
DRAS: Deep Reinforcement Learning for Cluster
Scheduling in High Performance Computing

Yuping Fan , Boyang Li, Dustin Favorite, Naunidh Singh, Taylor Childers, Paul Rich, William Allcock,

Michael E. Papka , and Zhiling Lan

Abstract—Cluster schedulers are crucial in high-performance computing (HPC). They determine when and which user jobs

should be allocated to available system resources. Existing cluster scheduling heuristics are developed by human experts

based on their experience with specific HPC systems and workloads. However, the increasing complexity of computing systems

and the highly dynamic nature of application workloads have placed tremendous burden on manually designed and tuned

scheduling heuristics. More aggressive optimization and automation are needed for cluster scheduling in HPC. In this work, we

present an automated HPC scheduling agent named DRAS (Deep Reinforcement Agent for Scheduling) by leveraging deep

reinforcement learning. DRAS is built on a hierarchical neural network incorporating special HPC scheduling features such as

resource reservation and backfilling. An efficient training strategy is presented to enable DRAS to rapidly learn the target

environment. Once being provided a specific scheduling objective given by the system manager, DRAS automatically learns to

improve its policy through interaction with the scheduling environment and dynamically adjusts its policy as workload changes.

We implement DRAS into a HPC scheduling platform called CQGym. CQGym provides a common platform allowing users to

flexibly evaluate DRAS and other scheduling methods such as heuristic and optimization methods. The experiments using

CQGym with different production workloads demonstrate that DRAS outperforms the existing heuristic and optimization

approaches by up to 50%.

Index Terms—High-performance computing, cluster scheduling, deep reinforcement learning, job starvation, backfilling, resource

reservation, OpenAI Gym

Ç

1 INTRODUCTION

CLUSTER schedulers play a critical role in high-performance
computing (HPC). They enforce site policies through decid-

ing when andwhich user jobs are allocated to system resources.
Common scheduling goals include high system utilization,
good user satisfaction and job prioritization. Heuristics are the
prevailing approaches in HPC cluster scheduling. For example,
first come, first served (FCFS) with EASY backfilling is a well-
known scheduling policy deployed on production HPC sys-
tems [1]. Bin packing is another well-known heuristic approach

aiming for high utilization. Heuristics are easy to implement
and fast by trading optimality for speed. In addition, optimiza-
tion is also extensively studied in the literature for cluster sched-
uling [2], [3], [4]. Optimization methods focus on optimizing
immediate scheduling objective(s) without regard to long-term
performance. Moreover, both heuristics and optimization
approaches are static, and neither of them is capable of adapting
its scheduling policy to dynamic changes in the environment. In
case of sudden variation in workloads, system administrators
have to manually tune the algorithms and parameters in meth-
ods to mitigate performance degradation. As HPC systems
become increasingly complex combined with highly diverse
application workloads, such a manual process becomes chal-
lenging, time-consuming, and error-prone. We believe that
more aggressive optimization and automation, beyond the
existing heuristics and optimization methods, is essential for
HPC cluster scheduling.

In recent years, reinforcement learning (RL) combined
with deep neural networks has been successfully employed
in various fields for dynamic decision making, such as self-
driving cars [8], autonomous robots [9], and game playing
[10], [11]. RL refers to an area of machine learning that auto-
matically learns to maximize cumulative reward through
interaction with the environment [12]. Deep Q-learning
(DQL) and policy gradient (PG) are two widely adopted RL
baselines. More advanced RL algorithms, e.g., A2C (Advan-
tage Actor Critic) [13] and PPO (Proximal Policy Optimiza-
tion) [14], have emerged in recent years to address some key
challenges, such as learning efficiency and performance
robustness [15], in real applications.

� Yuping Fan, Boyang Li, Dustin Favorite, Naunidh Singh, and Zhiling Lan
are with the Department of Computer Science, Illinois Institute of Technol-
ogy, Chicago, IL 60616 USA. E-mail: {yfan22, bli70, dfavorite, nsingh28}
@hawk.iit.edu, lan@iit.edu.

� Taylor Childers, Paul Rich, and William Allcock are with ArgonneNational
Laboratory,Lemont, IL60439USA.E-mail: {jchilders, richp,allcock}@anl.gov.

� Michael E. Papka is with Argonne National Laboratory, Lemont, IL 60439
USA, and also with the University of Illinois, Chicago, IL 60607 USA. E-
mail: papka@anl.gov.

Manuscript received 8 November 2021; revised 24 July 2022; accepted 29
August 2022. Date of publication 16 September 2022; date of current version
3 October 2022.
This work was supported in part by US National Science Foundation under
Grants CNS-1717763, CCF-2109316 in part by the and CCF-2119294.
Argonne Leadership Computing Facility is a U.S. Department of Energy
Office of Science User Facility operated under Grant DE-AC02-06CH11357,
and in part by the National Energy Research Scientific Computing Center
(NERSC) is a U.S. Department of Energy Office of Science User Facility oper-
ated under under Grant DE-AC02-05CH11231.
(Corresponding author: Yuping Fan.)
Recommended for acceptance by A. Bhatele.
Digital Object Identifier no. 10.1109/TPDS.2022.3205325

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022 4903

1045-9219 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Michael Papka. Downloaded on November 04,2022 at 09:45:17 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9425-2780
https://orcid.org/0000-0002-9425-2780
https://orcid.org/0000-0002-9425-2780
https://orcid.org/0000-0002-9425-2780
https://orcid.org/0000-0002-9425-2780
https://orcid.org/0000-0002-6418-5767
https://orcid.org/0000-0002-6418-5767
https://orcid.org/0000-0002-6418-5767
https://orcid.org/0000-0002-6418-5767
https://orcid.org/0000-0002-6418-5767
mailto:yfan22@hawk.iit.edu
mailto:bli70@hawk.iit.edu
mailto:dfavorite@hawk.iit.edu
mailto:nsingh28@hawk.iit.edu
mailto:lan@iit.edu
mailto:jchilders@anl.gov
mailto:richp@anl.gov
mailto:allcock@anl.gov
mailto:papka@anl.gov

Several recent studies have shown that RL driven sched-
uling is a promising approach for cluster scheduling [6],
[16], [17], [18], [19], [20]. Unfortunately, these studies do not
take into account two special features of cluster scheduling
in HPC, that is, resource reservation to prevent job starvation
and backfilling to reduce resource fragmentation. In order to
effectively use RL algorithms for HPC scheduling, special-
ized strategies are needed.

In this study, we present an automated HPC scheduling
agent namedDRAS (Deep Reinforcement Agent for Scheduling)
tailored for HPC workloads [7]. The goal of the agent is two-
fold: (1) to improve HPC scheduling performance beyond
the existing approaches, and (2) to automatically adjust
scheduling policies in case of workload changes. In the
design of DRAS, we incorporate the HPC domain specific
knowledge into the formulation of deep reinforcement
learning and introduce a hierarchical neural network structure,
where the level-1 network selects jobs for immediate or
reserved execution and the level-2 network concentrates on
choosing proper backfilled jobs for more scheduling optimi-
zation. The customized hierarchical structure is applicable
to any generalized RL algorithms with minimal changes. In
order to optimize and automate the process, all the schedul-
ing decisions including immediate job selection, job reserva-
tion, and backfilling are made by DRAS without human
involvement. Moreover, we develop a three-phase training
process using historical job logs. Our training strategy
allows DRAS to gradually explore simple average situations
to more challenging rare situations, hence rapidly converg-
ing to high-quality models.

To bridge RL and HPC scheduling, we build an open-
source platform named CQGym [21]. CQGym provides a
common platform allowing users to flexibly evaluate DRAS
and other scheduling methods such as heuristic and optimi-
zation methods. GQGym consists of three main compo-
nents: scheduling environment, Gym interface [22], and
scheduling agent. The scheduling environment is an event-
driven HPC job scheduling simulator that executes schedul-
ing decisions made by the scheduling agents. It can adopt
any event-driven HPC scheduling simulator and our
default implementation is CQSim [23], which has been used
in HPC scheduling research for decades [2], [24], [25]. Gym
provides a standard interface between the scheduling envi-
ronment and the scheduling agent. Both RL algorithms and
heuristic policies can be easily implemented as a scheduling
agent and communicate with the environment through
Gym. By decoupling scheduling agents from the environ-
ment, we can focus on implementing scheduling policies
without considering the complexity of the environment. In
addition, the standard decision-making process ensures a
fair comparison between different scheduling policies.

In this study, we implement four DRAS agents by cus-
tomizing four popular RL algorithms which are denoted as
DRAS-PG, DRAS-DQL, DRAS-A2C, DRAS-PPO. These
DRAS agents are compared with the existing scheduling
methods in CQGym by using the job traces collected from
two production supercomputers representing capability
computing and capacity computing. The results indicate
our DRAS agents outperform the existing scheduling meth-
ods using heuristic or optimization methods. Each DRAS
agent is capable of automatically learning to improve its

policy through interaction with the scheduling environment
and dynamically adjusts its policy as workload changes. In
the comparison between DRAS agents, PPO delivers the
best overall performance. Specifically, this paper makes
four major contributions:

1) We design four new DRAS agents, i.e., DRAS-DQL,
DRAS-PG, DRAS-A2C, and DRAS-PPO, which
leverage the advance in deep reinforcement learning
and incorporate the key features of HPC scheduling
in the form of a hierarchical neural network model.

2) We develop a three-phase training process that
allows DRAS to automatically learn the scheduling
environment (i.e., the system and its workloads) and
to rapidly converge to an optimal policy.

3) We develop a common and extensible HPC job
scheduling platform CQGym to bridge the HPC
scheduling environment and various scheduling
agents. It facilitates quantitative evaluation of vari-
ous scheduling methods including RL-based agents
such as DRAS, heuristics, and optimization methods.

