0.382,0.382

translate: 0,0.839,0.577

newmap

scale: 0.382,0.382,0.382

translate: -0.357,0.975,0.357

newmap

scale: 0.382,0.382,0.382

translate: -0.221,1.195,0

182

newmap

scale: 0.382,0.382,0.382

translate: -0.357,0.261,-0.357

newmap

scale: 0.382,0.382,0.382

translate: 0,0.397,-0.577

newmap

scale: 0.382,0.382,0.382

translate: 0.357,0.261,-0.357

newmap

scale: 0.382,0.382,0.382

translate: 0.221,0.041,0

newmap

scale: 0.382,0.382,0.382

translate: 0.357,0.261,0.357

newmap

scale: 0.382,0.382,0.382

translate: 0,0.397,0.577

newmap

scale: 0.382,0.382,0.382

translate: -0.357,0.261,0.357

183

newmap

scale: 0.382,0.382,0.382

translate: -0.221,0.041,0

}

184

CITED LITERATURE

[Abelson & diSessa, 1982] Abelson, H. and diSessa, A. A. Turtle Geometry. MIT Press,

1982.

[Amanatides & Mitchell, 1989] Amanatides, J. and Mitchell, D. P. Megacycles. SIGGRAPH

Video Review, 51, 1989. (Animation).

[Amanatides, 1984] Amanatides, J. Ray tracing with cones. Computer Graphics, 18(3):129{

135, July 1984.

[Appel, 1968] Appel, A. Some techniques for shading machine renderings of solids. AFIPS

1968 Spring Joint Computer Conference, 32:37{45, 1968.

[Barnsley & Demko, 1985] Barnsley, M. F. and Demko, S. G. Iterated function schemes and

the global construction of fractals. Proceedings of the Royal Society A, 399:243{275, 1985.

[Barnsley et al., 1986] Barnsley, M. F., Ervin, V., Hardin, D., and Lancaster, J. Solution

of an inverse problem for fractals and other sets. Proceedings of the National Academy of

Science, 83:1975{1977, April 1986.

[Barnsley et al., 1988] Barnsley, M. F., Jacquin, A., Mallassenet, F., Rueter, L., and Sloan,

A. D. Harnessing chaos for image synthesis. Computer Graphics, 22(4):131{140, 1988.

[Barnsley et al., 1989] Barnsley, M. F., Elton, J. H., and Hardin, D. P. Recurrent iterated

function systems. Constructive Approximation, 5:3{31, 1989.

185

[Barnsley, 1988] Barnsley, M. F. Fractals Everywhere. Academic Press, New York, 1988.

[Barr, 1984] Barr, A. H. Global and local deformations of solid primitives. Computer Graph-

ics, 18(3):21{30, July 1984.

[Barr, 1986] Barr, A. H. Ray tracing deformed surfaces. Computer Graphics, 20(4):287{296,

1986.

[Bouville, 1985] Bouville, C. Bounding ellipsoids for ray-fractal intersection. Computer

Graphics, 19(3):45{51, 1985.

[Cabrelli et al., 1991] Cabrelli, C., Molter, U., and Vrscay, E. R. Recurrent iterated function

systems: Invariant measures, a collage theorem and moment relations. In Proceedings of

the First IFIP Conference on Fractals. Elsevier, 1991.

[Catmull, 1975] Catmull, E. Computer display of curved surfaces. In IEEE Conf. on Com-

puter Graphics, Pattern Recognition and Data Structures, pages 11{17, May 1975.

[Catmull, 1978] Catmull, E. A hidden-surface algorithm with anti-aliasing. Computer

Graphics, 12(3):275{281, August 1978.

[Cook et al., 1984] Cook, R. L., Porter, T., and Carpenter, L. Distributed ray tracing.

Computer Graphics, 18(3):137{145, 1984.

[Cook, 1986] Cook, R. L. Stochastic sampling in computer graphics. ACM Transactions on

Graphics, 5(1):51{72, January 1986.

[Dekking, 1982] Dekking, F. M. Recurrent sets. Advances in Mathematics, 44:78{104, 1982.

