
Recursive meta-Reinforcement Learning for Personalized Sequential

Dynamic Treatment Policies

BY

ELISA TARDINI
B.S., Politecnico di Milano, Milan, Italy, 2018

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2021

Chicago, Illinois

Defense Committee:

Xinhua Zhang, Chair and Advisor

G. Elisabeta Marai

Pier Luca Lanzi, Politecnico di Milano

To Piera and Francesco

ii

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Xinhua Zhang, for his continuous support during

this last year. I would also like to thank Dr. G. Elisabeta Marai (UIC), Dr. David Fuller

(University of Texas MD Anderson Cancer Center), Dr. Guadalupe Canahuate (University

of Iowa), the Electronic Visualization Laboratory (UIC), and everybody else from UIC and

the MD Anderson Cancer Center who contributed to this project for helping me in my first

experience in academic research. I would also like to thank Dr. G. Elisabeta Marai and Dr.

Pier Luca Lanzi (Politecnico di Milano) for serving on my committee.

I want to thank my family for (almost) always supporting me.

Finally, I want to thank all the friends I have made in the last year and a half in Chicago (special

mention to the Palazzina), and all the other friends back in Italy and all over the world, whom

I miss every day.

ET

iii

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Meta-Reinforcement Learning 1
1.2 Dynamic Treatment of Oropharyngeal Squamous Cell Carci-

nomas . 2
1.3 Recursive Sequential Deep meta-Reinforcement Learning . . . 5

2 RELATED WORK . 6
2.1 Deep Meta-Reinforcement Learning 6
2.1.1 Introduction . 6
2.1.2 Markov Decision Processes . 8
2.1.3 Architecture . 9
2.1.4 Training . 11
2.1.5 Results . 11
2.2 Dynamic Treatment Regimes with Multiple Reward Functions 16
2.2.1 Dynamic Treatment Regimes . 16
2.2.2 Learning with Multiple Reward Functions 19

3 MOTIVATION . 21
3.1 The Three-Step Problem . 21
3.2 The Dynamic Treatment with Multiple Rewards Problem . . 23
3.3 Goals . 24

4 DATASET . 25
4.1 Oropharyngeal Squamous Cell Carcinoma Dataset 25
4.2 Preprocessing . 27

5 METHODS . 28
5.1 Recursive Sequential Deep Meta-Reinforcement Learning . . . 28
5.1.1 Training . 32
5.2 Dynamic Treatment Simulator 36
5.3 Evaluation . 39
5.3.1 Three-Step Problem Models . 39
5.3.2 Dynamic Treatment of Oropharyngeal Squamous Cell Carci-

noma with Multiple Rewards . 44

6 RESULTS . 47
6.1 The Three-Step Problem . 47

iv

TABLE OF CONTENTS (continued)

CHAPTER PAGE

6.1.1 Training Performance . 47
6.1.2 Testing performance . 52
6.2 The Dynamic Treatment of Oropharyngeal Squamous Cell Car-

cinoma with Multiple Rewards Problem 58
6.2.1 Dynamic Treatment Simulator 58
6.2.2 Recurive Sequential Meta-Reinforcement Learning for Dynamic

Treatment of Oropharyngeal Squamous Cell Carcinomas . . . 62
6.2.2.1 Training performance . 62
6.2.2.2 Testing Performance . 64

7 CONCLUSION . 66

APPENDICES . 69
Appendix A . 70
Appendix B . 72
Appendix C . 80

CITED LITERATURE . 81

VITA . 85

v

LIST OF TABLES

TABLE PAGE
I HYPERPARAMETER DETAILS OF ALL MODELS IN THE

DYNAMIC TREATMENT SIMULATOR. 38
II AVERAGE CUMULATIVE REWARD PER EVALUATION EPISODE

OF RANDOM CHOICE AND RSMRL MODELS, FOR ALL TRAIN-
ING AND TESTING ENVIRONMENTS. 57

III PREDICTION ACCURACY (WITH 95% CONFIDENCE INTER-
VALS IN BRACKETS) OF THE STRATIFIED BOOTSTRAPPED
EVALUATION OF THE DYNAMIC TREATMENT SIMULATOR. 59

IV AVERAGE CUMULATIVE REWARDS OF EACH TRAINING-
TESTING ENVIRONMENT COMBINATION OF MODELS, COM-
PARED TO RANDOM CHOICE PERFORMANCE. 65

V MAIN FEATURE DEMOGRAPHICS OF THE MDACC OPC
DATASET FOR EACH TREATMENT JUNCTION. 72

vi

LIST OF FIGURES

FIGURE PAGE
1 Overview of the therapy selection process. The therapy selection

process shows two distinct phases: initial therapeutic selection and
subsequent therapeutic selection. 4

2 Architecture of a meta-RL model . 10
3 Average cumulative regret per trial of a meta-RL model, as compared

to other optimal algorithms . 12
4 The two-step task: starting from state S1, actions a1 and a2 lead to

second-stage states S2 and S3 with different transition probabilities
(pictured in blue). States S2 and S3’s reward probabilities, ra and
rb, are randomly assigned at the beginning of each episode 13

5 Model-based vs. model-free behaviour in the two-step task: a meta-
RL model trained with a model-free RL algorithm still exhibits model-
based behaviour . 15

6 Training of a 3-step Dynamic Treatment Regime: the third decision
model (D3) is trained on the final outcome, then the second decision
model D2 is trained on the value V3 computed by the D3 model, and
the first decision model D1 is trained on the value V2 computed by
the D2 model. 18

7 MDP structure of the three-step task, as a complete process (a) and
as two separate two-step tasks (b) . 22

8 Main features, outcomes, and decisions of the OPC treatment sequence 25
9 Architecture of a recursive sequential meta-RL model for a two-

decision MDP. We have two new types of feedback: from environ-
ment to model (x2t−1, in orange, x3t−1, in blue), and from following
value to previous model (V 2t− 1(x2t−1), in red). 31

10 “Structured” three-step task: all treatment junctions share the same
transition probability structure. 40

11 Training performance of the hard transitions, easy rewards three-step
problem RSMRL model, for each of the two decisions. 51

12 Average reward per evaluation trial in all transition-reward difficulty
combinations of three-step problem environments, of all the models
trained on the same transition difficulty. Rewards are normalized so
that random chance performance is 0, and optimal performance is 1. 56

13 Rolling average of rewards per training episode, of all the RSMRL
for OPC models. 63

vii

LIST OF ABBREVIATIONS

A2C Advantage Actor-Critic

AC Actor-Critic

CC Concurrent Chemotherapy

CECT Contrast-Enhances Computed Tomography

DTR Dynamic Treatment Regimes

DTS Dynamic Treatment Simulator

GTVp Gross primary Tumor Volume

HIPAA Health Insurance Portability and Accountability

Act

HNC Head and Neck Cancer

IBEX Imaging Biomarker EXplorer

IC Induction Chemotherapy

LSTM Long Short-Term Memory

MAB Multi-Armed Bandit

MDACC MD Anderson Cancer Center

MDP Markov Decision Process

Meta-RL Deep meta-Reinforcement Learning

viii

LIST OF ABBREVIATIONS (continued)

ML Machine Learning

OPC Oropharyngeal Squamous cell Carcinoma

RL Reinforcement Learning

RNN Recurrent Neural Network

RSMRL Recursive Sequential deep Meta Reinforcement Learn-

ing

RT Radiotherapy

SL Supervised Learning

SVC Support Vector Classifier

VOI Volume of Interest

ix

SUMMARY

In recent years deep meta-reinforcement learning has extended the applicability of rein-

forcement learning (RL) algorithms: by integrating recurrent networks, trained models have

the ability to quickly adapt to new unseen environments without the need for further backprop-

agation. These models, however, cannot adapt without having information on past rewards, and

are therefore not directly applicable to a sequential decision-making setting in which multiple

steps are required before observing the final reward.

One of the main applications affected by this limitation are dynamic treatment regimes,

i.e. the problem of selecting the optimal medical treatment sequence for a patient at each

step, keeping into account the complete past treatment history. By expanding deep meta-

reinforcement learning to handle sequential decisions, a model would be able to prescribe the

optimal treatment for each patient even if the patient’s (or physician’s) preferences on the

outcome were never encountered by the model in training.

We propose a recursive deep meta-reinforcement learning approach which enables the model

of each decision of the sequential process to learn from and adapt to unseen circumstances by

recursively integrating the feedback of the models of other decisions in the process. We evaluate

our approach on synthetic two-step processes with fixed transition probabilities but varying

reward functions, to test the models’ ability to propagate environment information from the

final reward to intermediate steps. Finally, we train our model on a dataset of three-step chemo-

radiotherapeutic and surgical treatment of oropharyngeal squamous cell carcinoma patients,

x

SUMMARY (continued)

proving our approach’s ability to optimally handle previously unseen patient’s preferences on

survival and toxicity outcomes.

xi

CHAPTER 1

INTRODUCTION

1.1 Meta-Reinforcement Learning

Deep meta-Reinforcement Learning (meta-RL) [1–3], is a novel addition to the RL field

which, by adding Recursive Neural Networks (RNN) to existing RL algorithms, allows models

to be applicable to a distribution of problems, rather than a single one, thus significantly

expanding the environment adaptation capabilities of standard RL.

Meta-RL models have two fundamental components: the memory, and the standard RL

model. The memory, in the form of an RNN, provides an embedding of the state space and

past actions and rewards history, which constitutes the input to the standard RL model, which

can be any traditional RL algorithm.

While traditional RL algorithms are trained in a single environment, and therefore can only

act optimally in said environment, meta-RL models are trained on a distribution of environ-

ments with different characteristics (e.g. different reward functions or transition probabilities).

It is the dynamic embedding of the environment provided by the RNN that allows the trained

meta-model to assess its surroundings in real time and build a belief of which environment it

is currently in, so as to act optimally with respect to the specific challenge.

State-of-the-art meta-RL algorithms, however, focus solely on Multi-Armed Bandits (MAB)

environments or Markov Decisions Processes (MDP) with a single state space and an indefinite

1

2

time horizon. These algorithms are therefore unfit to handle situations in which a fixed sequence

of different actions must be performed before observing the final reward, as each junction in

the sequence has a different state space representation and intermediate decisions have no

immediate observed reward.

1.2 Dynamic Treatment of Oropharyngeal Squamous Cell Carcinomas

Dynamic Treatment Regimes (DTR) refer to “a sequence of decision rules, one per stage

of intervention, that dictate how to individualize treatments to patients based on evolving

treatment and covariate history” [4]. They are models (or sequence of models) whose goal is to

determine the optimal treatment decision at each step for any patient, given the complete past

medical history and a goal that defines what the desired outcome is. These models have grown

in popularity in recent years as a clinical decision support system to aid physicians in assessing

the correct treatment course of a variety of conditions, such as depression [5] and ADHD [6].

Head and neck cancer (HNC), which “includes cancers of the larynx, throat, lips, mouth,

nose, and salivary glands” [7], is now an epidemic with 65,000 new cases in the US annually [8],

whose treatment is, as in many other types of cancers, a dynamic and complex process. This

therapy process involves making multiple, patient-specific treatment decisions, to maximize

efficacy—e.g., reduction in tumor size, time of local region control, and survival time, while

minimizing side effects [9–11].

For example, a specific patient may undergo radiotherapy alone (RT), radiotherapy with

concurrent chemotherapy (CC), or induction chemotherapy (IC) [12]. After each round of

IC, a decision must be made whether or not to continue IC or to start either radiotherapy

3

(RT) or concurrent chemotherapy (CC). These decisions are currently taken by clinician or

multidisciplinary tumor boards based on pre-therapy patient characteristics or crude heuristics.

Notably, current risk prediction models incorporated (e.g. AJCC Staging) in clinical decision

support systems do not, by themselves, systematically direct clinicians to select an appropriate

treatment that incorporates both oncologic and toxicity endpoints.

Further, disposition to initial induction chemotherapy is then followed by a second respon-

sive disposition to either radiotherapy or concurrent chemoradiotherapy. Inferring the optimal

treatment policies for multi-stage decisions (e.g., which treatment to give initially and then

after observing treatment response, Figure 1) post hoc is challenging, as an optimal therapy

sequence cannot be readily “pieced together” from several single-stage decisions.

For this reason, in the absence of rigorous clinical trials comparing adaptive induction

chemotherapy permutations with concurrent radiotherapy, group comparison is exceedingly

difficult, as simple models that account for confounders at initial disposition (e.g. propen-

sity scores) are unequipped to incorporate sequential decision processes (e.g. the choice for

chemotherapy concurrently after induction).

To address multi-stage models of therapy selection that incorporate both relevant cancer and

side-effect considerations, and to allow personalization and optimization of health outcomes,

we need to extend existing meta-RL algorithms to handle sequential decision making processes

such as this dynamic treatment problem.