4) We evaluate four DRAS agents and five traditional
scheduling policies by using CQGym. Our trace-
based simulation demonstrates DRAS outperforms
existing scheduling methods by up to 50%. Com-
pared to the heuristic and optimization approaches,
DRAS offers two benefits: better long-term schedul-
ing performance and adaptation to dynamic work-
load changes without human intervention.

2 BACKGROUND AND CHALLENGES

2.1 Cluster Scheduling in HPC

HPC cluster scheduling, also known as batch scheduling, is
responsible for assigning jobs to resources (e.g, compute
nodes) according to site policies and resource availability
[1], [26], [27]. Well-known schedulers include Slurm,
Moab/TORQUE, PBS, and Cobalt [28], [29], [30], [31]. Let’s
consider a cluster with N nodes. Users submit their jobs to
the system through the scheduler. When submitting a job, a
user is required to provide job size (i.e., number of compute
nodes needed for a job) and job runtime estimate (i.e., esti-
mated time needed for a job). Typical HPC jobs are rigid,
meaning job size is fixed throughout its execution. Job run-
time estimate is the upper bound for the job such that it will
be killed by the scheduler if the actual job runtime exceeds
this runtime estimate [32]. At each scheduling instance, the
scheduler orders jobs in the queue according to the site pol-
icy and executes jobs from the head of the queue.

Existing HPC scheduling policies can be broadly classi-
fied into two groups: heuristics and optimization methods.
First Come First Serve (FCFS) with EASY backfilling is the
most widely used heuristics, which sorts jobs in the wait
queue according to their arrival times and executes jobs
from the head of the queue [1]. If the available resources are
not sufficient for the first job in the queue, the scheduler
will reserve the resources for this job. Backfilling is often
used in conjunction with reservation to enhance system uti-
lization. It allows subsequent jobs in the wait queue to
move ahead under the condition that they do not delay the
existing reservations [1]. Optimization methods select a set

4904 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Michael Papka. Downloaded on November 04,2022 at 09:45:17 UTC from IEEE Xplore. Restrictions apply.

of jobs from the queue with an objective to optimize certain
scheduling metrics, such as minimizing average job wait
time and maximizing system utilization.

Several recent studies have explored reinforcement learn-
ing for cluster scheduling. DeepRM [16] is the first study
demonstrating the potential of using reinforcement learning
for learning customized scheduling policies from experience.
It uses the policy gradient method to train the RL agent to
minimize average job complete time. Its neural network
input is represented as the state of system and jobs in two
dimensions, i.e., resource and time. DeepRM’s state repre-
sentation has been adopted by other studies [18], [20], [33]. A
major limitation of DeepRM’s state representation is the use
of a bounded time horizon for scheduling environments and
job runtimes, whereas real HPC cluster scheduling problems
have infinite time horizons and job runtimes vary from sec-
onds to several days. Therefore, DeepRM is infeasible to
schedule realistic HPC cluster workloads with continuous
job arrivals. Unlike DeepRM, RLScheduler [17] attempts to
develop a general reinforcement learning model that is
trained with one system log and then is used on other sys-
tems with different characteristics (e.g., system size, work-
load patterns, etc.). While such a generic model is appealing,
Table V-VII in RLScheduler paper [17] shows that it might
lead to less satisfactory scheduling performance than heuris-
ticmethods, e.g., FCFS and Short Job First (SJF). In Section 6.6,
we compare the performance of RLScheduler-learned mod-
els with our customized model, which shows that our cus-
tomizedmodels deliver better performance.

The work most closely related to ours is Decima, which
explores reinforcement learning to allocate data processing
jobs [6]. Each job consists of dependent tasks and is repre-
sented as directed acyclic graphs (DAGs). Decima integrates
a graph neural network to extract job DAGs and cluster sta-
tus as embedding vectors. It then feeds the embedding vec-
tors to a policy gradient network for decision making. The
decision consists of two parts: to select tasks for immediate
execution and to determine task parallelism. However,
HPC scheduling targets different goals than DAG job sched-
uling. First, DAG jobs can be decomposed into malleable
tasks, whereas HPC is dominated by rigid jobs that cannot
be decomposed. Second, HPC scheduling needs resource
reservation support to prevent large jobs from starvation,
while data processing jobs are decomposable and therefore
are not affected by job starvation problems. Hence, Decima
does not equip with resource reservation strategies. In short,
Table 1 summarized and compared existing cluster schedul-
ing methods, along with their features.

2.2 Overview of Reinforcement Learning

Reinforcement learning (RL) is a type of machine learning
technique that studies how agents situated in stochastic
environments can learn optimal policies through interaction
with their environment [34]. The agent’s environment is
described by an abstraction called Markov Decision Process
(MDP) with four basic components: state space S, action
space A, reward R, and state transition probability P . In
Markov decision processes, a learning agent interacts with a
dynamic environment in discrete timesteps. At each time
step t, the agent observes the state st 2 S and takes an action

at 2 AðstÞ. Upon taking the action, the environment transits
to a new state stþ1 with the transition probability
P ðstþ1jst; atÞ and provides a reward rt to the agent as feed-
back of the action. The process continues until the agent
reaches a terminal state. The goal of the agent is to find a
policy pðsÞ, mapping a state to an action (deterministic) or a
probability distribution over actions (stochastic), which
maximizes the long-term (discounted) cumulative reward
RðtÞ ¼PT

t0¼t g
t0rt0 . A discount factor g is between 0 and 1.

The smaller of g, the less importance of future rewards.
In practice, the state and action space is often too large to

be stored in a lookup table. It is common to use function
approximators with a manageable number of adjustable
parameters u, to represent the components of agents. Using
a deep neural network with reinforcement learning is often
called deep reinforcement learning [35]. The highly representa-
tional power of deep neural networks enables reinforcement
learning to solve complex decision-making problems, such
as playing Atari and Go games [10], [11].

Two main approaches to represent agents with model-
free reinforcement learning are Q-learning and policy gradi-
ent. In Q-learning algorithms, an agent chooses an action at a
given state that maximizes Q-value, i.e., the cumulative
reward over all successive steps. Q-table is a lookup table
containing Q-value for all the state-action pairs. To address
an overwhelming number of state-action pairs, neural net-
works are often used to approximate Q-table and the meth-
ods are generally called deep Q-learning (DQL). DQL learns
by approximating the optimal action-value functionQ�uðs; aÞ.
Policy gradient methods directly parameterize the policy
puðsÞ and optimize the parameters u in the neural network by
gradient descent. Policy gradient methods are generally
believed to be applicable for a wider range of problems and
converge faster, but tend to converge to a local optimum. On
the other hand, Q-learningmethods aremore difficult to con-
verge, but once they converge, they tend to have more stable
performance than policy gradient [36].

Actor-critic approaches combine the strengths of Q-learn-
ing and policy gradient via a hybrid neural network consist-
ing of two parts: actor and critic. The actor network is the
policy distribution puðsÞ to be optimized; the critic network
is value function V ðsÞ to be learned. The estimated value
function provides a baseline for policy updates, and thus
reduces variance estimates in actor network. Advantage
Actor-Critic (A2C) and PPO (Proximal Policy Optimization)
are the most popular actor-critic variants. Advantage Actor-
Critic models define advantage term, i.e., AðsÞ ¼ Rt � V ðsÞ.
Subtracting the learned value function reduces the reward
variance and keeps advantages unbiased. A2C [37] and A3C
[13] are two variants of advantage actor critic models. A3C is
the asynchronous version allowing multiple workers train-
ing asynchronous, while A2C is the synchronous version
training on a single worker. Research found that A2C yields
comparable performance to A3C while being more cost-
effective [38]. PPO is the more advanced actor-critic model
published by OpenAI in 2017 [14], which leverages clipping
or penalty surrogate to prevent large policy changes in a sin-
gle step. Other models, such as Trust region policy optimiza-
tion (TRPO), also have constraint on policy updates in a
single step. Studies show that PPO is simpler with fewer
hyperparameters, while achieving comparable performance

FAN ETAL.: DRAS: DEEP REINFORCEMENT LEARNING FOR CLUSTER SCHEDULING IN HIGH PERFORMANCE COMPUTING 4905

Authorized licensed use limited to: Michael Papka. Downloaded on November 04,2022 at 09:45:17 UTC from IEEE Xplore. Restrictions apply.

[14]. Given PPO’s superior performance and simple imple-
mentation, it has become a commonly used reinforcement
learning baseline.

2.3 Technical Challenges

Designing deep reinforcement learning driven scheduling
for HPC is challenging. Key obstacles as listed below.

Avoiding Job Starvation. HPC jobs have drastically differ-
ent characteristics: user jobs may range from a single-node
job to a whole-system job, and job runtimes may vary from
seconds to hours or even days. This feature presents a
unique challenge to HPC systems: jobs, especially large-
sized jobs, tend to be starved, if small-sized jobs keep arriv-
ing and skip over large jobs due to insufficient available
resources. Directly applying existing RL-based scheduling
methods can lead to severe job starvation. We have tested a
state-of-the-art policy gradient method with a real workload
trace. Our results show that large jobs, e.g., 4k-node jobs,
were held in the queue for 170 days. Typically, large jobs
have high priority at HPC sites, especially capability com-
puting facilities. The long wait times discourage users from
submitting large jobs.

Incorporating Backfilling. Backfilling is a key strategy to
reduce resource fragmentation in HPC. Currently, the well-
known EASY backfilling strategy uses the simple first-fit
method to select jobs for backfilling, i.e., choosing the first
job which can fit in the backfill hole. We suggest that similar
to the selection of jobs for scheduling, the selection of jobs
for backfilling has many possible options, hence having the
potential for more aggressive optimization.