[Demko et al., 1985] Demko, S., Hodges, L., and Naylor, B. Construction of fractal objects

with iterated function systems. Computer Graphics, 19(3):271{278, 1985.

186

[Deo, 1972] Deo, N. Graph Theory with Applications to Engineering and Computer Science.

Prentice Hall, Englewood Cli�s, N.J., 1972.

[Dubuc & Elqortobi, 1990] Dubuc, S. and Elqortobi, A. Approximations of fractal sets.

Journal of Computational and Applied Mathematics, 29:79{89, 1990.

[Falconer, 1985] Falconer, K. J. The Geometry of Fractal Sets. Cambridge University Press,

New York, 1985.

[Falconer, 1987] Falconer, K. J. The Hausdor� dimension of some fractals and attractors of

overlapping construction. Journal of Statistical Physics, 47((1&2)):123{132, 1987.

[Falconer, 1988] Falconer, K. J. The Hausdor� dimension of self-a�ne fractals. Proceedings

of the Cambridge Philosophical Society, 103:339{350, 1988.

[Falconer, 1990] Falconer, K. J. Fractal Geometry: Mathematical Foundations and Applica-

tions. John Wiley & Sons, New York, 1990.

[Foley et al., 1990] Foley, J. D., van Dam, A., Feiner, S. K., and Hughes, J. F. Computer

Graphics: Principles and Practice. Systems Programming Series. Addison-Wesley, 2nd

edition, 1990.

[Fournier et al., 1982] Fournier, A., Fussel, D., and Carpenter, L. Computer rendering of

stochastic models. Communications of the ACM, 25(6):371{384, June 1982.

[Gardner, 1984] Gardner, G. Y. Simulation of natural scenes using textured quadric surfaces.

Computer Graphics, 18(3):11{20, July 1984.

[Hanrahan, 1983] Hanrahan, P. Ray tracing algebraic surfaces. Computer Graphics,

17(3):83{90, 1983.

[Hart & DeFanti, 1991] Hart, J. C. and DeFanti, T. A. E�cient antialiased rendering of 3-D

linear fractals. Computer Graphics, 25(3), 1991.

187

[Hart et al., 1989] Hart, J. C., Sandin, D. J., and Kau�man, L. H. Ray tracing deterministic

3-D fractals. Computer Graphics, 23(3):289{296, 1989.

[Hart et al., 1990] Hart, J. C., Kau�man, L. H., and Sandin, D. J. Interactive visualization

of quaternion Julia sets. In Kau�man, A., editor, Proceedings of Visualization '90, pages

209{218. IEEE Computer Society, 1990.

[Hart, 1989] Hart, J. C. Image space algorithms for visualizing quaternion Julia sets. Mas-

ter's thesis, EECS Dept., University of Illinois at Chicago, 1989.

[Hart, 1991] Hart, J. C. unNatural Phenomena. SIGGRAPH Video Review, 71, 1991. (An-

imation).

[Heckbert & Hanrahan, 1984] Heckbert, P. S. and Hanrahan, P. Beam tracing polygonal

objects. Computer Graphics, 18(3):119{127, July 1984.

[Hepting et al., 1990] Hepting, D., Prusinkiewicz, P., and Saupe, D. Rendering methods for

iterated function systems. In Proceedings of Fractals '90. IFIP, 1990.

[Hepting, 1991] Hepting, D. H. Approximation and visualization of sets de�ned by iterated

function systems. Master's thesis, University of Regina, 1991.

[Holbrook, 1983] Holbrook, J. A. R. Quaternionic astroids and star�elds. Applied Mathe-

matical Notes, 8(2):1{34, 1983.

[Holbrook, 1987] Holbrook, J. A. R. Quaternionic Fatou-Julia sets. Annals of Science and

Math Quebec, 1987(1):79{94, 1987.

[Hutchinson, 1981] Hutchinson, J. Fractals and self-similarity. Indiana University Mathe-

matics Journal, 30(5):713{747, 1981.

188

[Jaquin, 1991] Jaquin, A. E. Image coding based on a fractal theory of iterated contractive

image transformations. IEEE Transactions on Signal Processing, page (to appear), March

1991.

