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A B S T R A C T

In the last 20 years, extreme weather-related events like floods, landslides, droughts, an
wildfires have caused the death of 1.23 million people and a loss of 2.97 trillion do
lars. Studies show that low and lower-middle income countries are the most impacte
ones given the lack of investment in disaster risk management. To reduce the impact
these events, weather researchers have been developing numerical weather models th
inform public agencies about the impending extreme events in advance. Despite b
ing powerful tools, these models can suffer from several sources of uncertainty, rangin
from the approximation of micro-scale physical processes to the location-dependent ca
ibration of parameters, which is especially critical in developing countries. To minimi
uncertainty effects, researchers generate several different weather scenarios to compo
an ensemble of simulations that typically are inspected using manual, laborious, an
error-prone approaches. In this paper, we propose an interactive visual analytics sy
tem, called X-Weather, developed in close collaboration with weather researchers fro
Brazil. Our system contributes a set of statistics and probability-based visualizatio
that allows the assessment of extreme weather events by effortlessly navigating throug
and comparing ensemble members. We demonstrate the effectiveness of the syste
through two case studies analyzing tragic events that happened in the mountain regio
of Rio de Janeiro in Brazil.

© 2022 Elsevier B.V. All rights reserve

uction

nt times, the world has seen a dramatic increase in the
f climate-related disasters. Between 1980 and 1999,
orted disasters claimed the lives of 1.19 million peo-
a total cost of over 1.63 trillion dollars. In the last
the number of reported disasters grew to 7,348, caus-
eath of 1.23 million people and more than 2.97 tril-
rs in damages [1]. This scenario can be attributed in
e staggering rise in the number of extreme weather-
ents, including floods, storms, landslides, droughts,
res. By comparison, in the last 20 years, the num-

oding occurrences more than doubled: 3,254 versus
980-1999. Studies show that these events dispropor-

impact low and lower-middle income countries: while
rienced 43% of all major recorded disasters, they suf-

of the fatalities [2]. In Brazil, for example, two
caused by extreme weather events caused the death

of more than 1,000 people in the state of Rio de Janeiro.
April 2010, a severe storm in the metropolitan region cause
landslides and floods that resulted in more than 200 deaths an
displaced more than 15,000 people [3]. One year later, anoth
storm in the mountain region caused the death of more than 90
people, with thousands displaced from their homes. This eve
is considered the worst climate-related disaster that happene
in Brazil [4, 5].

Disaster risk management plays a key role in minimizin
the catastrophic consequences of extreme weather events [6
In the case of floods, being able to accurately forecast seve
storms and downpours and adequately notify the population
a timely manner can save thousands of lives [7]. To this en
weather researchers have been developing numerical weath
prediction (NWP) models that allow public agents to know b
forehand about destructive events and enable the developme
of prevention plans to minimize environmental, material, an
human disasters. Although these models are powerful too

thor details
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n suffer from several sources of uncertainty. One of the
ches used by weather researchers is to then create an en-
of simulations for a given region and time. For example,
use different weather models [8], or use a single model

rturbed parameters (e.g., initial conditions, spatial and
al resolutions, parametrizations). Building ensembles is
ting since probabilistic studies of the simulations mem-
hich are individually deterministic, become possible and
lly demonstrate better results than a single simulation [9].
hlight the importance of weather forecast studies that
r different physical parametrizations, since the forecast
may differ from each other and, consequently, misinter-
ns may occur. This situation is aggravated in the case of

ping countries [10], which rely on weather models pri-
developed for regions in North America and Europe.
challenge of the ensemble approach is that each of its
rs is a multivariate spatiotemporal data set describing

rent weather forecast. Since the combination of multi-
tors can indicate a looming extreme weather event, it is
unt for weather researchers to analyze these forecasts

ly across space and time but also across multiple vari-
Manually inspecting these results, while necessary to
ense of forecast uncertainty, is exhausting and error-
For this reason, it is necessary to employ new strategies
itate the analysis of these ensembles.
is paper, we propose X-Weather, a visual analytics sys-
ilt in close collaboration with weather researchers in
interested in studying extreme weather events in the
in region of Rio de Janeiro by investigating ensembles
through perturbations in physical features (i.e., phys-

sembles). Therefore, the proposed tool allows the as-
nt of extreme weather events that can potentially lead
ther disasters by enabling effortless navigation through
e weather ensemble members grouped by physical fea-
nd allowing their evaluation and comparison. Figure 2
s an overview of the X-Weather interface. More pre-
our contributions are as follows:

e introduce a set of statistics-based visualizations that
lows weather researchers to easily identify the multiple
eather scenarios contained in a large simulation ensem-
e, taking into account the inherent uncertainty of weather
odels.
e introduce a set of probability-based visualizations that
ables the assessment of extreme weather events by ex-
oring the chances of observing target scenarios.
e introduce X-Weather, a web-based system that en-
les the investigation of weather ensembles through the
sual, interactive, and integrated evaluation/comparison
the multivariate spatiotemporal ensemble members.
e demonstrate the effectiveness of the system through
o case studies using simulations of extreme weather
ents that happened in the mountain region of Rio de
neiro in Brazil.

important to reinforce that, although our web-based
is built on well-known visualization techniques, the

ed set of visualizations was designed to be familiar to

weather specialists, while being a powerful tool that can be
to obtain nontrivial insights into ensembles of weather sim
tions.