Scalable State and Action Representation. To transform a
scheduling problem to a reinforcement learning problem,
we must first capture the dynamic environment, e.g., status
of thousands of nodes and hundreds of waiting jobs, to a
state vector as an input to the neural network. Additionally,
it is vitally important to map the extremely large action
space to an output of the neural network in a manageable
size. The action space grows exponentially with the number
of jobs in the queue. Working directly with large action
space can be computationally demanding.

Effective Agent Training. A RL agent learns to improve its
policy by experiencing diverse situations. Effective training
should be capable of efficiently and rapidly building a con-
verged model based on sample data in order to make deci-
sions without being explicitly programmed to do so. It is
also challenging to select training data to reliably cover as
much of the state space as possible and generalize to new or
unseen situations.

Bridging RL and HPC Scheduling. The vigorous debates on
whether to choose classical heuristic policies or automati-
cally learned policies call for a fair comparison between
them. However, scheduling processes vary significantly
between traditional and auto-learn policies. Even different
reinforcement learning policies can vary significantly on
how to learn and make decisions. Plus, novel reinforcement
learning algorithms are rapidly emerging. To fairly compare
traditional and RL-based policies, it is vitally important to
build a common platform for scheduling policies to easily
communicate with the scheduling environment.

3 DRAS: HPC SCHEDULING AGENT

To address the aforementioned challenges, we present DRAS,
our scheduling engine tailored for HPC workload and
empowered by deep reinforcement learning. DRAS, illus-
trated in Fig. 1, represents the scheduler as an agent to make
decisions on when and which jobs should be allocated to com-
puter nodes with the objective to optimize scheduling perfor-
mance. The environment interface constantly sends
scheduling requests to the DRAS agent. Upon receiving a
request at time t, DRAS first encodes the job queue and sys-
tem state into a vector st, and passes the vector to the neural
network (Section 3.1). Next, DRAS uses a hierarchical neural
network for decision making (Section 3.2). The agent takes an
action by selecting jobs from the wait queue according to the
output of the neural network and then receives a reward sig-
nal from the environment. The goal of DRAS is to choose
actions (i.e., to select jobs) over time so as to maximize the
cumulative reward. DRAS trains its neural network through
simulation with massive datasets composed of real, sampled,
and synthetic workload traces (Section 3.3). Once themodel is
converged, we deploy the DRAS agents into operation. The
DRAS agents automatically adjust their neural network
parameters during operation to handleworkload changes.

3.1 State, Reward and Action Representation

The DRAS agent receives three observations from the envi-
ronment: (1) job wait queue, (2) cluster node status, and (3)
reward, a scalar indicating the quality of the action.

State.We encode each waiting job as a vector of [2,2], con-
taining four pieces of information, including job size, job
estimated runtime, priority (1 means high priority; 0 means
low priority), and job queued time. We encode each node as
a vector of [1,2] with two pieces of information. The first cell
is a binary representing node availability (1 means avail-
able; 0 means not available). If the node is occupied, we use

TABLE 1
Comparison of Cluster Scheduling Methods

Features

Methods FCFS [1] BinPacking [5] Optimization [2], [3], [4] Decima [6] DRAS [7]

Adaption to workload changes ✗ ✗ ✗ ✓ ✓
Automatic policy tuning ✗ ✗ ✗ ✓ ✓
Long-term scheduling performance ✗ ✗ ✗ ✓ ✓
Starvation avoidance ✓ ✗ ✗ ✗ ✓
Require training ✗ ✗ ✗ ✓ ✓
Implementation effort Easy Easy Median Hard Hard
Key objective Fairness Resource utilization Customizable Customizable Customizable

4906 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Michael Papka. Downloaded on November 04,2022 at 09:45:17 UTC from IEEE Xplore. Restrictions apply.

the user-supplied runtime estimate and job start time to cal-
culate the node estimated available time. The second cell
represents the time difference between the node estimated
available time and the current time. If the node is available,
we set the second cell to zero. We concatenate job informa-
tion and node information into a fixed-size vector as the
input to the network.

Reward. Reward functions reflect scheduling objectives. It
is hard to offer a one-size-fits-all reward function due to
diverse site objectives. HPC systems can be broadly classi-
fied as capability computing or capacity computing. Capa-
bility computing facilities are commonly interested in
prioritizing capability jobs (i.e., large jobs) [26] and optimiz-
ing resource utilization. An example reward of capability
computing could be as follows:

w1 � t

tmax
þ w2 � n

N
þ w3 �Nused

N
(1)

where t denotes the average wait time of selected jobs; tmax

is the maximum wait time of jobs in the queue. Similarly, n
is the average job size of the selected jobs; N is the total
number of nodes in the system; Nused is the number of occu-
pied nodes. In other words, this reward function intends to
balance three factors: to prevent job starvation, to promote
capability jobs, and to improve system utilization. The
weights can be tuned by system administrators based on
the site priority. For example, the higher w1 value could
meet a more stringent requirement on job starvation.

Capacity computing facilities typically focus on fast turn-
around time and short wait time [39]. For capacity comput-
ing facilities, we may define the reward function as:

P
j2J �1=tj

c
(2)

where J is the set of jobs in the queue and c is the number of
waiting jobs at the current timestep. This reward function
aims to minimize the average job wait time.

Action. DRAS processes the input vector and outputs a
vector as the scheduling action. The output vector specifies
which jobs are selected for job execution (i.e., immediate

execution, reserved execution, and backfilled execution).
Intuitively, at each scheduling instance, the scheduler
selects multiple jobs simultaneously. This leads to an explo-
sive number of actions and is infeasible to be trained effi-
ciently. Instead, DRAS decomposes one scheduling decision
(i.e., selects several jobs in one shot) into a series of job selec-
tions, i.e., selecting one job at each time.

3.2 Two-Level Neural Network

A key challenge when applying reinforcement learning to
HPC cluster scheduling is to prevent job starvation. State-
of-the-art RL methods focus on scheduling jobs for immedi-
ate execution and lack reservation strategy, hence leading to
job starvation. To overcome this obstacle, we build a hierar-
chical neural network structure, in which the level-1 network
is to select jobs for immediate or reserved execution and the
level-2 network is to identify jobs for backfilling.

More specifically, at a given scheduling instance, the
scheduler first enforces a window at the front of the job wait
queue. The window alleviates job starvation problems by
providing higher priorities to older jobs. The level-1 net-
work selects a job from the window. If the number of avail-
able nodes is more than or equal to the job size, the agent
marks the job as ready job and sends it for immediate execu-
tion on the system. This process repeats until the job
selected from the window has a size greater than the num-
ber of available nodes. The agent marks the job as a reserved
job and reserves a set of nodes for its execution on the sys-
tem at the earliest available time. At this point, the agent
moves to the level-2 network. Unlike the first-fit strategy
used in the traditional backfilling method, we use the neural
network to make backfilling decisions so as to minimize
resource waste. Toward this end, we fill the window with
job candidates, i.e., the jobs that can be fit into the holes in
the system before the reserved time. The agent selects one
job at a time for the system to backfill. The process at the
level-2 network repeats until no more job candidates for
backfilling.

In a nutshell, the decision making of DRAS is to select
jobs and execute them in three modes:

Fig. 1. DRAS overview. DRAS agent (at the bottom) represents the scheduling agent; the environment (at the top) comprises the rest of the system,
including job wait queue and HPC cluster. The DRAS agent first observes the environment state, including job state and system state, and encodes
the state into a vector. The agent’s neural network takes the vector as input and outputs a scheduling action. The environment executes the action
and provides a reward indicating the quality of the action. The agent uses reward to improve its policy automatically.

FAN ETAL.: DRAS: DEEP REINFORCEMENT LEARNING FOR CLUSTER SCHEDULING IN HIGH PERFORMANCE COMPUTING 4907

Authorized licensed use limited to: Michael Papka. Downloaded on November 04,2022 at 09:45:17 UTC from IEEE Xplore. Restrictions apply.

1) ready job: the jobs are selected to run immediately.
2) reserved job: the jobs are selected to start at the earliest

reserved time.
3) backfilled job: the jobs are selected to fill the holes

before the reserved time.
The same neural network is used for both level-1 and

level-2 networks. The entire 2-level neural network is
trained jointly using deep reinforcement learning to opti-
mize scheduling performance. Each network consists of five
layers: input layer, convolution layer, two fully-connected
layers, and output layer. The input layer is connected to a
convolution layer with a 1� 2 filter to extract job or node
status information in each row. The convolution layer is
connected to two fully-connected layers activated by a leaky
rectifier [40]. The second fully-connected layer is connected
to the output layer. We denote all of the parameters in the
neural network jointly as u.

The two-level neural network structure is generally
applicable to various RL algorithms. In this study, we
develop four RL agents leveraging different RL algorithms:
DRAS-DQL, DRAS-PG, DRAS-A2C and DRAS-PPO. DQL
denotes deep Q-learning; PG denotes policy gradient; A2C
denotes advantage actor critic, PPO denotes proximal policy
optimization. The selection of DQL, PG, A2C and PPO is for
us to systematically evaluate these popular reinforcement
learning methods under a unified environment.

DRAS-DQL uses the neural network to approximate Q-
value as Quðsk; akÞ (i.e., the expected cumulative reward of
taking action ak in state sk). DRAS-DQL network processes
one job at a time and produces the expected Q-value for this
job. We use the same network to approximate Q-value for
all the jobs in the window W . The input of the DRAS-DQL
neural network is a 2D vector of ½2þN; 2�, containing one
job information and N nodes information. The output is a
single neuron corresponding to the expected Q-value of the
job. After processing all the jobs in the window, normally,
the agent selects the job with the highest Q-value.