[Kajiya & Kay, 1989] Kajiya, J. T. and Kay, T. L. Rendering fur with three dimensional

textures. Computer Graphics, 23(3):271{280, July 1989.

[Kajiya, 1982] Kajiya, J. T. Ray tracing parametric patches. Computer Graphics, 16(3):245{

254, July 1982.

[Kajiya, 1983] Kajiya, J. T. New techniques for ray tracing procedurally de�ned objects.

ACM Transactions on Graphics, 2(3):161{181, 1983. Also appeared in Computer Graphics

17, 3 (1983), 91{102.

[Kalra & Barr, 1989] Kalra, D. and Barr, A. H. Guaranteed ray intersections with implicit

surfaces. Computer Graphics, 23(3):297{306, July 1989.

[Kaplansky, 1977] Kaplansky, I. Set Theory and Metric Spaces. Chelsea, New York, 1977.

[Kay & Kajiya, 1986] Kay, T. L. and Kajiya, J. T. Ray tracing complex scenes. Computer

Graphics, 20(4):269{278, 1986.

[Lescinski, 1991] Lescinski, G. Lively ifs. SIGGRAPH Video Review, 61, 1991. (Animation).

[Mandelbrot & Ness, 1968] Mandelbrot, B. B. and Ness, J. W. V. Fractional brownian mo-

tions, fractional noise and applications. SIAM Review, 10(4):422{437, October 1968.

[Mandelbrot, 1977] Mandelbrot, B. B. Fractals: Form, Chance, and Dimension. W.H.

Freeman, San Francisco, 1977.

[Mandelbrot, 1982a] Mandelbrot, B. B. Comment on computer rendering of stochastic mod-

els. Communications of the ACM, 25(8):581{583, 1982.

189

[Mandelbrot, 1982b] Mandelbrot, B. B. The Fractal Geometry of Nature. W.H. Freeman,

San Francisco, 2nd edition, 1982.

[Miller, 1986] Miller, G. S. P. The de�nition and rendering of terrain maps. Computer

Graphics, 20(4):39{48, August 1986.

[Milnor, 1991] Milnor, J. Remarks on iterated cubic maps. In Hart, J. C. and Musgrave,

F. K., editors, Fractal Models in 3-D Computer Graphics and Imaging, pages 193{221.

ACM SIGGRAPH '91 (Course #14 Notes), 1991.

[Mitchell, 1987] Mitchell, D. P. Generating antialiased images at low sampling resolutions.

Computer Graphics, 21(4):65{72, July 1987.

[Musgrave et al., 1989] Musgrave, F. K., Kolb, C. E., and Mace, R. S. The synthesis and

rendering of eroded fractal terrains. Computer Graphics, 23(3):41{50, July 1989.

[Nishita et al., 1990] Nishita, T., Sederberg, T. W., and Kakimoto, M. Ray tracing trimmed

rational surface patches. Computer Graphics, 24(4):337{345, Aug. 1990.

[Norton & Melton, 1988] Norton, A. and Melton, E. A close encounter in the fourth dimen-

sion. SIGGRAPH Video Review, 39, 1988. (Animation).

[Norton et al., 1982] Norton, A., Rockwood, A. P., and Skolmoski, P. T. Clamping: A

method of antialiasing textured surfaces by bandwidth limiting in object space. Computer

Graphics, 16(3):1{8, July 1982.

[Norton, 1982] Norton, A. Generation and rendering of geometric fractals in 3-D. Computer

Graphics, 16(3):61{67, 1982.

[Norton, 1989a] Norton, A. Fractal transitions. SIGGRAPH Video Review, 42, 1989. (Ani-

mation).

190

[Norton, 1989b] Norton, A. Julia sets in the quaternions. Computers and Graphics,

13(2):267{278, 1989.

[Peitgen et al., 1991] Peitgen, H.-O., Jurgens, H., and Saupe, D. Fractals for the Classroom.

Springer-Verlag, New York, 1991.

[Penrose, 1989] Penrose, R. The Emperor's New Mind. Harcourt-Brace, 1989.

[Perlin, 1985] Perlin, K. An image synthesizer. Computer Graphics, 19(3):287{296, July

1985.