By leveraging a large number of oropharyngeal squamous cell carcinoma cases collected at

a single institutional head and neck data tumor board at the MD Anderson Cancer Center

4

Figure 1: Overview of the therapy selection process. The therapy selection process shows two
distinct phases: initial therapeutic selection and subsequent therapeutic selection.

(MDACC), we propose an approach to leverage meta-RL as a method to construct a sequence

of models as a clinical decision aid, by defining different reward functions as the patient’s (or

physician’s) preferences over multiple clinically relevant outcomes from head and neck cancer

patient-specific data. After training on multiple distributions of such weights, this sequential

5

meta-RL model would be able to adapt to any patient-specific set of weights to prescribe custom

optimal treatment decisions without the need for further customized training.

1.3 Recursive Sequential Deep meta-Reinforcement Learning

We designed a recursive meta-RL approach which extends existing meta-RL algorithms by

recursively training a model for each decision of the sequential process with the incorporation

of feedback from models of other decisions in the sequence. The generated sequence of models

allows the feedback of the final reward to be propagated back to all models from last to first

decision, while being appropriately filtered by consecutive models in the sequence.

Our approach was evaluated on a series of two-step synthetic MDPs with fixed transition and

varying reward probabilities, which showed the ability of trained models to adapt to unknown

environments without the need for additional training.

We then applied our novel approach to a dataset of oropharyngeal squamous cell carcinoma

patients treated at MDACC as specified in Section 1.2. By modelling preferences on outcomes

as different weights of a linear reward function, and training and testing our models on different

distributions of weights, we obtained models capable of taking into account any set of preferences

desired by the patient or physician, eliminating the need for further training of existing models

or the development of custom-made models.

CHAPTER 2

RELATED WORK

2.1 Deep Meta-Reinforcement Learning

2.1.1 Introduction

Deep Meta-Reinforcement Learning (meta-RL) refers to methods in the Reinforcement

Learning (RL) field which aim to expand the applicability and sample-efficiency of traditional

RL algorithms, by training models that can rapidly adapt to a variety of seen and unseen tasks.

This approach, that leverages the use of Recurrent Neural Networks (RNNs) as meta-learners

added to existing algorithms, is not novel in the context of Machine Learning (ML) in general,

as it has previously been applied to a variety of Supervised Learning (SL) problems [13], but

has only recently been adapted to the RL setting [1, 2].

The goal of this meta-learning technique is to separate the two problems that any adaptive

ML model must solve:

1. The optimization problem, which is the traditional goal of ML: for SL, this translates

to minimizing the loss function between predicted output and ground truth, while for

RL this translates to maximizing expected reward by finding the optimal policy for each

state. This problem is solved by the traditional ML algorithm part of the meta-learning

architecture.

6

7

2. The adaptation problem, which is the goal of the meta-learner: by keeping a memory of

past inputs and outputs of the model, and their resulting loss/reward, the RNN constructs

a belief on which of the tasks in a given family is currently being solved, and can therefore

output a representation biased by such belief. This biased representation is then fed to

the traditional learner for outcome optimization.

A model that solves these two problems can therefore be optimal in a distribution of tasks,

rather than a single one, since it can adapt its belief on the task currently at hand and act

accordingly. This is useful for two reasons:

• Applicability : because the model can adapt to multiple tasks, regardless of whether these

tasks were encountered during training or not, we no longer need a different model for

each task, but just one meta-model for all.

• Sample efficiency : because the model can quickly adapt to previously unseen tasks by

exploiting the knowledge it has on similar tasks, we do not need to retrain a model from

scratch every time we encounter a new setting, which would require a significant amount

of observed samples.

These meta-learners are therefore closer than traditional ML algorithms to the learning

process of humans, as humans, when facing a new problem, incorporate the knowledge they

already have about similar problems to quickly learn the new task (e.g. incorporating the

knowledge about how to walk when learning how to run).

8

2.1.2 Markov Decision Processes

The goal of a traditional RL algorithm is to “solve” a Markov Decision Process MDP =

〈S,A, P,R, γ, µ0〉, where:

• S is a set of states.

• A is a set of actions.

• P : S × A × S → R+ is the transition probability distribution, where P (s′|a, s) is the

probability of transitioning to state s′ from state s when performing action a.

• R : S ×A → [−Rmax, Rmax] is the reward function, which maps each state-action combi-

nation to the expected reward, R(s, a) = E[r|s, a].

• γ ∈ [0, 1] is the discount factor, which determines the relevance of past/future rewards

based on their distance in time.

• µ0 is the initial state distribution, where µ0i = P (S0 = i) for any state i

“Solving” an MDP means finding the optimal policy π∗ : S × A → R+ that maximizes

expected return.

The state-value function associated to a policy π, V π : S → R, is the expected return

starting from any state s ∈ S and following policy π. The action-value function associated to a

policy π, Qπ : S × A → R, is the expected return starting from any state s ∈ S, taking action

a ∈ A and then following policy π [14].

9

2.1.3 Architecture

Meta-RL algorithms exploit their meta-learning capabilities to solve a distribution D of

MDPs, rather than a single one. The MDPs in the distribution might differ in:

• Only reward probabilities R ∈ R (keeping transition probabilities fixed)

• Only transition probabilities P ∈ P (keeping reward probabilities fixed)

• Both reward and transition probabilities

The architecture of a meta-RL model is presented in Figure 2.

As mentioned in Section 2.1.1, the traditional RL model is stacked on top of one (or more)

RNN, forming the meta-model. In Figure 2 the represented RL model is an actor-critic (AC)

model, which outputs both the policy πt(xt) and the state value Vt(xt) for the current state xt,

but it can actually be any traditional RL model. The inputs to the RNN (and therefore to the

meta-model) at timestep t are:

• Current state representation xt: this gives the model knowledge of its current surround-

ings. The state may also undergo different encodings before being fed to the meta-model

(e.g. through some convolutional layers in the case of images, not pictured in Figure 2).

• Current timestep t: this gives the model knowledge of how far along in the episode it

currently is.

• Previous action at−1: the action performed by the model at the previous timestep.

• Previous reward rt−1: the reward resulted from performing action at−1 in the current

environment.

10

Figure 2: Architecture of a meta-RL model

These inputs are processed by the RNN and the resulting embedding is passed to the

traditional RL model, which outputs the chosen action at for the current timestep.

The meta-learning capabilities of the model are given by incorporating past action-reward

combinations (at−1, rt−1) in the input of the RNN: by keeping track of these values, the RNN

can build a belief on the environment it is currently in and pass this belief to the RL model,

which can then choose the optimal policy accordingly.

11

Notice that there is no need to include the previous state xt−1 in the input as it has already

been part of the input at timestep t− 1 and has therefore already influenced the hidden state

of the RNN.

2.1.4 Training

The training phase of meta-RL is divided in episodes of fixed length: at the beginning of

each episode, an MDP is sampled from distribution D and held constant until the end of the

episode; each of the trials in an episode constitutes a single run of the model in the current

environment. As the model interacts with the environment throughout the episode, it builds a

stronger belief on the sampled MDP, and its performance improves. At the end of the episode

backpropagation is performed, and the cycle starts again in a new episode. Since it’s the hidden

state of the RNN that represents the belief on the current environment, it needs to be reset

(i.e. set to 0) between each episode, as in each episode the sampled environment is different.

once training is completed, the model is then evaluated again on episodes of fixed length,

with a different environment being sampled at the beginning and the state being reset at the

end, but now there is no backpropagation, the weights are fixed.

2.1.5 Results

Models trained and evaluated on Multi-Armed Bandits (MAB, i.e. MDPs with a single

state and n actions with associated reward probabilities) showed a sub-linear cumulative regret

curve across evaluation episodes (Figure 3), suggesting that they can in fact build a belief on the

environment and act optimally accordingly. They also performed better than some theoretically

optimal MAB algorithms, such as Thompson Sampling and UCB [1, 2] (see Figure 3). Both

12

Figure 3: Average cumulative regret per trial of a meta-RL model, as compared to other optimal
algorithms

papers highlighted the relevance of including previous reward rt−1 in the input: without it,

performance was at chance level, which meant that the model wasn’t able to properly build a

belief on the environment and exploit its bias.

When it comes to evaluation of MDP models, Duan et al. [1] focused on tabular MDPs,

once again comparing the meta-model’s performance to known algorithms. Wang et al. [2]

had a different approach, as they focused on the “two-step task”, an experiment derived from

the neuroscience field [15]: in this task (in the version presented by Wang et al., presented in

Figure 4), the choice between two actions leads to either of two second-stage states, to which

is associated a certain reward probability. The transition probabilities are fixed throughout

training and testing, but the reward probabilities are randomly assigned at the beginning of

13

each episode: both second-stage states have the same reward value, 1, but one is assigned

probability of reward 0.9, the other 0.1.

Figure 4: The two-step task: starting from state S1, actions a1 and a2 lead to second-stage
states S2 and S3 with different transition probabilities (pictured in blue). States S2 and S3’s
reward probabilities, ra and rb, are randomly assigned at the beginning of each episode

The goal of this task is to differentiate between a model-based and a model-free behaviour:

• A model-based behaviour takes into account transition probabilities when assessing the

result of an action: intuitively, if a common transition (p = 0.75) led to reward, the

optimal policy would be to repeat the previous action; on the other hand, if a rare

transition (p = 0.25) led to reward, the optimal policy would be to change the action, as

the other action would have a higher probability of leading to the previous state. In other

14

words, a model-based behaviour is able to discern the contribution of state transitions

from that of reward probabilities to the final reward.

• A model-free behaviour does not take into account transition probabilities when assessing

the outcome of an action: an action that led to reward is more likely to be repeated than

one that didn’t, regardless of the resulting state.

The results of Wang et al. (Figure 5) show that, interestingly enough, a meta-RL model,

which is trained based on a model-free RL algorithm, still exhibits model-based behaviour.

15

(a) Model-based vs. model-free behaviour: in a model-based behaviour the probability of
repeating the last action changes based on the last reward and the probability of the last
transition, while in a model-based behaviour the probability only depends on the last reward.

(b) Behaviour of a meta-RL model

Figure 5: Model-based vs. model-free behaviour in the two-step task: a meta-RL model trained
with a model-free RL algorithm still exhibits model-based behaviour

16

2.2 Dynamic Treatment Regimes with Multiple Reward Functions

2.2.1 Dynamic Treatment Regimes

Dynamic Treatment Regimes (DTR) are models trained to provide optimal personalized

treatment for a clinical patient in a (possibly sequential) therapeutic course: at each treatment

junction, the model must prescribe the most suitable treatment given the patient’s history in

order to provide them with the best possible outcome. In the case of a multi-step sequence, the

patient’s history at each junction also includes past treatment decisions and their intermediate

results.

The most suitable ML models to be applied to this category of clinical problems are RL

models, as we can encode the therapeutic course as an MDP, where:

• The current state is the patient’s history at junction i, Hi.

• The actions are the treatment decisions.

• Transition probabilities map treatment decisions and patient’s history to intermediate or

final outcomes of the treatment sequence.

• Reward probabilities are the probability of a positive outcome given patient’s history and

prescribed therapy.

The optimal treatment sequence can then be found by training any RL algorithm on the

MDP defined above.

However, the fact that the therapeutic course is sequential and the state at each junction

contains the complete history means that each treatment decision has a separate state repre-

17

sentation, which in turn means that we cannot model the complete sequence as one MDP, but

rather we have a separate MDP for each junction, consisting of exactly one step.

As a result, we need to train a different RL model for each decision, which poses a problem

for existing RL algorithms, as only the final treatment junction has a proper reward associated

(e.g. survival), while all the previous decisions only have intermediate results, whose connection

to the final outcome is usually not straightforward.

The way this limitation has been overcome [4–6, 16] is by training the models for each

treatment junction recursively, starting from the last one: the last one can be trained with any

traditional algorithm without a need for adjustments, as the final outcome (reward) is a direct

consequence of the last decision; the second-last decision’s model is then trained with a “fake”

reward which corresponds to the value of the state to which the decision leads, as computed by

the (already trained) last decision’s model:

1. The last decision dN ’s model is trained with a standard RL algorithm, using the final

outcome of the treatment sequence.

2. The second-last decision dN−1 is trained again with a RL algorithm, but instead of the

final outcome the metric used as reward is the value of the next state V (sN) to which

decision dN−1 led, as computed by the model of decision dN .

3. The training process is recursively repeated, with the third-last decision dN−2’s model

being trained on the value V (sN−1) computed by decision dN−1’s model and so on, until

the initial treatment decision.

18

Intuitively, the goodness of an intermediate decision is equal to the goodness of the state to

which is leads, which, being a starting state for the following decision, can be computed by the

value function of the following decision’s model.