In order to explore various actions, the agent randomly
chooses a job instead of the job with the highest Q-value
with probability �. In practice, � is very high at the beginning
of the training to ensure that the agent explores various
state-action pairs and it decays over time as the agent
becomes more experienced. In our study, we set � ¼ 1:0 at
the beginning of the training and it decays at the rate of a ¼
0:995. In training, the parameters u in DRAS-DQL network
is updated by:

u u � a
XK
k¼1
5uQðsk; akÞðrk þmaxaQðskþ1; aÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

new value

�Qðsk; akÞ|fflfflfflfflffl{zfflfflfflfflffl}
old value

Þ

(3)

Here, the old value Qðsk; akÞ is the expected Q-value of tak-
ing action ak at state sk. After taking action ak, we can com-
pute the more accurate expected Q-value (i.e., the new
value) by adding the immediate reward rk and the expected
cumulative future reward. DRAS-DQL networks learn
through minimizing the loss between the new value and the
old value.

DRAS-PG uses the neural network to parameterize
scheduling policy as puðsk; akÞ (i.e., the probability of taking
action ak in state sk). The input of DRAS-PG is a 2D vector

of ½2�W þN; 2�, where W is the window size and N is the
total number of nodes in the system. The output of the neu-
ral network contains W neurons, each denoting the proba-
bility of selecting a job out of the W jobs. A scheduling
action is stochastically drawn from the W jobs following
their probability distributions. We employ the softmax [40]
as the activation function to ensure the sum of output values
equals to 1.0. If the number of wait jobs is less than the win-
dow size W , we mask the invalid actions in the output by
rescaling all valid actions. In terms of learning, DRAS-PG
method updates the neural network parameters u by:

u u þ a
XK
k¼1
5ulogpuðsk; akÞ

�XK
k0¼k

rk0 � bk

�
(4)

Here, K denotes the total number of actions taken in the
parameter update, a is the learning rate, and bk is the base-
line used to reduce the variance of policy gradient. We set
bk to the cumulative reward from step k onwards averaging
over all past parameter updates. Gradient descent was per-
formed using the Adam optimizer [41].

DRAS-A2C was introduced to reduce baseline variance
in the policy gradient method. In Equation (4), the baseline
is the average values of the historical steps. Actor critic
model tries to provide a more accurate baseline and thus
further reduce variance. The output of DRAS-A2C splits
into two parts: actor and critic. The actor outputs the policy
pu for a given state sk, which is the same as the output of
DRAS-PG. The critic output is the value function V ðskÞ. In
DRAS-A2C, we subtract cumulative reward with value
V ðskÞ and we call this value the advantage value Aðsk; akÞ ¼PK

k0¼k rk0 � V ðskÞ. Intuitively, the advantage value presents
how much better it is to take a specific action compared to
the average action at the given state sk. In addition, entropy
regularization term is added to enforce exploration during
learning [42]. Entropy measures the “randomness” of the
policy: if the policy is fully deterministic (the same action is
systematically selected), the entropy is zero as it carries no
information; if the policy is completely random, the entropy
is maximal. High entropy value encourages exploration by
forcing the policy to become more random. In summary,
DRAS-A2C method updates the neural network parameters
u by:

u u þ a
XK
k¼1
½ 5u logpuðsk; akÞ

�XK
k0¼k

rk0 � V ðskÞ
�

þ b5u HðpuðskÞÞ�
Here, the value V ðskÞ replaces the baseline bk in Equa-

tion (4) to provide more accurate value estimation.
HðpuðskÞÞ is the entropy of the policy for a state sk, which
can be computed as:HðpuðskÞÞ ¼ �

P
a puðsk; aÞlogpuðsk; aÞ.

DRAS-PPO was motivated by the fact that large
improvement steps on a policy might accidentally cause
performance collapse. To address this challenge, PPO pro-
vides two variants, i.e., penalty and clip, to limit large policy
changes. Studies show that clipping is more effective and
simpler than penalty [14]. Therefore, DRAS-PPO adopts
clipping technique. In DRAS-PPO, we first define the proba-
bility ratio rðuÞ between old policy puoldðsk; akÞ and new pol-

icy puðsk; akÞ: rðuÞ ¼ puold ðsk;akÞ
puðsk;akÞ . This ratio measures the

4908 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Michael Papka. Downloaded on November 04,2022 at 09:45:17 UTC from IEEE Xplore. Restrictions apply.

difference between the old and the new policies. If rðuÞ > 1
the action will be selected more in the new policy; if rðuÞ <
1 the action will be selected less in the new policy. In order
to prevent performance collapse, PPO constructs a new
objective function to clip the estimated advantage function
if the new policy is far away from the old policy, i.e., rðuÞ >
1þ �, where � is a clipping hypermeter. By adding the clip-
ping, the new objective function becomes:

LCLIP ðuÞ ¼ E½minðrðuÞAuoldðs; aÞ;
clipðrðuÞ; 1� �; 1þ �ÞAuoldðs; aÞÞ�

The clipping function discourages large policy change if it is
outside predefined comfortable zones. Similar to DRAS-
A2C, for the critic network, we seek to minimize the differ-
ence between the estimated value and the actual value.

Both A2C and PPO are hybrid algorithms that combine
value based learning (DQL) and policy gradient (PG).
According to the literature [14], such a hybrid approach
consistently outperforms DQL and PG on various applica-
tions. Additionally, they are more robust and achieve better
sample efficiency. In Sections 5.3 and 6.1, we also demon-
strate PPO and A2C yield better performance than DQL
and PG in solving the cluster scheduling problem.

3.3 Training Strategy

At the beginning of the training, we initialize DRAS’s neural
network parameters u to random numbers. We train the
neural network in episodes and the network parameters u

are updated with episodic training until convergence. For
each episode, the environment is first set to its initial state
(i.e., all nodes are idle and no jobs run on the system). We
train DRAS via trace-based simulation, in which job events
occur at a specific instant in time according to the job traces.
DRAS observes the scheduling state, makes scheduling
decisions according to its neural network, and collects
scheduling rewards. For every ten scheduling instances,
DRAS updates its parameters u based on the collected obser-
vations and then clears the memory for the next update. An
episode terminates when all jobs in the jobset (defined as a
collection of jobs grouped together for training an episode)
have been scheduled. We monitor the progress of the train-
ing by taking a snapshot of the model after each episode.
The next episode uses a new jobset to refine the previous
model.

The jobsets used in training determine the convergence
and quality of the DRAS model. To learn a converged
model, we follow the principle of gradual improvement:
DRAS starts with simple average cases and gradually improves
its capability with unseen rare cases. Specifically, we train
DRAS by using a three-phase training process and three
types of jobsets are used to train DRAS in order: (1) a set of
sampled jobs randomly selected from real job traces, (2) a
period of real job traces, and (3) a set of synthetic jobs gener-
ated according to job patterns on the target system. The
sampled jobsets have controlled job arrival rates providing
the easiest learning environment. Once DRAS can make
good scheduling decisions under the controlled environ-
ment, training on the real job traces with various job arrival
patterns allows DRAS to learn more challenging situations.
The final phase is to train DRAS with synthetic jobsets,

which enables DRAS to experience a variety of potential
states that might not be seen in the first two types of jobsets.
We will show this three-phase training process leads to a
fast convergence (Section 5.3).

The RL algorithms in DRAS can be implemented using
various machine learning libraries, including Tensorflow
[43] and PyTorch [44]. We implement DRAS-DQL and
DRAS-PG in Tensorflow; we implement DRAS-A2C and
DRAS-PPO in PyTorch. The source code is available as
open-source on GitHub [21].

4 CQGYM

Now we present CQGym, a platform to comprehensively
evaluate different HPC scheduling policies under the same
setting. CQGym consists of three main components, i.e.,
scheduling environment, Gym interface, and scheduling
agent. Scheduling environment is an event-driven schedul-
ing simulator that simulates job events, such as job submis-
sion, start, and end. The scheduling agent processes
scheduling requests from the environment. The scheduling
environment and agent are running on two separate
threads. Gym provides a standard interface to bridge the
environment and agent enabling their communication and
coordination.

Fig. 2 provides an overview of CQGym. CQGym is
implemented as a producer-consumer problem, where the
scheduling environment behaves as the consumer and the
scheduling agent acts as a producer. The scheduling envi-
ronment and the agent run on two separate threads. They
interact through Gym interface using shared variables.

Environment simulates the actual scheduling environ-
ment. Since Gym interface decouples the agent from the
environment, we can adopt any HPC scheduling simulator
[23], [45]. The default environment in CQGym is CQSim,
which is a trace-based HPC job scheduling simulator that
has been used for more than a decade [2]. A real system
takes jobs from user submission, while a simulator takes
jobs by reading the job arrival information in the trace. A
simulator emulates execution by advancing the simulation
clock according to the job runtime information in the trace.
Changes in job wait queue or system trigger the simulator
to send scheduling requests to the scheduling agent. The
typical triggers are new job submitted to job queue and run-
ning job leaving the system.

Gym provides a standard interface between scheduling
environment and scheduling agent. Our Gym interface fol-
lows the standard OpenAI Gym [22]. Gym is a widely

Fig. 2. Overview of CQGym. Here * denotes the information is passed
from Gym interface to scheduling agent, while the information might not
be used by the agent. For example, Gym interface sends state (job and
system information) and reward to the scheduling agent, and the agent
can select relevant information for its decision making, e.g., FCFC only
needs to know job submission time.