2. Related Work

Visualization and visual analytics enable complex data in
tigation that allows identifying patterns, trends, and outlie
weather data. This is an important area that has seen nume
research papers in the past few years, including visualizatio
aviation weather [11], vector fields [12] and iso-contours
weather forecasts [14] and climate simulation [15], comp
tional fluid dynamics [16], scientific data in general [17,
and similarity exploration of climate data [19]. In partic
recently, several ensemble visualization systems have been
veloped to help experts in different areas. These include
tems for network security [20] and public health [21], and
tems that leverage biomedical images [22] and time-var
data [23]. Due to the complexity of the data, ensemble
alization faces a variety of research challenges [24]. Wan
al. [25] presented a complete survey of visualization and v
analysis of ensemble data, discussing how traditional visua
tion techniques have been adapted to handle the specificiti
ensemble data.

Rautenhaus et al. [26] presented a detailed survey with s
of-the-art techniques in meteorological data visualization.
authors draw attention to the fact that, sometimes, domain
perts are not open to interactive functionalities and novel
alization metaphors, like those in 3D. They are more fam
ized with line-command tools (e.g., Ferret [27], GrADS
GMT [29]) or general programming languages (e.g. Ma
Python). In this regard, visualization systems’ developers
be aware of the domain’s demands and concerns, and
centrate efforts on attracting and encouraging data explora
Potter et al. [8] presented Ensemble-Vis, a framework that
ports visual analysis of weather ensemble data through a c
bination of statistical visualization techniques and user i
actions. The system provides a view of the data that ena
experts to perform analysis at multiple scales from high-
abstraction to the direct display of data values. The goal
enable the user to explore the general results and the re
from each member of the ensemble in spatial and tempora
mensions for different atmospheric variables. Sanyal et al.
created Noodles, a tool to visualize ensemble uncertain
a weather event data set using glyphs, ribbons, and spag
plots. The authors demonstrated their work with an ense
composed of only 18 members of the 1933 Superstorm s
lation, representing the standard deviation, interquartile ra
and the width of the 95% confidence interval of the data
another direction, Diehl et al. [31] developed a system fo
visual analysis of data from weather forecasts that allow
depth studies of selected areas and the comparison betw
simulated outputs and observed data. This web-based tool
vides a timeline with an integrated map view, a forecast o
ation tool, a curve-pattern selector, spatial filters, and a li
meteogram. In a more recent paper, Diehl et al. [32] cre
Albero, a system focused on probabilistic weather foreca
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This tool helps to identify patterns, trends, and their
errors in the forecast model. Besides that, the sys-

oves decision-making and simplifies the measure of
ncertainty. Biswas et al. [33] and Wang et al. [34]
analysis tools for three ensembles, each one includ-
embers built using different calibrations of the same
arametrization scheme. Rautenhaus et al. [35] present

a robust open-source tool developed with the initial
f assisting air route planning, but also allowing en-
vestigation. The tool offers statistical and probabilis-
ds applied mainly to three-dimensional structures. As
nsional images are very common in domain-specific
authors added 2D functionalities linked to the 3D vi-
ns. Santos et al. [36] and Williams et al. [37] introduce
, a system that integrates several tools (e.g., Python,

, VisTrails [38]), to allow the analysis of a large col-
climate data.

r important aspect of our work is the consideration
erlying data uncertainty. Previous work has tackled

enge by proposing visualization of summary statis-
40], considering geospatial data [41]. A complete
uncertainty visualization can be found in Broadlie

] and Bounneau et al. [43], and taxonomy of uncer-
ualization can be found in Potter et al. [44]. In the
omain, uncertainty is particularly important, and dif-
dies have analyzed its impact when taking into ac-
bal temperature [45], climate change [46], and differ-
e variables [47, 48, 49].

s of weather forecasters, Novak et al. [50] presented
of US operational forecast managers regarding the
cation of forecast uncertainty, highlighting the need
uncertainty information in weather ensembles. Schu-
d Davis [51] presented an analysis of heavy rainfall
d their uncertainties), also highlighting in their con-
e need to better inform about forecast uncertainty.
eenberg et al. studied different common visualiza-
nderstand their impact on the decision-making pro-
eather forecasters [52], highlighting the importance
tanding user interaction and forecasting tasks. They
ight that trust in forecasts is very important, as wrong
can create false alarms and safety problems due to
liance.

mary, previous works greatly contributed to the un-
g of weather forecast models, and also highlighted
tance of taking into account domain-specific needs
essment of uncertainty during the weather-forecast
aking process. However, they focused on different

sitivity of parameters [32, 34, 33]; uncertainty anal-
3, 35, 30]; general and broad investigation of ensem-

heir members individually [8, 36, 37, 35]; the path of
iables over time [47]; the comparison with observed
improving weather forecasting using neural networks
developing techniques for weather modeling with en-
or forecasting extreme events [54]. They do not target
ery of risks of extreme rainfall events from groups of
of a physical ensemble. To the best of our knowledge,
ystem tackles this problem. In other words, none of

them were designed to facilitate 1) the understanding of larg
ensembles, with members built using different physical proce
parametrizations; and 2) the effects of these parametrizations
the prediction of extreme weather events.

To better understand the impact of parametrizations in th
predicted scenarios and interpret the chances of observin
heavy precipitation values, it is important to analyze grou
of ensemble members that share a parametrization. For th
reason, our design privileges the visualization of collections
members instead of individual simulations. We stress that th
problem is extremely relevant for developing countries, esp
cially Brazil, given its climate influenced by the Amazon r
gion, the atmospheric characteristics of the South Hemispher
and the occurrence of cold fronts and convection rains.