The training process of a generic 3-step DTR is shown in Figure 6.

Figure 6: Training of a 3-step Dynamic Treatment Regime: the third decision model (D3)
is trained on the final outcome, then the second decision model D2 is trained on the value V3
computed by the D3 model, and the first decision model D1 is trained on the value V2 computed
by the D2 model.

Because this approach requires the RL models to output the value of a given state, existing

literature [4–6,16] mostly focused on Q-learning, since by learning the Q-function we can directly

compute the value function and the optimal action. These authors focused on a version of Q-

learning different from the “traditional” one, as it learns directly from observational data by

modelling the Q-function as a regression problem, without interacting with the environment:

19

this is the main limitation of applying RL to the medical field, as it is not possible to directly

apply decisions made by untrained models to real patients.

One limitation of the current approach on learning DTR is that the desired outcome to be

optimized must be statically defined before training, and cannot be dynamically adjusted to

a patient’s (or physician’s) preferences. For example, an oncological therapy course needs to

balance two main outcomes:

• Survival rate: in order to be as effective as possible in terms of survival, a treatment must

usually be very aggressive when it comes to chemo-radiotherapeutic as well as surgical

options.

• Quality of life: a very aggressive treatment, on the other hand, tends to have more serious

side effects, such as chemotherapeutic toxicities and surgical complications, which might

seriously impact the patient’s quality of life during and after treatment.

These two outcomes are obviously in contrast with each other, as maximizing one tends

to limit the other. For this reason, different patients might have different preferences on their

relative importance, which would lead to different treatment decisions.

If we followed the Q-learning approach, in order to have the optimal DTR for any set of

preferences we would need to train a different model for each possible set of preferences, which

is clearly infeasible even if we limit ourselves to a linear combination of outcomes.

2.2.2 Learning with Multiple Reward Functions

Some new approaches have been proposed to try to model multiple reward functions in

DTR settings, in order to be able to account for varying preferences of patients on outcomes.

20

Barret et al. [17] propose a variation of the value iteration algorithm that can model the

optimal treatment for any linear combination of preferences over N outcomes, expressed as a

vector ~w = [w0, w1, ..., wN]. The outcomes are also represented as a vector ~r = [r0, r1, ..., rN].

We can then obtain a scalar reward by performing the dot product of preferences and outcomes:

r = ~w · ~r = w0 ∗ r0 + w1 ∗ r1 + ...+ wN ∗ rN (2.1)

Their findings showed that any Q-value that is optimal for some ~w lies on the convex hull

of all possible Q-values: from this observation they built their modified version of the value

iteration algorithm.

This work has multiple limitations: firstly, it only limits preferences on outcomes to linear

combinations, and secondly, their algorithm requires finite and small state spaces, as well as

true (or estimated) transition and reward probabilities.

Lizotte et al. [18, 19] tackled some of these limitations by further generalizing the value

iteration algorithm to handle continuous state spaces. The preferences are once again a linear

combination of outcomes, and the resulting algorithm relies on the concepts of convex hull of

Q-values and upper convex envelope of Q-functions.

Although this approach resolves the limitation to small finite state spaces, it still requires

known (or estimated) transition and reward probabilities and can only model linear preferences.

CHAPTER 3

MOTIVATION

3.1 The Three-Step Problem

To introduce our novel idea and give a better understanding as to why existing meta-RL

algorithms cannot be used in this setting, we introduce as a toy example the “three-step task”,

an extension of the “two-step task” presented in Section 2.1.5.

In this environment, represented in Figure 7a, we have added an extra step (i.e. an extra

action) to the two-step task: the first action’s MDP structure (MDP1) is exactly the same as

in the two-step task, but second-stage states S2 and S3 are no longer final states, but rather

the initial states of the second-step MDP (MDP2), with actions a3 and a4 leading to third-

stage states S4, S5, and S6 with probabilities p3, p4, p5, p6, 1− p3 etc., depending on whether

the starting state is S2 or S3. Reward probabilities ra, rb, and rc are then associated to the

third-stage states.

Notice that this MDP is an extension of the two-step task not just because of the extra

step, but also because we generalized transition probabilities p1, p2, p3, p4, p5, and p6, as well

as reward probabilities ra, rb, and rc. This way, we can use this MDP structure to train models

for each of the 3 categories of MDP distributions presented in Section 2.1.3, by varying either

r (1st category), p (2nd category), or both (3rd category).

21

22

(a) Complete MDP structure of the three-
step task (b) The two two-step MDPs that constitute

the three-step task

Figure 7: MDP structure of the three-step task, as a complete process (a) and as two separate
two-step tasks (b)

Given the key role that past rewards have in the working of existing meta-RL algorithms

[1, 2], we cannot directly apply these algorithms to this kind of MDP, since we only get a

reward after the second-stage actions (a3 and a4), so the first-stage actions (a1 and a2) have no

immediate reward associated to them.

A first approximation could be to train two separate models, one for first-stage actions

and one for second-stage actions, and use the final reward in both. This, however, would

not be accurate for the first-stage, since the final reward doesn’t depend on the first-stage

action alone, but also on the second-stage action. This would mean that an optimally trained

first-stage model, if followed by a badly trained second-stage model, would not be able to act

optimally, because the second-stage model would lead to bad outcomes regardless of whether

23

the first-stage model chooses the optimal action or not, so it would be harder for it to discern

between optimal and non-optimal actions.

The goal is to find a feedback to provide to the first-stage model that accurately assesses the

optimality of the model’s actions, in the same way the reward does for a final-stage decision,

and that can therefore serve the same purpose as the (unavailable) final reward.

3.2 The Dynamic Treatment with Multiple Rewards Problem

As specified in 2.2, standard RL algorithms cannot train models capable of adapting their

decision-making process to custom patient preferences when applied to Dynamic Treatment

Regimes (DTR): some extensions have been made [17–19], but they are still very limited, as

they require finite small state spaces and linear preferences.

Since the goal of meta-RL is to be able to act optimally in a distribution of environments, by

modelling different preferences over clinical outcomes as different reward functions and training

a meta-RL model on this distribution of preferences we would have a single meta-model capable

of handling any patient-specific preference, linear or non linear, already known or previously

unseen. This would therefore remove all the limitations of the current literature on multiple

reward functions, and provide a general adaptive model which would be a closer approximation

of the decision-making process made by human physicians.

However, as shown in Section 3.1 with the three-step task, state-of-the-art meta-RL cannot

be applied to sequential decision-making processes such as those arising in the DTR setting.

There is therefore a need to find a new approach to meta-RL capable of expanding algorithms

to finite fixed interdependent sequences of decisions.

24

3.3 Goals

Our goal is to expand the applicability of state-of-the-art meta-RL algorithms by adapting

them to a fixed-sequence decision-making setting, such as that of clinical therapeutic courses.

We propose to incorporate into existing meta-RL models a recursive approach similar to

that currently used in DTRs, as it has been proven valid in the standard RL setting to handle

such sequential dependencies.

Our ultimate aim is to apply such novel recursive meta-RL approaches to DTRs to model

patient-specific preferences over treatment outcomes as a distribution of environments. This

application would lead to a generalized model capable of adapting to any set of outcome pref-

erences, regardless of whether they were previously encountered in training or are completely

new.

CHAPTER 4

DATASET

4.1 Oropharyngeal Squamous Cell Carcinoma Dataset

A curated HNC dataset of oropharyngeal squamous cell carcinoma (OPC) patients treated

at MD Anderson Cancer Center between 2005 and 2013 was analyzed in this project. All

methods for this study were performed in accordance with the University of Texas MD Anderson

Cancer Center IRB guidelines and regulations. The UIC IRB determination can be found in

Appendix A. Being a Health Insurance Portability and Accountability Act (HIPAA)-compliant

retrospective study, the prerequisite for informed consent was waived. The complete treatment

process is summarized in Figure 8.

Figure 8: Main features, outcomes, and decisions of the OPC treatment sequence

25

26

Clinical features recorded at diagnosis including age at diagnosis, sex, ethnicity, HPV status,

smoking status and frequency, subsite of the primary tumor within the oropharynx, T category,

N category, therapeutic combination, AJCC stage (8th edition), as well as intermediate results

of the treatment decisions, such as Dose-Limiting-Toxicity (DLT) and tumor response, measured

between treatment decisions were extracted from electronic medical records. Tumor response

is included as a categorical variable (complete/partial/stable disease for primary tumor and

nodal involvement). Table V in Appendix B shows the demographics of patients for the main

clinical features and outcomes considered. Attributes with missing data are also identified in

the table.

Furthermore, the dataset also included radiomic features extracted from contrast-enhanced

computed tomography (CECT) at initial diagnosis, prior to any active local or systemic treat-

ment. The details on feature extraction and preprocessing are presented in Appendix , as cited

from Tosado et al. [20] These radiomics features were not included in the RL models because,

despite the abundance of research on radiomics models for head and neck cancer [21–29], pre-

liminary analyses (such as the Dynamic Treatment Simulator described in Section 5.2 and the

training and evaluation of traditional RL models) showed that such features did not improve

performance, and instead mostly worsened it and increased variance.

For each patient, post-treatment outcomes include survival and overall toxicity and toxicity

outcomes such as feeding tube and aspiration rate. As a survival outcome we consider Overall

Survival at 4 years. No blind assessment of any of the considered outcomes was performed,

therefore only patients with enough follow-up time (at least 4 years) or who died before 4 years

27

were considered for the analysis. We focus our analysis on two outcomes: Overall Survival at 4

years and Dysphagia, which refers to the presence of either feeding tube or aspiration 6 months

after treatment.

For the purpose of this project, we furthermore consider three treatment decision points for

each patient as part of the treatment policy: Decision 1 (D1): Induction Chemotherapy (IC)

or Not; Decision 2 (D2): Concurrent Chemotherapy (CC) or Radiotherapy alone (RT); and

Decision 3 (D3): Neck Dissection (ND). These are the treatment decisions that we want our

RL models to optimize.

4.2 Preprocessing

The 536 samples of the dataset were split into two distinct sets for training and testing

using a 75-25% random split.

No blind assessment of the decisions or outcomes was made. Unknown HPV status was

handled using a distinguished value (0). Missing values for all other covariates were handled

using single imputation: median for numerical variables, mode for categorical ones.

The ordinal covariates pathological grade, T-category, N-category, AJCC, prescribed chemo

(none/single/doublet/triplet/quadruplet) were coded as numerical features.

After these preprocessing steps, all features were rescaled in the [-1,+1] range, as is standard

procedure when training neural networks.

CHAPTER 5

METHODS

5.1 Recursive Sequential Deep Meta-Reinforcement Learning

Our plan is to use the same recursive approach described in Section 2.2, which has been

shown to work in traditional DTR settings, to extend meta-RL algorithms to sequential prob-

lems.

Going back to the three-step task example (Figure 7), this means decomposing the sequential

MDP in two two-step tasks, one for the first-stage and one for the second-stage actions:

• The second-stage two-step task MDP2 is a standard two-step task, as it has immediate

reward associated to action and transition, and its model can therefore be trained using

the standard existing meta-RL algorithms.

• The first-stage two-step task MDP1 needs to associate surrogate rewards to states S2 and

S3 (v2 and v3 in Figure 7b, respectively), which are computed by the MDP2 model as

the values of states S2 and S3, respectively. Once this computation has been performed,

model training can be carried out with the standard existing meta-RL algorithms.

In other words, Recursive Sequential Deep Meta Reinforcement Learning (RSMRL) divides

the training of a sequential MDP model into basic sub-models, one for each decision junction,

which are recursively trained backwards through standard meta-RL algorithms using as last

28

29

reward the value of the state to which the last action led, as computed by the following decision

junction’s model.

The resulting meta-model architecture for a two-decision MDP such as the three-step task

presented in 3.1 is presented in Figure 9.

The basic models, unchanged from the state-of-the-art meta-RL models (one or more RNNs

followed by a standard RL algorithm), are now stacked to account for all the decisions in the

sequence: between the first and the second model, however, there is the need for interaction with

the environment, which, given the action outputted by the first model, will give the resulting

state, i.e. the starting state of the second model.

The novelty of this approach is not just in the stacking of meta-RL models as building blocks

of a more complex model, but is also in the new input to the single cells, which incorporates

more feedback from the environment as well as from other models in the stack. In particular,

the new types of feedback are:

• State feedback xj+1
t−1 : for each model j in the stack, the previous resulting state of the

action chosen by model to be performed in environment MDPj . This incorporates more

feedback from the environment.

• Value feedback V j+1
t−1 (xj+1

t−1), (j < N): for each model j except the last one (N) in the

sequence, the reward rt−1 is substituted by the value computed by the following model

in the sequence. This creates a chain of feedback between models in the sequence, from

last to first.