FAN ETAL.: DRAS: DEEP REINFORCEMENT LEARNING FOR CLUSTER SCHEDULING IN HIGH PERFORMANCE COMPUTING 4909

Authorized licensed use limited to: Michael Papka. Downloaded on November 04,2022 at 09:45:17 UTC from IEEE Xplore. Restrictions apply.

adopted environment to compare the performance of differ-
ent RL algorithms. OpenAI actively implements new RL
algorithms to evaluate on Gym [46]. We follow the Gym
standard in order to easily embrace new RL algorithms for
HPC scheduling. Our Gym interface implements two func-
tions, i.e., step and act. These functions provide standard
inputs and outputs for both the environment and the agent.
Therefore, the agent does not need to know the implementa-
tion details about the environment. Upon receiving a sched-
uling request from the environment, the step function
pauses the simulation, collects job queue states, system
states, and reward, then transforms the information in a
standard format, and invokes the agent to make scheduling
decisions based on the information. Then Gym waits on the
agent for a response. Upon obtaining the scheduling deci-
sion from the agent, Gym interface instructs the environ-
ment to execute the action and resume the simulation. A
salient feature is the Gym interface supports not only tradi-
tional scheduling policies, but also RL-based scheduling
policies.

Agentmakes scheduling decisions. In this study, we have
implemented several scheduling agents in CQGym: the
classic heuristic and optimization methods and four DRAS
agents presented in Section 3.2. In order to embrace new RL
algorithms benchmarked on Gym [46], we modularize
DRAS into several components and expose the components,
e.g., neural network structure, that need customization for
HPC scheduling. In addition, DRAS provides a switch to
turn on/off training. Once we train a RL agent with sub-
stantial experience and obtain a converged RL model, we
can turn off training to make faster decisions in production.

5 EXPERIMENTAL SETUP

5.1 Comparison Methods

� FCFS/B represents FCFS with EASY backfilling,
which is the default scheduling policy deployed on
many production supercomputers [28]. FCFS/B pri-
oritizes jobs based on their arrival times and EASY
backfilling is used to reduce resource fragmentation
[1].

� BinPacking is widely used heuristic method for sched-
uling in datacenters [5]. It iteratively allocates the
largest runnable jobs (i.e., job size is less than or equal
to the number of available nodes in the system) until
the system cannot accommodate any further jobs.

� Random randomly selects runnable jobs from the
queue to execute until no more jobs in the queue can

fit into the system. Since DRAS performs similarly to
Random at the beginning of training by randomly
exploring action space, if DRAS’s performance is bet-
ter than Random, it demonstrates that DRAS gradu-
ally learns to improve its scheduling action.

� Optimization denotes a suite of scheduling methods
that formulate cluster scheduling as an optimization
problem [3], [47], [48]. In our experiments, the optimi-
zation problem is formulated as a 0-1 knapsack prob-
lem which is solved using dynamic programming.
For a fair comparison, we use the same scheduling
objectives (i.e., Equations (1) and (2)) for Optimiza-
tion and for DRAS. For example, we can formulate
the capability computing optimization problem as:

max

�
w1 � t

tmax
þ w2 � n

N
þ w3 �Nused

N

�

s:t: Nselected � Navaiable

Per scheduling instance, optimization method selects
several waiting jobs to execute to maximize the
objective with the constraint that the resource
needed from the selected jobs does not exceed avail-
able resource in the system.

� Decima-PG denotes a modified version of Decima [6].
Since Decima is not designed for scheduling HPC
jobs, we modify Decima by skipping the graph neu-
ral network and adopting our state representation
presented in Section 3.1. Decima-PG acts as the base-
line to demonstrate the benefits of the hierarchical
design of DRAS.

� DRAS denotes our HPC custom designs scheduling.
In this study, we study four different RL agents,
namely DQL, PG, A2C, and PPO.

Among these methods, FCFS/B and DRAS are equipped
with reservation and backfilling strategies. Optimization
does not have backfilling and reservation capability. It is
challenging to incorporate reservation and backfilling into
optimization formulation, i.e., constraints, therefore they
are not considered in existing optimization studies.

5.2 Workload Traces

In our study, two real workload traces are used. Table 2
summarizes the two traces collected from production sys-
tems, and Fig. 3 gives an overview of job size distributions.
We select these traces as they represent different workload
profiles: (1) capability computing focusing on solving large-
sized problems, (2) capacity computing solving a mix of
small-sized and large-sized problems. The first workload is

TABLE 2
Theta and Cori Workloads

LightCyan Theta Cori

Location ALCF NERSC
Scheduler Cobalt Slurm
System Types Capability computing Capacity computing
Compute Nodes 4,392 (4,392 KNL) 12,076 (2,388 Haswell; 9,688 KNL)
Trace Period Jan. 2018 - Dec. 2019 Apr. 2018 - Jul. 2018
Number of Jobs 121,837 2,607,054
Max Job Length 1 day 7 days

4910 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Michael Papka. Downloaded on November 04,2022 at 09:45:17 UTC from IEEE Xplore. Restrictions apply.

a two-year job log from Theta [49], the production HPC sys-
tem located at ALCF. Theta is a capability computing sys-
tem. The smallest job allowed on Theta is 128-node [50].
Only 2.25% of jobs have dependency. For jobs with depen-
dency, the scheduler hides them from scheduling until all
their parents have been executed. On Theta, there are 32
nodes dedicated to run debugging jobs and the rest of 4,360
nodes are dedicated to user jobs. In our experiments, we set
the system size to be 4,360 and filter out all debugging jobs
in the trace. We use the first 2-month data for training, the next
month data for validating model convergence, and the rest 21-
month data for testing.

The second trace is a four-month job log from Cori [51].
Cori is a capacity computing system deployed at NERSC. A
majority of its jobs consume one or several nodes (Fig. 3).
The longest job executed for seven days. We use the first 2-
week data for training, the next 1-week data for validating model
convergence, and the last 15-week data for testing.

5.3 DRAS Training

The details of RL architectures for these systems are listed in
Table 3. Take DRAS-PG on Theta as an example. The input
of the neural network is a vector of ½4460; 2�. We use a con-
volutional layer with 4460 neurons and two fully-connected
layers with 4000 and 1000 neurons respectively. The output
layer contains 50 neurons representing jobs in the window.
In total, the neural network has 21,890,053 trainable parame-
ters. We shall note that the neural network is configured
based on the machine size, learning capability, and compu-
tation overhead.

For Theta (capability computing), we define its reward as
Equation (1). We set the weights w1 ¼ w2 ¼ w3 ¼ 1=3. For
Cori (capacity computing), we set the reward as Equa-
tion (2). The learning rate a is set to 0.001.

We use 100 jobsets composed of 720,000 jobs for DRAS
training on Theta. We collect 9 sampled jobsets by randomly
selecting jobs from the original training trace and modeling
job arrival times as Poisson distribution following the aver-
age inter-arrival time of the original trace. We split the origi-
nal Theta training dataset into nine one-week jobsets. We
generate 82 synthetic jobsets that mimic Theta workload
patterns in terms of hourly and daily job arrivals, and distri-
butions of job sizes and runtimes (Fig. 4).

We validate the trained DRAS agent with an unseen vali-
dation dataset (i.e., March of 2018). Fig. 5 compares the con-
vergence rates by training DRAS in different jobset
orderings. We make two key observations. First, training
only with real jobsets (the first 9 episodes of the orange line)
cannot obtain a converged model. To achieve a converged
model, more jobsets are needed to train our agents. Second,
training order plays an important role in performance.
Training in the order of sampled, real and synthetic jobsets
achieves the best result. While training with real jobsets first
can also obtain a converged model, the performance is not
as good as the case of training with sampled jobsets first.
Training with synthetic jobsets first results in slow conver-
gence. In summary, in order to generate a converged and high-
quality model, DRAS needs to first learn from simple averaged
cases (sampled jobsets) and then gradually move to more compli-
cated special cases (real and synthetic jobsets).

Fig. 3. Job characterization of Theta at ALCF and Cori at NERSC. The
outer circle shows the number of jobs in each job size category. The
inner circle presents the total core hours consumed by each job size
category.

TABLE 3
DRAS Network Configurations for Theta and Cori

Theta Cori

DRAS-DQL DRAS-PG DRAS-A2C DRAS-PPO DRAS-DQL DRAS-PG DRAS-A2C DRAS-PPO

Input ½4362; 2� ½4460; 2� ½4460; 2� ½4460; 2� ½12078; 2� ½12176; 2� ½12176; 2� ½12176; 2�
Convolutional Layer 4368 4460 4460 4460 12078 12176 12176 12176
Fully Connected Layer 1 4000 10000
Fully Connected Layer 2 1000 4000
Output 1 50 51 51 1 50 51 51
Trainable Parameters 21,449,004 21,890,053 21,891,054 21,891,054 161,764,004 161,960,053 161,964,054 161,964,054

Fig. 4. Job patterns of Theta training dataset.

FAN ETAL.: DRAS: DEEP REINFORCEMENT LEARNING FOR CLUSTER SCHEDULING IN HIGH PERFORMANCE COMPUTING 4911

Authorized licensed use limited to: Michael Papka. Downloaded on November 04,2022 at 09:45:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 6 shows the learning curves of different scheduling
methods. Our three-phase training process allows DRAS to
quickly learn and surpass other competing methods and
converge to optimal solutions. Based on the results, we use
the model trained after the 50th episode for testing in Sec-
tion 6. Another observation is that DRAS-PPO and DRAS-
A2C converge faster and obtain higher total reward than
DRAS-PG and DRAS-DQL. DRAS-PPO obtains 3800
rewards at the 100th episode compared with 3700 rewards
of DRAS-PG and DRAS-DQL. In addition, DRAS-PPO and
DRAS-A2C converge on the 4th sampled log and the 6th
real log. On the other hand, DRAS-DQL and DRAS-PG take
more episodes to reach similar rewards. The result indicates
that DRAS-PPO and DRAS-A2C achieve better sample effi-
ciency, requiring fewer historical jobs to train high-quality
models.