3. Background

Numerical models. Mathematical models are usually em
ployed to represent weather phenomena. Weather and clima
numerical models, for instance, use physics-based equatio
to represent the state of the atmosphere, following Newton
Second Law, Thermodynamics laws, and conservation of mas
Since they do not have an analytical solution, they are solve
through numerical methods. Climate models are usually use
for global simulations using long time ranges, such as week
months, or even years. Weather models, on the other hand, a
specific to a region and phenomena that can occur in minute
hours, or days. The Weather Research and Forecast (WR
model, developed at the National Center for Atmospheric R
search (NCAR) and first introduced in 2000, is a numeric
weather prediction (NWP) model widely utilized by nume
ous universities and research centers [55]. WRF’s adoption
mostly driven by a few factors: it is provided without cost, i
cluding no restrictions on modifications; it is highly portabl
able to run on several platforms, from laptops to supercompu
ers; and it disposes of a host of tailored capabilities, from a
chemistry [56] to solar and wind energy [57, 58].

In order to perform a single weather simulation using th
WRF model, a user (e.g., weather researcher) must define th
initial and boundary conditions that describe the atmospher
state in the time and location of interest. Although the defin
tion of these conditions is complex, historical data describin
atmosphere states all over the world are available in the Glob
Forecast System (GFS) [59] and can be directly used by sim
lations performed using the WRF model. One important sour
of uncertainty is that these initial conditions depended on i
situ measurements, highly susceptible to calibration errors an
instrument precision. Beforehand, a nx×ny grid covering the r
gion of interest, the start/end dates and number of time steps
of the simulation must be provided. The simulation results a
given in terms of the variables that describe atmospheric cond
tions, such as temperature, pressure, wind, and precipitation.
Parametrizations and ensembles. The weather behavior d
pends on micro-scale physical processes that, due to its com
plexity and computational resource limitations, are approx
mated by parametrizations. A parametrization is basically com
posed of a set of algorithmic or statistical approximations of
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l process; given its complexity, the same process can be
ed by different parametrizations, each introducing dif-
evels of inaccuracy to the simulated results.
n the different sources of uncertainty in a weather model,
need to adopt strategies to minimize the possibility of

ging a result. One common practice is to run an en-
of simulations for the same region and period of time,

mulation with a different characteristic (e.g., initial con-
, domain and temporal discretizations, parametrizations).
ble analysis supports studying the probability of observ-
cial weather events based on the proportion of simula-
at predict a target scenario.
rding to Rautenhaus et al. [26], a usual practice in

r forecasting is to simulate the whole ensemble at low
ime resolutions and the most promising member at
resolutions. Although ensembles with different physi-
ametrizations are more common outside the context of
onal weather forecasting [26], we highlight the impor-
f encouraging weather forecast studies that consider this
perturbation, since the forecast results may differ from

her and, consequently, misinterpretations may occur. We
this type of ensemble since the success of atmospheric
ng in extreme event detection depends mainly on the re-
hip between the chosen physical parameterizations and
ure of the atmospheric phenomenon [60]. This has been
ed in practice by two domain experts with over 20 years
rience – both of them are co-authors of this paper.
is workflow. The usual weather data analysis workflow
summarized in four main tasks. First, the weather fore-
ets up the proper parametrizations, and initial conditions
simulation, leveraging domain expertise and especially

nowledge of the region of interest. Second, the scientist
e ensemble of simulations. The output of the simulation
visualized as static plots using standard tools, such as
S or UV-CDAT. During this exhaustive process of ana-
the simulation outputs, manually going through poten-
everal hundred different maps, the researcher is able to
ine if there is a chance of a target weather event in the re-
interest. Even though popular tools facilitate this work-
some capacity (by providing mechanisms to slice and

r aggregate the data) it still boils down to a manual, la-
, and error-prone process of visualizing and comparing

large set of static maps.
nges. Ensemble data contains multiple dimensions (e.g.
e, space, time, etc.) that must be explored by the experts
orm reliable weather predictions, which makes weather
le analysis a complex task. General purpose tools (e.g.,
, Python) do not support a broad and off-the-shelf inves-
of ensembles, so answering tasks like “the identifica-

ensemble members that represent scenarios with a high
of rain”, would require individually browsing through
collection of members or employing an ad-hoc strat-

t may require programming skills. Also, two main chal-
of analyzing ensembles are to bring to light and democ-
he access to information that is hidden in the large and
x mass of data that composes an ensemble.
der to properly investigate ensembles, domain expertise
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Fig. 1. X-Weather is a web application composed of a data manage
component (see Section 6) and a visual exploration interface (see Secti
The data management component is responsible for loading, storing
dynamically aggregating the ensemble data. The visual exploration
face implements several linked visualizations and interactions that
tate the analysis of weather ensembles.

is paramount to determine if input parametrizations have g
ated outputs with good representations of the underlying p
ical processes of atmospheric events. With this in mind
expert needs to be constantly aware of the parametrization
put throughout the analysis of the ensemble’s outputs, whi
not easily possible with well-known tools.