30

Notice that state-of-the-art meta-RL models did not include state feedback as part of the

input, as in single MDPs the resulting state of the past action is simply the current state xt,

so it would have been redundant information.

In RSMRL, instead, the current state and the previous resulting state no longer coincide, as

they belong to two different sequences and, more importantly, two different and disjoint state

spaces (i.e. the starting states of two different MDPs). This new feedback from environment to

model is thus necessary for the model to properly assess its surroundings and learn from it, and

is fundamental in order for it to exhibit the model-based behaviour of which meta-RL models

are capable.

The incorporation of value feedback is, on the other hand, the truly novel part of the

RSMRL approach, as it adds a new kind of feedback to the environment-to-model one: the

model-to-model feedback. This recursion is what truly makes the sequential decision making

possible, as it allows the chained models to propagate information about the final reward to all

previous decisions back to the first, while being appropriately filtered to represent the “partial”

merits of each model in achieving the final reward. Using the state-value function instead of

the reward leads to a very cohesive sequence of models, that learn and adapt together, with a

reduced chance of inconsistencies or divergences.

31

Figure 9: Architecture of a recursive sequential meta-RL model for a two-decision MDP. We
have two new types of feedback: from environment to model (x2t−1, in orange, x3t−1, in blue),
and from following value to previous model (V 2t− 1(x2t−1), in red).

32

5.1.1 Training

When it comes to choosing how to train the sequence of RSMRL models, there are two

options:

• Training all the models together : each training trial is a complete sequence from starting

state to final reward, using the actions chosen by all the models. At the end of the episode

(i.e. series of trials in the same environment), backpropagation is performed on all the

models.

• Training one model at a time, from the last to the first one: this is the approach followed

by the literature on DTR when training on observational data [4–6,16], in which the last

model of the sequence is trained first on the final reward, then the second-last model is

trained on the value computed by the last (already trained) model, and so on.

Both these options have some positive and some negative implications.

Training all the models together seems like the more natural choice, as the sequence of

models would be learning at the same time and through exactly the same episodes, giving more

coherence to the model as a whole.

However, there is a concern about error propagation: at the beginning of training, the value

feedback from model to model is given by untrained models, so it is very likely an inaccurate

representation of the state value. This could cause models that are earlier in the sequence to

not be able to learn properly because of the amplification of error through the recursive chain.

Another possibility is that the error propagation does not prevent correct learning, but just

slows it down, as models could possibly only start to learn properly once the values provided by

33

their following model become accurate (i.e. once the subsequent model’s training has reached

convergence). In this case, the final process would be equivalent to training one model at a

time, but with a greater expense of time and resources, as at each episode we need to use and

backpropagate all models but only one is actually learning.

Training one model at a time would, on the other hand, removes this error propagation

problem, as the only values propagated would be computed by already trained models, and

would therefore be as accurate as possible, without the overhead of training all the models

together.

But this alternative does not come without limitations. In particular, training one model

at a time requires a model selection step between each model’s training: it is not guaranteed

that the final model is the optimal one, as it might have overfitted, so we would need to choose

a performance metric to evaluate at each step during training, periodically save intermediate

models during training, and once training is completed choose the best-performing one, either

manually or automatically.

With these considerations in mind, for our approach we chose to train all models at the same

time, so as to avoid the problems of choosing an accurate performance measure for in-training

model selection and to maximize the applicability of our approach, without restricting it to

problems for which it is possible to start an execution from an intermediate state.

The final algorithm of our approach is presented in Algorithm 1. As in standard meta-

RL, training is divided in episodes, each episode being divided in a fixed number of trials, i.e.

runs of the algorithm. The environment is sampled at the beginning of each episode and held

34

constant throughout: this way, the model has the duration of the episode to build a belief on

the environment it currently is in. Backpropagation is performed at the end of each episode.

As already mentioned in Section 3.1, environments in a distribution must share the state

space and actions representations, but can differ in transition and/or reward probabilities.

35

Algorithm 1: Recursive Sequential Deep Meta-Reinforcement Learning (RSMRL)

Data: Distribution D of environments MDP = [MDP 1,MDP 2, ...,MDPN]
composed by N one-step MDPs

Number of training episodes NE

Number of trials per training episode NT

Result: Trained RSMRL model M = [M1,M2, ...,MN] composed by N one-step
models

for e← 1 to NE do
/* Reset the hidden state of all the models */

for i← 1 to N do
ResetState(Mi)

end
/* Initialize values of past action, reward, and resulting state */

for i← 1 to N do
ai0 ← 0
ri0 ← 0
xi+1
0 ← 0

end
/* Sample new environment */

MDPe ← Sample(D)
/* Explore environment */

for t← 1 to NT do
Pick random initial state x1t
for i← 1 to N do

πit, V
i
t ←Mi(x

i
t, x

i+1
t−1, t, a

i
t−1, r

i
t−1)

ait ← Sample(πit)
if i < N then

xi+1
t ←MDP ie(x

i
t, a

i
t)

else

xi+1
t , rt ←MDP ie(x

i
t, a

i
t)

end

end
rNt ← rt
/* Compute value feedbacks */

for i← N − 1 to 1 do

rit ← V i+1
t (xi+1

t)
end

end
/* Backpropagate each model at the end of the episode */

for i← 1 to N do

lossie ← ComputeLoss(~ri, ~ai,
~

V i(~)xi, ~πi)
Backpropagate(Mi, loss

i
e)

end

end

36

5.2 Dynamic Treatment Simulator

Because we need an environment to train and evaluate our recursive meta-RL models when

applied to DTR problems, our evaluation includes building a separate model which, given a

patient’s history and the prescribed treatment, predicts the outcome of that treatment. This

patient treatment digital twin approach enables us to simulate the results of applying our models

to patients.

To this end, we built a Dynamic Treatment Simulator (DTS), which, based on the patient’s

history and treatment decisions, predicts the outcome at the next step. In order to give a

larger relevance to the treatment decision in determining the next-step outcome Yi+1, the input

to the DTS is not simply the patient’s history Hi and the treatment decision Ai (which has

either value +1 or −1), instead it is the concatenation of patient’s history and patient’s history

multiplied by the treatment decision value:

Yi+1 = DTS(Hi, Hi ∗Ai) (5.1)

This construct was inspired by the literature on building RL models from observational data

to model Dynamic Treatment Regimes [4–6,16], as described in Section 2.2: by including Hi∗Ai

instead of Ai as input, half of the input variables are influenced by the decision value, instead

of just one. This prevents the prediction model from predicting the same outcome regardless

of the decision value, as this would lead to a pointless environment to train a decision-making

algorithm.

37

The simulator contains a separate model for each intermediate and final outcome measure,

built using a Support Vector Classifier (SVC) and tuned via 5-fold cross-validation over the

training data to select the best kernel (between gaussian, sigmoid, or polynomial) and hyper-

parameters. The output is a probability distribution over possible outcomes computed using

Platt scaling [30]. These models serve as an in silico digital twin of the patient treatment, as we

can use them to dynamically simulate the patient’s in vivo course as a function given treatment

policy, without physically having to treat the patient. The full details of the SVC are provided

in Table I.

38

TABLE I: HYPERPARAMETER DETAILS OF ALL MODELS IN THE DYNAMIC TREAT-

MENT SIMULATOR.

Outcome C Kernel Degree Gamma Class Weight

Prescribed Chemo 3 polynomial 5 automatic balanced

Chemo Modification (Y/N) 1 gaussian - automatic balanced

Dose modified 4 polynomial 14 automatic balanced

Dose delayed 60 gaussian - automatic balanced

Dose cancelled 11 gaussian - automatic balanced

Regimen modification 3 polynomial 20 automatic balanced

DLT (Y/N) 2 gaussian - automatic balanced

DLT Dermatological 2 polynomial 15 automatic balanced

DLT Neurological 150 gaussian - automatic balanced

DLT Gastrointestinal 400 polynomial 3 automatic balanced

DLT Hematological 300 gaussian - automatic balanced

DLT Nephrological 2 polynomial 20 automatic balanced

DLT Vascular 2 gaussian - automatic balanced

DLT Infection (Pneumonia) 1 polynomial 15 automatic balanced

DLT Other 3 gaussian - automatic balanced

DLT Grade 1 polynomial 10 automatic balanced

No imaging (0=N, 1=Y) 1 gaussian - automatic balanced

CR Primary 1000 gaussian - automatic balanced

CR Nodal 2 polynomial 15 automatic balanced

PR Primary 2 gaussian - automatic balanced

PR Nodal 1 gaussian - automatic balanced

SD Primary 10 gaussian - automatic balanced

SD Nodal 3 polynomial 15 automatic balanced

CC Regimen 10000 gaussian - automatic balanced

CC modification (Y/N) 10000 gaussian - automatic balanced

CR Primary 2 2 polynomial 30 automatic balanced

CR Nodal 2 3 sigmoid - automatic balanced

PR Primary 2 10000 polynomial 20 automatic balanced

PR Nodal 2 10000 polynomial 50 automatic balanced

39

TABLE I: HYPERPARAMETER DETAILS OF ALL MODELS IN THE DYNAMIC TREAT-

MENT SIMULATOR.

Outcome C Kernel Degree Gamma Class Weight

SD Primary 2 1 gaussian - automatic balanced

SD Nodal 2 10 gaussian - automatic balanced

DLT Dermatological 2 100 gaussian - automatic balanced

DLT Neurological 2 10 polynomial 50 automatic balanced

DLT Gastrointestinal 2 30 polynomial 30 automatic balanced

DLT Hematological 2 100 polynomial 20 automatic balanced

DLT Nephrological 2 3 polynomial 3 automatic balanced

DLT Vascular 2 1 gaussian - automatic balanced

DLT Other 2 2 polynomial 30 automatic balanced

Overall Survival (4 Years) 100 gaussian - automatic balanced

Feeding tube 6m 10 gaussian - automatic balanced

Aspiration rate Post-therapy 10 gaussian - automatic balanced

5.3 Evaluation

5.3.1 Three-Step Problem Models

First of all, we test the validity of our approach by training RSMRL in the three-step

problem environment presented in Section 3.1. Being this a two-decision problem, our model’s

architecture will have two sub-models, one for the first and one for the second decision in the

sequence. The complete architecture is therefore exactly the same as that of Figure 9.

Because our ultimate goal is to use the RSMRL approach to model multiple reward functions

in DTR, we focused our evaluation on environments with varying reward functions, but this

is not a limitation of our approach, as it can also learn environments with varying transition

probabilities.

40

All the three-step problems in our evaluation share one constraint: p1 = p2 = p3 = p4 =

p5 = p6: the reason for this choice is that Wang et al. [2] claimed that meta-RL is particularly

effective in the case of a structured environment, i.e. an environment in which the result of one

action (in terms of transition or reward) gives information about the possible results of other

actions (i.e. other transitions or rewards). In their case the structure referred to dependent

bandits (in which the sum of the reward probabilities of each arm is always 1), while in our

case the structure is given by shared transition probabilities across different junctions. The

resulting “simplified” three-step task is presented in Figure 10.

Figure 10: “Structured” three-step task: all treatment junctions share the same transition
probability structure.

41

We train and evaluate our models on a variety of transition and reward probabilities. In

particular, the transition probabilities are divided in two levels of difficulty:

• Easy : p = 0.9.

• Hard : p = 0.75.

The “difficulty” of the transitions refers to the difficulty of the model to learn from its

surroundings: the closer p and 1− p are, the harder it is for the model to learn the transition

probabilities, and therefore to choose the action with higher probability of leading to rewards.

Analogously, the (varying) reward probabilities are divided into three levels of difficulty:

• Easy : one of {ra, rb, rc} is assigned reward probability 0.9, while the other two are assigned

reward probability 0.05.

• Medium: one of {ra, rb, rc} is assigned reward probability 0.75, while the other two are

assigned reward probability 0.125.

• Hard : one of {ra, rb, rc} is assigned reward probability 0.6, while the other two are assigned

reward probability 0.2.

Once again, the concept of difficulty corresponds to the difficulty for the model to learn the

dynamics of the system and to act optimally (in this case, identify the state with the highest

reward probability).

A different RSMRL model was trained for all transition-reward difficulty combination.

42

The standard RL model used in our RSMRL models is the Advantage Actor Critic (A2C)

[31,32] (although our approach, as meta-RL, can employ any RL algorithm). The main elements

of the A2C loss functions are entropy, value loss, and policy loss.

The entropy of an episode of the jth model is defined as the sum of the entropies of each

trial in the episode, H(πjt). The entropy of a trial is computed as:

H(πjt (|̇xt)) = −
∑
a∈A

πjt (a|xt)logπ
j
t (a|xt) (5.2)

Entropy measures how “sure” a policy is: if the probabilities of all actions in the policy are

similar then entropy will be high, otherwise if one action has a much higher policy probability

than the others then entropy will be low. Considering the entropy as part of the loss function

is called entropy regularization, and is used to encourage exploration, to increase the chances

of finding the global optimum.