We perform a similar training and validation process on
Cori. We train DRAS using 100 jobsets (20,000,000 jobs)
composed of sampled traces, real traces, and synthetic
traces. Both DRAS methods converge at the 40th episode.
Hence, we use the model trained after the 40th episode for
testing.

5.4 Evaluation Metrics

There are two classes of metrics for evaluating cluster
scheduling: user-level metrics and system-level metrics. In
our experiments, we measure four well-established metrics:

� Job wait time is a user-level metric. It measures the
interval between job submission to job start time. In
our experiments, we analyze average job wait time,
maximum job wait time, as well as the distribution
of job wait times.

� Job response time is a user-level metric which meas-
ures the interval between job submission to
completion.

� Job slowdown is another user-level metric. It measures
the ratio of the job response time to its actual
runtime.

� System utilization is a system-level metric. It meas-
ures the ratio of the used node-hours for useful job
execution to the total elapsed node-hours.

6 CASE STUDY

We present the case study using CQGym to compare four
DRAS agents and five existing scheduling methods on test
data (i.e., 21-month Theta log and 15-week Cori log). Our
experiments are designed to answer the following
questions:

1) Does DRAS outperform existing, non-learning-based
scheduling policies? (Section 6.1)

2) CanDRAS prevent jobs from starvation? (Section 6.2)
3) If DRAS outperforms the traditional schedulingmeth-

ods, where does the gain come from? (Section 6.3)
4) Which DRAS agent performs the best? (Section 6.4)
5) Can DRAS adapt to workload changes? (Section 6.5)
6) Is generic or customized RL model better?

(Section 6.6)?
7) Do DRAS agents cause scheduling delays?

(Section 6.7)

6.1 Scheduling Performance

The quality of a scheduling method needs to be evaluated
by multiple metrics, including both system-level and user-
level metrics. Fig. 7 presents the overall scheduling perfor-
mance obtained by different scheduling methods. DRAS
yields the best result. Although FCFS/B has the lowest maxi-
mum wait time, it has poor performance on the rest of the
metrics. All DRAS methods outperform Optimization, sug-
gesting that DRAS agents learn to select jobs that not only
maximize the immediate reward, but also potentially
improve performance in the future through maximizing
cumulative reward. Decima-PG achieves good performance

Fig. 5. Comparison of quality and convergence of DRAS-PG by training it
in different jobset orders (Section 3.3).

Fig. 6. The total reward collected by the different scheduling methods on
Theta validation dataset.

Fig. 7. Scheduling performance comparison using Kiviat graphs: Theta
(left) and Cori (right). Solid lines represent the methods with backfilling
and reservation strategies, while dashed lines represent the methods
without these strategies. All metrics are normalized to the range of 0 to
1. 1 means a method achieves the best performance among all methods
and 0 means a method obtains the worst performance. The larger the
area is, the better the overall performance is.

4912 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Michael Papka. Downloaded on November 04,2022 at 09:45:17 UTC from IEEE Xplore. Restrictions apply.

on system utilization, but it fails to improve user-level met-
rics. BinPacking and Random have the worst performance,
because they greedily select jobs one by one which ignores
the best job combinations. Recall that DRAS applies a simi-
lar strategy as Random at the beginning of the training, by
randomly exploring various actions, the better performance
of DRAS indicates that our RL models developed good poli-
cies through learning.

Some methods have inconsistent performance on the
user-level metrics. For example, FCFS/B achieves the lowest
maximum job wait time; however, it suffers from high aver-
age job wait time. We present the in-depth analysis of job
wait time on Theta in the following subsections.

6.2 Job Starvation Analysis

Fig. 8 shows job wait times under different job sizes and cat-
egories. We make three key observations from this figure.
First, DRAS and FCFS/B prevent jobs from starvation, while
Decima-PG, BinPacking and Random suffer severe job starva-
tion. The maximum job wait times of DRAS methods are in
the range of 14 to 20 days, which are only slightly higher
than the maximum job wait time of FCFS/B (13 days) and
are similar to Trace. Although Optimization and DRAS aim
at the same scheduling objectives, the maximum wait time
of Optimization is twice as long as that of DRAS. The maxi-
mum job wait times of Decima-PG, BinPacking and Random
are 170 days, 95 days, and 170 days, indicating they are not
suitable for HPC cluster scheduling. Second, in Decima-PG,
BinPacking, and Random, large-sized jobs wait noticeably
more time than small-sized jobs. They inherently give
higher priority to small-sized jobs at the expense of large-
sized jobs, because they lack reservation strategies to
reserve resources for large-sized jobs. The bias toward
small-sized jobs is not ideal for HPC scheduling, especially
for capability systems. In contrast, the methods with reser-
vation strategy, i.e., FCFS/B and DRAS, do not have a signif-
icant difference between small jobs’ wait times and large
jobs’ wait times. This demonstrates that DRAS and FCFS/B
are relatively fair scheduling policies. Third, if we take a

look at the methods using reservation and backfilling strate-
gies (i.e., FCFS/B and DRAS), we notice that almost all large
jobs are executed through reservation, while the majority of
small jobs are executed through backfilling. In short, these
results demonstrate that DRAS is capable of preventing job
starvation mainly due to the incorporation of job reservation
and backfilling in our DRAS design.

6.3 Source of DRAS Performance Gain

Table 4 presents job distributions by using different sched-
uling methods. We notice that although DRAS backfills a
majority of the jobs, most node hours are consumed by
reserved jobs. If we read Table 4 along with Fig. 8, we
observe that there are a few jobs with wait time of over 300
hours and these jobs are mainly allocated through reserva-
tion by DRAS. Without reservation, these jobs would wait
for 2X-10X more time as happened in Decima-PG, Optimiza-
tion, BinPacking, and Random. Put together, these results
reveal that all DRAS agents learn to achieve the goals by pri-
oritizing jobs and preventing job starvation through its res-
ervation mechanism embedded in its two-level network
design.

Fig. 8. Job wait time distributions with respect to job size and job type on Theta. Note that the y-axis scale for Decima-PG, BinPacking and Random is
much larger than those for others. Trace presents the job wait times extracted from the original log, which can be used as the baseline. Since we do
not have the job type information, all jobs are marked in grey. Eclipses in the plots indicate Decima-PG, BinPacking, and Random lead to severe job
starvation.

TABLE 4
Job Distributions in Different Execution Models (Defined in

Section 3.2) on Theta

Backfilled Ready Reserved

jobs core
hours

jobs core
hours

jobs core
hours

Optimization 0% 0% 100% 100% 0% 0%
Decima-PG 0% 0% 100% 100% 0% 0%
BinPacking 0% 0% 100% 100% 0% 0%
Random 0% 0% 100% 100% 0% 0%
FCFS/B 79.25% 30.45% 9.88% 16.99% 10.87% 52.56%
DRAS-DQL 84.83% 34.17% 6.84% 10.91% 15.17% 54.92%
DRAS-PG 83.76% 33.67% 8.63% 11.29% 7.61% 55.04%
DRAS-A2C 80.36% 38.48% 10.60% 13.95% 9.03% 47.56%
DRAS-PPO 79.73% 38.57% 10.96% 13.39% 9.30% 48.03%

FAN ETAL.: DRAS: DEEP REINFORCEMENT LEARNING FOR CLUSTER SCHEDULING IN HIGH PERFORMANCE COMPUTING 4913

Authorized licensed use limited to: Michael Papka. Downloaded on November 04,2022 at 09:45:17 UTC from IEEE Xplore. Restrictions apply.

Although both FCFS/B and DRAS apply backfilling strat-
egies, DRAS performs significantly better in terms of aver-
age job wait time (Fig. 7). In Fig. 9, we notice that DRAS
largely reduces the wait time of ready and backfilled jobs at
the expense of a slightly longer wait time for reserved jobs.
FCFS/B schedules jobs in their arrival order, while DRAS
selects jobs from the queue that aim to balance three objec-
tives (i.e., minimizing average job wait time, prioritizing
large jobs, and maximizing system utilization). Therefore,
DRAS learns to pick backfilled and ready jobs that lead to
lower average job wait time and select jobs queued for long
times to avoid job starvation. The better performance of
DRAS demonstrates that DRAS learns to intelligently select
jobs for resource allocation so as to maximize the long-term
scheduling performance.

6.4 Comparison of DRAS Agents

We make several observations by comparing the perfor-
mance of the four DRAS agents, i.e., DRAS-DQL, DRAS-PG,

DRAS-A2C, and DRAS-PPO. First, DRAS-PPO achieves the
best overall performance on both Theta and Cori traces as
shown in Fig. 7. DRAS-A2C obtains the second-best perfor-
mance, which is very close to DRAS-PPO. DRAS-DQL is the
worst among the four DRAS agents. The result indicates
that the advanced actor-critic model and clipping technique
can reduce the variance in predicting the baseline perfor-
mance and therefore choose jobs with higher rewards. Sec-
ond, as shown in Fig. 8, DRAS-PPO is the most effective in
preventing large jobs from starvation. For DRAS-PPO, the
maximum wait time of large jobs is less than 300 hours,
which is lower than that of small jobs (325 hours). This
result demonstrates that DRAS-PPO learns to penalize those
large jobs waiting in the queue for a long time. For DRAS-
PG and DRAS-A2C, no significant difference is observed in
the maximum wait times of small jobs and large jobs.
DRAS-DQL is less effective in terms of job starvation pre-
vention. For DRAS-DQL, the maximum wait time of large
jobs is 460 hours, while the maximum wait time of small
jobs is 320 hours. Third, as shown in Table 4, DRAS-PPO
and DRAS-A2C have higher percentage of ready jobs and
lower percentage of reserved core hours compared with
DRAS-PG and DRAS-DQL. In addition, in Fig. 9, the aver-
age wait times of reserved jobs in DRAS-PPO and DRAS-
A2C are lower than that of DRAS-PG and DRAS-DQL. This
suggests that DRAS-PG and DRAS-DQL are more intelli-
gent in selecting ready jobs in the first-level neural network
and therefore leave fewer job core hours that need reserva-
tion. In summary, DRAS-PPO and DRAS-A2C leverage
advanced techniques to reduce reward variance and obtain
better models for deployment.

