
Abstract
In recent years, numerous hardware accelerators have been
developed to meet the rising demand for machine learning (ML)
workloads, and Large Language Models inference in particular.
GPUs are currently the standard for ML training and inference.
However, they require substantial data movements that hurt
performance and increase power consumption, making systems
extremely energy-intensive. In response, many companies,
including Intel, AMD, and Google, as well as numerous startups
such as Groq, SambaNova, Cerebras, and Graphcore, have
introduced specialized accelerators for ML workloads that
leverage a dataflow design, which aims to reduce data movement
and thus improve both performance and power consumption.
This article presents a comparative analysis of the performance
and energy efficiency of various AI accelerators and GPUs for
large language model (LLM) inference, using popular open-source
models evaluated on both synthetic and real-world datasets.

Background
Time Complexity

LLMs are a type of DNN based on the Transformer architecture.
Their distinctive feature is the presence of Self-Attention Layers. 

The computational complexity of attention is 
Where n is the sequence length and d is the model’s hidden
dimension. Generating multiple tokens requires multiple forward
passes, each quadratic in complexity in its current sequence length,
making the complexity of the sequence generation cubic.
A popular optimization known as KV caching reduces sequence
generation complexity to quadratic in sequence length by
storing K and V matrices and updating them incrementally.

Hardware Accelerators
Current AI accelerators can be grouped into three main categories:

GPUs: use the Single Instruction, Multiple Threads model and
feature a hierarchical memory system that combines a large,
DRAM‑based global memory with a fast, low‑latency shared
memory scoped to each thread block.
TPUs: feature VLIW cores that operate on tensors of data. In
particular, TPUs feature matrix multiplication functional
units. TPUs feature a complex memory hierarchy comprising a
global DRAM  and local scratchpad memories.
Dataflow architectures interconnect many cores over an
on‑chip network. This allows each core to use its own local
scratchpad memory only, giving predictable access latency and
enabling fine‑grained, compiler‑driven data scheduling.

Methodology
To test the performance of accelerators on LLM Inference, we use
different open-source models from the Llama, Qwen, Mistral,
and DeepSeek families. In particular, we focus on models of size
7B, 14B, 32B, and 70B parameters. Using random batches of
tokens, we model the performance as a function of input, output
tokens, and batch size. For all runs, we collect both performance
metrics (latency, throughput, TTFT) and power consumption data
(average power, peak power, energy).
As our baseline machine, we use a Polaris node at Argonne
National Laboratory that features an AMD Milan CPU and four
Nvidia SXM A100 GPUs with 40GB of HBM2 memory. The inference
framework adopted is vLLM, which offers a state-of-the-art KV
cache system and leverages the FlashAttention library to ensure
efficient computation. 

Fig. 1: Lantecy (s) of DeepSeekR1 Distill-
Llama70B on Polaris.

Fig. 2: Throughput (token/s) of
DeepSeekR1 Distill-Llama70B on Polaris.

Fig. 3: Energy / Token (input and output) for DeepSeekR1 Distill-Llama8B on Polaris.

Fig. 4: Energy vs Model Size on Polaris (1024 input-output tokens, batch size 16)
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Results
Given a machine, the factors that impact performance are
sequence length, batch size, and tensor-parallel size.

Fig. 5 shows an example of an energy consumption comparison
between Nvidia (A100 SXM 40GB) and Intel (Max 1550) GPUs.
The results show that the Nvidia A100 consistently outperforms the
Intel GPU in terms of energy consumption.
We are currently working on replicating similar tests on other
models of Nvidia and AMD GPUs and several Dataflow machines
available at Argonne National Laboratory to gain further insights on
how the architecture impacts the performance and the energy
consumption.

As shown in Figs. 1 and 2, longer sequences increase the latency
and reduce the throughput, while larger batch sizes cause the
latency to increase, but improve the overall system throughput. As
shown in Fig. 3 it also reduced the energy consumption per token.

Increasing the number of GPUs to enable tensor-parallelism
allows fitting larger models in memory and increases the
throughput significantly for smaller models. This increase in
throughput comes at the cost of increased energy consumption  
(as shown in Fig. 3), but never enough to justify letting GPUs idle. 

As Fig. 4 shows, energy usage grows with the square of model
size, but architecture choices can significantly lower that cost. For
instance, the Mixture‑of‑Experts model Mixtral uses about 62%
less energy than a similarly sized dense model. Likewise, adding
Grouped Query Attention cuts consumption of around 35% for
models in the 7-8B range.

Fig. 5: Energy usage on NVIDIA A100 SXM and Intel Max 1150 for Qwen 7B.