The value loss of an episode of the jth model is the sum of the value losses of each trial

t of the jth model. The value loss of a trial is computed as the squared difference between

the reward obtained at trial t, rjt , and the value of the state computed by the model at time

t, V j
t (xjt). It measures how far off the state value estimated by the model is from the actual

reward obtained.

V alueLossjt = (rjt − V
j
t (xjt))

2 (5.3)

43

The policy loss of an episode of the jth model is the sum of the policy losses of each trial

in the episode. The policy loss of a single trial is computed as:

PolicyLossjt = −log(π(at|xt))(rjt + γV (xjt+1)− V (xjt)) (5.4)

The loss of an episode is then computed as:

Lossj =

nt∑
t=1

PolicyLossjt + V alueLossjt −H(πjt (x
j
t)) (5.5)

The RNN of the model is a Long Short-Term Memory (LSTM) [33] with hidden state size

20 (again, any type of RNN can be employed). The training consisted of 40,000 episodes of 100

trials each. For training we used Adam Optimizer [34] with learning rate 0.001.

Evaluation was done on 1000 episodes of 100 trials each. We report rewards and cumulative

rewards of each trial, averaged across episodes. Each model is evaluated in all environments

with the same transition difficulty as the environment it was trained on, but with possibly

different reward difficulties: for example, the model trained on the easy transition-easy reward

environment is evaluated on environments with easy transitions and easy, medium, and hard

rewards. This way, we can evaluate the generalization capabilities of the models to previously

unseen environments that share some regularities with the ones they were trained on.

We compare these rewards to those obtained by a random choice of action as well as the

theoretically optimal achievable reward.

44

5.3.2 Dynamic Treatment of Oropharyngeal Squamous Cell Carcinoma with Multiple

Rewards

After evaluating the RSMRL approach on the “simple” three-step problem, we now move

on to training a model on the MDACC OPC dataset presented in Section 4.1. The environment

on which we train and test our model is the Dynamic Treatment Simulator (DTS) presented in

5.2. Because this is a real-life problem, we cannot change the transition probabilities given by

the DTS; we can only change the reward distribution.

In order to model varying preferences over outcomes we define a preference vector ~w analo-

gous to that proposed by Barrett et al. [17] and Lizotte et al. [18, 19]: the final reward is then

given as the dot product of the preference vector and the rewards vector. Unlike in Barret et

al. and Lizotte et al., this linear approximation of the preferences is not a limitation of our

approach: any function (linear or not) of the final outcomes can be used to model varying

preferences, and we just chose to start our evaluation from the simplest (and most realistic)

linear combination.

The reward variables, as mentioned in Section 2.2.1 and 4.1, are Overall Survival at 4 years

(after the completion of the treatment sequence) and Dysphagia (more precisely, we want to

maximize the absence of dysphagia symptoms). These outcomes are often at odds with each

other, as previously mentioned, because maximizing survival often requires a very aggressive

chemo-radiotherapeutic treatment, which is likely to cause the high level of toxicities that lead

to Dysphagia: we therefore expect that different reward vectors will lead to very different reward

functions, and, as a consequence, very different optimal policies.

45

We trained one RSMRL model for each of the four following preference difficulties:

• Easy : one outcome is randomly chosen to be assigned preference weight 0.9, the other

0.1.

• Medium: one outcome is randomly chosen to be assigned preference weight 0.75, the other

0.25.

• Hard : one outcome is randomly chosen to be assigned preference weight 0.6, the other

0.4.

• Uniform: one outcome’s preference weight w0 is randomly sampled from a uniform dis-

tribution, the other is 1− w0

Here again the notion of difficulty is related to the difficulty for the model to learn the

optimal policy: the closer the two reward weights are, the harder it is for the model to learn

which outcome is preferred.

Compared to the difficulties presented for the three-step problem in 5.3.1, we introduced

a new one, the uniform difficulty: this is the difficulty level that can truly handle any pa-

tient’s preference, seen or unseen. This preference environment is clearly the most general, and

therefore the most realistic, of the four, and as such is the ultimate goal of our approach.

Our models are again composed of A2C and LSTM, but this time the LSTM has a hidden

state size of 48: this larger state size compared to the three-step problem models is chosen for

the following reasons:

46

• The state space representation is much larger than the 1-2 states of the three-step problem:

we have a large number of medical features (see Appendix B), so a smaller hidden state

might not be able to embed all the information necessary for the model to act optimally.

• The problem is more complex : while the three-step problem has a very simple and repet-

itive structure, the transitions of dynamic treatment are clearly less regular and pre-

dictable. Therefore more information may be required to adequately represent the hidden

state.

The training consisted of 20,000 episodes of 100 trials each. In each trial, a random patient

is sampled from the training set and the outcomes of the treatment prescribed by the RSMRL

model are simulated with the DTS. For training we used Adam Optimizer [34] with learning

rate 0.001 (same as for the three-step problem).

Evaluation was performed on a separate set of patients, over 1000 episodes of 100 trials.

In this case each of the four models is not only evaluated on the environment (i.e. preference

difficulty) in which it was trained, but on all four difficulties, to test generalization properties

of the models. We report the average cumulative reward per episode, as compared to random

performance. Because transition (and reward) probabilities are unknown, we cannot compare

the RSMRL performance to the theoretically optimal performance, therefore our only measure

is the improvement over random chance performance.

CHAPTER 6

RESULTS

6.1 The Three-Step Problem

6.1.1 Training Performance

First of all, we evaluate the training performance of the RSMRL models to address the

concerns about error propagation and training delays that we mentioned in 5.1.1.

Figure 11 shows the rewards, values, entropies, and losses in training of the hard transitions,

easy rewards three-step problem RSMRL model, both for the first and second decision.

The value of a trial t of the jth decision is the value V j
t (xjt) outputted by the jth model at

trial t.

We see that the trends of the first decision model (which is trained on the values propagated

by the second decision model) closely (but not exactly) follow the trends of the second decision

model.

This not only dissipates the concerns about divergence or convergence rate of training the

complete model sequence all at the same time, but also proves that the value feedback is an

appropriate approximation of the final reward for intermediate decisions. The propagated value

gives enough information about the outcome, but still filters out the “responsiblity” of other

models in achieving said outcomes, as we can see by the fact that the trends of the first decision

model are significantly smoother than those of the second decision model.

47

48

Moreover, if we look at the reward plot (Figure 11a) we see that it takes a relatively short

time (about 10,000 training episodes) for the model to learn the dynamics of the problem and

reach convergence, with a remarkably steep learning curve between episode 5,000 and 10,000.

This is especially notable considering that the considered model is trained on an environment

with hard transition probabilities, so it’s one of the hardest environments to learn.

Sequential models are therefore capable of training together and quickly propagate accurate

information about the environment even before reaching convergence, leading to relatively short

training times to reach convergence.

49

(a) Rolling average of rewards per training episode, for decision 1 (reward0) and 2 (reward1)

(b) Rolling average of episode values per training episode, for decision 1 (value0) and 2 (value1)

50

(c) Rolling average of policy loss per training episode, for decision 1 (policy loss0) and 2 (policy
loss1)

(d) Rolling average of value loss per training episode, for decision 1 (value loss0) and 2 (value
loss1)

51

(e) Rolling average of entropy per training episode, for decision 1 (entropy0) and 2 (entropy1)

(f) Rolling average of loss per training episode, for decision 1 (loss0) and 2 (loss1)

Figure 11: Training performance of the hard transitions, easy rewards three-step problem
RSMRL model, for each of the two decisions.

52

6.1.2 Testing performance

Now that we have validated our choice to train all models in the sequence at the same time,

we can analyze their performance in the evaluation.

Firstly, in Figure 12 we show the performance in each transition-reward difficulty combina-

tion of all the models trained with the same transition difficulty (but possibly a different reward

difficulty). Rewards are normalized so that random choice has reward 0, and optimal choice

has reward 1.

These plots clearly show (especially in the easier environments) the learning curve of the

model in each evaluation episode: in just a few trials, the models are able to build a strong belief

on the dynamics of the environment they are currently in, and adapt their policy accordingly. As

is to be expected, the performance in more complex environments shows a higher variance and a

slower learning curve, as it is harder for the models to assess their surroundings. However, even

in the hardest environments the models manage to improve on random chance performance, so

they are able to capture some structure of the environment.

More interestingly, these results show that models trained on easier environments tend

to generalize better to unseen circumstances: both in the easy and in the hard transition

environments, the best-performing model in terms of learning curve and variance is the model

trained on the easy rewards environments, regardless of the reward difficulty of the environment

it was evaluated on, outperforming even the models trained on the same environment. This

confirms the claim of Wang et al. [2] that training meta-RL models on easier tasks can actually

53

lead to better performance on any given environment than training a model for that specific

environment.

Table II reports the average cumulative reward per episode of all RSMRL models, in all

training and testing environments, compared to the average cumulative reward obtained by

random choice of action. These values show the consistent improvement of RSMRL models

over random performance, and further demonstrate the superiority of models trained on easier

environments in terms of performance and adaptability.

Overall, Figure 12 and Table II show that the three-step problem RSMRL models are

capable, without further training, to adapt to any environment, as do meta-RL models in single-

step settings. This once again proves the validity of the state and value feedbacks. Moreover,

models trained on simpler environments lead to higher rewards and lower variance on any

environment, when compared to models trained in more complex settings. Training on easier

tasks therefore improves performance and adaptability of the models.

54

(a) Average normalized evaluation reward per trial in the easy transitions, easy rewards three-
step problem environment, of all the RSMRL models trained in the easy transitions environment

(b) Average normalized evaluation reward per trial in the easy transitions, medium rewards
three-step problem environment, of all the RSMRL models trained in the easy transitions
environment

55

(c) Average normalized evaluation reward per trial in the easy transitions, hard rewards three-
step problem environment, of all the RSMRL models trained in the easy transitions environment

(d) Average normalized evaluation reward per trial in the hard transitions, easy rewards three-
step problem environment, of all the RSMRL models trained in the hard transitions environment

56

(e) Average normalized evaluation reward per trial in the hard transitions, medium rewards
three-step problem environment, of all the RSMRL models trained in the hard transitions
environment

(f) Average normalized evaluation reward per trial in the hard transitions, hard rewards three-
step problem environment, of all the RSMRL models trained in the hard transitions environment

Figure 12: Average reward per evaluation trial in all transition-reward difficulty combinations
of three-step problem environments, of all the models trained on the same transition difficulty.
Rewards are normalized so that random chance performance is 0, and optimal performance is
1.

57

TABLE II: AVERAGE CUMULATIVE REWARD PER EVALUATION EPISODE OF RAN-
DOM CHOICE AND RSMRL MODELS, FOR ALL TRAINING AND TESTING ENVIRON-
MENTS.

Transi-
tion

difficulty

Reward
difficulty
(train-

ing)

Reward
difficulty
(environ-

ment)

Random RSMRL
Improve-

ment

easy

easy

easy 33.57 48.59 44.74%

medium 33.42 42.15 26.13%

hard 33.28 37.32 12.13%

medium

easy 33.41 48.7 45.8%

medium 33.1 42.1 27.16%

hard 33.01 36.53 10.68%

hard

easy 32.95 44.11 33.85%

medium 32.81 38.65 17.83%

hard 33.25 36.26 9.05%

hard

easy

easy 33.08 39.88 20.58%

medium 33.71 36.93 9.55%

hard 33.12 35.01 5.69%

medium

easy 33.13 36.95 11.54%

medium 33.74 35.66 5.7%

hard 33.35 34.13 2.34%

hard

easy 33.52 33.52 0.01%

medium 33.28 33.67 1.18%

hard 33.77 33.91 0.43%

58

6.2 The Dynamic Treatment of Oropharyngeal Squamous Cell Carcinoma with

Multiple Rewards Problem

6.2.1 Dynamic Treatment Simulator

The prediction accuracy of the DTS with 95% confidence intervals was assessed with out-

of-bag evaluation of 1000 models trained on stratified bootstrapped samples. The resulting

accuracy (and 95% CI) is presented in Table III. The average bootstrapped prediction accuracy

of the individual DTS models was 87.35%, and median accuracy was 92.07%.

We also evaluated the prediction accuracy at the whole policy level, meaning that the DTS

predicts each outcome of the sequence from start to finish, and we compare the final predicted

outcome to the real one. The average prediction accuracy on the test set outcomes is 83.21%,

with 83.96% accuracy for Overall Survival, and 82.46% for Dysphagia (88.43% for Feeding

Tube, and 83.58% for Aspiration Rate).