6.5 Adaptation to Workload Change

As shown in the top subfigure in Fig. 10, the system loads
are dynamically changing over time. We observe several

Fig. 9. Box plot of job wait times, grouping by job execution modes. Note
that the y axis presents in log scale. As compared to FCFS/B, DRAS
learns to intelligently select jobs for immediate execution, reservation, or
backfilling so as to maximize the overall scheduling performance.

Fig. 10. Comparing scheduling performance of FCFS/B, Optimization and DRAS-PPO, under heavy workload. When the system load is high, the
dynamic DRAS-PPO adjusts it network parameters to reduce average job wait time and maximum job wait time. Two periods of busy times are
zoomed in at right and left.

4914 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Michael Papka. Downloaded on November 04,2022 at 09:45:17 UTC from IEEE Xplore. Restrictions apply.

dramatic demand surges during this one-and-half year
period. Unlike the existing static scheduling policies, DRAS
is capable of dynamically adjusting its policy after deploy-
ment by continuous training. In Fig. 10, we compare the
scheduling performance of two selected static methods, i.e.,
FCFS/B and Optimization, with DRAS-PPO. We select
these methods for comparison for the following reasons:
FCFS/B is the baseline algorithm; Optimization achieves
the best performances among all methods without backfill-
ing and reservation strategies; DRAS-PPO is the DRAS
agent with the best performance. In order to show the policy
adjustment capability, we provide two versions of DRAS-
PPO: static DRAS-PPO that freezes its neural network
parameters during testing, and dynamic DRAS-PPO that
dynamically adjusts its neural network during testing. The
neural network update frequency during testing is much
lower than that during training, because we need a stable
model and only adjust models when workload dramatically
changes.

The bottom two subfigures in Fig. 10 show the average
and maximum job wait time during the testing period.
During busy weeks, FCFS/B has the worst performance
on average wait times, while Optimization has the longest
maximum job wait time, especially in September 2019.
Our further investigation in September 2019 trace reveals
that users submitted 6 whole-system jobs each running 24
hours. Normally, there are almost 2 such jobs submitted
per month. It is challenging to schedule such large and
long jobs: running them early could block all other jobs
causing long average wait times; running them late leads
to long maximum wait times. Minimizing average wait
time and minimizing maximum wait time are two conflict-
ing goals. Optimization chooses to delay large and long
jobs causing long maximum wait time. This is because
Optimization does not have reservation and backfilling
strategies to prevent large jobs from starvation. This dem-
onstrates that reservation and backfilling strategies are
especially effective in preventing large jobs from starva-
tion under heavy workloads. It is clear that DRAS-PPO is
capable of balancing these two conflicting goals by reduc-
ing average wait time with only a slight increase in maxi-
mum job wait time compared with FCFS/B. The dynamic
DRAS-PPO performs even better than the static version
under heavy workloads. This demonstrates that dynamic
adjusting neural networks helps the DRAS agent adapt to
dramatic workload changes.

6.6 Generic versus Customized RL Agent

RLScheduler [17] trained generic PG-based models based
on several workloads: HPC2N, Lublin-1, Lublin-2, and
SDSC-SP2. The learned model can apply on other unseen
workloads. In contrast to RLScheduler’s generic approach,
we adopt a customized approach, which learn the traits of a
specific system and workload through its historical traces.
We compare the performance of RLScheduler learned mod-
els and our DRAS-PG on Theta and Cori test data in Fig. 11.
Clearly, DRAS-PG outperforms all three RLScheduler mod-
els. This suggests that customized RL based scheduler can
capture system- and workload-specific features and thus
deliver better performance.

6.7 Runtime Overhead

The experiments in this paper are conducted on a per-
sonal computer configured with Intel quad-core 2.6 GHz
CPU with 16 GB memory. DRAS-PG, DRAS-A2C and
DRAS-PPO take less than 1 second for each network
parameter update. Since DRAS-DQL only processes one
job at each time, its network parameter update takes lon-
ger time (�2 seconds) than other DRAS agents. In prac-
tice, HPC cluster scheduling is typically required to make
decisions in 15-30 seconds [3]. In other words, all DRAS
agents impose trivial overhead, hence being feasible for
online deployment.

In our experiments, we spent less than 3 hours on a per-
sonal computer to obtain a converged model in Fig. 6. Any
system change, such as adding or removing nodes in a sys-
tem, requires DRAS to re-train the model. Considering that
system changes are not very frequent and DRAS can avoid
complicated manual tuning policies, it is worth to re-train
the model when the system changes.

7 CONCLUSION

In this paper, we have designed DRAS, a RL-empowered
job scheduling agent tailored for HPC systems and
workloads. DRAS represents the scheduling policy as a
hierarchical neural network and automatically learns
customized policies through training with the system-
specific workloads. Four RL algorithms, i.e., DQL, PG,
A2C, and PPO, have been implemented as DRAS agents.
To bridge RL and HPC scheduling, we have developed
CQGym, a common platform to quantitatively evaluate
various HPC job scheduling policies, including both
manually designed policies and DRAS agents. Our case
study demonstrates that DRAS is capable of grasping
system- and workload-specific characteristics, preventing
large jobs from starvation, adapting to workload changes
without human intervention, and outperforming existing
scheduling policies by up to 50%.

REFERENCES

[1] A. W. Mu’alem and D. G. Feitelson, “Utilization, predictability,
workloads, and user runtime estimates in scheduling the IBM SP2
with backfilling,” IEEE Trans. Parallel Distrib. Syst., vol. 12, no. 6,
pp. 529–543, Jun. 2001.

[2] X. Yang et al., “Integrating dynamic pricing of electricity into
energy aware scheduling for HPC systems,” in Proc. Int. Conf.
High Perform. Comput. Netw. Storage Anal., 2013, pp. 1–11.

Fig. 11. DRAS_PG versus RLScheduler-learned models.

FAN ETAL.: DRAS: DEEP REINFORCEMENT LEARNING FOR CLUSTER SCHEDULING IN HIGH PERFORMANCE COMPUTING 4915

Authorized licensed use limited to: Michael Papka. Downloaded on November 04,2022 at 09:45:17 UTC from IEEE Xplore. Restrictions apply.

[3] Y. Fan et al., “Scheduling beyond CPUs for HPC,” in Proc. 28th Int.
Symp. High-Perform. Parallel Distrib. Comput., 2019, pp. 97–108.

[4] H. Sun, P. Stolf, J. Pierson, and G. Costa, “Energy-efficient and
thermal-aware resource management for heterogeneous data-
centers,” Sustain. Comput.: Informat. Syst., vol. 4, pp. 292–306, 2014.

[5] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and
A. Akella, “Multi-resource packing for cluster schedulers,” in
Proc. ACM Conf. SIGCOMM, 2014, pp. 455–466.

[6] H. Mao, M. Schwarzkopf, S. Venkatakrishnan, Z. Meng, and
M. Alizadeh, “Learning scheduling algorithms for data processing
clusters,” in Proc. ACM Special Int. Group Data Commun., 2019,
pp. 270–288.

[7] Y. Fan, Z. Lan, T. Childers, P. Rich, W. Allcock, and M. E. Papka,
“Deep reinforcement agent for scheduling in HPC,” in Proc. IEEE
Int. Parallel Distrib. Process. Symp., 2021, pp. 807–816.

[8] A. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep reinforce-
ment learning framework for autonomous driving,” Electron.
Imag., vol. 19, pp. 70–76, 2017.

[9] T. Johannink et al., “Residual reinforcement learning for robot
control,” in Proc. Int. Conf. Robot. Automat., 2019, pp. 6023–6029.

[10] V. Mnih et al., “Playing Atari with deep reinforcement learning,”
in Proc. NIPS Deep Learn. Workshop, 2013.

[11] D. Silver et al., “Mastering the game of go without human knowl-
edge,” Nature, vol. 550, pp. 354–359, 2017.

[12] R. Sutton and A. Barto, Reinforcement Learning: An Introduction,
2nd ed. Cambridge, MA, USA: MIT Press, 2017.

[13] V. Mnih et al., “Asynchronous methods for deep reinforcement
learning,” in Proc. 33rd Int. Conf. Mach. Learn., 2016, pp. 1928–1937.

[14] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017, arXiv: 1707.06347.

[15] H. Mao et al., “Park: An open platform for learning-augmented
computer systems,” in Proc. 33rd Int. Conf. Neural Inf. Process.
Syst., 2019, Art. no. 224.

[16] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource
management with deep reinforcement learning,” in Proc. 15th
ACMWorkshop Hot Topics Netw., 2016, pp. 50–56.

[17] D. Zhang, D. Dai, Y. He, F. S. Bao, and B. Xie, “RLScheduler: An
automated HPC batch job scheduler using reinforcement
learning,” in Proc. Int. Conf. High Perform. Comput. Netw. Storage
Anal., 2020, Art. no. 31.

[18] R. Cunha and L. Chaimowicz, “Towards a common environment
for learning scheduling algorithms,” in Proc. Int. Symp. Model.
Anal. Simul. Comput. Telecommun. Syst., 2020, pp. 1–8.

[19] S. Liang, Z. Yang, F. Jin, and Y. Chen, “Data centers job scheduling
with deep reinforcement learning,” in Proc. Pacific-Asia Conf.
Knowl. Discov. Data Mining, 2020, pp. 906–917.