4. Requirements

In our collaboration with weather scientists and forecas
we had several meetings and sessions where we establish
set of requirements for a visual analytics system in ord
facilitate their analysis workflow. During these meetings
identified two main tasks that the experts want to perform
the tool: 1) identify the multiple weather scenarios contain
a large ensemble of simulations produced, taking into cons
ation the sources of uncertainty inherent to weather simul
models, especially the ones introduced by the parametriz
of micro-scale physical processes; 2) assess the occurren
extreme weather events, using the ensemble data to estimat
probability of observing target situations (e.g., the occurr
of accumulated precipitation greater than 20 mm in a perio
3 hours). In order to accomplish the listed tasks, we ident
that our system should satisfy the following requirements:
[R1] Support the exploration of spatiotemporal patte
Explore the spatial and temporal patterns of the multiple
put variables of the ensemble members, so the forecaster
identify regions and time periods to which they should f
their attention.
[R2] Support the ensemble members comparison. Com
predictions of different ensemble members, so the forec
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st different weather scenarios.
port the analysis of the weather model’s uncer-
nalyze subgroups of ensemble members that share
sources of uncertainty (e.g., group the members ac-
the parameterization of a given micro-scale physical

port the exploration of target events probabili-
ess the probability of observing target weather sce-
pecially extreme weather events like heavy rain and
er.
port interactive response times. React to user ac-
e interactive time since responses slower than 500 ms
ficantly impact visual analysis, reducing the rate at
rs make observations [61].

ather System

r to satisfy the previously detailed requirements, we
-Weather, a web-based visual analytics tool com-

two main modules: a data management backend, and
tive visual interface. The data management backend
ible for managing the weather simulation ensemble
handling the interface queries. The visual interface
ts several visualizations and user interactions that en-
isual exploration of the ensemble. Figure 1 shows

ew of the system. We briefly describe these modules

nagement. Our system supports the interactive ex-
of a large collection of simulation outputs (R5). We
h this by 1) efficiently storing the data in order to
coalesced memory access; and 2) making use of pre-
schemes that allow for the interactive computation

ates, including order statistics (e.g., percentiles). We
component in Section 6.

terface. The visual interface was designed to sup-
investigation of weather simulation ensembles con-
sing different parametrizations to approximate mi-
physical processes over a region of interest and/or

fined subregion. This design choice brings to light
treme rainfall events regardless of a specific choice of
zation used to reproduce each physical process. In this
to support the exploration of spatiotemporal patterns,
ed an interface with three main components. The first
t, Temporal Overview, is composed of heat matri-
isplay summary statistics (e.g., average, percentiles)
ility distributions (e.g., output variable greater than a
reshold) of a subset of members of the ensemble (fol-
1 and R2). The component allows the user to apply
l constraint by selecting a particular time step of in-
e second component, Spatial View, primarily satisfies
2 by allowing the expert to visualize and compare

l distribution of multiple ensemble predictions, con-
ummary statistics or probability distributions. In the
t, the user can apply a spatial constraint by brushing
f interest. The third component, Distribution View,

f two views: a line chart showing mean and twice the
eviation of ensemble members aggregated over time;

and three histograms with the distribution of values of the tim
step of interest (center), and the previous and next time ste
(left and right). This component satisfies requisites R3 and R
The components are detailed in Section 7.

6. Data Management

The data management backend is responsible for loadin
storing, and dynamically aggregating the ensemble data in o
der to handle the interface requests. In what follows, we d
scribe the strategies used to ensure that the server can hand
the queries interactively, one of the requisites that X-Weath
system should satisfy, as discussed in R5 of Section 4.
Data loading and storage. Numerical weather models gene
ate and store simulation outputs in NetCDF files. Different ou
puts are stored in a single file, but only a few of them might b
relevant for analysis. For this reason, in this work, the outpu
of interest were extracted from NetCDF files and stored as CS
files, which are reduced, light, and easily manipulated. Whe
the backend starts, the content of the CSV files is stored in
one-dimensional row-major vector, with a straightforward i
dexing mapping between multi-dimension and linear position
As we show next, this strategy accelerates the computation
the order statistics and interface requests since it favors coale
cent memory access.
Dynamic data aggregation. The X-Weather system’s visu
interface requires on-the-fly computation of user-defined sc
nario probabilities and summary statistics (e.g., average an
percentiles of the ensemble members). Probabilities and a
erages can be efficiently computed since it only requires acce
to the members’ data. The computation of the percentiles, o
the other hand, requires an additional step of sorting the dat
Using our storage approach, we can accelerate this operation b
copying chunks of data that are sequentially stored in memor

Moreover, after the system is initialized, the user can app
spatial constraints and define a region of interest. When th
happens, the backend filters the grid points of each ensemb
member that should be considered during the aggregations. Pr
computing strategies would require the use of advanced da
structures such as Nanocubes [62, 63] or its extended versio
that supports the computation of order statistics [64]. Usin
a one-dimensional storage strategy we are able to interactive
compute a time series with the percentiles of the output var
ables considering a subgroup of ensemble members predictio
over the entire grid. In fact, we can compute a time seri
(nt = 25) with the median of the precipitation values over th
entire grid (nx × ny = 5, 472) of a subgroup with 40 ensem
ble members in 2 seconds on average. We observe that whe
the user defines a region of the grid to focus the analysis, th
computation times are even faster and the queries are typical
returned in less than 1 second. To accelerate the response tim
when the entire grid is considered, we cache the statistical sum
maries and probabilities of the output variables. The previo
acceleration strategies, although simple, sufficiently satisfie
our requirements, given the data set size and the case studi
designed by our collaborators. We emphasize that larger da
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a

b c

he X-Weather interface. (a) The Temporal Overview allows users to globally inspect the output variables of each simulation in each time
Spatial View allows users to study and compare the spatial distribution of an atmospheric variable in two subsets of ensemble member
ar instant of time. (c) The Distribution View enables a better understanding of the ensemble distribution using line charts showing the tem
tion or histograms showing the probability mass functions of ensemble groups. (d) The menu allows the user to change the system parameter
e output variable and aggregation function.