59

TABLE III: PREDICTION ACCURACY (WITH 95% CONFIDENCE INTERVALS IN

BRACKETS) OF THE STRATIFIED BOOTSTRAPPED EVALUATION OF THE DY-

NAMIC TREATMENT SIMULATOR.

Outcome Accuracy (CI)

Prescribed Chemo 83.0% (77.32%, 87.57%)

Chemo Modification (Y/N) 82.09% (76.96%, 86.34%)

Dose modified 92.39% (89.23%, 94.95%)

Dose delayed 92.39% (89.12%, 95.17%)

Dose cancelled 91.58% (87.68%, 94.77%)

Regimen modification 93.54% (84.36%, 95.88%)

DLT (Y/N) 81.51% (77.25%, 85.42%)

DLT Dermatological 92.77% (23.95%, 95.29%)

DLT Neurological 92.17% (88.66%, 95.1%)

DLT Gastrointestinal 89.6% (85.86%, 92.96%)

DLT Hematological 90.1% (86.17%, 93.23%)

DLT Nephrological 99.03% (98.0%, 100.0%)

DLT Vascular 98.45% (96.45%, 100.0%)

DLT Infection (Pneumonia) 98.98% (94.42%, 100.0%)

60

TABLE III: PREDICTION ACCURACY (WITH 95% CONFIDENCE INTERVALS IN

BRACKETS) OF THE STRATIFIED BOOTSTRAPPED EVALUATION OF THE DY-

NAMIC TREATMENT SIMULATOR.

Outcome Accuracy (CI)

DLT Other 95.08% (90.82%, 97.57%)

DLT Grade 73.85% (53.84%, 79.9%)

No imaging (0=N, 1=Y) 100.0% (100.0%, 100.0%)

CR Primary 83.51% (78.82%, 87.56%)

CR Nodal 94.79% (90.5%, 97.03%)

PR Primary 81.47% (76.84%, 86.27%)

PR Nodal 92.93% (90.0%, 95.65%)

SD Primary 95.1% (91.96%, 97.84%)

SD Nodal 96.58% (94.47%, 98.05%)

CC Regimen 70.0% (64.68%, 75.27%)

CC modification (Y/N) 70.53% (64.92%, 76.06%)

CR Primary 2 79.22% (23.03%, 85.22%)

CR Nodal 2 55.5% (49.01%, 61.54%)

PR Primary 2 78.92% (74.26%, 83.25%)

61

TABLE III: PREDICTION ACCURACY (WITH 95% CONFIDENCE INTERVALS IN

BRACKETS) OF THE STRATIFIED BOOTSTRAPPED EVALUATION OF THE DY-

NAMIC TREATMENT SIMULATOR.

Outcome Accuracy (CI)

PR Nodal 2 52.5% (46.19%, 58.03%)

SD Primary 2 99.48% (98.46%, 100.0%)

SD Nodal 2 96.5% (94.12%, 98.04%)

DLT Dermatological 2 91.99% (87.63%, 95.17%)

DLT Neurological 2 95.79% (5.96%, 97.46%)

DLT Gastrointestinal 2 89.74% (85.22%, 93.65%)

DLT Hematological 2 92.71% (89.42%, 95.16%)

DLT Nephrological 2 92.25% (88.17%, 97.94%)

DLT Vascular 2 100.0% (99.45%, 100.0%)

DLT Other 2 93.97% (89.73%, 96.86%)

Overall Survival (4 Years) 78.23% (73.2%, 82.92%)

Feeding tube 6m 74.37% (68.81%, 79.4%)

Aspiration rate Post-therapy 75.0% (69.38%, 80.0%)

62

6.2.2 Recurive Sequential Meta-Reinforcement Learning for Dynamic Treatment

of Oropharyngeal Squamous Cell Carcinomas

6.2.2.1 Training performance

In Figure 13 we report the rolling average of rewards per episode during training of all

the four RSMRL for OPC models: we note that, compared to the training performance of the

three-step problem, here the learning curve is slightly more complex. Despite that, all models

reach convergence in the first 10,000 training episodes, same as the three-step problem models.

Once again we note the superiority in performance of models trained on simpler environ-

ments: while the model trained on the hard preferences environment still shows a learning

curve, it is significantly lower in performance at convergence when compared to the others.

We also see that the uniform preferences model (our ultimate goal in terms of environment)

is the slowest to reach convergence, as is expected given the vastness of the distribution of envi-

ronments it is trained on when compared to the other distributions. However, at convergence,

it reaches the same performance as the easy and medium models, which are trained in much

simpler environments.

Overall, we can say that the learning curve in training shows that RSMRL can relatively

quickly learn the peculiarities even of rather complex environments, and therefore seems to be

suitable for realistic sequential decision-making scenarios.

63

Figure 13: Rolling average of rewards per training episode, of all the RSMRL for OPC models.

64

6.2.2.2 Testing Performance

We now report in Table IV the average cumulative reward in the evaluation of all the four

models, each tested in all four environments. Their performance is compared to that of random

choice, reporting the relative improvement.

As observed in the training performance in Section 6.2.2.1 and in the performance of the

three-step problem RSMRL models in Section 6.1, we confirm that the models trained on the

simplest environments mostly outperform the models of the more complex environments on all

environments, with the easy and medium models greatly outperforming the hard model.

However, in this case, the model trained on the uniform environment, which is undoubtedly

the most complex, achieves slightly lower but still good performance compared to the easy

and medium ones, and, more importantly, is the best-performing one in the uniform testing

environment.

Since the ultimate goal of applying RSMRL to DTR is to be able to model any set of

patient preferences (i.e. the uniform preferences environment), we must ultimately recognise

the uniform environment model as the best-performing one, as it is the one that most of all

displays the ability to adapt to any given set of preferences.

We have therefore showed that RSMRL is capable of capturing the dynamics even of a

complex real-life sequential decision-making problem such as the DTR of OPC, and provides a

model capable of rapidly adapting even to complex distributions of preferences over outcomes.

65

TABLE IV: AVERAGE CUMULATIVE REWARDS OF EACH TRAINING-TESTING EN-
VIRONMENT COMBINATION OF MODELS, COMPARED TO RANDOM CHOICE PER-
FORMANCE.

Model
difficulty
(training)

Environment
difficulty
(testing)

Random RSMRL Improvement

easy

easy 49.3 58.61 18.88%

medium 49.02 57.04 16.36%

hard 48.79 56.43 15.66%

uniform 50.82 55.95 10.1%

medium

easy 49.3 58.2 18.06%

medium 49.02 58.23 18.78%

hard 48.79 57.13 17.09%

uniform 50.82 56.7 11.57%

hard

easy 49.3 50.16 1.76%

medium 49.02 51.98 6.04%

hard 48.79 51.5 5.55%

uniform 50.82 50.87 0.11%

uniform

easy 49.3 57.38 16.4%

medium 49.02 56.45 15.15%

hard 48.79 56.31 15.42%

uniform 50.82 56.85 11.87%

CHAPTER 7

CONCLUSION

In this work, we highlighted the main shortcomings of the state-of-the-art deep meta-

Reinforcement Learning (meta-RL) approaches, in particular the strict dependence on including

single-step rewards in order for the meta-learning to work.

We suggested the potential of adapting these approaches to handle fixed-sequence series of

decisions in the absence of intermediate reward, and the implications this would have in the

computational healthcare field of Dynamic Treatment Regimes (DTR) to train models capable

of handling any previously unseen interpolation of multiple reward functions, such as varying

patient-specific preferences on the outcome of a therapeutic course.

We proposed a new approach, Recursive Sequential deep Meta-Reinforcement Learning

(RSMRL), that extends the applicability of meta-RL to fixed-length multi-step problems with

no intermediate rewards. An RSMRL model is composed of a series of meta-RL models, one for

each decision in the sequence, and incorporates two new types of feedback: the state feedback

and the value feedback. The state feedback is added to the action and reward feedback to provide

more accurate insight on the results of an action in the current environment, giving the model

a deeper understanding of transition probabilities. The value feedback substitutes the reward

feedback in the intermediate-decisions models, and compensates for the absence of intermediate-

step rewards by including in the input the value of the state that the previous action led to,

as computed by the following model in the sequence. It is this model-to-model feedback that

66

67

introduces recursion in our approach, making it possible to propagate appropriately filtered

information on the final reward back to previous decisions in the sequence, so as to encode the

partial contributions of each decision value to the final outcome.

We first evaluate our approach on a synthetic environment, the three-step problem, consist-

ing of a two-decisions sequence, with reward being observed only after the second decision. Our

results on the training performance show that the models of all the decisions in the sequence

are capable of learning synchronously, without significant delays or divergences in performance

between the first decision and second decision model, thus confirming the validity of the value

feedback to propagate reward information back to intermediate decisions. The evaluation reward

performance showed the learning curve of which trained RSMRL models are capable when ap-

plied to previously unseen environment, and the average cumulative reward per episode showed

a consistent improvement over random choice performance, as well as the higher ability of mod-

els trained in easier environments to adapt to new more complex scenarios, even outperforming

models trained for those exact environments.

Finally, we applied the RSMRL to a real-life DTR problem of a three-step sequential treat-

ment of Oropharyngeal Squamous cell Carcinomas (OPC), based on a dataset of real patients

collected at the MD Anderson Cancer Center (MDACC). After building a Dynamic Treat-

ment Simulator to emulate the treatment environment, we trained multiple RSMRL models

in this environment by modeling different patient-specific preferences over treatment outcomes

as different reward functions. The training performance revealed the same trends seen in the

three-step problem models, proving the ability of RSMRL to capture the dynamics even of

68

complex real-life environments. The evaluation performance showed once again consistent im-

provement over random choice performance, thus obtaining models capable of handling any

type of patient preference weights, modeled as a uniform distribution.

In the future, we hope to further improve the applicability of RSMRL by testing its perfor-

mance on environments with possibly varying transition probabilities, in addition to the varying

reward probabilities evaluated in this work.

We also hope to evaluate its application to the DTR with multiple reward functions setting

in the case of non-linear preference functions, and possibly in the presence of a varying number

of unseen reward functions rather than a fixed one.

APPENDICES

69

70

Appendix A

HUMAN SUBJECT RESEARCH DETERMINATION

71

Appendix A (continued)

72

Appendix B

DEMOGRAPHICS OF MDACC OPC DATASET

TABLE V: MAIN FEATURE DEMOGRAPHICS OF THE MDACC OPC DATASET FOR

EACH TREATMENT JUNCTION.

Characteristic All Patients (536) Training set (402) Testing set (134)

Pre-treatment variables (before D1)

Age at Diagnosis (Calculated)

Mean (SD) 58.9 (9.5) 58.5 (9.4) 60.2 (9.6)

Pathological Grade

I 6 (1.4%) 2 (0.6%) 4 (3.5%)

II 154 (35.2%) 114 (35.3%) 40 (35.1%)

III 274 (62.7%) 206 (63.8%) 88 (59.6%)

IV 3 (0.7%) 1 (0.3%) 2 (1.8%)

N/A 99 79 20

Gender

Female 65 (12.1%) 47 (11.7%) 18 (13.4%)

Male 471 (87.9%) 355 (88.3%) 116 (86.6%)

HPV/P16 status

Negative 43 (8%) 33 (8.2%) 10 (7.5%)

Positive 305 (56.9%) 228 (56.7%) 77 (57.5%)

Unknown 188 (35.1%) 141 (35.1%) 47 (35.1%)

T-category

T1 113 (21.1%) 87 (21.6%) 26 (19.4%)

T2 219 (40.9%) 156 (38.8%) 63 (47.0%)

T3 116 (21.6%) 91 (22.6%) 25 (18.7%)

T4 86 (16.0%) 67 (16.7%) 19 (14.2%)

Tx 2 (0.4%) 1 (0.2%) 1 (0.7%)

N-category

N0 19 (3.5%) 14 (3.5%) 5 (3.7%)

73

Appendix B (continued)

TABLE V: MAIN FEATURE DEMOGRAPHICS OF THE MDACC OPC DATASET FOR

EACH TREATMENT JUNCTION.