[20] F. Li and B. Hu, “DeepJS: Job scheduling based on deep reinforce-
ment learning in cloud data center,” in Proc. 4th Int. Conf. Big Data
Comput., 2019, pp. 48–53.

[21] CQGym Github Repository, 2021. [Online]. Available: https://
github.com/SPEAR-IIT/CQGym

[22] OpenAIGym, 2020. [Online]. Available: https://gym.openai.com/
[23] CQSim Github Repository, 2021. [Online]. Available: https://

github.com/SPEAR-IIT/CQSim
[24] B. Li, S. Chunduri, K. Harms, Y. Fan, and Z. Lan, “The effect of sys-

tem utilization on application performance variability,” in Proc. 9th
Int. Workshop Runtime Operating Syst. Supercomput., 2019, pp. 11–18.

[25] Y. Fan and Z. Lan, “DRAS-CQSim: A reinforcement learning
based framework for HPC cluster scheduling,” Softw. Impacts,
vol. 8, 2021, Art. no. 100077.

[26] W. Allcock, P. Rich, Y. Fan, and Z. Lan, “Experience and practice of
batch scheduling on leadership supercomputers at argonne,” in Proc.
Workshop Job Scheduling Strategies Parallel Process., 2017, pp. 1–24.

[27] L. Yu, Z. Zhou, Y. Fan, M. Papka, and Z. Lan, “System-wide trade-
off modeling of performance, power, and resilience on petascale
systems,” J. Supercomput., vol. 74, pp. 3168–3192, 2018.

[28] M. Jette, A. Yoo, and M. Grondona, “SLURM: Simple Linux utility
for resource management,” in Proc. Workshop Job Scheduling Strate-
gies Parallel Process., 2003, pp. 44–60.

[29] Moab, 2019. [Online]. Available: http://www.adaptivecomputing.
com/products/hpc-products/moab-hpc-basic-edition/

[30] PBS Professional, 2019. [Online]. Available: http://www.pbsworks.
com/

[31] Cobalt, 2019. [Online]. Available: https://www.alcf.anl.gov/cobalt-
scheduler

[32] Y. Fan, P. Rich, W. Allcock, M. E. Papka, and Z. Lan, “Trade-off
between prediction accuracy and underestimation rate in job runtime
estimates,” in Proc. IEEE Int. Conf. Cluster Comput., 2017, pp. 530–540.

[33] W. Chen, Y. Xu, and X. Wu, “Deep reinforcement learning for multi-
resource multi-machine job scheduling,” 2017, arXiv: 1711.07440.

[34] E. _Ipek, O. Mutlu, J. Mart�ınez, and R. Caruana, “Self-optimizing
memory controllers: A reinforcement learning approach,” in Proc.
Int. Symp. Comput. Archit., 2008, pp. 39–50.

[35] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, pp. 436–444, 2015.

[36] V. Mnih et al., “Asynchronous methods for deep reinforcement
learning,” in Proc. 33rd Int. Conf. Mach. Learn., 2016, pp. 1928–1937.

[37] J. X. Wang et al., “Learning to reinforcement learn,” 2016.
[38] OpenAI Baselines: ACKTR & A2C, 2021. [Online]. Available:

https://openai.com/blog/baselines-acktr-a2c/
[39] NERSC Queue Policies, 2020. [Online]. Available: https://docs.

nersc.gov/jobs/policy/
[40] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cam-

bridge, MA, USA: MIT Press, 2016.
[41] D. Kingma and J. Ba, “Adam: A method for stochastic opti-

mization,” in Proc. 3rd Int. Conf. Learn. Representations, 2015.
[42] R. J. Williams and J. Peng, “Function optimization using connec-

tionist reinforcement learning algorithms,” Connection Sci., vol. 3,
pp. 241–268, 1991.

[43] Tensorflow, 2020. [Online]. Available: https://www.tensorflow.org/
[44] PyTorch, 2020. [Online]. Available: https://pytorch.org/
[45] N. A. Simakov et al., “A Slurm simulator: Implementation and

parametric analysis,” in Proc. Int. Workshop Perform. Model. Bench-
marking Simul. High Perform. Comput. Syst., 2018, pp. 197–217.

[46] OpenAI Baselines, 2020. [Online]. Available: https://github.com/
openai/baselines

[47] S. Wallace et al., “A data driven scheduling approach for power
management on HPC systems,” in Proc. Int. Conf. High Perform.
Comput. Netw. Storage Anal., 2016, pp. 656–666.

[48] L. Rao, X. Liu, L. Xie, and W. Liu, “Minimizing electricity cost:
Optimization of distributed internet data centers in a multi-elec-
tricity-market environment,” in Proc. IEEE INFOCOM, 2010,
pp. 1–9.

[49] Theta, 2020. [Online]. Available: https://www.alcf.anl.gov/theta
[50] Job Scheduling Policy for Theta, 2020. [Online]. Available: https://

www.alcf.anl.gov/support-center/theta/job-scheduling-policy-theta
[51] Cori, 2020. [Online]. Available: https://docs.nersc.gov/systems/

cori/

Yuping Fan received the MS degree in electrical
engineering and the PhD degree in computer sci-
ence, both from the Illinois Institute of Technology, in
2015 and 2021. Her research interests include par-
allel and distributed computing, resource manage-
ment, and job scheduling in large-scale systems.
She is a student member of the IEEE Computer
Society.

BoyangLi received theMSdegree in electrical engi-
neering from Clarkson University, in 2016. He is cur-
rently working toward the PhD degree in computer
Science with the Illinois Institute of Technology. His
research interests include resource management
and job scheduling onHPCsystems.

Dustin Favorite received the BS degree in com-
puter science from the University of Central
Arkansas, in 2017, and the MS degree from the
Illinois Institute of Technology, in May 2022. His
research interests include machine learning
research methods and application, particularly
reinforcement learning.

4916 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 12, DECEMBER 2022

Authorized licensed use limited to: Michael Papka. Downloaded on November 04,2022 at 09:45:17 UTC from IEEE Xplore. Restrictions apply.

https://github.com/SPEAR-IIT/CQGym
https://github.com/SPEAR-IIT/CQGym
https://gym.openai.com/
https://github.com/SPEAR-IIT/CQSim
https://github.com/SPEAR-IIT/CQSim
http://www.adaptivecomputing.com/products/hpc-products/moab-hpc-basic-edition/
http://www.adaptivecomputing.com/products/hpc-products/moab-hpc-basic-edition/
http://www.pbsworks.com/
http://www.pbsworks.com/
https://www.alcf.anl.gov/cobalt-scheduler
https://www.alcf.anl.gov/cobalt-scheduler
https://openai.com/blog/baselines-acktr-a2c/
https://docs.nersc.gov/jobs/policy/
https://docs.nersc.gov/jobs/policy/
https://www.tensorflow.org/
https://pytorch.org/
https://github.com/openai/baselines
https://github.com/openai/baselines
https://www.alcf.anl.gov/theta
https://www.alcf.anl.gov/support-center/theta/job-scheduling-policy-theta
https://www.alcf.anl.gov/support-center/theta/job-scheduling-policy-theta
https://docs.nersc.gov/systems/cori/
https://docs.nersc.gov/systems/cori/

Naunidh Singh received the BTech degree in
mathematics and computing from Delhi Techno-
logical University, in 2015, and the MS degree in
computer science from the Illinois Institute of
Technology, in 2021. He is currently a software
engineer with Google Cloud. His research inter-
est include parallel and distributed computing in
general.

Taylor Childers is a computer scientist with
ALCF. He has a background in high-energy phys-
ics, having worked with the CERN Laboratory in
Geneva Switzerland on the ATLAS experiment.
His experience focuses on applying machine
learning methods to scientific challenges includ-
ing reinforcement learning, classification, and
semantic segmentation methods, and scaling
machine learning model training and scientific
simulations.

Paul Rich received the BA degree from North-
western University, in 2003, and the MS degree
from the University of Chicago, in 2006. He is a
principal software development specialist with
ALCF. He is a member of the Operations team and
works primarily on large scale system scheduling,
schedulers and scheduling policies. He is the lead
developer for Cobalt and is also a contributor to
OpenPBS. His main interests are system soft-
ware, especially exascale system software, and
HPC scheduling.

William Allcock received the bachelors of science
degree in computer science from the University of
Wisconsin –- Oshkosh, and themaster’s of science
degree in paper science from the Institute of Paper
Science and Technology, Atlanta, GA. He has been
working with Argonne National Laboratory in vari-
ous scientific computing domains for more than 20
years. He is the director of operations for the ALCF
and was the team lead for the GridFTP Software
Team.

Michael E. Papka is a senior scientist and deputy
associate laboratory director for computing, envi-
ronment, and life sciences with Argonne National
Laboratory. At Argonne, he directs the Argonne
Leadership Computing Facility. He is interested in
scientific visualization, large-scale data analysis,
and the development and deployment of research
infrastructure in support of science. He is also a
professor of computer science with the University
of Illinois Chicago.

Zhiling Lan received the PhD degree in com-
puter engineering from Northwestern University,
in 2002. She has since joined the faculty of the
Illinois Institute of Technology and is currently a
professor of computer science. She is also a
guest research faculty with the Argonne National
Laboratory. Her research interests include work-
load management, interconnect networking, per-
formance modeling, and simulation. She is a
senior member of the IEEE Computer Society.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

FAN ETAL.: DRAS: DEEP REINFORCEMENT LEARNING FOR CLUSTER SCHEDULING IN HIGH PERFORMANCE COMPUTING 4917

Authorized licensed use limited to: Michael Papka. Downloaded on November 04,2022 at 09:45:17 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