y require the adoption of more complex solutions (e.g.,
bes [62]).

al Exploration Interface

orked closely with weather forecasters in the design of
ther’s user interface in order to support the tasks de-
in Section 4. The results of our interview sessions with
experts indicate that they usually shy away from using

s and frameworks offering too many options, visualiza-
r widgets. The same occurs with 3D structures, as ob-
by Rautenhaus et al. [26]. Furthermore, another reason

does not suit our purpose is that the experts were in-
in inherently 2D outputs (e.g., surface-level precipita-

ur goal is to develop a system that experts are interested
feel comfortable using it. Therefore, we have chosen
own techniques to bring previously mostly inaccessible

ation to light.
visual interface is composed of three components high-
in Figure 2: (a) Temporal Overview, (b) Spatial View,
Distribution View. The interface also contains a menu

ows the user to change the system parameters. When the
starts, those parameters have been previously selected
ult, and the user can change them to perform the analy-

us, the interface is never empty.
ch one of these views, the simulations are organized in
, one for each available parametrization of a given phys-

ocess, chosen by the user in the menu. Such grouping
the exploration of the ensemble from different perspec-
d increases the chances of uncovering extreme weather
In addition, the user can use the menu to select a global
heric variable (e.g., rain, humidity) that will be used to
te the visualizations.

7.1. Temporal Overview

This component is composed of heat matrices each one
resenting a subset of simulations. Each column of a matrix
responds to a simulation, and each cell of a column an insta
time. Considering that a simulation output is, for a given
step, a set of values in the spatial dimension, a statistical
mary (e.g., mean, percentile, standard deviation) or probab
distribution defined by the user (e.g., probability of accu
lated precipitation greater than 10mm) of these values wi
calculated and assigned to the appropriate matrix cell. In o
words, the matrices show a measure of the values predict
space by each simulation in each time step.

The main purpose of the matrices is to allow for the vi
ization of an atmospheric variable over time according to
ensemble member (meeting R1 and R3), coupled with a p
ability scenario investigation (R2). This property provide
overview of the existence of a risk of extreme events, the
ment in which it might occur, and its proportion. This help
weather forecaster identify and, consequently, further ana
the spatial components of a subset of simulations, avoiding
necessary access to those that do not contribute to present
ful information. Furthermore, the Temporal Overview ena
the user to add temporal constraints by selecting specific
steps of interest, which will update both the Spatial Vie
well as the Distribution View (see Figure 3). It is importa
notice that this component can produce effective visualiza
of ensembles with a limited, but large, number of member
the case studies we considered 160 members). In fact,
a few previous proposals successfully handle ensembles
comparable size [33, 34]. In order to support the visualiz
of larger ensembles, we could adapt the proposed visualiza
by adding filtering strategies or zoom and pan interactions
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Param
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erence (A-B)

Paramet. (A) Paramet. (B) Paramet. (C) Paramet. (D)

Temporal Overview
40

(mm)
100

poral Overview and Spatial View interactions. The user can define spatial constraints by brushing on the first map of the Spatial View.
nstraint is active, the heat matrices of the Temporal Overview only consider the grid points inside the constraint. Similarly, the user c
oral constraints by clicking on the labels of the Temporal Overview matrices rows. Also, by clicking on the matrices, the user selects t

ations that, together with the temporal constraint, are used to build the Spatial View. In this example, the Temporal Overview state refle
ation of the 160 ensemble members organized in groups (matrices). Each group was formed according to the parametrization used for clo
cs’ physical process. That is, there are four matrices (members’ groups), each one gathering forty columns (members that used the sam
ation) and twenty-five rows (time steps).

ial View
mponent displays a set of heat maps showing the spa-
ution of an atmospheric variable at a particular time
abling the weather forecaster to perform analyses of
ble data in the spatial dimension, primarily satisfying
an atmospheric variable, a selected time instant, and

s of simulations in the Temporal Overview, the data
simulation subset will be aggregated by grid point
to the active statistical summary (e.g., mean, per-

andard deviation) or probability distribution defined
er. Below the map of the two groups of simulations,
will also display the difference between the two maps
e 3(left)).
ew also provides a lens functionality: the user moves
nd the area within it shows a variable while the out-
shows another one. This is highlighted in Figure 4,
isualization of different variables/metrics or the con-
robability of another scenario occurring for a second
ric variable, i.e., given that the scenario investigated
s occurred for one variable, what is the probability of

scenario occurring simultaneously? This information
t mainly for the expert to relate the probabilities be-
variables and, with their domain expertise about their

stics, understand the real dimension of the risk of an
vent. Again, it is possible to explore scenario prob-
R2), comparison of ensemble member groups in the

ension (R3), and spatiotemporal patterns (R1), since
onstrain updates the other views of the interface.

ibution View
stribution View is composed of two different visual-
idgets (shown in Figure 5) specifically designed to
etter understanding of the underlying data distribu-
he first widget (Figure 5(top)), the ensemble data is
d in the spatial dimension, and grouped by simula-
h group is represented by different line color and rep-
active statistical measurement of the data over time