Characteristic All Patients (536) Training set (402) Testing set (134)

N1 62 (11.6%) 39 (9.7%) 23 (17.2%)

N2 438 (81.7%) 336 (83.6%) 102 (76.1%)

N3 17 (3.2%) 13 (3.2%) 4 (3.0%)

N-category (8th edition)

N0 20 (3.7%) 14 (3.5%) 6 (4.5%)

N1 249 (46.5%) 181 (45%) 68 (50.7%)

N2 250 (46.6%) 194 (48.3%) 56 (41.8%)

N3 17 (3.2%) 13 (3.2%) 4 (3.0%)

AJCC 7th edition

II 9 (1.7%) 6 (1.5%) 3 (2.2%)

III 64 (11.9%) 39 (9.7%) 25 (18.7%)

IV 463 (86.4%) 357 (88.8%) 106 (79.1%)

AJCC 8th edition

I 186 (34.8%) 137 (34.2%) 49 (36.8%)

II 81 (15.2%) 63 (15.7%) 18 (13.5%)

III 64 (12.0%) 44 (11.0%) 20 (15.0%)

IV 203 (38.0%) 157 (39.2%) 46 (34.6%)

N/A 2 1 1

Smoking status at Diagnosis

Current 115 (21.5%) 85 (21.1%) 30 (22.4%)

Former 203 (37.9%) 151 (37.6%) 52 (38.8%)

Never 218 (40.7%) 166 (41.3%) 52 (38.8%)

Smoking status (Packs/Year)

Mean (SD) 17.7 (23.7) 16.7 (22.9) 20.5 (26.0)

N/A 28 21 7

Aspiration rate Pre-therapy

No 520 (97.0%) 388 (96.5%) 132 (98.5%)

Yes 16 (3.0%) 14 (3.5%) 2 (1.5%)

Number of Affected Lymph nodes

74

Appendix B (continued)

TABLE V: MAIN FEATURE DEMOGRAPHICS OF THE MDACC OPC DATASET FOR

EACH TREATMENT JUNCTION.

Characteristic All Patients (536) Training set (402) Testing set (134)

Mean (SD) 2.0 (1.3) 2.1 (1.3) 1.8 (1.0)

Tumor Laterality

Bilateral 21 (3.9%) 16 (4.0%) 5 (3.7%)

Left 242 (45.1%) 188 (46.8%) 54 (40.3%)

Right 273 (50.9%) 198 (49.3%) 75 (56.0%)

Tumor subsite

Base Of Tongue 266 (49.6%) 204 (50.7%) 62 (46.3%)

GlossoPharyngeal Sulcus 10 (1.9%) 10 (2.5%) -

Not Otherwise Specified 31 (5.8%) 24 (6.0%) 7 (5.2%)

Soft Palate 6 (1.1%) 6 (1.5%) -

Tonsil 223 (41.6%) 158 (39.3%) 65 (48.5%)

Race

African American / Black 16 (3.0%) 10 (2.5%) 6 (4.5%)

Asian 4 (0.7%) 3 (0.7%) 1 (0.7%)

Hispanic / Latino 21 (3.9%) 17 (4.2%) 4 (3.0%)

Not Otherwise Specified 5 (0.9%) 3 (0.7%) 2 (1.5%)

Native American 1 (0.2%) 1 (0.2%) -

White / Caucasian 489 (91.2%) 368 (91.5%) 121 (90.3%)

Post-Induction Therapy variables (after D1 and before D2)

Prescribed Chemo

None 342 (63.8%) 250 (62.2%) 92 (68.7%)

Doublet 41 (7.6%) 32 (8.0%) 9 (6.7%)

Triplet 143 (26.7%) 111 (27.6%) 32 (23.9%)

Quadruplet 7 (1.3%) 7 (1.7%) -

Not Otherwise Specified 3 (0.6%) 2 (0.5%) 1 (0.7%)

Chemo Modification

Yes 85 (15.9%) 65 (16.2%) 20 (14.9%)

No 451 (84.1%) 337 (83.8%) 114 (85.1%)

Modification Type

75

Appendix B (continued)

TABLE V: MAIN FEATURE DEMOGRAPHICS OF THE MDACC OPC DATASET FOR

EACH TREATMENT JUNCTION.

Characteristic All Patients (536) Training set (402) Testing set (134)

No Dose Adjustment 451 (84.1%) 336 (83.6%) 115 (85.8%)

Dose Modified 21 (3.9%) 16 (4.0%) 5 (3.7%)

Dose Delayed 10 (1.9%) 9 (2.2%) 1 (0.7%)

Dose Cancelled 18 (3.4%) 13 (3.2%) 5 (3.7%)

Dose Delayed & Modified 6 (1.1%) 5 (1.2%) 1 (0.7%)

Regimen Modification 29 (5.4%) 22 (5.5%) 7 (5.2%)

Unknown 1 (0.2%) 1 (0.2%) -

Dose Limiting Toxicity

No 441 (82.3%) 329 (81.8%) 112 (83.6%)

Yes 95 (17.7%) 73 (18.2%) 22 (16.4%)

DLT - Dermatological

0 506 (94.4%) 383 (95.3%) 123 (91.8%)

1 24 (4.5%) 15 (3.7%) 9 (6.7%)

2 4 (0.7%) 2 (0.5%) 2 (1.5%)

3 2 (0.4%) 2 (0.5%) -

DLT - Neurological

0 515 (96.1%) 386 (96.0%) 129 (96.3%)

1 17 (3.2%) 13 (3.2%) 4 (3.0%)

2 3 (0.6%) 2 (0.5%) 1 (0.7%)

3 1 (0.2%) 1 (0.2%) -

DLT- Gastrointestinal

0 504 (94.0%) 377 (93.8%) 127 (94.8%)

1 27 (5.0%) 20 (5.0%) 7 (5.2%)

2 2 (0.4%) 2 (0.5%) -

3 3 (0.6%) 3 (0.7%) -

DLT - Hematological

0 509 (95.0%) 383 (95.3%) 126 (94.0%)

1 26 (4.9%) 18 (4.5%) 8 (6.0%)

4 1 (0.2%) 1 (0.2%) -

76

Appendix B (continued)

TABLE V: MAIN FEATURE DEMOGRAPHICS OF THE MDACC OPC DATASET FOR

EACH TREATMENT JUNCTION.

Characteristic All Patients (536) Training set (402) Testing set (134)

DLT - Nephrological

0 533 (99.4%) 399 (99.3%) 134 (100.0%)

1 3 (0.6%) 3 (0.7%) -

DLT - Vascular

0 534 (99.6%) 401 (99.8%) 133 (99.3%)

1 1 (0.2%) - 1 (0.7%)

3 1 (0.2%) 1 (0.2%) -

DLT - Infection (Pneumonia)

0 535 (99.8%) 401 (99.8%) 134 (100.0%)

1 1 (0.2%) 1 (0.2%) -

DLT - Grade

0 446 (83.2%) 334 (83.1%) 112 (83.6%)

1 7 (1.3%) 6 (1.5%) 1 (0.7%)

2 33 (6.2%) 26 (6.5%) 7 (5.2%)

3 41 (7.6%) 29 (7.2%) 12 (9.0%)

4 9 (1.7%) 7 (1.7%) 2 (1.5%)

Imaging

No 342 (63.8%) 250 (62.2%) 92 (68.7%)

Yes 194 (36.2%) 152 (37.8%) 42 (31.3%)

Complete Response (CR) Primary

0 452 (84.3%) 335 (83.3%) 117 (87.3%)

1 84 (15.7%) 67 (16.7%) 17 (12.7%)

CR Nodal

0 520 (97.0%) 388 (96.5%) 132 (98.5%)

1 16 (3.0%) 14 (3.5%) 2 (1.5%)

Parietal Response (PR) Primary

0 447 (83.4%) 332 (82.6%) 115 (85.8%)

1 89 (16.6%) 70 (17.4%) 19 (14.2%)

PR Nodal

77

Appendix B (continued)

TABLE V: MAIN FEATURE DEMOGRAPHICS OF THE MDACC OPC DATASET FOR

EACH TREATMENT JUNCTION.

Characteristic All Patients (536) Training set (402) Testing set (134)

0 380 (70.9%) 277 (68.9%) 103 (76.9%)

1 156 (29.1%) 125 (31.1%) 31 (23.1%)

Stable Disease (SD) Primary

0 525 (97.9%) 394 (98.0%) 131 (97.8%)

1 11 (2.1%) 8 (2.0%) 3 (2.2%)

SD Nodal

0 526 (98.1%) 396 (98.5%) 130 (97.0%)

1 10 (1.9%) 6 (1.5%) 4 (3.0%)

Post-Concurrent Chemotherapy variables (after D2 and before D3)

CC Regimen

None 126 (23.5%) 89 (22.1%) 37 (27.6%)

Platinum Based 257 (47.9%) 198 (49.3%) 59 (44.0%)

Cetuximab Based 129 (24.1%) 95 (23.6%) 34 (25.4%)

Other 24 (4.5%) 20 (5.0%) 4 (3.0%)

CC modification

No 437 (81.5%) 325 (80.8%) 112 (83.6%)

Yes 99 (18.5%) 77 (19.2%) 22 (16.4%)

CR Primary 2

0 85 (15.9%) 65 (16.2%) 20 (14.9%)

1 450 (84.1%) 336 (83.8%) 114 (85.1%)

N/A 1 1 -

CR Nodal 2

0 289 (53.9%) 216 (53.7%) 73 (54.5%)

1 247 (46.1%) 186 (46.3%) 61 (45.5%)

PR Primary 2

0 459 (85.6%) 344 (85.6%) 115 (85.8%)

1 77 (14.4%) 58 (14.4%) 19 (14.2%)

PR Nodal 2

0 279 (52.1%) 211 (52.5%) 68 (50.7%)

78

Appendix B (continued)

TABLE V: MAIN FEATURE DEMOGRAPHICS OF THE MDACC OPC DATASET FOR

EACH TREATMENT JUNCTION.

Characteristic All Patients (536) Training set (402) Testing set (134)

1 257 (47.9%) 191 (47.5%) 66 (49.3%)

SD Primary 2

0 534 (99.6%) 400 (99.5%) 134 (100.0%)

1 2 (0.4%) 2 (0.5%) -

SD Nodal 2

0 526 (98.1%) 396 (98.5%) 130 (97.0%)

1 10 (1.9%) 6 (1.5%) 4 (3.0%)

DLT - Dermatological 2

No 522 (97.4%) 392 (97,5%) 130 (97.0%)

Yes 14 (2.6%) 10 (2.5%) 4 (3.0%)

DLT - Neurological 2

No 516 (96.3%) 386 (96.0%) 130 (97.0%)

Yes 20 (3.7%) 16 (4.0%) 4 (3.0%)

DLT - Gastrointestinal 2

No 508 (94.8%) 380 (94.5%) 128 (95.5%)

Yes 28 (5.2%) 22 (5.5%) 6 (4.5%)

DLT - Hematological 2

No 512 (95.5%) 382 (95.0%) 130 (97.0%)

Yes 24 (4.5%) 20 (5.0%) 4 (3.0%)

DLT - Nephrological 2

No 529 (98.7%) 397 (98.8%) 132 (98.5%)

Yes 7 (1.3%) 5 (1.2%) 2 (1.5%)

DLT - Vascular 2

No 535 (99.8%) 401 (99.8%) 134 (100.0%)

Yes 1 (0.2%) 1 (0.2%) -

DLT - Other 2

No 522 (97.4%) 390 (97.0%) 132 (98.5%)

Yes 14 (2.6%) 12 (3.0%) 2 (1.5%)

Decisions

79

Appendix B (continued)

TABLE V: MAIN FEATURE DEMOGRAPHICS OF THE MDACC OPC DATASET FOR

EACH TREATMENT JUNCTION.

Characteristic All Patients (536) Training set (402) Testing set (134)

Decision 1 (Induction Chemo) Y/N

No 342 (63.8%) 250 (62.2%) 92 (68.7%)

Yes 194 (36.2%) 152 (37.8%) 42 (31.3%)

Decision 2 (CC / RT alone)

CC 410 (76.5%) 313 (77.9%) 97 (72.4%)

RT alone 126 (23.5%) 89 (22.1%) 37 (27.6%)

Decision 3 Neck Dissection (Y/N)

No 425 (79.3%) 318 (79.1%) 107 (79.9%)

Yes 111 (20.7%) 84 (20.9%) 27 (20.1%)

Final Outcomes (after D3)

Overall Survival (4 Years)

Alive 457 (85.3%) 344 (85.6%) 113 (84.3%)

Dead 79 (14.7%) 58 (14.4%) 21 (15.7%)

Feeding tube 6 months

No 438 (81.7%) 325 (80.8%) 113 (84.3%)

Yes 98 (18.3%) 77 (19.2%) 21 (15.7%)

Aspiration rate Post-therapy

No 438 (81.7%) 323 (80.3%) 115 (85.8%)

Yes 98 (18.3%) 79 (19.7%) 19 (14.2%)

Dysphagia

No 382 (71.3%) 280 (69.7%) 102 (76.1%)

Yes 154 (28.7%) 122 (30.3%) 32 (23.9%)

80

Appendix C

RADIOMICS FEATURES EXTRACTION

The 3D volumes of interest (VOIs), including the gross primary tumor volumes (GTVp),

were manually segmented by a radiation oncologist, and then inspected by a second radiation

oncologist within the commercially available contouring software (Velocity AI v3.0.1). The gen-

erated VOIs and CT images were exported in the format of DICOM and DICOM-RTSTRUCT

to be used for radiomics features extraction. The primary tumor volumes (GTVp) were con-

toured based on the ICRU 62/83 definition [35]. Radiomics analysis was performed using the

freely available open source software ”Imaging Biomarker Explorer” (IBEX), which was devel-

oped by the University of Texas MD Anderson Cancer Center and utilizes the Matlab platform

(Mathworks Inc, Natick, VA). The CT images in the format of DICOM and the GTVp contours

in the format DICOMRTSTRUCT were imported into IBEX. Extracted features represent the

intensity, shape, and texture of the primary tumor.