[Porter & Du�, 1984] Porter, T. and Du�, T. Compositing digital images. Computer Graph-

ics, 18(3):253{259, 1984.

[Potmesil & Ho�ert, 1989] Potmesil, M. and Ho�ert, E. M. The Pixel Machine: A parallel

image computer. Computer Graphics, 23(3):69{78, July 1989.

[Preparata & Shamos, 1985] Preparata, F. P. and Shamos, M. I. Computational Geometry:

An Introduction. Springer-Verlag, 1985.

[Press et al., 1988] Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T.

Numerical Recipes in C. Cambridge University Press, 1988.

[Prusinkiewicz & Hammel, 1991] Prusinkiewicz, P. and Hammel, M. Automata, languages

and iterated function systems. In Hart, J. C. and Musgrave, F. K., editors, Fractal Models

in 3-D Computer Graphics and Imaging, pages 115{143. ACM SIGGRAPH '91 (Course

#14 Notes), 1991.

[Prusinkiewicz & Hanan, 1989] Prusinkiewicz, P. and Hanan, J. Lindenmeyer Systems,

Fractals, and Plants, volume 79 of Lecture Notes in Biomathematics. Springer-Verlag,

New York, 1989.

191

[Prusinkiewicz & Lindenmayer, 1990] Prusinkiewicz, P. and Lindenmayer, A. The Algorith-

mic Beauty of Plants. Springer-Verlag, New York, 1990.

[Prusinkiewicz et al., 1988] Prusinkiewicz, P., Lindenmayer, A., and Hanan, J. Develop-

mental models of herbaceous plants for computer imagery purposes. Computer Graphics,

22(4):141{150, August 1988.

[Reuter, 1987] Reuter, L. Rendering and Magni�cation of Fractals Using Iterated Function

Systems. PhD thesis, Georgia Institute of Technology, December 1987.

[Ritter, 1990] Ritter, J. An e�cient bounding sphere. In Glassner, A. S., editor, Graphics

Gems, pages 301{303. Academic Press, 1990.

[Roth, 1982] Roth, S. D. Ray casting for modeling solids. Computer Graphics and Image

Processing, 18(2):109{144, February 1982.

[Rubin & Whitted, 1980] Rubin, S. M. and Whitted, T. A 3-dimensional representation for

fast rendering of complex scenes. Computer Graphics, 14(3):110{116, 1980.

[Sandin et al., 1990] Sandin, D. J., Hart, J. C., and Kau�man, L. H. Interactive visualization

of complex, stacked and quaternion Julia sets. In Proceedings of Ausgraph '90, 1990.

[Shannon, 1949] Shannon, C. E. Communication in the presence of noise. Proceedings of the

Institute of Radio Engineers, 37(1):10{21, January 1949.

[Shroeder, 1991] Shroeder, M. R. Fractals, Chaos, Power Laws. W.H. Freeman, San Fran-

cisco, 1991.

[Smith, 1984] Smith, A. R. Plants, fractals, and formal languages. Computer Graphics,

18(3):1{10, July 1984.

[Snyder & Barr, 1987] Snyder, J. M. and Barr, A. H. Ray tracing complexmodels containing

surface tessellations. Computer Graphics, 21(4):119{128, 1987.

192

[Strang, 1988] Strang, G. Linear Algebra and its Applications. Harcourt Brace Jovanovich,

3rd edition, 1988.

[Sutherland et al., 1974] Sutherland, I. E., Sproul, R., and Schumacker, R. A characteriza-

tion of ten hidden-surface algorithms. Computing Surveys, 6(1):1{55, 1974.

[Sutherland, 1963] Sutherland, I. E. Sketchpad: A man-machine graphical communication

system. Proceedings of the Spring Joint Computer Conference, 1963.

[Thomas et al., 1989] Thomas, D., Netravali, A. N., and Fox, D. S. Antialiased ray tracing

with covers. Computer Graphics Forum, 8(4):325{336, December 1989.

[Thompson, 1991] Thompson, K. K. Ray Tracing with Amalgams. PhD thesis, University

of Texas at Austin, 1991.