(in the entire region or a region of interest if selected in th
Spatial View). This visualization also allows the inspection
the active statistical measurement plus/minus twice the standa
deviation associated with each distribution. This particular v
sualization allows the expert to identify outliers in time, whic
can indicate the occurrence of extreme events. It is important
note also that line charts are a visual metaphor known to the e
pert, which facilitates their analysis. By describing the behavi
of ensemble member groups over time according to a region
interest, this visualization supports requirements R1 and R
The expert can also visualize the probability mass functions
two groups of simulations (Figure 5(bottom)). The histogram
the center of the widget represents the instant of time selecte
in the Temporal Overview; the histograms on the left and rig
correspond to the time step immediately before and after th
time instant of interest, respectively. This is particularly impo
tant to the expert so that they can find time instants with th
possibility of a severe event occurring based on a regional s
lection. This widget meets requirement R1 for representing th
entire region or a specific region in a certain time step, R2 an
R4 for allowing the exploration of probabilities of previous
established scenarios, and R3 for allowing the comparison
groups of ensemble members.

7.4. Implementation

The X-Weather system was implemented following a we
based client-server architecture, such that the visual interfa
could be easily accessed by experts through a web browse
without the need of installing any additional software. We use
NodeJS and Express to implement the backend and ReactJ
and D3 to implement the front-end components of the system
For data preprocessing, we used Python 3, and the NumPy an
netCDF4 libraries. The case studies were executed on a com
puter with an AMD Ryzen 7 3700X 3.6GHZ, 16GB RAM, an
GeForce GT 210 1GB.
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P(K-Index >= 35°C)

P(Rain >= 30mm | K-Index >= 35°C)

P(Rain >= 30mm | K-Index >= 35°C)

P(K-Index >= 35°C)

Grell-Freitas

Kain-Fritsch

ens tool of the Spatial View. The tool allows the user to explore two
ariables and/or aggregations methods simultaneously, one shown
tire domain and the other inside the lens. Also, the tool can show
itional probability of a target value of an output variable occurring
e probability of observing a given scenario of another variable.

e Studies

emonstrate X-Weather, our partner meteorologists used
tem to study weather ensembles containing simulations
intense precipitation events that occurred in the mountain
of Rio de Janeiro in 2011 and 2020. We emphasize that
d previously known extreme events instead of weather
t data for a future date to highlight how the system would
nt the analysis pipelines. In this way, the experts evalu-
e system’s effectiveness by comparing the information
ed from it with available data. In both events, severe
used a lot of destruction. In the 2011 episode, landslides
everal people and destroyed a number of buildings [4, 5].
ulations were run using the 4.2.1 version of the WRF

[65]. The ensembles constructed for the case studies
nm = 160 simulations with different parametrization

of five physical processes related to the development of
: Cloud Microphysics, Cumulus Convection, Land Sur-
urface Layer, and Planetary Boundary Layer. The con-
parametrizations for each of the previous physical pro-

are:

loud Microphysics: WSM6, Kessler, Goddard, Eta (Fer-
r);

umulus Convection: Betts-Miller-Janjic, Grell-Freitas,
rell-3D, Grell-Devenyi, Kain-Fritsch;
rface Layer: MM5, MM5 Old;
nd Surface: Noah MP, Dudhia 1996;
anetary Boundary Layer: MRF, MYNN3.

ulations were run on a grid with nx = 96 and ny = 57
omposed of nt = 25 time steps representing 3 hour in-
. For each simulation, nv = 7 output atmospheric vari-
hat can indicate the development of storms were pro-
accumulated precipitation, the temperature at 2 meters
e surface, relative humidity at 850 hPa (850 hectopascal,

i.e. 1.5 km above sea level), upward vertical wind at 500
(5.5 km above sea level), divergence at 300 hPa (10 km a
sea level), convergence at 850 hPa and the k-index (an in
tor of atmospheric instability). Boundary and initial condi
were downloaded from GFS [59].

X-Weather was introduced to the experts in sessions la
up to 15 minutes. They then spent up to 10 minutes ext
ing information, making decisions for each use case, and
ducting the experiments without our help, which suggests
X-Weather was easy to operate.

8.1. Extreme Rainfall Event in 2011

On the night of January 11th, 2011 a system called South
lantic Convergence Zone caused an intense storm, with 150
of accumulated precipitation in 24 hours, that devastated
mountain region of Rio de Janeiro and was considered the w
weather disaster in Brazil’s history [4, 5, 60]. In the 7 days
to the disaster, the area had already registered a persistent
which made the soil wet and unstable. On the event’s n
satellite images showed the generation of clouds with sub
tial vertical development and potential for severe storms.

To explore the ensemble with X-Weather, the meteorolo
first used the Spatial View component to select the regio
Nova Friburgo, the region most impacted by the storm (see
ure 6(a)). Also, they configured the system to build visua
tions using the 90th percentile of the rain atmospheric var
since this measure helps the investigation of extreme va
By grouping the ensemble members based on the Cloud
crophysics parametrization type, the Temporal Overview
the line chart of the Distribution View showed that the m
ity of the members predicted rain throughout the day (see
ure 6(b,c)). In fact, Kessler was the parametrization that b
predicted the accumulated precipitation of the event.