CITED LITERATURE

1. Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever, I., and Abbeel, P.: Rl2: Fast
reinforcement learning via slow reinforcement learning, 2016.

2. Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J. Z., Munos, R., Blundell,
C., Kumaran, D., and Botvinick, M.: Learning to reinforcement learn, 2017.

3. Heess, N., Hunt, J. J., Lillicrap, T. P., and Silver, D.: Memory-based control with recurrent
neural networks, 2015.

4. Chakraborty, B. and Murphy, S. A.: Dynamic treatment regimes. Annual Review of
Statistics and Its Application, 1(1):447–464, 2014.

5. Schulte, P. J., Tsiatis, A. A., Laber, E. B., and Davidian, M.: Q- and A-learning Methods
for Estimating Optimal Dynamic Treatment Regimes. Stat Sci, 29(4):640–661, Nov
2014.

6. Nahum-Shani, I., Qian, M., Almirall, D., Pelham, W., Gnagy, B., Fabiano, G., Waxmon-
sky, J., Yu, J., and Murphy, S.: Q-learning: A data analysis method for construct-
ing adaptive interventions. Psychological Methods, 17(4):478–494, December 2012.
Copyright: Copyright 2014 Elsevier B.V., All rights reserved.

7. Jain, S., Popple, R., Szychowski, J., Sen, B., Locher, J. L., and Kilgore, M. L.: Radiation
Oncologist Characteristics and their Association with Outcomes in Patients with
Head and Neck Cancer. Pract Radiat Oncol, 9(3):e322–e330, May 2019.

8. Adelstein, D. J., Ridge, J. A., Gillison, M. L., Chaturvedi, A. K., D’Souza, G., Gravitt,
P. E., Westra, W., Psyrri, A., Martin Kast, W., Koutsky, L. A., Giuliano, A.,
Krosnick, S., Trotti, A., Schuller, D. E., Forastiere, A., and Dansky Ullmann, C.:
Head and neck squamous cell cancer and the human papillomavirus: Summary
of a national cancer institute state of the science meeting, november 9–10, 2008,
washington, d.c. Head & Neck, 31(11):1393–1422, 2009.

9. Sheu, T., Vock, D., Mohamed, A., Gross, N., Mulcahy, C., Zafereo, M., Gunn, G., Gar-
den, A., Sevak, P., Phan, J., Lewin, J., Frank, S., Beadle, B., Morrison, W., Lai,
S., Hutcheson, K., Marai, G., Canahuate, G., Kies, M., El-Naggar, A., Weber, R.,

81

82

CITED LITERATURE (continued)

Rosenthal, D., and Fuller, C.: Conditional survival analysis of patients with lo-
cally advanced laryngeal cancer: Construction of a dynamic risk model and clinical
nomogram. Scientific Reports, 7, March 2017.

10. Luciani, T., Wentzel, A., Elgohari, B., Elhalawani, H., Mohamed, A., Canahuate, G., Vock,
D., Fuller, C., and Marai, G.: A spatial neighborhood methodology for computing
and analyzing lymph node carcinoma similarity in precision medicine. Journal of
Biomedical Informatics: X, 5:100067, 2020.

11. Wentzel, A., Luciani, T., van Dijk, L. V., Taku, N., Elgohari, B., Mohamed, A. S. R.,
Canahuate, G., Fuller, C. D., Vock, D. M., and Marai, G. E.: Precision associa-
tion of lymphatic disease spread with radiation-associated toxicity in oropharyngeal
squamous carcinomas. medRxiv, 2020.

12. Marai, G. E., Ma, C., Burks, A., Pellolio, F., Canahuate, G., Vock, D., Mohamed, A., and
Fuller, C.: Precision risk analysis of cancer therapy with interactive nomograms
and survival plots. IEEE Transactions on Visualization and Computer Graphics,
PP:1–1, 03 2018.

13. Hochreiter, S., Younger, A. S., and Conwell, P. R.: Learning to learn using gradient
descent. In IN LECTURE NOTES ON COMP. SCI. 2130, PROC. INTL. CONF.
ON ARTI NEURAL NETWORKS (ICANN-2001, pages 87–94. Springer, 2001.

14. Sutton, R. S. and Barto, A. G.: Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018.

15. Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., and Dolan, R. J.: Model-based
influences on humans’ choices and striatal prediction errors. Neuron, 69(6):1204–
1215, Mar 2011.

16. Moodie, E. E., Chakraborty, B., and Kramer, M. S.: Q-learning for estimating optimal
dynamic treatment rules from observational data. Can J Stat, 40(4):629–645, Dec
2012.

17. Barrett, L. and Narayanan, S.: Learning all optimal policies with multiple criteria. In
Proceedings of the 25th International Conference on Machine Learning, ICML ’08,
page 41–47, New York, NY, USA, 2008. Association for Computing Machinery.

83

CITED LITERATURE (continued)

18. Lizotte, D. J., Bowling, M. H., and Murphy, S. A.: Efficient reinforcement learning with
multiple reward functions for randomized controlled trial analysis. In ICML, pages
695–702, 2010.

19. LizotteDaniel, J., BowlingMichael, and MurphySusan, A.: Linear fitted-q iteration with
multiple reward functions. Journal of Machine Learning Research, 2012.

20. Tosado, J., Zdilar, L., Elhalawani, H., Elgohari, B., Vock, D. M., Marai, G. E., Fuller,
C., Mohamed, A. S. R., and Canahuate, G.: Clustering of Largely Right-Censored
Oropharyngeal Head and Neck Cancer Patients for Discriminative Groupings to
Improve Outcome Prediction. Sci Rep, 10(1):3811, 03 2020.

21. Wong, A. J., Kanwar, A., Mohamed, A. S., and Fuller, C. D.: Radiomics in head and
neck cancer: from exploration to application. Transl Cancer Res, 5(4):371–382,
Aug 2016.

22. Bogowicz, M., Leijenaar, R. T. H., Tanadini-Lang, S., Riesterer, O., Pruschy, M., Studer,
G., Unkelbach, J., Guckenberger, M., Konukoglu, E., and Lambin, P.: Post-
radiochemotherapy PET radiomics in head and neck cancer - The influence of
radiomics implementation on the reproducibility of local control tumor models.
Radiother Oncol, 125(3):385–391, 12 2017.

23. Vallières, M., Kay-Rivest, E., Perrin, L. J., Liem, X., Furstoss, C., Aerts, H. J. W. L.,
Khaouam, N., Nguyen-Tan, P. F., Wang, C. S., Sultanem, K., Seuntjens, J., and
El Naqa, I.: Radiomics strategies for risk assessment of tumour failure in head-and-
neck cancer. Sci Rep, 7(1):10117, 08 2017.

24. Parmar, C., Leijenaar, R. T., Grossmann, P., Rios Velazquez, E., Bussink, J., Rietveld,
D., Rietbergen, M. M., Haibe-Kains, B., Lambin, P., and Aerts, H. J.: Radiomic
feature clusters and prognostic signatures specific for Lung and Head Neck cancer.
Sci Rep, 5:11044, Jun 2015.

25. Parmar, C., Grossmann, P., Rietveld, D., Rietbergen, M. M., Lambin, P., and Aerts, H. J.:
Radiomic Machine-Learning Classifiers for Prognostic Biomarkers of Head and Neck
Cancer. Front Oncol, 5:272, 2015.

26. Jethanandani, A., Lin, T. A., Volpe, S., Elhalawani, H., Mohamed, A. S. R., Yang, P., and
Fuller, C. D.: Exploring Applications of Radiomics in Magnetic Resonance Imaging
of Head and Neck Cancer: A Systematic Review. Front Oncol, 8:131, 2018.

84

CITED LITERATURE (continued)

27. Elhalawani, H., Kanwar, A., Mohamed, A. S. R., White, A., Zafereo, J., Wong, A., Berends,
J., Abohashem, S., Williams, B., Aymard, J. M., Perni, S., Messer, J., Warren, B.,
Youssef, B., Yang, P., Meheissen, M. A. M., Kamal, M., Elgohari, B., Ger, R. B.,
Cardenas, C. E., Fave, X., Zhang, L., Mackin, D., Marai, G. E., Vock, D. M.,
Canahuate, G. M., Lai, S. Y., Gunn, G. B., Garden, A. S., Rosenthal, D. I., Court,
L., and Fuller, C. D.: Investigation of radiomic signatures for local recurrence using
primary tumor texture analysis in oropharyngeal head and neck cancer patients.
Sci Rep, 8(1):1524, 01 2018.

28. van Dijk, L. V., Thor, M., Steenbakkers, R. J. H. M., Apte, A., Zhai, T. T., Borra, R.,
Noordzij, W., Estilo, C., Lee, N., Langendijk, J. A., Deasy, J. O., and Sijtsema,
N. M.: Parotid gland fat related Magnetic Resonance image biomarkers improve
prediction of late radiation-induced xerostomia. Radiother Oncol, 128(3):459–466,
09 2018.

29. van Dijk, L. V., Langendijk, J. A., Zhai, T. T., Vedelaar, T. A., Noordzij, W., Steenbakkers,
R. J. H. M., and Sijtsema, N. M.: Delta-radiomics features during radiotherapy
improve the prediction of late xerostomia. Sci Rep, 9(1):12483, 08 2019.

30. Platt, J. C.: Probabilistic outputs for support vector machines and comparisons to regu-
larized likelihood methods. In ADVANCES IN LARGE MARGIN CLASSIFIERS,
pages 61–74. MIT Press, 1999.

31. Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver, D., and
Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning, 2016.

32. Mirowski, P., Pascanu, R., Viola, F., Soyer, H., Ballard, A. J., Banino, A., Denil, M.,
Goroshin, R., Sifre, L., Kavukcuoglu, K., Kumaran, D., and Hadsell, R.: Learning
to navigate in complex environments, 2017.

33. Hochreiter, S. and Schmidhuber, J.: Long short-term memory. Neural computation,
9:1735–80, 12 1997.

34. Kingma, D. P. and Ba, J.: Adam: A method for stochastic optimization, 2017.

35. authors listed, N.: 4. Definition of volumes. J ICRU, 10(1):41–53, Apr 2010.

VITA

NAME Elisa Tardini

EDUCATION

Master of Science in “Computer Science”, University of Illinois at
Chicago, May 2021, USA

Specialization Degree in “Computer Science and Engineering ”, Jul
2021, Polytechnic of Milan, Italy

Bachelor’s Degree in “Computer Science and Engineering”, Jul 2018,
Polytechnic of Milan, Italy

LANGUAGE SKILLS

Italian Native speaker

English Full working proficiency

2018 - IELTS examination (8.0/9)

2015 - Cambridge Certificate of Proficiency in English (A)

2014 - Cambridge Certificate of Advanced English (A)

SCHOLARSHIPS

Spring 2020-
Spring 2021

Research Assistantship (RA) position (20 hours/week) with full tuition
waiver plus monthly stipend

Fall 2019 Italian scholarship for TOP-UIC students

Fall 2016 Award for top freshmen at Polytechnic of Milan

TECHNICAL SKILLS

Basic level Computer architectures, computer security, distributed systems,
CUDA, Matlab

Average level Databases and SQL, C, Java

Advance level Data Science and Machine Learning, Causal Inference, Python

WORK EXPERIENCE AND PROJECTS

Jan 2020 -
present

Reinforcement Learning for Dynamic Treatment Regimes

85

86

VITA (continued)

Application of Supervised and Reinforcement Learning algorithms to
a dataset of Oropharyngeal Squamous cell Carcinoma patients treated
at the MD Anderson Cancer Center. Development and evaluation of a
treatment simulator and custom RL algorithms for the personalization
of treatment regimes.

Aug 2019 - Dec
2019

Evaluating Human Performance Using Heterogeneous Treatment Ef-
fects

Development and evaluation of a Supervised Learning model for the
assessment of Heterogeneous Treatment Effects in a dataset of Stack-
exchange votes, questions, answers and acceptances. Used model to
analyse effects of question acceptance on voting and of question voting
on acceptance.

April 2019 - May
2019

Road traffic forecasting

Design and evaluation of a time series Supervised Learning model for
predicting road traffic speeds and traffic based on road events and
weather conditions.