[Toth, 1985] Toth, D. L. On ray tracing parametric surfaces. Computer Graphics, 19(3):171{

179, July 1985.

[Voss, 1988] Voss, R. F. Fractals in nature: From characterization to simulation. In Peitgen,

H. and Saupe, D., editors, The Science of Fractal Images, pages 21{70. Springer-Verlag,

New York, 1988.

[Vrscay & Roehrig, 1989] Vrscay, E. R. and Roehrig, C. J. Iterated function systems and the

inverse problem of fractal construction using moments. In Kaltofen, E. and Watt, S. M.,

editors, Computers and Mathematics, pages 250{259, New York, 1989. Springer-Verlag.

[Vrscay, 1991] Vrscay, E. R. Iterated function systems: Theory, applications and the inverse

problem. In Lectures of the NATO Advanced Study Institute on Fractal Geometry and

Analysis, Montreal, 1991. Kluwer.

[Whitted, 1980] Whitted, T. An improved illumination model for shaded displays. Commu-

nications of the ACM, 23(6):343{349, 1980.

193

[Womack, 1989] Womack, T. E. Linear and markov iterated function systems in fractal

geometry. Master's thesis, Virginia Polytechnic Institute, May 1989.

194

VITA

Name: John C. Hart

Education: B.S., Computer Science, Aurora University, Aurora, Illinois, 1987.

M.S., Electrical Engineering and Computer Science, University of Illi-

nois at Chicago, Chicago, Illinois, 1989.

Ph.D., Electrical Engineering and Computer Science, University of Illi-

nois at Chicago, Chicago, Illinois, 1991.

Research: Postdoctoral Research Associate | Electronic Visualization Labora-

tory, University of Illinois at Chicago, Chicago, Illinois and Na-

tional Center for Supercomputing Applications, University of

Illinois at Urbana-Champaign, Urbana, Illinois, 1991{1992.

Research Assistant | Electronic Visualization Laboratory, University

of Illinois at Chicago, Chicago, Illinois, 1987{1991.

Intern | AT&T Pixel Machines, AT&T Bell Laboratories, Holmdel,

New Jersey, Summer 1990.

Intern | IBM T.J. Watson Research Center, Hawthorne, New York,

Summer 1989.

Teaching: Fractal Models in 3-D Computer Graphics and Imaging | SIGGRAPH

'91 One-day course #14, Caesar's Palace, Las Vegas, Nevada,

1991.

Scienti�c Visualization by Supercomputer|Adler Planetarium evening

course, Chicago, Illinois, 1988.

195

Teaching Assistant | Electrical Engineering and Computer Science

Department, University of Illinois at Chicago, Chicago, Illinois,

1987{1988.

Honors: Student Fellowship|Graduate College, University of Illinois at Chicago,

Chicago, Illinois, 1990{1991.

196

Activities: Supercomputing '92 | Video Chair, Programming Committee.

SIGGRAPH '92 | Electronic Theater Committee, Chair Care Com-

mittee.

Supercomputing '91 | Programming Committee.

SIGGRAPH '91 | Course Organizer.

Publications: John C. Hart and F. Kenton Musgrave, Editors. Fractal Modeling in

3-D Computer Graphics and Imaging. SIGGRAPH '91 Course

Notes, 1991.

John C. Hart and Thomas A. DeFanti. E�cient antialiased rendering

of 3-D linear fractals. Computer Graphics, 25(3), 1991.

John C. Hart, Louis H. Kau�man, and Daniel J. Sandin. Interactive

visualization of quaternion Julia sets. In Arie Kau�man, editor,

Proceedings of Visualization '90, pages 209{218. IEEE Com-

puter Society, 1990.

John C. Hart, Daniel J. Sandin, and Louis H. Kau�man. Ray tracing

deterministic 3-D fractals. Computer Graphics, 23(3):289{296,

1989.

Animations: unNatural Phenomena. SIGGRAPH Video Review 71, 1991.

Sierpinski Blows His Gasket. SIGGRAPH Video Review 61, 1990.

Dynamics in the Quaternions. SIGGRAPH Video Review 42, 1989.

197