Similarly, it was observed that the Betts-Miller-Janjic an
MYNN3 parametrizations predicted the highest amounts o
cumulated precipitation among the parametrizations of Cu
lus Convection and Planet Boundary Layer, respectively.
parametrizations of Land Surface and Surface Layer had a
nor influence on the predicted accumulated precipitation. H
ever, both the Temporal Overview and the line chart of the
tribution View showed that very few members predicted
accumulated precipitation at the time of the event (see
ure 6(b,c)). In fact, the mass probability function visualiz
of the Distribution View indicated that the probability o
serving more than 20 mm of rain at the time of the event
close to zero (see Figure 6(d)). The rain output indicated th
likely occurrence of an extreme event, and most likely war
systems would not be triggered if only considering this vari

To properly study the occurrence of severe rain, the m
rologists must investigate not only the predicted accumu
precipitation values but also other atmospheric variables,
as the ascending vertical wind at 500 hPa and the converg
at 850 hPa. To do so, they observed the Spatial View com
nent shown in Figure 6(e), built using the lens to show the
percentiles of the convergence at 850 hPa (entire region)
the ascending vertical wind at 500 hPa (lens region). These
variables indicate the existence of energy capable of raisin
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Distribution View can show two different visualizations. The line chart on the top is built by aggregating the ensemble members that use t
etrizations in the spatial dimension over time. The color of the lines represents the different parametrizations. The standard deviation of ea

embers can also be shown. The three pairs of bar charts on the bottom show the probability mass functions of two groups of simulations on t
lected using the Temporal Overview (center) as well as on the previous (left) and on the next (right) time steps.

to form rain clouds. In fact, the Temporal Overview
t all ensemble members predicted close to 100% rel-
idity at 800 hPa (see Figure 6(f)). Finally, the experts
that the many members predicted k-index higher than
ich indicates that the high humidity led to high atmo-
stability (see Figure 6(g)).

y Rainfall Event in 2020

uary 8th, 2020, close to 90 mm of accumulated precip-
s registered in just one hour in the mountain region of
neiro. Unlike the 2011 event, this episode was caused
ssage of a cold front associated with the formation of
ssure area on the continent, due to the strong heat and
levels of air humidity left by the summer rains that
ion in the previous six days. This event caused the

of urban rivers and several landslides.
ing the rain atmospheric variable using the Temporal
, the weather experts saw that, differently from the
ase study, the ensemble members predicted with good
both the day and the time when that the severe event
In fact, many ensemble members predicted high av-
90th percentile values of precipitation in the late af-

f January 6, 7, and 8, 2020, characterizing the typical
ains that occur in the region. Moreover, some sim-
redicted even higher accumulations in the late after-
e 8th, especially those that used the Grell-Freitas and

sch parametrizations to model the physical process of
Convection.
reason, these two parametrizations were selected for

ection in the Spatial View (see Figure 7(a)). The map
he probability of observing more than 30 mm of rain
y 8th at 9 pm (GMT) (6 pm local time) indicates that
with a higher probability of having large volumes of

rain are located in the south region of Rio de Janeiro. By selec
ing this region, the experts used the probability mass functio
visualization of the Distribution View to confirm that 25.3%
the members that used the Grell-Freitas and 37.9% of the mem
bers with the Kain-Fritsch predicted heavy rain in the regio
(see Figure 7(b)).

The analysis of other variables, like the temperature at 2 m
convergence at 850 hPa, divergence at 300 hPa, humidity
850 hPa, and k-index allowed the meteorologists to clear
identify patterns that characterized the formation of summ
rain at the end of the day, demonstrating that the system, agai
was able to bring to light the possibilities of a severe event o
curring. For example, setting the Spatial View to show the pro
ability of having k-index greater than 35 ◦C and activating th
lens to show the conditional probability of observing more tha
30 mm of rain given that the values of the k-index are great
than 35 ◦C, the meteorologists can see that both variables we
likely to achieve high values simultaneously on the night of th
event (see Figure 4).

Now considering the atmospheric variable k-index, using X
Weather it was possible to notice that the vast majority of th
members of the ensemble indicates the occurrence of valu
greater than 35 ◦C. This represents the possibility of atm
spheric instability (see Figure 7(c)). Maintaining the k-ind
variable active with minimum value of 35 ◦C and activating th
lens with minimum rain value of 30 mm, the meteorologists o
served that even with high probability of k-index values great
than 35 ◦C, only in the late afternoon of the 8th there was
higher probability of rainfall values greater than 30 mm, consi
ering the Grell-Freitas and Kain-Fritsch parametrizations. Th
shows that the k-index is, individually, an incomplete indic
tor of storm formation. However, the conditional probability
rainfall values greater than 30 mm was also important consi
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Nova Friburgo Region

(a)
WSM6 Kessler Goddard Eta (Ferrier)

Temporal View (Cloud Microphysics)
0 10

(mm)
40

Accumulated Rain

Kessler

Distribution View (Cloud Microphysics)

WSM6
Kessler
Goddard
Eta (Ferrier)
All

KesslerWSM6

(b)

(d)(c)

Lens Tool (90 percentile)

Convergence at 850 hPa (entire region)
Ascending Vertical Wind at 500 hPa (lens region)

(e)

Relative hum
idity

at 850 hPa
K-Index

(f)

(g)

3.7%

(x10^5/s) (hPa/s)

(%)

(°C)

xample of interactive exploration using X-Weather of a weather ensemble with simulations of a severe rain even that occurred in the mou
f Rio de Janeiro in 2011. The region of Nova Friburgo (a), the most affected by the storm, was investigated by weather experts. Using the s
erved that only a small number of simulations using the Kessler parametrization of the Cloud Microphysics process predicted large amou

ghlighted regions in (b) and (c)). More precisely, the probability of observing large amounts of rain based on the predictions that use K
(d). However, a closer look in other variables associated to the development of storms, such as the ascending vertical wind at 500 hPa an

ence at 850 hPa, showed the existence of energy capable of raising humidity to form rain clouds (e). This fact was then confirmed observing th
s predicted close to 100% relative humidity at 850 hPa (highlighted in (f)) and values of k-index greater than 35 ◦C, which indicates atmosp
ty (highlighted in (g)).

e high relative humidity values at 850 hPa. This shows,
ain, coherence concerning the physical transformations
spheric variables by the two parametrizations.
ability to better predict extreme weather events in spe-
gions by visually inspecting a large number of ensem-
mbers (and different atmospheric variables) with differ-
ametrizations is something that can greatly improve alert
s and possibly minimize the human and financial costs
ther-related disasters.

erts Feedback

ughout the research and development of X-Weather, we
ose contact with the domain experts, tuning the interface
ploration aspects of the tool to better satisfy their needs.
uested their feedback regarding ease of use, utility, and
requests.
users agreed that the tool is very useful in its capability
ent extreme weather alert systems, since the visualiza-

nd interactions, together with different statistical metrics
o light often hidden information that can make a differ-
hen it comes to alerting about the possible occurrence
ral disasters. The users also highlighted the ability to

ze the results of simulations with different parametriza-
s some sets of ensemble members can present better per-
ce than others when considering different regions. The
also highlighted the usefulness of the temporal heat ma-
iew, a visualization that is not part of a meteorologists’

outine, unlike heatmaps and line charts. They realized
matrices, in fact, presented general information about

ember of a large ensemble in a practical and optimized
his can be especially useful when they face situations

a model not forecasting a high volume of rain does not
rily mean that there is no possibility of a severe event.
sense, it was important that the matrices enabled them
alize multiple variables over time since only the direct
f rain can mask the existence of risks.
of the features requested by the experts was the ability
rbitrary time intervals for aggregation. The current ver-

sion of X-Weather aggregates the data with a fixed windo
three hours. Important events might happen at a finer temp
resolution (e.g., rain over a short period of time), or coarser
olution (e.g., accumulated precipitation over a day), so it i
portant for the specialist to choose their own aggregation
Another request was related to the Map View lens widget; s
the data visualized with the lens is linked with the curren
derlying map data, the expert suggested that it would be u
to select different instants of time, one for the base map
and another one for the lens maps. This would be espec
useful because some atmospheric variables are related at d
ent times (e.g., it is common for air to rise hours before a st
such as the 2011 event, as well as movements of converg
and divergence at different times).

10. Conclusion and Future Work

In this work, we presented X-Weather, a visual anal
tool built specifically for the analysis of a large ensemb
simulations generated by a numerical weather model, co
ured with different parametrizations to represent various p
ical processes. By using three different visualization com
nents, weather forecasters can explore the ensemble an
vestigate the possibilities and probabilities of extreme we
events. We also presented a set of case studies that show
usefulness of the tool in the analysis of extreme weather ev
in the mountain region of Rio de Janeiro; the experts who
the tool highlighted its capability to augment extreme we
alert systems, and potentially prevent some of the conseque
of heavy rainfalls that lead to landslides. One of the mos
portant outcomes of X-Weather is to increase the forecas
ability to interpret weather simulations, specifically when
merical models were not designed with a certain region (d
oping countries) in mind. In doing this, we believe that diff
stakeholders in the alert system infrastructure (e.g., city, s
and federal agencies, private entities) will ultimately be m
open and secure to take actions that can save lives.

Furthermore, the interdisciplinary interaction betw
weather and visualization experts during the development
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Grell-Freitas

Kain-Fritsch

(a) P(Rain >= 30mm) (b) Accumulated Rain Probability (c) P(K-Index >= 35  C)o

Kain-Fritsch

Grell-Freitas
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G
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vy rainfall event in the mountain region of Rio de Janeiro in 2020. The simulations of the constructed ensemble predicted high values
d precipitation (more than 30 mm), especially in the south of the studied area (a). In fact, considering simulations using the Grell-Freit
ritsch parametrizations to approximate the Cumulus Convection process, the chances of raining more than 30 mm was 25.3% and 31.9%
(b). Considering the same parametrizations, we see that the probability of having k-index greater than 35 ◦C was close to 100% during t

d (c).

system has provided valuable lessons to guide future
The experts highlighted the importance to set arbi-
intervals for aggregations; (2) The experts mentioned
weather phenomena happen due to the previous oc-

of others, i.e., the relationship between them exists at
ime steps. In this context, it is essential to facilitate
igation of patterns by visualizing them not only at the
steps, as it is done in X-Weather, but also at different
Although the organization of the interface was suffi-

he experts to properly use X-Weather, we noticed that
ed to switch screens frequently to investigate different
ric variables. Presenting these variables on the same
t just the lens) could improve the analysis workflow.
of the previously mentioned directions, we also plan
rate terrain and building models into our system as
dslide and flooding historical data so that the weather
can have a view of the impact of rain on regions that

y impacted by extreme rain, and make more informed
regarding possible emergency evacuation. We also
ake the tool available to a wider audience, deploying
liable and robust server. On top of this, we plan to
e, in collaboration with weather experts, other regions
that also suffer from heavy rain and landslides.
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Highlights: 

 

• Our visualizations help identify extreme weather scenarios in large simulation ensembles.  
• Our web-based system enables the investigation of individual weather ensemble members.  
• Two case studies highlight our system’s utility by analyzing extreme weather events. 
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